八年级上册数学同步练习题库:因式分解(填空题:一般)
- 格式:docx
- 大小:109.47 KB
- 文档页数:21
人教版初二上册数学同步练习题:因式分解
学习是一个墨守成规的进程,也是一个不时积聚不时创新的进程。
下面小编为大家整理了人教版初二上册数学同步练习题:因式分解,欢迎大家参考阅读!
1、以下各式从左到右的变形,是因式分解的是( )
A、m(a+b)=ma+mb
B、ma+mb+1=m(a+b)+1
C、(a+3)(a-2)=a2+a-6
D、x2-1=(x+1)(x-1)
2、假定y2-2my+1是一个完全平方式,那么m的值是( )
A、m=1
B、m=-1
C、m=0
D、m=±1
3、把-a(x-y)-b(y-x)+c(x-y)分解因式正确的结果是( )
A、(x-y)(-a-b+c)
B、(y-x)(a-b-c)
C、-(x-y)(a+b-c)
D、-(y-x)(a+b-c)
4、-(2x-y)(2x+y)是以下哪一个多项式分解因式后所得的答案( )
A、4x2-y2
B、4x2+y2
C、-4x2-y2
D、-4x2+y2
5、m-n+ 是以下哪个多项式的一个因式( )
A、(m-n)2+ (m-n)+
B、(m-n)2+ (m-n)+
C、(m-n)2- (m-n)+
D、(m-n)2- (m-n)+
6、分解因式a4-2a2b2+b4的结果是( )
A、a2(a2-2b2)+b4
B、(a-b)2
C、(a-b)4
D、(a+b)2(a-b)2
小编再次提示大家,一定要多练习哦!希望这篇人教版初二上册数学同步练习题:因式分解可以协助你稳固学过的相关知识。
用公式法进行因式分解一、填空题(本大题共20小题,共60.0分)1.分解因式:xy2+8xy+16x= ______ .2.因式分解:4m2-36= ______ .3.因式分解:2a3-8ab2= ______ .4.将多项式mn2+2mn+m因式分解的结果是______ .5.把多项式4ax2-9ay2分解因式的结果是______ .6.因式分解:2x2-32x4= ______ .7.因式分解:a2b-4ab+4b= ______ .8.分解因式:mx2-4m= ______ .9.分解因式a2b-a的结果为______ .10.分解因式:2ax2-8a= ______ .11.分解因式:2m2-8= ______ .12.分解因式:ma2+2mab+mb2= ______ .13.分解因式:a2b-b3= ______ .14.分解因式:x(x-1)-y(y-1)= ______ .15.分解因式:ax3y-1axy= ______ .416.因式分解:3y2-12= ______ .17.因式分解:m2n-6mn+9n= ______ .18.因式分解:a2b-ab+1b= ______ .419.分解因式-a3+2a2b-ab2= ______ .20.分解因式:a2b+4ab+4b= ______ .二、计算题(本大题共30小题,共180.0分)21.分解因式(1)a2(a-b)+4b2(b-a)(2)m4-1(3)-3a+12a2-12a3.22.把下列多项式分解因式:(1)6x2y-9xy;(2)4a2-1;(3)n2(n-6)+9n.23.把下列各式因式分解(1)ap-aq+am(2)a2-4(3)a2-2a+1(4)ax2+2axy+ay2.24.分解因式:x+xy+xy2(1)14(2)(m+n)3-4(m+n)25.因式分解:(1)x(x-2)-3(2-x)(2)x2-10x+25.26.把下列各式进行因式分解:(1)a3-6a2+5a;(2)(x2+x)2-(x+1)2;(3)4x2-16xy+16y2.27.因式分解:(1)x2-y2(2)-4a2b+4ab2-b3.28.分解因式(1)x3-16x(2)8a2-8a+2.(2)b4-4ab3+4ab2.30.分解因式:(1)2x2-4x(2)a2(x-y)-9b2(x-y)(3)4ab2-4a2b-b3(4)(y2-1)2+6(1-y2)+9.31.分解因式:(1)3a2+6ab+3b2(2)9(m+n)2-(m-n)2.32.因式分解:(1)a(x-y)-b(y-x)(2)3ax2-12ay2(3)(x+y)2+4(x+y+1)33.分解因式:(1)a(x-y)-b(y-x);(2)16x2-64;(3)(x2+y2)2-4x2y2.34.分解因式(1)4x3y-xy3(2)-x2+4xy-4y2.35.分解下列因式:(1)9a2-1(2)p3-16p2+64p.36.因式分解:(1)x2-10xy+25y2(2)3a2-12ab+12b2(3)(x2+y2)2-4x2y2(4)9x4-81y4.37.将下列各式分解因式(1)16a2b2-1(2)12ab-6(a2+b2)38.把下列各式因式分解(1)4a2-16(2)(x2+4)2-16x2.39.把下列多项式因式分解:(1)x3y-2x2y+xy;(2)9a2(x-y)+4b2(y-x).40.分解因式(1)x3-xy2(2)(x+2)(x+4)+1.41.因式分解:-3a3b+6a2b2-3ab3.42.把下列各式分解因式:①4m(x-y)-n(x-y);②2t2-50;③(x2+y2)2-4x2y2.43.因式分解(1)x2-5x-6(2)2ma2-8mb2(3)a3-6a2b+9ab2.44.分解因式:2x2-12x+18.45.分解因式:(1)x3+2x2+x(2)x3y3-xy.46.因式分解:(1)ax2-2ax+a(2)24(a-b)2-8(b-a)47.因式分解:(1)4x2-16y2(2)x2-10x+25.48.分解因式(1)m(a-3)+2(3-a)(2)x2-6x+9.49.因式分解:6xy2-9x2y-y2.50.分解因式(1)x2(a+b)-a-b(2)a3b-2a2b2+ab3(3)y4-3y3-4y2(4)-(a2+2)2+6(a2+2)-9.用公式法进行因式分解答案和解析【答案】1.x(y+4)22.4(m+3)(m-3)5.a (2x +3y )(2x -3y )6.2x 2(1+4x )(1-4x )7.b (a -2)28.m (x +2)(x -2)9.a (ab -1)10.2a (x +2)(x -2)11.2(m +2)(m -2)12.m (a +b )213.b (a +b )(a -b )14.(x -y )(x +y -1)15.axy (x +12)(x -12)16.3(y +2)(y -2)17.n (m -3)218.b (a -12)219.-a (a -b )220.b (a +2)221.解:(1)原式=a 2(a -b )-4b 2(a -b )=(a -b )(a 2-4b 2)=(a -b )(a +2b )(a -2b );(2)原式=(m 2+1)(m 2-1)=(m 2+1)(m +1)(m -1);(3)原式=-3a (4a 2-4a +1)=-3a (2a -1)2.22.解:(1)原式=3xy (2x -3);(2)原式=(2a +1)(2a -1);(3)原式=n (n 2-6n +9)=n (n -3)2.23.解:(1)原式=a (p -q +m );(2)原式=(a +2)(a -2);(3)原式=(a -1)2;(4)原式=a (x 2+2xy +y 2)=a (x +y )2.24.解:(1)原式=14x (1+4y +4y 2)=14x (1+2y )2;(2)原式=(m +n )[(m +n )2-4]=(m +n )(m +n +2)(m +n -2).25.解:(1)原式=x (x -2)+3(x -2)=(x -2)(x +3);(2)原式=(x -5)2.26.解:(1)原式=a (a 2-6a +5)=a (a -1)(a -5);(2)原式=(x 2+x +x +1)(x 2+x -x -1)=(x +1)2(x +1)(x -1);(3)原式=4(x 2-4xy +4y 2)=4(x -2y )2.27.解:(1)原式=(x +y )(x -y );(2)原式=-b (4a 2-4ab +b 2)=-b (2a -b )2.28.解:(1)原式=x (x 2-16)=x (x +4)(x -4);(2)原式=2(4a 2-4a +1)=2(2a -1)2.29.解:(1)原式=3(m 4-16)=3(m 2+4)(m +2)(m -2);30.解:(1)原式=2x(x-2);(2)原式=(x-y)(a2-9b2)=(x-y)(a+3b)(a-3b);(3)原式=-b(b2-4ab+4a2)=-b(2a-b)2;(4)原式=(y2-1)2-6(y2-1)+9=(y2-4)2=(y+2)2(y-2)2.31.解:(1)原式=3(a2+2ab+b2)=3(a+b)2;(2)原式=[3(m+n)+m-n][3(m+n)-(m-n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n).32.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=3a(x2-4y2)=3a(x+2y)(x-2y);(3)原式=(x+y)2+4(x+y)+4=(x+y+2)2.33.解:(1)原式=a(x-y)+b(x-y)=(x-y)(a+b);(2)原式=16(x2-4)=16(x+2)(x-2);(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.34.解:(1)原式=4xy(x2-y2)=4xy(x+y)(x-y);(2)原式=-(x2-4xy+4y2)=-(x-2y)2.35.解:(1)原式=(3a+1)(3a-1);(2)原式=p(p2-16p+64)=p(p-8)2.36.解:(1)原式=(x-5y)2;(2)原式=3(a2-4ab+4b2)=3(a-2b)2;(3)原式=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2;(4)原式=9(a2+3y2)(x2-3y2).37.解:(1)原式=(4ab+1)(4ab-1);(2)原式=-6(a2-2ab+b2)=-6(a-b)2.38.解:(1)原式=4(a2-4)=4(a+2)(a-2);(2)原式=(x2+4+4x)(x2+4-4x)=(x-2)2(x+2)2.39.解:(1)原式=xy(x2-2x+1)=xy(x-1)2;(2)原式=9a2(x-y)-4b2(x-y)=(x-y)(3a+2b)(3a-2b).40.解:(1)原式=x(x2-y2)=x(x+y)(x-y);(2)原式=(x+3)2.41.解:原式=-3ab(a2-2ab+b2)=-3ab(a-b)2.42.解:①4m(x-y)-n(x-y)=(x-y)(4m-n);②2t2-50=2(t2-25)=2(t+5)(t-5);③(x2+y2)2-4x2y2=(x2+y2+2xy)(x2+y2-2xy)=(x+y)2(x-y)2.43.解:(1)原式=(x-6)(x+1);(2)原式=2m(a2-4b2)=2m(a+2b)(a-2b);(3)原式=a(a2-6ab+9b2)=a(a-3b)2.44.解:原式=2(x2-6x+9)=2(x-3)2.45.解:(1)原式=x(x2+2x+1)=x(x+1)2;(2)原式=xy(x2y2-1)=xy(xy+1)(xy-1).(2)原式=24(a-b)2+8(a-b)=8(a-b)[3(a-b)+1]=8(a-b)(3a-3b+1).47.解:(1)原式=(2x+4y)(2x-4y);(2)原式=(x-5)2.48.解:(1)原式=m(a-3)-2(a-3)=(a-3)(m-2);(2)原式=(x-3)2.49.解:原式=-y(9x2-6xy+y).50.解:(1)原式=x2(a+b)-(a+b)=(a+b)(x2-1)=(a+b)(x+1)(x-1);(2)原式=ab(a2-2ab+b2)=ab(a-b)2;(3)原式=y2(y2-3y-4)=y2(y-4)(y+1);(4)原式=-[(a2+2)-3]2=-(a-1)2(a+1)2.。
义务教育基础课程初中教学资料因式分解同步练习一、选择题1.多项式-6a2b+18a2b3x+24ab2y的公因式是()A.2abB.-6a2bC.-6ab2D. -6ab2.下列各式从左向右的变形中,是因式分解的是())A.(x-3)(x+3)=x2-9B.x2+1=x(x+1xC.2-+=-+ D. 222x x x x3313(1)1-+=-a ab b a b2()3.下列各组多项式没有公因式的是()A. 2x-2y 与y-xB.x2-xy与xy-x2C.3x+y与x+3yD. 5x+10y与-2y-x4.已知关于x的二次三项式3x2-mx+n分解因式的结果为(3x+2)(x-1),则m、n的值分别为()A.m=1,n= -2B.m= -1,n=2C. m=2,n= -1D. m= -2,n=15.把2(a-3)+a(3-a)提取公因式(a-3)后,另一个因式为()A.a-2B. a+2C.2-aD. -2-a6.化简(-2)2008+(-2)2009的结果为()A.-22008B. 22008C.-22009D.22009二、填空题(每小题5分,共30分)7.单项式8x2y2、12xy3、6x2y2的公因式是______.8.-x2+xy-xz=(________)(x-y+z).9.在(x+y)(x-y)=x2-y2中,从左向右的变形是__________,从右向左的变形是__________.10.因式分解:(x+y)2-3(x+y)=_______11.计算:3.68×15.7-31.4+15.7×0.32=______.12.若x2(x+1)+y(xy+y)=(x+1)·A,则A= _______三、解答题(每题10分,共40分)13.分解因式:⑴6m2n-15n2m+30m2n2⑵x(x-y)2-y(x-y)14.已知x= -2, x+y+z= -2.8,求x2(-y-z)-3.2x(z+y)的值15.证明817-279-913必能被45整除.16.某商场有三层,第一层有商品(m+n)2种,第二层有商品m(m+n)种,第三层有商品n(m+n)种,求这个商场共有多少种商品.参考答案:一.选择题二.填空题7.2xy 2; 8.-x ; 9.整式乘法,因式分解; 10.(x+y )(x+y-3); 11.31.4; 12. x 2+y 2三.解答题13.⑴3mn(2m-5n+10mn);⑵(x-y)(x 2-xy-y);14.-1.9215.()()()791379134322827262622624812793333333(331)35345,--=--=--=--=⨯=⨯所以,它必能被45整除.16.2(m+n)2种。
2017-2018学年 八年级数学上册 因式分解 填空题练习1、分解因式:a2+3a= .2、分解因式:2a2﹣6a= .3、分解因式:4x2﹣4= .4、分解因式:﹣3x3y+27xy= .5、分解因式:a3﹣4a2+4a= .6、分解因式:x2y﹣y= .7、分解因式:3a2+6a+3= .8、分解因式:x3y﹣2x2y+xy= .9、分解因式:x3-2x=______________.10、将x n+3-x n+1因式分解,结果是11、分解因式:3x2﹣x= .12、分解因式:2a3—2a=_ .13、分解因式:mn2+6mn+9m= .14、分解因式:a3﹣2a2+a= .15、分解因式:a3b-2a2b+ab= 。
16、分解因式:ab2﹣6ab+9a= .17、分解因式:m3n﹣4mn= .18、分解因式:ax2﹣4ax+4a= .19、分解因式:2b2-8b+8= .20、分解因式:4x3﹣16x2+16x= .21、分解因式:xy2﹣x3= .22、分解因式:ax2﹣ay2= .23、分解因式ax2-9ay2的结果为 .24、分解因式x2(x﹣y)+(y﹣x)= .25、分解因式:x2﹣xy2= .26、分解因式:a3﹣ab2= .27、分解因式:am2﹣4an2= .28、分解因式:am2﹣9a= .29、分解因式:(x+4)(x﹣1)﹣3x= .30、分解因式:(a2+1)2﹣4a2= .31、分解因式a3b﹣4ba= .32、分解因式:4m2﹣64= .33、把a2(x﹣3)+(3﹣x)分解因式的结果是 .34、分解因式:3x2y﹣27y= .35、分解因式:a3﹣4ab2= .36、分解因式:8x2﹣2= .37、分解因式:ab2﹣2ab+a= .38、分解因式:3x2﹣12y2= .39、把多项式ax2+2a2x+a3分解因式的结果是 .40、多项式ax2-4a与多项式x2-4x+4公因式为 。
八年级数学因式分解专项练习一、填空题:1、=-222y y x ;2、=+-3632a a3、2x ²-4xy -2x = (x -2y -1)4、4a ³b ²-10a ²b ³ = 2a ²b ² ( )5、(1-a)mn +a -1=( )(mn -1)6、m(m -n)²-(n -m)²=( )( )7、x ²-( )+16y ² =( ) ²8、a ²-4(a -b)²=( )·( )9、16(x -y)²-9(x +y)² =( )·( ) 10、(a +b)³-(a +b)=(a +b)·( )·( ) 11、x ²+3x +2=( )( )12、已知x ²+px +12=(x -2)(x -6),则p= 13、若。
=,,则b a b b a ==+-+-0122214、若()22416-=+-x mx x ,那么m=15、如果。
,则=+=+-==+2222,7,0y x xy y x xy y x16、已知31=+a a ,则221a a +的值是 17、如果2a+3b=1,那么3-4a-6b=18、若n mx x ++2是一个完全平方式,则n m 、的关系是 19、分解因式:2212a b ab -+-=20、如果()()22122163a b a b +++-=,那么a b +的值为二、选择题:21、下列各式从左到右的变形中,是因式分解的为............( )A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+- C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)(22、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是.................................................( )A 、46-bB 、64b -C 、46+bD 、46--b23、下列各式是完全平方式的是...........................( ) A 、412+-x xB 、21x +C 、1++xy xD 、122-+x x24、把多项式)2()2(2a m a m -+-分解因式等于...............( ) A 、))(2(2m m a +- B 、))(2(2m m a -- C 、m(a-2)(m-1) D 、m(a-2)(m+1)25、2222)(4)(12)(9b a b a b a ++-+-因式分解的结果是.........( ) A 、2)5(b a - B 、2)5(b a + C 、)23)(23(b a b a +- D 、2)25(b a -26、下列多项式中,含有因式)1(+y 的多项式是.............( )A 、2232x xy y --B 、22)1()1(--+y yC 、)1()1(22--+y yD 、1)1(2)1(2++++y y 27、分解因式14-x 得....................................( ) A 、)1)(1(22-+x x B 、22)1()1(-+x x C 、)1)(1)(1(2++-x x x D 、3)1)(1(+-x x28、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为.................................................( ) A 、1,3-==c b B 、2,6=-=c b C 、4,6-=-=c b D 、6,4-=-=c b29、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是.............................................( ) A 、直角三角形 B 、等腰三角形 C 、等腰直角三角形 D 、等边三角形30、()()22x a x ax a -++的计算结果是....................( )(A)、3232x ax a +-(B)、33x a -(C)、3232x a x a +-(D)、222322x ax a a ++-31、用提提公因式法分解因式5a(x -y)-10b ·(x -y),提出的公因式应当为...........................................( ) A 、5a -10b B 、5a +10b C 、5(x -y) D 、y -x 32、把-8m ³+12m ²+4m 分解因式,结果是..................( ) A 、-4m(2m ²-3m) B 、-4m(2m ²+3m -1) C 、-4m(2m ²-3m -1) D 、-2m(4m ²-6m +2) 33、把16-x4分解因式,其结果是..........................( ) A 、(2-x)4 B 、(4+x ²)( 4-x ²) C 、(4+x ²)(2+x)(2-x) D 、(2+x)³(2-x)34、把a4-2a ²b ²+b4分解因式,结果是......................( ) A 、a ² (a ²-2b ²)+b4 B 、(a ²-b ²)² C 、(a -b)4 D 、(a +b)²(a -b)²35、把多项式2x ²-2x +21分解因式,其结果是..............( )A 、(2x -21)²B 、2(x -21)²C 、(x -21)²D 、21(x -1) ²36、若9a ²+6(k -3)a +1是完全平方式,则 k 的值是.........( ) A 、±4 B 、±2 C 、3 D 、4或237、-(2x -y )(2x +y)是下列哪个多项式分解因式的结果...( ) A 、4x ²-y ² B 、4x ²+y ² C 、-4x ²-y ² D 、-4x ²+y ² 38、多项式x2+3x -54分解因式为........................( ) A 、(x +6)(x -9) B 、(x -6)(x +9) C 、(x +6)(x +9) D 、 (x -6)(x -9)39、若a 、b 、c 为一个三角形的三边,则代数式(a -c )²-b ²的值为.................................................( ) A 、一定为正数 B 、一定为负数 C 、可能为正数,也可能为负数 D 、可能为零40、下列分解因式正确的是..............................( )(A)32(1)x x x x -=-. (B)26(3)(2)m m m m +-=+-. (C)2(4)(4)16a a a +-=-. (D)22()()x y x y x y +=+-. 41、如图:矩形花园ABCD 中,a AB =,b AD =, 花园中建有一条矩形道路LMPQ 及一条平行 四边形道路RSTK 。
2022-2023学年人教版八年级数学上册《14.3因式分解》同步练习题(附答案)一.选择题1.下列等式中,从左到右的变形是因式分解的是()A.a(a﹣3)=a2﹣3a B.(a+3)2=a2+6a+9C.6a2+1=a2(6+)D.a2﹣9=(a+3)(a﹣3)2.4a2b3与2ab4c的公因式为()A.ab B.2ab C.2ab3D.2abc3.把多项式x2+2x﹣8因式分解,正确的是()A.(x﹣4)2B.(x+1)(x﹣8)C.(x+2)(x﹣4)D.(x﹣2)(x+4)4.下列多项式中,不能用乘法公式进行因式分解的是()A.a2﹣1B.a2+2a+1C.a2+4D.9a2﹣6a+1 5.若x2+px+q=(x﹣3)(x﹣5),则p+q的值为()A.15B.7C.﹣7D.﹣86.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解7.a2(a2﹣1)﹣a2+1的值()A.不是负数B.恒为正数C.恒为负数D.不等于08.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是()A.2B.5C.20D.99.已知a2+b2=2a﹣b﹣2,则3a﹣b的值为()A.4B.2C.﹣2D.﹣410.分解因式x2+ax+b,甲看错了a的值,分解的结果为(x+6)(x﹣1),乙看错了b的值,分解结果为(x﹣2)(x+1),那么x2+ax+b分解因式的正确结果为()A.(x﹣2)(x+3)B.(x+2)(x﹣3)C.(x﹣2)(x﹣3)D.(x+2)(x+3)11.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:蜀、爱、我、巴、丽、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.巴蜀美C.我爱巴蜀D.巴蜀美丽12.如果△ABC的三边a、b、c满足ac2﹣bc2=(a﹣b)(a2+b2),则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形13.(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.9二.填空题14.分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),乙看错b的值,分解的结果是(x﹣2)(x+1),则a=,b=.15.若实数x满足x2﹣3x﹣1=0,则2x3﹣5x2﹣5x﹣2020的值为.16.多项式8x2m y n﹣1﹣12x m y n中各项的公因式为.17.已知a+b=1,则代数式a2﹣b2+2b+9的值为.18.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.19.若a=12,b=109,则ab﹣9a的值为.20.如图,六块纸板拼成一张大矩形纸板,其中一块是边长为a的正方形,两块是边长为b 的正方形,三块是长为a,宽为b的矩形(a>b).观察图形,发现多项式a2+3ab+2b2可因式分解为.21.已知多项式f(x)除以x﹣1,x﹣2,x﹣3的余数分别为1,4,5,则f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为.三.解答题22.因式分解:(1)ax2﹣4ax+4a;(2)x2(m﹣n)+y2(n﹣m);(3)(x+2)(x+4)﹣3;(4)9(a+b)2﹣(a﹣b)2.23.把下列各式分解因式:(1)x2+3x﹣4;(2)a3b﹣ab;(3)3ax2﹣6axy+3ay2.24.因式分解:(1)﹣4x3+16x2﹣20x(2)a2(x﹣2a)2﹣2a(2a﹣x)3(3)(x2+2x)2﹣2(x2+2x)﹣3(4)x3+3x2﹣4(拆开分解法)25.如图是L形钢条截面,请写出它的面积公式.并计算:当a=54mm,b=54.5mm,c=8.5mm时的面积.26.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.27.例题:已知二次三项式x2﹣4x+m中有一个因式是x+3,求另一个因式以及m的值.解:设另一个因式为x+n,得x2﹣4x+m=(x+3)(x+n).∴解得n=﹣7,m=﹣21.另一个因式为x﹣7,m的值为﹣21.仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是x﹣5,求另一个因式以及k的值.28.整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2﹣4x)(x2﹣4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1﹣2﹣3﹣…﹣2021)×(2+3+…+2022)﹣(1﹣2﹣3﹣…﹣2022)×(2+3+…+2021).参考答案一.选择题1.解:A.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.从等式的右边不是几个整式的积的形式,即从左到右的变形不属于因式分解,故本选项不符合题意;D.左到右的变形属于因式分解,故本选项符合题意;故选:D.2.解:4a2b3与2ab4c的公因式为2ab3,故选:C.3.解:x2+2x﹣8=(x﹣2)(x+4),故选:D.4.解:A、a2﹣1=(a+1)(a﹣1),可以运用公式法分解因式,不合题意;B、a2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C、a2+4,无法利用公式法分解因式,符合题意;D、9a2﹣6a+1=(3a﹣1)2,可以运用公式法分解因式,不合题意;故选:C.5.解:∵x2+px+q=(x﹣3)(x﹣5),∴x2+px+q=x2﹣8x+15,故p=﹣8,q=15,则p+q=﹣8+15=7.故选:B.6.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.7.解:∵a2(a2﹣1)﹣a2+1=a2(a2﹣1)﹣(a2﹣1)=(a2﹣1)(a2﹣1)=(a2﹣1)2,∴a2(a2﹣1)﹣a2+1的值不是负数.故选:A.8.解:∵c2﹣a2﹣2ab﹣b2=10,∴c2﹣(a2+2ab+b2)=10,∴c2﹣(a+b)2=10,∴(c+a+b)(c﹣a﹣b)=10,∵a+b+c=﹣5,∴c﹣a﹣b=﹣2,∴a+b﹣c=2,故选:A.9.解:∵a2+b2=2a﹣b﹣2,∴a2﹣2a+1+b2+b+1=0,∴,∴a﹣1=0,b+1=0,∴a=1,b=﹣2,∴3a﹣b=3+1=4.故选:A.10.解:因为(x+6)(x﹣1)=x2+5x﹣6,(x﹣2)(x+1)=x2﹣x﹣2,由于甲看错了a的值没有看错b的值,所以b=﹣6,乙看错了b的值而没有看错a的值,所以a=﹣1,所以多项式x2+ax+b为x2﹣x﹣6=(x﹣3)(x+2)故选:B.11.解:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b),由已知可得:我爱巴蜀,故选:C.12.解:∵ac2﹣bc2=(a﹣b)(a2+b2),∴(a﹣b)(a2+b2﹣c2)=0,∴a=b或a2+b2=c2,即该三角形是等腰三角形或直角三角形.故选:D.13.解:∵(﹣8)2022+(﹣8)2021=(﹣8)2021×(﹣8)+(﹣8)2021=(﹣8)2021×(﹣8+1)=(﹣8)2021×(﹣7)=82021×7.∴能被7整除.故选:C.二.填空题14.解:∵分解因式x2+ax+b,甲看错a的值,分解结果是(x+6)(x﹣1),∴x2+ax+b=x2+5x﹣6,故b=﹣6;∵乙看错b的值,分解的结果是:∴x2+ax+b=(x﹣2)(x+1)=x2﹣x﹣2,∴a=﹣1则a=﹣1,b=﹣6.故答案为:﹣1,﹣6.15.解:∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴2x3﹣5x2﹣5x+2020=2x3﹣6x2+x2﹣3x﹣2x+2020=2x(x2﹣3x)+(x2﹣3x)﹣2x+2020=2x+1﹣2x+2020=2021,故答案为:2021.16.解:系数的最大公约数是4,各项相同字母的最低指数次幂是x m y n﹣1,所以公因式是4x m y n﹣1,故答案为:4x m y n﹣1.17.方法一:解:∵a2﹣b2+2b+9=(a+b)(a﹣b)+2b+9又∵a+b=1,∴原式=a﹣b+2b+9=a+b+9=10.方法二:解:∵a2﹣b2+2b+9=a2﹣(b2﹣2b+1)+10=a2﹣(b﹣1)2+10=(a﹣b+1)(a+b﹣1)+10.又∵a+b=1,∴原式=10.18.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.19.解:因为a=12,b=109,所以ab﹣9a=a(b﹣9)=12×(109﹣9)=12×100=1200,故答案为:1200.20.解:根据图形得到长方形的面积为:a2+ab+ab+ab+b2+b2=a2+3ab+2b2,也可以为(a+b)(a+2b),则根据此图,多项式a2+3ab+2b2分解因式的结果为(a+b)(a+2b),故答案为:(a+b)(a+2b).21.解:∵(x﹣1)(x﹣2)(x﹣3)的结果是三次多项式,∴多项式f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为二次多项式,设这个余式为ax2+bx+c,由题意得:,解得:.∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式为﹣x2+6x﹣4.∵﹣x2+6x﹣4=﹣(x﹣3)2+5,∴f(x)除以(x﹣1)(x﹣2)(x﹣3)所得余式的最大值为5.故答案为:5.三.解答题22.解:(1)原式=a(x2﹣4x+4)=a(x﹣2)2;(2)原式=x2(m﹣n)﹣y2(m﹣n)=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y);(3)原式=x2+6x+8﹣3=x2+6x+5=(x+1)(x+5);(4)原式=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).23.解:(1)x2+3x﹣4=(x+4)(x﹣1);(2)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(3)3ax2﹣6axy+3ay2=3a(x2﹣2xy+y2)=3a(x﹣y)2;24.解:(1)﹣4x3+16x2﹣20x=﹣4x(x2﹣4x+5);(2)a2(x﹣2a)2﹣2a(2a﹣x)3=a2(2a﹣x)2﹣2a(2a﹣x)3=a(2a﹣x)2[a﹣2(2a﹣x)]=a(2a﹣x)2[a﹣4a+2x]=a(2a﹣x)2(﹣3a+2x);(3)(x2+2x)2﹣2(x2+2x)﹣3=[(x2+2x)﹣3][(x2+2x)+1]=(x2+2x﹣3)(x2+2x+1)=(x+3)(x﹣1)(x+1)2;(4)x3+3x2﹣4=(x3+2x2)+(x2﹣4)=x2(x+2)+(x+2)(x﹣2)=(x+2)(x2+x﹣2)=(x+2)(x+2)(x﹣1)=(x+2)2(x﹣1).25.解:L形钢条的面积=ac+(b﹣c)c=ac+bc﹣c2=c(a+b﹣c);当a=54mm,b=54.5mm,c=8.5mm时,原式=8.5×(54+54.5﹣8.5)=850(mm2),即面积为850mm2.26.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.27.解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a),则2x2+3x﹣k=2x2+(a﹣10)x﹣5a,∴,解得a=13,k=65,故另一个因式为(2x+13),k的值为65.28.解:(1)①没有,设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步)=(x+1)4(第五步).故答案为:(x+1)4;②设x2﹣4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2﹣4x+4)2=(x﹣2)4;(2)设x=1﹣2﹣3﹣...﹣2021,y=2+3+ (2022)则1﹣2﹣3﹣…﹣2022=x﹣2022,2+3+…+2021=y﹣2022,x+y=1+2022=2023,所以原式=xy﹣(x﹣2022)(y﹣2022)=xy﹣xy+2022(x+y)﹣20222=2022×2023﹣20222=2022(2022+1)﹣20222=2022.。
人教版2020年八年级上册14.3《因式分解》同步练习卷一.选择题1.下列多项式能用平方差公式分解的是()A.a2+a B.a2﹣2ab+b2C.x2﹣4y2D.x2+y22.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+13.把2x2﹣2x+分解因式,其结果是()A.2(x﹣)2B.(x﹣)2C.(x﹣1)2D.(2x﹣)2 4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20B.﹣16C.16D.205.若x+y=﹣1,则x2+y2+2xy的值为()A.1B.﹣1C.3D.﹣36.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n27.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1C.a2+5a﹣6D.a2﹣5a﹣68.多项式6ab2+18a2b2﹣12a3b2c的公因式是()A.6ab2c B.ab2C.6ab2D.6a3b2c二.填空题9.分解因式:6xy2﹣8x2y3=.10.在实数范围内分解因式:ab3﹣5ab=.11.因式分解a(b﹣c)﹣3(c﹣b)=.12.把多项式3ax2﹣12a分解因式的结果是.13.把多项式ax2﹣4ax+4a因式分解的结果是.14.若实数a、b满足a+b=﹣2,a2b+ab2=﹣10,则ab的值是.15.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是.三.解答题16.把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.17.因式分解:(1)3ma2+18mab+27mb2(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2.18.分解因式:(m﹣n)(3m+n)2+(m+3n)2(n﹣m)19.已知△ABC的三边长分别是a、b、c(1)当b2+2ab=c2+2ac时,试判断△ABC的形状;(2)判断式子a2﹣b2+c2﹣2ac的值的符号.20.观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x2﹣xy+4x﹣4y=(x2﹣xy)+(4x﹣4y)(分成两组)=x(x﹣y)+4(x﹣y)(直接提公因式)=(x﹣y)(x+4).乙:a2﹣b2﹣c2+2bc=a2﹣(b2+c2+2bc)(分成两组)=a2﹣(b﹣c)2(直接运用公式)=(a+b﹣c)(a﹣b+c)(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)m2﹣mn+mx﹣nx.(2)x2﹣2xy+y2﹣9.21.对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax ﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣4a2.=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像上面这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请用上述方法把x2﹣4x+3分解因式.(2)多项式x2+2x+2有最小值吗?如果有,那么当它有最小值时x的值是多少?。
因式分解练习题一、选择题1.下列等式从左到右的变形,属于因式分解的是( )A. x 2+2x−1=x(x +2)+1B. (a +b)(a−b)=a 2−b 2C. x 2+4x +4=(x +2)2D. ax 2−a =a(x 2−1)2.下列各式由左边到右边的变形中,是分解因式的为( )A. 8(x +y)=8x +8yB. (x−y )2=x 2−2xy +y 2C. 10x 2+5x =5x(2x +1)D. x 2−4+3x =(x +2)(x−2)+3x 3.因式分解(x +y )2−2(x 2−y 2)+(x−y )2的结果为( )A. 4(x−y )2B. 4x 2C. 4(x +y )2D. 4y 24.多项式36a 2bc−48ab 2c +24abc 中的各项的公因式是 ( )A. 12a 2b 2c 2B. 6 abcC. 12 abcD. 36a 2b 2c 25.多项式8a 3b 2+12a 3bc−4a 2b 中,各项的公因式是( )A. a 2bB. 4a 2bC. −4a 2bD. −a 2b 6.下列各式中,不能用完全平方公式分解的有( ) ①x 2−10x +25; ②4a 2+4a−1; ③x 2−2x−1; ④−m 2+m−14; ⑤4x 4−x 2+14.A. 1个B. 2个C. 3个D. 4个7.多项式a 2+2a−b 2−2b 分解因式的结果是( )A. (a−b)(a +2)(b +2)B. (a−b)(a +b +2)C. (a−b)(a +b)+2D. (a 2−2b)(b 2−2a)8.下列多项式中不能用平方差公式因式分解的是( )A. a 2−b 2B. 49x 2−y 2z 2C. −x 2−y 2D. 16m 2n 2−25p 29.因式分解b 2(a−3)+b(a−3)的正确结果是( )A. (a−3)(b2+b)B. b(a−3)(b+1)C. (a−3)(b2−b)D. b(a−3)(b−1)10.多项式x2−mxy+9y2能用完全平方公式因式分解,则m的值是().A. 3B. 6C. ±3D. ±611.已知a−b=3,a+c=−1,则代数式ac−bc+a2−ab的值为( )A. 4B. 3C. −3D. −412.已知{3x−1<a2x>6−b的解集为−1<x<2,则a2−b2的值为( )A. −39B. −3C. 3D. 39二、填空题13.分解因式:(2a−1)2+8a=________.14.因式分解:a2b−4ab+4b=______.15.若a+b=2,ab=−3,则式子a3b+2a2b2+ab3的值为_______.16.多项式−ab(a−b)2+a(b−a)2−ac(a−b)2因式分解时,所提取的公因式应是.三、计算题17.把下列各式分解因式:(1)a2−5a;(2)ab+ac;(3)4a3b2−10ab3c;(4)−3ma3+6ma2−12ma;(5)6p(p+q)−4q(p+q).四、解答题18.先分解因式,然后计算求值:(x+y)(x2+3xy+y2)−5xy(x+y),其中x=6.6,y=−3.4.19.已知a=12m+1,b=12m+2,c=12m+3,求a2+2ab+b2−2ac+c2−2bc的值(用含m的代数式表示).20.老师在黑板上写了三个算式:52−32=8×2,92−72=8×4,152−32=8×27.王华接着又写了两个具有同样规律的算式:112−52=8×12,152−72=8×22,….(1)请你再写出两个(不同于上面的算式)具有上述规律的算式;(2)用文字写出上述算式反映的规律;(3)证明这个规律的正确性.答案和解析1.【答案】C【解析】【分析】本题考查了因式分解的意义,解答本题的关键是掌握因式分解的意义即因式分解后右边是整式积的形式,且每一个因式都要分解彻底.根据因式分解的意义分别进行判断,即可得出答案.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C2.【答案】C【解析】【分析】此题主要考查了因式分解的意义,正确把握定义是解题关键.直接利用分解因式的定义分析得出答案.【解答】解:A.8(x+y)=8x+8y,是整式乘法运算,故此选项错误;B.(x−y)2=x2−2xy+y2,是整式乘法运算,故此选项错误;C.10x2+5x=5x(2x+1),是分解因式,符合题意;D.x2−4+3x=(x+2)(x−2)+3x,不符合分解因式的定义,故此选项错误.故选C.3.【答案】D【解析】解:原式=[(x+y)−(x−y)]2,=(x+y−x+y)2,=4y2,故选:D.利用完全平方进行分解即可.此题主要考查了公式法分解因式,关键是掌握完全平方公式a2±2ab+b2=(a±b)2.4.【答案】C【解析】【分析】此题主要考查了公因式的确定,根据公因式的定义确定是解决问题的关键,根据公因式的定义,找出数字的最大公约数,找出相同字母的最低次数,直接找出每一项中公共部分即可.【解答】解:多项式36a2bc−48ab2c+24abc各项的公因式是:12 abc.故选C.5.【答案】B【解析】【分析】本题考查了多项式,能熟记多项式的公因式的定义是解此题的关键.根据公因式的定义得出即可.【解答】解:多项式8a3b2+12a3bc−4a2b中各项的公因式是4a2b,故答案选B.6.【答案】C【解析】【分析】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.分别利用完全平方公式分解因式得出即可.【解答】 ①x2−10x+25=(x−5)2,不符合题意; ②4a2+4a−1不能用完全平方公式分解; ③x2−2x−1不能用完全平方公式分解; ④−m2+m−14=−(m2−m+14)=−(m−12)2,不符合题意; ⑤4x4−x2+14不能用完全平方公式分解.故选C.7.【答案】B【解析】【分析】本题考查用分组分解法、提取公因式法与公式法的综合运用.难点是采用两两分组还是三一分组.当被分解的式子是四项时,应考虑运用分组分解法进行分解.多项式a2+2a−b2−2b先变形为a2−b2+2a−2b可分成前后两组来分解.前两项组合利用平方差公式,后两项组合利用提公因式法,最后再次提公因式(a−b)即可.【解答】解:a2+2a−b2−2b=(a2−b2)+(2a−2b)=(a+b)(a−b)+2(a−b)=(a−b)(a+b+2).故选B.8.【答案】C【解析】【分析】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2−b2=(a+b)(a−b).根据能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反进行分析即可.【解答】解:A.a2−b2=(a+b)(a−b),能用平方差公式分解,故此选项不合题意;B.49x2−y2z2=(7x+yz)(7x−yz),能用平方差公式分解,故此选项不合题意;C.−x2−y2不能用平方差公式分解,故此选项符合题意;D.16m2n2−25p2=(4mn−5p)(4mn+5p),能用平方差公式分解,故此选项不合题意;故选C.9.【答案】B【解析】【分析】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.直接提取公因式b(a−3)即可.【解答】解:原式=b(a−3)(b+1).故选B.10.【答案】D【解析】【分析】本题考查因式分解的应用,完全平方公式.由多项式x2−mxy+9y2能用完全平方公式因式分解,得x2−mxy+9y2=(x±3y)2,再用完全平方公式展开,即可得x2−mxy+9 y2=x2±6xy+9y2,最后由多项式对应项系数相等即可得出答案.【解答】解:由题意,得x2−mxy+9y2=(x±3y)2,∴x2−mxy+9y2=x2±6xy+9y2,∴−m=±6,∴m=±6,故选D.11.【答案】C【解析】【分析】本题考查了因式分解的应用:用因式分解解决求值问题,利用因式分解简化计算问题.本题的关键是把所求代数式分解因式.先利用分组分解的方法把ac−bc+a2−ab因式分解为(a−b)(c+a),再利用整体代入的方法计算.【解答】解:∵ac−bc+a2−ab,=c(a−b)+a(a−b),=(a−b)(c+a),∵a−b=3,a+c=−1,∴ac−bc+a2−ab=3×(−1)=−3.故选C.12.【答案】A【解析】【分析】此题考查了因式分解−运用公式法,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.表示出不等式组的解集,确定出a与b的值,即可求出所求.【解答】解:{3x−1<a2x>6−b,解得:{x<a+13x>6−b2,∵不等式的解集为为−1<x<2,∴6−b2=−1,a+13=2,解得:a=5,b=8,则原式=(a+b)(a−b)=13×(−3)=−39,故选A.13.【答案】(2a+1)2【解析】【分析】本题主要考查运用完全平方公式分解因式,先利用完全平方公式展开整理成多项式的一般形式是解题的关键.先根据完全平方公式展开,合并同类项后,再利用完全平方式分解因式即可.【解答】解:(2a−1)2+8a=4a2−4a+1+8a=4a2+4a+1=(2a+1)2.故答案为(2a+1)2.14.【答案】b(a−2)2【解析】【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.原式提取b,再利用完全平方公式分解即可.【解答】解:原式=b(a2−4a+4)=b(a−2)2.故答案为:b(a−2)2.15.【答案】−12【解析】【分析】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【解答】解:∵a+b=2,ab=−3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=−3×4,=−12.故答案为:−12.16.【答案】−a(a−b)2【解析】【分析】此题主要考查了提公因式法分解因式,注意偶次幂时,交换被减数和减数的位置,值不变;奇次幂时,交换被减数和减数的位置,应加上负号.首先把可把(b−a)2变成(a−b)2,再直接提取公因式−a(a−b)2即可.【解答】解:−ab(a−b)2+a(a−b)2−ac(a−b)2=−a(a−b)2(b+1−c),故答案为−a(a−b)2.17.【答案】解:(1)a2−5a=a(a−5);(2)ab+ac=a(b+c);(3)4a3b2−10ab3c=2ab2(2a2−5bc);(4)−3ma3+6ma2−12ma=−3ma(a2−2a+4);(5)6p(p+q)−4q(p+q)=2(p+q)(3p−2q).【解析】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.(1)提取公因式a,即可得出答案;(2)提取公因式a,即可得出答案;(3)提取公因式2ab2,即可得出答案;(4)提取公因式−3ma,即可得出答案;(5)提取公因式2(p+q),即可得出答案.18.【答案】(x+y)(x2+3xy+y2)−5xy(x+y)=(x+y)(x2+3xy+y2−5xy)=(x+y)(x2−2xy+y2)=(x+y)(x−y)2当x=6.6,y=−3.4时,原式=3.2×102=320.【解析】本题考查求代数式的值,关键是对待求式进行因式分解,然后将x与y的值代入计算即可19.【答案】解:a2+2ab+b2−2ac+c2−2bc=(a+b)2−2c(a+b)+c2=(a+b−c)2∵a =12m +1,b =12m +2,c =12m +3∴原式=(a +b )2−2c(a +b)+c 2=(a +b−c )2将a ,b ,c 的值代入得=[(12m +1)+(12m +2)−(12m +3)]2=14m 2【解析】此题考查代数式求值,注意利用完全平方公式因式分解,简化计算的方法与步骤.首先把代数式a 2+2ab +b 2−2ac−2bc +c 2利用完全平方公式因式分解,再代入求得数值即可.20.【答案】解:(1)112−92=8×5,132−112=8×6.(2)规律:任意两个奇数的平方差等于8的倍数.(3)证明:设m ,n 为整数,两个奇数可表示2m +1和2n +1,则(2m +1)2−(2n +1)2=4(m−n)(m +n +1).当m ,n 同是奇数或偶数时,(m−n)一定为偶数,所以4(m−n)一定是8的倍数.当m ,n 一奇一偶时,则(m +n +1)一定为偶数,所以4(m +n +1)一定是8的倍数所以,任意两奇数的平方差是8的倍数.【解析】通过观察可知,等式左边一直是两个奇数的平方差,右边总是8乘以一个数.根据平方差公式,把等式左边进行计算,即可得出结论任意两个奇数的平方差等于8的倍数.本题为规律探究题,考查学生探求规律解决问题的思维能力.。
一、单项选择题1、正整数a,b,c是等腰三角形三边的长,而且a+bc+b+ca=24,那么如此的三角形有()A.1个B.2个C.3个D.4个2、任何一个正整数n都能够进行如此的分解:n=s×t(s,t是正整数,且s≤t),若是p×q在n的所有这种分解中两因数之差的绝对值最小,咱们就称p×q是n的最正确分解,并规定:F(n)=.例如18能够分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出以下关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)假设n是一个完全平方数,那么F(n)=1.其中正确说法的个数是()A.1 B.2 C.3 D.43、△ABC的内角A和B都是锐角,CD是高,假设=,那么△ABC是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形4、关于任意整数n,多项式(n+11)2-(n+2)2都能被()整除.A.9 B.2 C.11 D.n+95、已知a-b=1,那么a2-b2-2b的值为()A.4 B.3 C.1 D.06、若是x2+x-1=0,那么代数式x3+2x2-7的值为()A.6 B.8 C.-6 D.-87、若是x2+3x-3=0,那么代数式x3+3x2-3x+3的值为()A.0 B.-3 C.3 D.8、设x2-x+7=0,那么x4+7x2+49=()A.7 B.C.-D.0二、填空题9、设,那么代数式3a3+12a2-6a-12的值为10、已知关于x的方程x2-nx+m=0有一个根是m(m≠0),那么m-n= .11、若ab=3,a+b=4,那么a2b+ab2= .12、设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,那么= .13、已知a+b=3,ab=-1,那么a2b+ab2= .14、已知m2+m-1=0,那么代数式m3+2m2-2020的值是.15、甲、乙两农户各有两块地,如下图,今年,这两个农户决定一起投资弄饲养业,为此,他们预备将这4块土地换成一块地,那块地的宽为(a+b)米,为了使所换土地的面积与原先4块地的总面积相等,互换以后的土地应该是米.三、解答题16、咱们学过因式分解的概念,在计算多项式的进程中,若是能适本地分解因式进行化简,会使得计算更为简单.咱们为此引入质因数分解定理:每一个大于1的整数都能分解为质因数的乘积的形式,若是把质因数依照从小到大的顺序排在一路,相同因数的积写成幂的形式,那么这种分解方式是唯一的.请你学习例题的解法,完成问题的研究.例:试求19乘以125的值.解:∵125=1000÷8∴19×125=19000÷8=7答:由上知,19×125=7.请依照例题,求一实数,使得它被10除余9,被9除余8,被8除余7,…,被2除余117、按下面规那么扩充新数:已有a和b两个数,可按规那么c=ab+a+b扩充一个新数,而a,b,c三个数中任取两数,按规那么又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数2和3.①求按上述规那么操作三次取得扩充的最大新数;②可否通过上述规那么扩充取得新数5183并说明理由1、正整数a,b,c是等腰三角形三边的长,而且a+bc+b+ca=24,那么如此的三角形有()A.1个B.2个C.3个D.4个C【解答】分析:先将a+bc+b+ca=24 能够化为(a+b)(c+1)=24,然后依照24分解为大于等于2的两个正整数的乘积有几种组合讨论是不是符合题意即可得出答案.解答:解:a+bc+b+ca=24 能够化为(a+b)(c+1)=24,其中a,b,c都是正整数,而且其中两个数相等,令a+b=A,c+1=C 则A,C为大于2的正整数,那么24分解为大于等于2的两个正整数的乘积有几种组合2×12,3×8,4×6,6×4,3×8,2×12,①、A=2,C=12时,c=11,a+b=2,无法取得知足等腰三角形的整数解;②、A=3,C=8时,c=7,a+b=3,无法取得知足等腰三角形的整数解;③、A=4,C=6时,c=5,a+b=4,无法取得知足等腰三角形的整数解;④、A=6,C=4时,c=3,a+b=6,能够取得a=b=c=3,能够组成等腰三角形;⑤、A=8,C=3时,c=2,a+b=8,可得a=b=4,c=2,能够组成等腰三角形,a=b=4是两个腰;⑥、A=12,C=2时,可得a=b=6,c=1,能够组成等腰三角形,a=b=6是两个腰.∴一共有3个如此的三角形.应选C.题考查数的整除性及等腰三角形的知识,难度一样,在解答此题时将原式化为因式相乘的形式及将24分解为大于等于2的两个正整数的乘积有几种组合是关键2、2×9,3×6这三种,这时就有F(18)==.给出以下关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)假设n是一个完全平方数,那么F(n)=1.其中正确说法的个数是()A.1 B.2 C.3 D.4B【解答】分析:把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是不是与所给结果相同.解答:解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,那么F(n)=1,故(4)是正确的.∴正确的有(1),(4).应选B.点评:此题考查题目信息获取能力,解决此题的关键是明白得此题的概念:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).3、△ABC的内角A和B都是锐角,CD是高,假设=,那么△ABC是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形D【解答】分析:别离从当AD=BD时,可得△ABC是等腰三角形;当AC2=AD•AB,BC2=BD•AB时,△ABC 是直角三角形.解答:解:①若AD=BD,∵=,∴AC=BC,现在CD是高,符合题意,即△ABC是等腰三角形;②∵=,∴==,∴当AC2=AD•AB,BC2=BD•AB时成立,即,∵∠A是公共角,∴△ABC∽△ACD,∴∠ACB=∠ADC=90°,∴△ABC是直角三角形;∴△ABC是等腰三角形或直角三角形.应选D.点评:此题考查了相似三角形的判定与性质、等腰三角形的判定与性质和直角三角形的判定.此题难度适中,注意把握数形结合思想与分类讨论思想的应用.4、关于任意整数n,多项式(n+11)2-(n+2)2都能被()整除.A.9 B.2 C.11 D.n+9A【解答】分析:将多项式利用平方差公式分解因式,由n为整数,取得2n+13为整数,可得出多项式能被9整除.解答:解:多项式(n+11)2-(n+2)2=[(n+11)+(n+2)][(n+11)-(n+2)]=9(2n+13),∵n为整数,∴2n+13为整数,那么多项式(n+11)2-(n+2)2都能被9整除.应选A点评:此题考查了因式分解的应用,熟练把握平方差公式是解此题的关键.5、已知a-b=1,那么a2-b2-2b的值为()A.4 B.3 C.1 D.0C【解答】分析:先将原式化简,然后将a-b=1整体代入求解.解答:解:∵a-b=1,∴a2-b2-2b=(a+b)(a-b)-2b=a+b-2b=a-b=1.应选C.点评:此题考查的是整体代入思想在代数求值中的应用.6、若是x2+x-1=0,那么代数式x3+2x2-7的值为()A.6 B.8 C.-6 D.-8C【解答】分析:由x2+x-1=0得x2+x=1,然后把它的值整体代入所求代数式,求值即可.解答:解:由x2+x-1=0得x2+x=1,∴x3+2x2-7=x3+x2+x2-7,=x(x2+x)+x2-7,=x+x2-7,=1-7,=-6.应选C.点评:此题考查提公因式法分解因式,代数式中的字母表示的数没有明确告知,而是隐含在题设中,第一应从题设中获取代数式x2+x的值,然后利用“整体代入法”求代数式的值.7、若是x2+3x-3=0,那么代数式x3+3x2-3x+3的值为()A.0 B.-3 C.3 D.C【解答】分析:先对所求代数式的前三项提取公因式x,再利用整体代入来求值.解答:解:当x2+3x-3=0时,x3+3x2-3x+3,=x(x2+3x-3)+3,=3.应选C.点评:此题考查提公因式法分解因式,关键是提取公因式后显现已知条件的形式,然后利用整体代入求解.8、设x2-x+7=0,那么x4+7x2+49=()A.7 B.C.-D.0D【解答】分析:第一将x4+7x2+49变形,可得x2(x2+7)+49;然后将x2-x+7=0变形,可得:x2= x-7,x2+7=x,整体代入即可取得7x2-7,提取公因式7,即可求得.解答:解:∵x4+7x2+49=x2(x2+7)+49又∵x2-x+7=0,∴x2=x-7,∴,把x2=x-7和代入x2(x2+7)+49得:=(-7)+49,=7x2-7,=7(x2-x+7),=7×0,=0.应选D.点评:此题要紧考查了因式分解的应用.注意整体思想的应用9、设,那么代数式3a3+12a2-6a-12的值为24【解答】分析:将所求式子提取3后,拆项变形,别离取得a+1的因式,将已知等式变形取得a+1=,把a与a+1的值代入计算,即可求出值.解答:解:∵a=-1,即a+1=,∴3a3+12a2-6a-12=3(a3+4a2-2a-4)=3(a3+a2+3a2+3a-5a-5+1)=3[a2(a+1)+3a(a+1)-5(a+1)+1]=3×[(-1)2×+3(-1)×-5+1]=3(8-14+21-3-5+1)=3×8=24.故答案为:24点评:此题考查了因式分解的应用,将所求式子进行适当的变形是解此题的关键.10、已知关于x的方程x2-nx+m=0有一个根是m(m≠0),那么m-n= .答案是-1.【解答】分析:将x=m代入原方程,列出关于m的一元二次方程m2-nm+m=0,然后通过因式分解法解该方程求得m-n的值即可.解答:解:∵关于x的方程x2-nx+m=0有一个根是m(m≠0),∴x=m知足关于x的方程x2-nx+m=0,∴m2-nm+m=0,即m(m-n+1)=0,∴m=0(舍去),或m-n+1=0,∴m-n=-1;故答案是:-1.点评:此题考查了一元二次方程的解的概念、因式分解的应用.解答该题时,通过提取公因式m将方程m2-nm+m=0的左侧转化为两式之积的形式,从而求得m-n的值.11、若ab=3,a+b=4,那么a2b+ab2= .【答案】12.【解答】分析:此题只需先对a2b+ab2进行因式分解得ab(a+b),再将ab和a+b的值代入即可取得结果.解答:解:∵ab=3,a+b=4,∴a2b+ab2=ab(a+b)=3×4=12.故答案为:12.点评:此题考查了因式分解的应用,关键是提取公因式,比较简单.12、设a2+2a-1=0,b4-2b2-1=0,且1-ab2≠0,那么= .答案为-32.【解答】分析:依照1-ab2≠0的题设条件求得b2=-a,代入所求的分式化简求值.解答:解:∵a2+2a-1=0,b4-2b2-1=0,∴(a2+2a-1)-(b4-2b2-1)=0,化简以后取得:(a+b2)(a-b2+2)=0,若a-b2+2=0,即b2=a+2,那么1-ab2=1-a(a+2)=1-a2-2a=-(a2+2a-1),∵a2+2a-1=0,∴-(a2+2a-1)=0,与题设矛盾∴a-b2+2≠0,∴a+b2=0,即b2=-a,∴==-=-()5=-25=-32.故答案为-32.解法二:∵a2+2a-1=0,∴a≠0,∴两边都除以-a2,得--1=0又∵1-ab2≠0,∴b2≠罢了知b4-2b2-1=0,∴和b2是一元二次方程x2-2x-1=0的两个不等实根∴+b2=2,×b2==-1,∴(ab2+b2-3a+1)÷a=b2+-3+=(b2+)+-3=2-1-3=-2,∴原式=(-2)5=-32.点评:此题考查了因式分解、根与系数的关系及根的判别式,解题关键是注意1-ab2≠0的运用13、已知a+b=3,ab=-1,那么a2b+ab2= .【答案】-3【解答】分析:将所求式子提取公因式ab,分解因式后,将a+b及ab的值代入即可求出值.解答:解:∵a+b=3,ab=-1,∴a2b+ab2=ab(a+b)=-1×3=-3.故答案为:-3点评:此题考查了因式分解的应用,利用了整体代入的思想,将所求式子分解因式是此题的冲破点.14、已知m2+m-1=0,那么代数式m3+2m2-2020的值是{@answer}.【答案】-2020.【解答】分析:依照已知求出m2+m=1,把所求的代数式化成含有m2+m的形式,代入求出即可.解答:解:∵m2+m-1=0,∴m2+m=1.∴m3+2m2-2020=m(m2+m)+m2-2020=m•1+m2-2020=m+m2-2020=1-2020=-2020.故答案为:-2020.点评:此题考查了分解因式的应用,关键是如何把已知条件代入所求的代数式,思路是:求出m2+m的值,把m2+m看成一个整体进行代入.15、甲、乙两农户各有两块地,如下图,今年,这两个农户决定一起投资弄饲养业,为此,他们预备将这4块土地换成一块地,那块地的宽为(a+b)米,为了使所换土地的面积与原先4块地的总面积相等,互换以后的土地应该是{@answer}米.【答案】(a+c)米.【解答】分析:第一计算原先4块地的总面积,再进一步因式分解,显现a+b的形式.解答:解:原先四块地的总面积是a2+bc+ac+ab=a(a+c)+b(a+c)=(a+c)(a+b),那么互换以后的土地长是(a+c)米.故答案为:(a+c)米.点评:此题要能够熟练运用分组分解法进行因式分解.16、咱们学过因式分解的概念,在计算多项式的进程中,若是能适本地分解因式进行化简,会使得计算更为简单.咱们为此引入质因数分解定理:每一个大于1的整数都能分解为质因数的乘积的形式,若是把质因数依照从小到大的顺序排在一路,相同因数的积写成幂的形式,那么这种分解方式是唯一的.请你学习例题的解法,完成问题的研究.例:试求19乘以125的值.解:∵125=1000÷8∴19×125=19000÷8=7答:由上知,19×125=7.请依照例题,求一实数,使得它被10除余9,被9除余8,被8除余7,…,被2除余1.【答案】N=3×3×2×2×2×7×5-1=2519.【解答】分析:那个数加1能够被10,9,8,7,6,5,4,3,2整除,只需要求出10、9、8、7、6、5、4、3、2的最小公倍数减一即可.解答:解:设那个实数是N.依照题意,可知,那个自然数加1就能够够被10,9,8,7,6,5,4,3,2整除,则N确实是10,9,8,7,6,5,4,3,2的最小公倍数减去1,故N=3×3×2×2×2×7×5-1=2519.点评:此题考查带余数的除法,难度较大,关键是把握解答此题的解答步骤.17、按下面规那么扩充新数:已有a和b两个数,可按规那么c=ab+a+b扩充一个新数,而a,b,c三个数中任取两数,按规那么又可扩充一个新数,…,每扩充一个新数叫做一次操作.现有数2和3.①求按上述规那么操作三次取得扩充的最大新数;②可否通过上述规那么扩充取得新数5183并说明理由.【答案】5183能够通过上述规那么扩充取得.【解答】分析:①将2与3别离代入求解,再取其最大的两个值依次代入即可求得答案;②找到规律:设扩充后的新数为x,那么总能够表示为x+1=(a+1)m•(b+1)n,式中m、n为整数,即可适当a=2,b=3时,x+1=3m×4n,然后求解即可.解答:解:①∵a=2,b=3,c1=ab+a+b=6+2+3=11,∴取3和11,∴c2=3×11+3+11=47,取11与47,∴c3=11×47+11+47=575,∴扩充的最大新数575;②5183能够扩充取得.∵c=ab+a+b=(a+1)(b+1)-1,∴c+1=(a+1)(b+1),取数a、c可得新数d=(a+1)(c+1)-1=(a+1)(b+1)(c+1)(a+1)-1=(a+1)2(b+1),即d+1=(a+1)2(b+1),同理可得e=(b+1)(c+1)=(b+1)(a+1)-1,∴e+1=(b+1)2(a+1),设扩充后的新数为x,那么总能够表示为x+1=(a+1)m•(b+1)n,式中m、n为整数,当a=2,b=3时,x+1=3m×4n,又∵5183+1=5184=34×43,故5183能够通过上述规那么扩充取得.点评:此题考查了因式分解的应用,解题的关键是找到规律设扩充后的新数为x,那么总能够表示为x+1=(a+1)m•(b+1)n,式中m、n为整数.。
人教版八年级数学上册《14.3 因式分解》同步练习题-带有答案一、选择题1.下列各式从左至右是因式分解的是()A.a2−4=(a+2)(a−2)B.x2−y2−1=(x+y)(x−y)−1C.(x+y)2=x2+xy+y2D.(x−y)2=x2+2xy+y22.a2−(b−c)2有一个因式是a+b−c,则另一个因式为()A.a−b−c B.a+b+c C.a+b−c D.a−b+c3.把(a+b)2+4(a+b)+4分解因式得()A.(a+b+1)2B.(a+b−1)2C.(a+b+2)2D.(a+b−2)24.下列各式能用完全平方公式分解因式的有();③m2n2+4−4mn;④a2−2ab+4b2;⑤x2−8x+9①4x2−4xy−y2;②−1−a−a24A.1个B.2个C.3个D.4个5.计算(−2)100+(−2)99的结果为()A.−299B.299C.2100D.-26.把x2+3x+c分解因式得(x+1)(x+2),则c的值是()A.3 B.2 C.-3 D.17.下列因式分解正确的是()A.x2−x=x(x+1)B.a2−3a−4=a(a−3)−4C.a2+b2−2ab=(a+b)2D.x2−y2=(x+y)(x−y)8.若x2-y2=100,x+y=-25,则x-y的值是()A.5 B.4 C.-4 D.以上都不对二、填空题9.2a2与4ab的公因式为.10.因式分解:2m2−4m=.11.一个多项式,把它因式分解后有一个因式为(x+1),请你写出一个符合条件的多项式:。
12.若有理数m使得二次三项式x2+mx+16能用完全平方公式因式分解,则m=.13.当a=3,a-b=1时,代数式a2-ab的值是三、解答题14.因式分解:(1)(2)15.已知,xy=3,求的值.16.生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2可以因式分解为(x﹣1)(x+1)(x+2),当x=29时,x﹣1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).17.下面是某同学对多项式进行因式分解的过程.解:设,原式(第一步),(第二步)(第三步),(第四步)(1)该同学第二步到第三步运用进行因式分解;(2)该同学是否完成了将该多项式因式分解?若没有完成,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式进行因式分解.参考答案1.A2.D3.C4.B5.B6.B7.D8.C9.2a10.2m(m−2)11.x2−1(答案不唯一)12.±813.314.(1)解:;(2)解:.15.解:∵,∴原式.16.解:(1)x3﹣xy2=x(x﹣y)(x+y)当x=15,y=5时,x﹣y=10,x+y=20可得数字密码是151020;也可以是152010;101520;102015,201510,201015;(2)由题意得:{x+y=13x2+y2=121解得xy=24 而x3y+xy3=xy(x2+y2)所以可得数字密码为24121.17.(1)完全平方公式(2)否;(3)解:设则原式。
义务教育基础课程初中教学资料因式分解同步练习题及答案【模拟试题】(答题时间:60分钟)一. 选择题1. 下列等式中成立的是()A. (x-y)3=(-x-y)3B. (a-b)4=-(b-a)4C. (m-n)2=m2-n2D. (x+y)(x-y)=(-x-y)(-x+y)2.下列分解因式正确的是()A. 2x2-xy-x=2x(x-y-1)B. -xy+2xy-3y=-y(xy-2x-3)C. x(x-y)-y(x-y)=(x-y)2D. x2-x-3=x(x-1)-33.因式分解(x-1)2-9的结果是()A. (x+8)(x+1)B. (x+2)(x-4)C. (x-2)(x+4)D. (x-10)(x+8)4.下列各式中,与(a-1)2相等的是()A. a2-1B. a2-2a+1C. a2-2a-1D. a2+1A. 3个B. 4个C. 5个D. 6个7. (2007年北京)把代数式ax2-4ax+4a分解因式,下列结果中正确的是()A. a(x-2)2B. a(x+2)2C. a(x-4)2D. a(x+2)(x-2)*8. 若x2-2(k+1)x+4是完全平方式,则k的值为()A. ±1B. ±3C. -1或3D. 1或-39. 设一个正方形的边长为a厘米,若边长增加3厘米,则新正方形的面积增加了()A. 9平方厘米B. 6a平方厘米C. (6a+9)平方厘米D. 无法确定*10. 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个矩形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)(a-b)=a2+ab-2b2二. 填空题1. (2007年海南)分解因式:a2-9=__________.2. (2008年上海)分解因式xy-x-y+1=__________.3. (2008年河北)若m、n互为相反数,则5m+5n-5=__________.4. (2008年浙江金华)如果x+y=-4,x-y=8,那么代数式x2-y2的值是________.5. (2007年武汉)一个长方形的面积是(x2-9)平方米,其长为(x+3)米,用含有x的整式表示它的宽为__________米.7. 在一个边长为12.75cm的正方形内挖去一个边长为7.25cm的正方形,则剩下部分的面积为__________.*8. 若整式4x2+Q+1是完全平方式,请你写一个满足条件的单项式Q是__________.*10. 在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:__________(写出一个即可).三. 解答题1. 将下列各式分解因式(1)4x3-8x2+4x(2)9(x+y+z)2-(x-y-z)2(3)m2-n2+2m-2n2. 利用因式分解计算:1-22+32-42+52-62+…+992-1002+1012**四. 综合应用题体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为n2;乙班:全班同学“引体向上”总次数为50n-625.请比较一下两班学生“引体向上”总次数哪个班的次数多?多多少?【试题答案】一、选择题1. D2. C3. B4. B5. B6. B7. A8. D9.C 10. C二、填空题1. (a+3)(a-3)2. (x-1)(y-1)3. -54. -325. x-36. 5007. 110cm28. ±4x10. 101030,或103010,或301010三、解答题1. (1)4x(x-1)2(2)4(2x+y+z)(x+2y+2z)(3)(m-n)(m+n +2)2. 51514. 4a2-9b2=(2a+3b)(2a-3b),答案不唯一四、实际应用题当n=25时,甲、乙两班次数相同;当n>25时,甲班比乙班次数多(n-25)2次。
《第1章因式分解》一、选择题1.下列从左到右的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=(x﹣2)(x+3)+1C.a2b+ab2=ab(a+b)D.x2+1=x(x+)2.下列各式的因式分解中正确的是()A.﹣a2+ab﹣ac=﹣a(a+b﹣c) B.9xyz﹣6x2y2=3xyz(3﹣2xy)C.3a2x﹣6bx+3x=3x(a2﹣2b)D.3.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)4.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+y+y2D.x2﹣4x+45.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是()A.4x B.﹣4x C.4x4D.﹣4x46.下列分解因式错误的是()A.15a2+5a=5a(3a+1)B.﹣x2﹣y2=﹣(x2﹣y2)=﹣(x+y)(x﹣y)C.k(x+y)+x+y=(k+1)(x+y)D.1﹣a2﹣b2+2ab=(1+a﹣b)(1﹣a+b)7.下列各式中,不能用平方差公式分解因式的是()A.﹣a2+b2 B.﹣x2﹣y2 C.49x2y2﹣z2D.16m4﹣25n2p28.两个连续的奇数的平方差总可以被k整除,则k等于()A.4 B.8 C.4或﹣4 D.8的倍数二、填空题:9.分解因式:m3﹣4m=______.10.已知x+y=6,xy=4,则x2y+xy2的值为______.11.若ax2+24x+b=(mx﹣3)2,则a=______,b=______,m=______.12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是______.三、解答题13.(1)﹣4x3+16x2﹣26x(2)mn(m﹣n)﹣m(n﹣m)(3)a2(x﹣y)+b2(y﹣x)(4)5(x﹣y)3+10(y﹣x)2;(5)18b(a﹣b)2﹣12(a﹣b)3(6)4m2﹣9n2.14.(1)9(m+n)2﹣16(m﹣n)2;(2)m4﹣16n4;(3)(x+y)2+10(x+y)+25;(4)2x2+2x+(5)﹣12xy+x2+36y2(6)(a2+b2)2﹣4a2b2.四、解答题15.已知(4x﹣2y﹣1)2+=0,求4x2y﹣4x2y2﹣2xy2的值.16.已知x+y=1,求x2+xy+y2的值.《第1章因式分解》参考答案一、选择题1.下列从左到右的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=(x﹣2)(x+3)+1C.a2b+ab2=ab(a+b)D.x2+1=x(x+)【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、是提公因式法,a2b+ab2=ab(a+b),正确;D、右边不是整式的积,错误;故选C2.下列各式的因式分解中正确的是()A.﹣a2+ab﹣ac=﹣a(a+b﹣c) B.9xyz﹣6x2y2=3xyz(3﹣2xy)C.3a2x﹣6bx+3x=3x(a2﹣2b)D.【解答】解:A.﹣a2+ab﹣ac=﹣a(a﹣b+c),故本选项错误;B.9xyz﹣6x2y2=3xy(3z﹣2xy),故本选项错误;C.3a2x﹣6bx+3x=3x(a2﹣2b+1),故本选项错误;D.=,故选D.3.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)【解答】解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).故选C.4.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+y+y2D.x2﹣4x+4【解答】解:A、x2﹣y不能分解因式,故A错误;B、x2+1不能分解因式,故B错误;C、x2+y+y2不能分解因式,故C错误;D、x2﹣4x+4=(x﹣2)2,故D正确;故选:D.5.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是()A.4x B.﹣4x C.4x4D.﹣4x4【解答】解:设这个单项式为Q,如果这里首末两项是2x和1这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,故Q=±4x;如果这里首末两项是Q和1,则乘积项是4x2=2•2x2,所以Q=4x4;如果该式只有4x2项,它也是完全平方式,所以Q=﹣1;如果加上单项式﹣4x4,它不是完全平方式.故选D.6.下列分解因式错误的是()A.15a2+5a=5a(3a+1)B.﹣x2﹣y2=﹣(x2﹣y2)=﹣(x+y)(x﹣y)C.k(x+y)+x+y=(k+1)(x+y)D.1﹣a2﹣b2+2ab=(1+a﹣b)(1﹣a+b)【解答】解:A.15a2+5a=5a(3a+1),故此选项错误;B.﹣x2﹣y2两项符号相同无法运用平方差公式进行分解,故此选项正确;C.k(x+y)+x+y=(k+1)(x+y),故此选项错误;D.1﹣a2﹣b2+2ab=(1+a﹣b)(1﹣a+b),故此选项错误.故选:B.7.下列各式中,不能用平方差公式分解因式的是()A.﹣a2+b2 B.﹣x2﹣y2 C.49x2y2﹣z2D.16m4﹣25n2p2【解答】解:A、符合“两项、异号、平方形式”,能用平方差公式分解因式;B、不符合异号,﹣x2和﹣y2是同号的;C、符合“两项、异号、平方形式”,能用平方差公式分解因式;D、符合“两项、异号、平方形式”,能用平方差公式分解因式.故选B.8.两个连续的奇数的平方差总可以被k整除,则k等于()A.4 B.8 C.4或﹣4 D.8的倍数【解答】解:设两个连续奇数为2n+1,2n+3,根据题意得:(2n+3)2﹣(2n+1)2=(2n+3+2n+1)(2n+3﹣2n﹣1)=8(n+1),则k的值为8.故选:B.二、填空题:9.分解因式:m3﹣4m= m(m﹣2)(m+2).【解答】解:m3﹣4m,=m(m2﹣4),=m(m﹣2)(m+2).10.已知x+y=6,xy=4,则x2y+xy2的值为24 .【解答】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.11.若ax2+24x+b=(mx﹣3)2,则a= 16 ,b= 9 ,m= ﹣4 .【解答】解:∵ax2+24x+b=(mx﹣3)2,∴ax2+24x+b=m2x2﹣6mx+9,∴a=m2,﹣6m=24,b=9,解得,a=16,m=﹣4,b=9.故答案为16,9,﹣4.12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是a2+2ab+b2=(a+b)2.【解答】解:首先用分割法来计算,即a2+2ab+b2;再用整体计算即为(a+b)2.因此a2+2ab+b2=(a+b)2.三、解答题13.(1)﹣4x3+16x2﹣26x(2)mn(m﹣n)﹣m(n﹣m)(3)a2(x﹣y)+b2(y﹣x)(4)5(x﹣y)3+10(y﹣x)2;(5)18b(a﹣b)2﹣12(a﹣b)3(6)4m2﹣9n2.【解答】解:(1)﹣4x3+16x2﹣26x=﹣2x(2x2﹣8x+13);(2)mn(m﹣n)﹣m(n﹣m)=mn(m﹣n)+m(m﹣n)=m(m﹣n)(m+n);(3)a2(x﹣y)+b2(y﹣x)=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a+b)(a﹣b);(4)5(x﹣y)3+10(y﹣x)2=5(x﹣y)3+10(x﹣y)2=5(x﹣y)2(x﹣y+2);(5)18b(a﹣b)2﹣12(a﹣b)3=6(a﹣b)2(3b﹣2a+2b)=6(a﹣b)2(5b﹣2a);(6)4m2﹣9n2=(2m+3n)(2m﹣3n).14.(1)9(m+n)2﹣16(m﹣n)2;(2)m4﹣16n4;(3)(x+y)2+10(x+y)+25;(4)2x2+2x+(5)﹣12xy+x2+36y2(6)(a2+b2)2﹣4a2b2.【解答】解:(1)9(m+n)2﹣16(m﹣n)2=[3(m+n)+4(m﹣n)][3(m+n)﹣4(m﹣n)]=(7m﹣n)(﹣m+7n);(2)m4﹣16n4=(m2+4n2)(m2﹣4n2)=(m2+4n2)(m+2n)(m﹣2n);(3)(x+y)2+10(x+y)+25=(x+y+5)2;(4)令2x2+2x+=0,解得:x=,则原式=2(x+﹣)(x++);(5)﹣12xy+x2+36y2=(x﹣6y)2;(6)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.四、解答题15.已知(4x﹣2y﹣1)2+=0,求4x2y﹣4x2y2﹣2xy2的值.【解答】解:∵(4x﹣2y﹣1)2+=0,∴,即,则原式=2xy(2x﹣2xy﹣y)=4×(﹣4)=2﹣16=﹣14.16.已知x+y=1,求x2+xy+y2的值.【解答】解:x2+xy+y2=(x+y)2=×1=.。
2022-2023学年人教版八年级数学上册《14.3因式分解》同步达标测试题(附答案)一.选择题(共10小题,满分30分)1.下列各式由左边到右边的变形中,是因式分解的是()A.a2•a4=a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x+4)(x﹣4)+3x2.下列各式中,从左到右的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ax+4x2=(a﹣2x)2D.ax+ay+a=(ax+y)3.24ab与4ab2的公因式是()A.4B.4a C.4ab D.4ab24.多项式x2y+2xy与x2y﹣4y的公因式是()A.y B.x+2C.x﹣2D.y(x+2)5.将多项式m2﹣m分解因式,结果正确的是()A.m(m﹣1)B.(m+1)(m﹣1)C.m(m+1)(m﹣1)D.﹣m(m﹣1)6.把多项式m(a﹣2)+(a﹣2)分解因式等于()A.m(a﹣2)B.(a﹣2)(m+1)C.m(a+2)D.(m﹣1)(a﹣2)7.下列多项式中,不能用平方差公式进行因式分解的是()A.a2b2﹣1B.4﹣0.25a2C.﹣a2+1D.﹣a2﹣b28.下列多项式,①﹣x2+16y2,②81(a2﹣2ab+b2)﹣(a+b)2,③m2﹣mn+n2,④﹣x2﹣y2能用公式法因式分解的有()个A.1B.2C.3D.49.把多项式x2+ax+b分解因式,得(x﹣2)(x+3),则a,b的值分别是()A.2,3B.2,﹣3C.1,﹣6D.﹣1,﹣6 10.若x2+mx﹣10=(x﹣5)(x+n),则m+n的值为()A.5B.1C.﹣5D.﹣1二.填空题(共6小题,满分18分)11.一个长方形的长与宽分别为a,b,若周长为12,面积为5,则ab3+2a2b2+a3b的值为.12.分解因式:4x3+2x2﹣2x=.13.因式分解:a3﹣4a=.14.分解因式:am+an﹣bm﹣bn=.15.分解因式:2x﹣ay+ax﹣2y=.16.分解因式:x2﹣y2+4y﹣4=.三.解答题(共10小题,满分72分)17.分解因式:(1)3x﹣12x2;(2)a2﹣4ab+4b2;(3)x2﹣2x﹣8;(4)(2x+y)2﹣(x﹣2y)2.18.分解因式(1)x4﹣8x2y2+16y4;(2)x2(x+4)﹣4x(x+1);(3)(x2+1)2﹣4x2;(4)x2﹣7x+12.19.在实数范围内分解因式:x4﹣25.20.分解因式(在实数范围内):a3﹣3a.21.在实数范围内因式分解.22.阅读下列材料:材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n)(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式.(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2+4(x﹣y)+3;②分解因式:m(m+2)(m2+2m﹣2)﹣3.23.阅读并解决问题.对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这样,先添﹣适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.(1)利用“配方法”分解因式:a2﹣6a+8.(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.(3)已知x是实数,试比较x2﹣4x+5与﹣x2+4x﹣4的大小,说明理由.24.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4解:x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.按照这个思路,试把多项式x4+x2y2+y4分解因式.25.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)a2+b2﹣2a+1=0,则a=.b=.(2)已知x2+2y2﹣2xy+6y+9=0,求x y的值.(3)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长.26.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.参考答案一.选择题(共10小题,满分30分)1.解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形属于因式分解,故本选项符合题意;D.从左边到右边的变形不属于因式分解,故本选项不符合题意;故选:C.2.解:A.从左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;C.从左边到右边的变形属于因式分解,故本选项符合题意;D.等式的的左右两边不相等,应改为ax+ay+a=a(x+y+1),故本选项不符合题意;故选:C.3.解:24ab与4ab2的公因式是4ab.故选:C.4.解:x2y+2xy=xy(x+2),x2y﹣4y=y(x+2)(x﹣2),∴多项式x2y+2xy与x2y﹣4y的公因式是y(x+2).故选:D.5.解:原式=m(m﹣1).故选:A.6.解:原式=(a﹣2)(m+1).故选:B.7.解:A、原式=(ab﹣1)(ab+1),不符合题意;B、原式=(2﹣0.5a)(2+0.5a),不符合题意;C、原式=(1﹣a)(1+a),不符合意义;D、原式不能利用平方差公式进行因式分解,符合题意,故选:D.8.解:①﹣x2+16y2=(﹣x+4y)(x+4y),符合题意;②81(a2﹣2ab+b2)﹣(a+b)2=81(a﹣b)2﹣(a+b)2=[9(a﹣b)+(a+b)][9(a﹣b)﹣(a+b)]=4(5a﹣4b)(4a﹣5b),符合题意;③m2﹣mn+n2,不符合题意;④﹣x2﹣y2,不符合题意.故选:B.9.解:∵把多项式x2+ax+b分解因式,得(x﹣2)(x+3),∴a=﹣2+3=1,b=(﹣2)×3=﹣6,故选:C.10.解:∵(x﹣5)(x+n)=x2+(n﹣5)x﹣5n,又∵x2+mx﹣10=(x﹣5)(x+n),∴﹣5n=﹣10,m=n﹣5,解得n=2,m=﹣3,∴m+n=﹣3+2=﹣1,故选:D.二.填空题(共6小题,满分18分)11.解:∵一个长方形的长与宽分别为a,b,周长为12,面积为5,∴ab=5,a+b=6,则ab3+2a2b2+a3b=ab(b2+2ab+a2)=ab(a+b)2=5×62=180.故答案为:180.12.解:原式=2x(2x2+x﹣1)=2x(2x﹣1)(x+1),故答案为:2x(2x﹣1)(x+1).13.解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2),故答案为:a(a+2)(a﹣2).14.解:am+an﹣bm﹣bn=(am+an)﹣(bm+bn)=a(m+n)﹣b(m+n)=(m+n)(a﹣b),故答案为:(m+n)(a﹣b).15.解:2x﹣ay+ax﹣2y=(2x﹣2y)+(ax﹣ay)=2(x﹣y)+a(x﹣y)=(x﹣y)(2+a).故答案是:(x﹣y)(2+a).16.解:原式=x2﹣(y2﹣4y+4)=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2).故答案为:(x+y﹣2)(x﹣y+2).三.解答题(共10小题,满分72分)17.解:(1)3x﹣12x2=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)a2﹣4ab+4b2=a2﹣2×a×2b+(2b)2=(a﹣2b)2;(3)x2﹣2x﹣8=(x﹣4)(x+2);(4)(2x+y)2﹣(x﹣2y)2=[(2x+y)+(x﹣2y)][(2x+y)﹣(x﹣2y)]=(3x﹣y)(x+3y).18.解:(1)x4﹣8x2y2+16y4=(x2﹣4y2)2=(x﹣2y)2(x+2y)2;(2)x2(x+4)﹣4x(x+1)=x(x2+4x﹣4x﹣4)=x(x2﹣4);=x(x﹣2)(x+2);(3)(x2+1)2﹣4x2=(x2+1﹣2x)(x2+1+2x)=(x﹣1)2(x+1)2;(4)x2﹣7x+12=x2+(﹣4﹣3)x+(﹣4)×(﹣3)=(x﹣4)(x﹣3).19.解:x4﹣25=(x2+5)(x2﹣5)=(x2+5)(x+)(x﹣).20.解:a3﹣3a=a(a2﹣3)=a(a+)(a﹣).21.解:原式=x2﹣2×x+()2=(x﹣)2.22.解:(1)x2﹣6x+8=(x﹣2)(x﹣4);(2)①令A=x﹣y,则原式=A2+4A+3=(A+1)(A+3),所以(x﹣y)2+4(x﹣y)+3=(x﹣y+1)(x﹣y+3);②令B=m2+2m,则原式=B(B﹣2)﹣3=B2﹣2B﹣3=(B+1)(B﹣3),所以原式=(m2+2m+1)(m2+2m﹣3)=(m+1)2(m﹣1)(m+3).23.解:(1)a2﹣6a+8,=a2﹣6a+9﹣1,=(a﹣3)2﹣1,=(a﹣3﹣1)(a﹣3+1),=(a﹣2)(a﹣4);(2)a2+b2,=(a+b)2﹣2ab,=52﹣2×6,=13;a4+b4=(a2+b2)2﹣2a2b2=132﹣2×62=169﹣2×36=169﹣72=97;(3)∵x2﹣4x+5,=x2﹣4x+4+1,=(x﹣2)2+1≥1>0﹣x2+4x﹣4,=﹣(x2﹣4x+4),=﹣(x﹣2)2≤0∴x2﹣4x+5>﹣x2+4x﹣4.(若用”作差法”相应给分)24.解:x4+x2y2+y4=x4+2x2y2+y4﹣x2y2(2分)=(x2+y2)2﹣x2y2(2分)=(x2+y2+xy)(x2+y2﹣xy).(2分)25.解:(1)∵a2+b2﹣2a+1=0,∴a2﹣2a+1+b2=0,∴(a﹣1)2+b2=0,∴a﹣1=0,b=0,解得a=1,b=0;(2)∵x2+2y2﹣2xy+6y+9=0,∴x2+y2﹣2xy+y2+6y+9=0即:(x﹣y)2+(y+3)2=0则:x﹣y=0,y+3=0,解得:x=y=﹣3,∴x y=(﹣3)﹣3=﹣;(3)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a+2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;26.解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。
14.3 因式分解同步练习一.选择题1.下列四个多项式,能因式分解的是()A.a2+b2 B.a2-a+2 C.a2+3b D.(x+y)2-42.下列各式从左到右的变形,是因式分解的是()A.x(x−1)=x2−x B.y(y+1)=y2+yC.x2+3x−4=x(x+3)−4D.x2−2x+1=(x−1)23.下列多项式能用平方差公式分解因式的是()A .x²−xy B.x²+xy C.4x²+y² D.4x²−y²4.下列多项式中,能分解出因式m+1的是()A.m2﹣2m+1 B.m2+1 C.m2+m D.(m+1)2+2(m+1)+15.当x=1,y=-1时,代数式x2+2xy+y2的值是()A.4 B.0 C.-1 D.-26.把b2(x−3)+b(3−x)因式分解的结果应为()A.(x−3)(b2+b)B.b(x−3)(b+1)C.b(x−3)(b−1)D.(x−3)(b2−b)7.已知2x−y=1,xy=2,则4x3y−4x2y2+xy3的值为()A.-2 B.1 C.-1 D.28.已知a、b、是三角形的三条边,那么代数式(a−b)2−c2的值()A.大于0 B.等于0 C.小于0 D.无法确定二.填空题9.分解因式:x2−25=.10.多项式6ab2x−3a2by+12a2b2的公因式是.11.已知a+b=5,ab=-6,则代数式ab2+a2b的值是.12.若m2+2mn+2n2−6n+9=0,则m的值为n213.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2−2b(a+c)=0,则此三角形的形状是.三.解答题14.因式分解:(1)x3−9x(2)(a+b)2+10(a+b)+2515.分解因式x2+ax+b,甲看错了a的值,分解的结果为(x+6)(x﹣1),乙看错了b的值,分解结果为(x ﹣2)(x+1).(1)求a,b的值;(2)把x2+ax+b分解因式.16.若a,b,c分别为△ABC三边的长,且满足b(a-b)-c(b-a)=0,试判断△ABC的形状,并说明理由.17.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:.解:原式:②,利用配方法求M的最小值.解:∴当时,M有最小值4.请根据上述材料解决下列问题:(1)用配方法因式分解;(2)若,求M的最小值.。
人教版八年级数学上册《14.3 因式分解》同步练习题-带答案一、单选题1.将多项式263ab ab -进行因式分解,公因式是( )A .3abB .2abC .23abD .6ab2.计算结果为2718x x +-的是( )A .(2)(9)x x +-B .(2)(9)x x -+C .(3)(9)x x ++D .(3)(6)x x -+3.下列由左到右的变形,属于因式分解的是( )A .2(2)(2)4x x x +-=-B .242(4)2x x x x +-=+-C .22()(42)x x x +--=D .243(2)(2)3x x x x x -+=+-+4.已知()()2427x mx x n x -+=--,则m n 、的值为( )A .13,6m n ==B .13,6m n =-=C .13,6m n ==-D .13,6m n =-=- 5.与22395239555+⨯⨯+相等的是( )A .()23955-B .()()39553955+-C .()23955+D .()239510+ 6.无论a 、b 为任何实数,代数式224613a b a b +-++的值总是( )A .非正数B .非负数C .0D .正数7.如图,长方形的长和宽分别是x ,y ,它的周长为14,面积为10.则22x y xy +的值为( )A .140B .70C .14D .10 8.下列多项式:①224x y --;①()224x y --;①222a ab b +-;①214x x ++;①2244n m mn +-.能用公式法分解因式的是( )A .①①①①B .①①①C .①①①D .①①①①9.已知20222021a x =+,20222022b x =+和20222023c x =+,则多项式222a b c ab bc ac ++---的值为( ) A .1B .2C .3D .410.已知正整数a ,b ,c ,d ,e ,f 满足a b c d e f <<<<<,且222222a b c d e f b a d c f e +++++=-+-+-,关于这个六元方程下列说法正确的个数是( )①1a =,b=2,c=3,d=4,e=5,f=6是该六元方程的一组解;①连续的六个正整数一定是该六元方程的解;①若10a b c d e f <<<<<<,则该六元方程有21组解;①若53a b c d e f +++++=,则该六元方程有28组解.A .1B .2C .3D .4二、填空题11.因式分解①333x x -= .12.已知24x x n -+因式分解的结果为()()2x x m ++,则n = .13.多项式239514x x +-可因式分解成()()3x a bx c ++,其中a b c 、、均为整数,则23a b c ++值为 . 14.定义:若一个正整数M 能表示成两个相邻偶数a ,b ()0a b >≥的平方差,即22M a b =-,且M 的算术平方根是一个正整数,则称正整数M 是“双方数”.例如:2236108=-366=,36就是一个“双方数”.若将“双方数”从小到大排列,前3个“双方数”的和为 ;第100个“双方数”为 .三、解答题15.因式分解:(1)327x x x ++;(2)2249a b -16.两位同学将一个二次三项式:2ax bx c ++(其中a ,b ,c 为常数,且0abc ≠)分解因式,一位同学因看错了一次项系数而分解成()()219x x --,另一位同学因看错了常数项而分解成()()224x x --,请将原多项式分解因式.17.小明从一张边长为cm a 的正方形纸板上减掉一个边长为cm b 的正方形(如图1),然后将剩余部分沿虚线剪开并重新拼成一个长方形(如图2).(1)上述过程揭示的因式分解的等式是______;(2)若2291630x y -=,346x y += 求43y x -的值;(3)利用因式分解计算:22222111111111123420232024⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 18.在学习《因式分解》时,邹老师给同学们发了很多硬纸片(a a ⨯的正方形A ,b b ⨯的正方形B ,a b ⨯的长方形C ).(1)在探究中,小明用1张A 和1张C 组成如图1所示的长方形可以说明2b ab +可以分解为 ;(2)继续探究中,小明用1张A ,2张B 和3张C 再次拼得一个长方形,请在框1中画出示意图,并将长方形面积表达式的因式分解结果写在横线上;(3)尝试应用:请你仿照小明同学的探究方法,尝试用1张A ,4张B 和若干张C 拼成一个长方形或者正方形,请你设计两种不同的拼法,在框2和框3中分别画出示意图,并在相应的横线上写出所拼长方形的面积表达式及因式分解的结果.参考答案1.A2.B3.C4.A5.C6.B7.B8.C9.C10.B11.()()311x x x +-12.12-13.714. 140 15840415.(1)()27x x x ++ (2)()()2323a b a b +-16.()223x -17.(1)()()22a b a b a b -=+- (2)5- (3)2025404818.(1)()a a b +(2) ()()2a b a b ++(3)()222442a b ab a b ++=+()() 22++=++a b ab a b a b454。
14.3因式分解同步练习-人教版初中数学八年级上册一、选择题(本大题共12小题,共36.0分)1. 下列等式中,从左到右的变形属于因式分解的是( )A. a(a +2)=a 2+2aB. a 2−b 2=(a +b)(a −b)C. m 2+m +3=m(m +1)+3D. a 2+6a +3=(a +3)2−62. 下列因式分解正确的是( ) A. x 2−x =x(x +1)B. a 2−3a −4=a(a −3)−4C. a 2+b 2−2ab =(a +b)2D. x 2−y 2=(x +y)(x −y)3. 对于①x −3xy =x(1−3y),②(x +3)(x −1)=x 2+2x −3,从左到右的变形,表述正确的是( )A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解4. 若x 2+5x +m =(x +n)2,则m ,n 的值分别为( )A. 254,52B. 254,5C. 25,5D. 5,52 5. 下列各式中,能运用平方差公式分解因式的是( )A. x 2+y 2B. 1−x 2C. −x 2−y 2D. x 2−xy6. 已知a 、b 、c 、为△ABC 的三边长,a 2+5b 2−4ab −2b +1=0,且△ABC 为等腰三角形,则△ABC 的周长为( )A. 5B. 4C. 4或5D. 27. 对于任何整数m ,多项式(4m +5)2−9都能( )A. 被8整除B. 被m 整除C. 被m −1整除D. 被2m −1整除8. 把6x 2−29x +35分解因式为( )A. (2x −7)(3x −5)B. (3x −7)(2x −5)C. (3x −7)(2x +5)D. (2x −7)(3x +5)9. 下列各式从左到右的变形,是因式分解的是( )A. x(x −1)=x 2−xB. x 2−2x +1=(x −1)2C. x 2+3x −4=x(x +3)−4D. y(y +1)=y 2+y10. 下列多项式中,可以提取公因式的是( )A. ab +cdB. mn +m 2C. x 2−y 2D. x 2+2xy +y 211. 如果一个三角形的三边a 、b 、c 满足ab +bc =b²+ac ,那么这个三角形一定是( )A. 等边三角形B. 等腰三角形C. 不等边三角形D. 直角三角形12.把2xy−x2−y2分解因式,结果正确的是()A. (x−y)2B. (−x−y)2C. −(x−y)2D. −(x+y)2二、填空题(本大题共5小题,共15.0分)13.若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为.14.分解因式:xy−x=______.15.若多项式x2+ax+b分解因式的结果为(x+1)(x−2),则a+b的值为.16.在实数范围内分解因式:xy2−4x=.17.若a+b=2,ab=−3,则a3b+2a2b2+ab3的值为.三、计算题(本大题共2小题,共12.0分)18.因式分解:(1)x2−9;(2)2x2−2y2.19.将下列各式分解因式:(1)a2−14ab+49b2;(2)19m2+23mn+n2;(3)9(a+b)2−12(a+b)+4.四、解答题(本大题共5小题,共40.0分)20.(ax+b)(cx+d)=acx2+adx+bcx+bd=acx2+(ad+bc)x+bd,反过来可写成acx2+(ad+bc)x+bd=(ax+b)(cx+d).于是,我们得到一个关于二次三项式因式分解的新的公式.通过观察可知,公式左边的二次项系数为两个有理数的乘积,常数项也为两个有理数的乘积,而一次项系数恰好为这两对有理数交叉相乘再相加的结果,如图 ①所示,这种因式分解的方法叫十字交叉相乘法.示例:因式分解:12x2−5x−2.解:由图 ②可知,12x2−5x−2=(3x−2)(4x+1).请根据示例,对下列多项式进行因式分解:(1)2x2+7x+6;(2)6x2−7x−3.21.已知(19x−31)(13x−17)−(17−13x)(11x−23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.22.利用因式分解回答问题:已知x+y=3,x−y=−2,求(x2+y2)2−4x2y2的值.23.求证:不论n取何正整数,(n+5)2−(n−1)2一定是12的倍数.24.已知在△ABC中,三边长a、b、c,满足等式a2−16b2−c2+6ab+10bc=0,求证:a+c=2b.答案和解析1.【答案】B【解析】由因式分解的定义可知B选项中的变形是因式分解,故选B.2.【答案】D【解析】选项A.x2−x=x(x−1),故本选项不符合题意.选项B.a2−3a−4=(a−4)(a+1),故本选项不符合题意.选项C.a2+b2−2ab=(a−b)2,故本选项不符合题意.选项D.x2−y2=(x+y)(x−y),故本选项符合题意.故选D.3.【答案】C【解析】解:①x−3xy=x(1−3y),从左到右的变形是因式分解;②(x+3)(x−1)=x2+2x−3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式)判断即可.此题考查了因式分解.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.4.【答案】A【解析】∵x 2+5x +m =(x +n)2=x 2+2nx +n 2,∴2n =5,m =n 2,解得m =254,n =52,故选A .5.【答案】B【解析】x 2+y 2不能运用平方差公式分解因式,1−x 2能运用平方差公式分解因式,−x 2−y 2不能运用平方差公式分解因式,x 2−xy 不能运用平方差公式分解因式,故选B .6.【答案】A【解析】【分析】本题考查了因式分解的应用、等腰三角形的性质、三角形三边的关系,熟练掌握完全平方公式是解题的关键.将已知等式配方后,利用非负数的性质求出a 与b 的值,再根据三角形三边的关系即可求出三角形的周长.【解答】解:∵a 2+5b 2−4ab −2b +1=0∴a 2−4ab +4b 2+b 2−2b +1=0∴(a −2b)2+(b −1)2=0∴a −2b =0,b =1∴a =2,b =1∵△ABC 为等腰三角形,∴c =2或1当c =2时,a =2,b =1,符合三角形的三边关系,△ABC 的周长为5,当c =1时,a =2,b =1,不符合三角形的三边关系,舍去.∴△ABC 的周长为5.故选:A7.【答案】A【解析】(4m+5)2−9=(4m+5+3)(4m+5−3)=(4m+8)(4m+2)=8(m+2)(2m+1),∴能被8整除.8.【答案】B【解析】【分析】此题考查了因式分解−十字相乘法的运用,熟练掌握因式分解的方法是解本题的关键.原式利用十字相乘法分解即可.【解答】解:6x2−29x+35=(3x−7)(2x−5).故选B.9.【答案】B【解析】【分析】本题主要的是因式分解的概念,因式分解就是要将一个多项式分解为几个整式积的形式.根据因式分解的概念逐个选项进行分析,即可求解.【解答】解:A.整式的乘法运算;B.是因式分解,结果正确;C.分解因式错误;D.整式的乘法运算.故选:B.10.【答案】B【解析】【解答】解:A、ab+cd,没有公因式,故此选项不符合题意;B、mn+m2=m(n+m),故此选项符合题意;C、x2−y2,没有公因式,故此选项不符合题意;D、x2+2xy+y2,没有公因式,故此选项不符合题意;故选:B.【分析】直接利用提取公因式法分解因式的步骤分析得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.【答案】B【解析】【分析】本题考查了因式分解的应用、等腰三角形的判定;熟练掌握因式分解的方法是解题的关键.把原式变形因式分解得出(b−c)(a−b)=0,得出b−c=0或a−b=0,即可得出结论.【解答】解:∵ab+bc=b²+ac,∴ab+bc−b2−ac=0,(ab−ac)−(b2−bc)=0,a(b−c)−b(b−c)=0,∴(b−c)(a−b)=0,∴b−c=0或a−b=0,∴这个三角形一定是等腰三角形;故选B.12.【答案】C【解析】略13.【答案】12【解析】∵a+b=4,a−b=1,∴(a+1)2−(b−1)2=(a+1+b−1)(a+1−b+1)=(a+b)(a−b+2)=4×(1+2)=12.14.【答案】x(y−1)【解析】【分析】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.直接提取公因式x,进而分解因式得出答案.【解答】解:xy−x=x(y−1).故答案为x(y−1).15.【答案】−3【解析】因为x2+ax+b=(x+1)(x−2)=x2−2x+x−2=x2−x−2,所以a=−1,b=−2,则a+b=−3.16.【答案】x(y+2)(y−2)【解析】xy2−4x=x(y2−4)=x(y+2)(y−2).17.【答案】−12【解析】∵a+b=2,ab=−3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=−3×4=−12.18.【答案】解:(1)原式=(x+3)(x−3).(2)原式=2(x2−y2)=2(x+y)(x−y).【解析】略19.【答案】解:(1)原式=a2−2⋅a⋅(7b)+(7b)2=(a−7b)2.(2)原式=(13m)2+2⋅13m⋅n+n2=(13m+n)2(3)原式=[3(a+b)]2−2×3(a+b)×2+22=[3(a+b)−2]2=(3a+3b−2)2.【解析】略20.【答案】解:(1)由图1可知,2x2+7x+6=(x+2)(2x+3).(2)由图2可知,6x2−7x−3=(2x−3)(3x+1).【解析】略21.【答案】解:由题意得(19x−31)(13x−17)−(17−13x)(11x−23)=(19x−31)(13x−17)+(13x−17)(11x−23)=(13x−17)(30x−54)=(ax+b)(30x+c),∴a=13,b=−17,c=−54,∴a+b+c=−58.【解析】略22.【答案】(x2+y2)2−4x2y2=(x2+y2+2xy)(x2+y2−2xy)=(x+y)2(x−y)2,当x+y=3,x−y=−2时,原式=32×(−2)2=9×4=36.【解析】略23.【答案】证明:∵(n+5)2−(n−1)2=(n+5+n−1)(n+5−n+1)=6(2n+4)=12(n+2),∴(n+5)2−(n−1)2一定是12的倍数.【解析】本题考查提取公因式法和平方差公式法分解因式.首先将(n+5)2−(n−1)2用平方差公式进行分解,然后再用提取公因式法将结果化到不能再分解为止,根据最后化简的结果即可证明.24.【答案】解:由a2−16b2−c2+6ab+10bc=0,得a2+6ab+9b2−25b2+10bc−c2=0.∴(a+3b)2−(5b−c)2=0.∴(a+3b+5b−c)(a+3b−5b+c)=0,即(a+8b−c)(a−2b+c)=0.∵△ABC中三边长a、b、c满足a+b>c,且a>0,b>0,c>0,∴a+8b−c>0.故a−2b+c=0,∴a+c=2b.【解析】本题考查了因式分解的运用,三角形的三边关系,非负数积为0的定理的运用.先将原式变形为:a2+6ab+9b2−25b2+10bc−c2=0得出(a+8b−c)(a−2b+ c)=0.根据三角形的三边关系可判断a+8b−c>0,从而得出结论.。
因式分解(填空题:一般)1、在实数范围内因式分解:=______________________;2、分解因式:_______.3、分解因式:4、分解因式结果为_____________.5、把多项式2m2﹣8n2分解因式的结果是.6、分解因式:ab﹣b2=_____.7、分解因式:=_________________.8、分解因式:= .9、分解因式:a3﹣a= .10、因式分解:﹣2x2y+12xy﹣18y= .11、分解因式:﹣x2+2x﹣1= .12、分解因式x3-4x的结果是________.13、因式分解:y3﹣4x2y=______.14、在实数范围内分解因式_____________.15、若多项式x−mx−21可以分解为(x+3)(x−7),则m=________。
16、多项式10m2-25mn的公因式是_________.17、若x+y=2,则代数式x2+xy+y2=________.18、在实数范围内因式分解:_______________________.19、因式分解:=___________________.20、已知,则代数式的值是__________21、计算:2 015×2 017-2 0162=__________.22、分解因式: ________________.23、在实数范围内分解因式 = _________24、分解因式:ax2+2ax+a=____________.25、分解因式:ax2-4axy+4ay2=__________________.26、分解因式:3ma﹣6mb=_______.27、四式分解:__________.28、分解因式:x2y﹣6xy+9y=_______.29、因式分解4m2﹣n2=_______.30、因式分解:a2﹣3ab=__.31、分解因式:3x2﹣6xy=__.32、因式分解:_____.33、分解因式:x2-16y2=_______.34、分解因式:=_______.35、分解因式:=_______.36、若多项式x2+ax﹣2分解因式的结果为(x+1)(x﹣2),则a的值为_____.37、分解因式:4x2﹣16=_____.38、分解因式:ma2﹣4ma+4m=_____.39、分解因式:ax2﹣2a2x+a3=_____________ .40、分解因式:a3﹣4a(a﹣1)= .41、已知不等式组的解集是2<x<3,分解因式x2-3x-2mn=__________________.42、在实数范围内分解因式:__________.43、若a2﹣b2=,a﹣b=,则a+b的值为_____.44、在实数范围内分解因式:3x2﹣6y2=_____.45、右图中四边形均为长方形,根据图形,写出一个正确的等式:_____________.46、分解因式:____________________.47、分解因式: ______________.48、把多项式4x2y﹣4xy2﹣x3分解因式的结果是______________49、分解因式:x2y﹣y=______________.50、因式分解:m(x﹣y)+n(x﹣y)=____________.51、分解因式:9x3﹣18x2+9x= .52、分解因式:a3b-2a2b2+ab3= .53、分解因式:ab2﹣4ab+4a=_________.54、分解因式:a3﹣4ab2=55、分解因式:__________.56、已知x+y=6,xy=4,则x2y+xy2的值为.57、因式分解:(a+b)2﹣4b2=_______.58、分解因式:___________。
59、20142-2013×2015的计算结果是_____.60、因式分解:_______.61、若,则________.62、分解因式:x2+2x-3=____________.63、分解因式:(a-b)2-4b2= _______________________64、分解因式:3m2-6m+3=_______________.65、点A(a,b)是一次函数y=x﹣1与反比例函数y=的交点,则a2b﹣ab2=_____.66、分解因式:12a2-3b2=____.67、分解因式4x3-x的结果是_____.68、因式分解:2x2y-8xy+8y =___________________.69、分解因式:4m2-n2 = _____________;y2-4y+4 = ________________.70、因式分解:m3-4mn2 =______________.参考答案1、2、(x+1)(x﹣1).3、8a(x+y)(x+y)4、(x+7)(x-4)5、2(m+2n)(m﹣2n).6、b(a﹣b)7、(a+4)(a-2)8、.9、a(a+1)(a﹣1).10、﹣2y(x﹣3)211、﹣(x﹣1)212、x(x+2)(x―2)13、y(y+2x)(y﹣2x).14、15、416、5m17、118、19、﹣2y(x﹣3)220、-201721、-122、23、24、a(x+1)225、27、28、y(x﹣3)229、(2m+n)(2m﹣n)30、a(a﹣3b)31、3x(x﹣2y)32、33、(x+4y) (x-4y)34、2(a+2b)(a-2b);35、2(a+2b)(a-2b);36、-137、4(x+2)(x﹣2)38、m(a﹣2)240、a(a﹣2)241、(x-4)(x+1)42、43、.44、3(x+y)(x﹣y)45、m(a+b+c)=ma+mb+mc(答案不唯一).46、47、48、﹣x(x﹣2y)249、y(x+1)(x﹣1)50、(x﹣y)(m+n)51、9x52、ab(a-b)2.53、a(b﹣2)254、a(a+2b)(a-2b).55、56、2457、(a+3b)(a-b)58、xy(x-y)259、160、61、162、(x+3)(x-1)63、(a+b)(a-3b)64、3(m-1)265、466、3(2a+b)(2a-b)67、x(2x+1)(2x-1)68、2y(x-2)269、(y-2)270、m(m+2n)(m-2n)【解析】1、原式=x(x2-8)=x[x2- ]=.【点睛】本题考查了在实数范围内分解因式的知识.在进行分解时要注意观察是否有公因式,然后再观察是否可用公式,注意分解要彻底.2、试题分析:利用平方差公式分解即可求得答案.=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).考点:因式分解-运用公式法.3、原式=8a(x2+2xy+y2)= 8a(x+y)(x+y),故答案为:8a (x+y)(x+y).点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、将二次项系数1分解成1×1,将-28分解成-4×79,然后交叉组合即可得到=(x+7)(x-4). 故答案为:(x+7)(x-4).5、试题分析:2m2﹣8n2=2(m2﹣4n2)=2(m+2n)(m﹣2n).考点:提公因式法与公式法的综合运用.6、根据提公因式法进行分解即可,ab﹣b2=b(a﹣b),故答案为:b(a﹣b).7、试题解析:=2+2a-8=(a+4)(a-2)8、试题分析:先提取公因式x,再对余下的多项式利用完全平方公式继续分解.==.故答案为:.考点:提公因式法与公式法的综合运用.9、试题分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.a3﹣a, =a(a2﹣1), =a(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.10、试题分析:原式=﹣2y(x2﹣6x+9)=﹣2y(x﹣3)2.故答案为:﹣2y(x﹣3)2.考点:提公因式法与公式法的综合运用.11、试题分析:直接提取公因式﹣1,进而利用完全平方公式分解因式即可解:﹣x2+2x﹣1=﹣(x2﹣2x+1)=﹣(x﹣1)2.故答案为:﹣(x﹣1)2.考点:提公因式法与公式法的综合运用.12、分析:先提取公因式x,再根据平方差公式进行二次分解即可求得答案.详解:解:原式点睛:本题考查了提公因式法,公式法分解因式.注意提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13、解:y3﹣4x2y=y(y2﹣4x2)=y(y+2x)(y﹣2x).故答案为:y(y+2x)(y﹣2x).14、试题解析:因为a2-5=a2-()2,符合平方差公式的特点,所以利用平方差公式分解得:a2-6=(a+)(a-).15、由题意,得x2-mx-21=(x+3)(x-7),对(x+3)(x-7)进行整式乘法运算,得 (x+3)(x-7)=x2-4x-21,∴x2-mx-21=x2-4x-21,对照各项系数可知,m=4.故本题应填写:4.16、10m2-25mn=5m·2m-5m·5n=5m(2m-5n),故答案为:5m.17、因为x2+xy+y2=,x+y=2,所以x2+xy+y2=.故答案是`1.18、试题解析:(x+2)2-3=19、试题解析:原式=-2y(x2-6x+9)=-2y(x-3)2.考点:提公因式法与公式法的综合运用.20、∵,∴,∴====.21、原式=(2016−1)(2016+1)−20162=20162−1−20162=−1,故答案为:-1.22、提公因式a后利用完全平方公式分解因式即可,即原式= .23、x2−3=x2−()2=(x+)(x−).故答案为:(x+)(x−).24、ax2+2ax+a=a(x2+2x+1)=a(x+1)2.25、原式=a(x²−4xy+4y²)=a(x−2y) ²,故答案为:a(x−2y) ²26、3ma﹣6mb=3m(a﹣2b),故答案为:3m(a﹣2b).27、试题解析:.28、原式=y(x2﹣6x+9)=y(x﹣3)2,故答案为:y(x﹣3)2.29、原式=(2m+n)(2m﹣n),故答案为:(2m+n)(2m﹣n).30、a2﹣3ab=a(a﹣3b),故答案是: a(a﹣3b).31、3x2﹣6xy=3x(x﹣2y),故答案为:3x(x﹣2y).32、点睛:对多项式进行因式分解时,首先观察被分解的多项式的结构特点,凡是各项有公因式的,一般要先提公因式,然后再看第二个因式能否用公式法或十字相乘法进行进一步的分解,要直到每一个因式在指定范围内不能再分解为止.33、试题解析:x2-16y2=x2-(4y)2="(x+4y)" (x-4y).34、试题解析:2a2-8b2,=2(a2-4b2),=2(a+2b)(a-2b).35、试题解析:2a2-8b2,=2(a2-4b2),=2(a+2b)(a-2b).36、解:根据题意得:x2+ax﹣2=(x+1)(x﹣2)=x2﹣x﹣2,则a=﹣1,故答案为:﹣1.37、4x2﹣16,=4(x2﹣4),=4(x+2)(x﹣2)故答案是:4(x+2)(x﹣2).38、ma2﹣4ma+4m,=m(a2﹣4a+4),=m(a﹣2)2.39、原式=a(x2﹣2ax+a2)=a(x﹣a)2.40、试题分析:首先利用整式的乘法把式子整理成a3﹣4a2+4a,再提取公因式a,然后再利用完全平方公式进行二次分解即可.解:原式=a3﹣4a2+4a=a(a2﹣4a+4)=a(a﹣2)2,故答案为:a(a﹣2)2.考点:提公因式法与公式法的综合运用.41、,解①得:x<2m−1,解②,nx>n+1,根据题意得:,解得:,则原式=x2−3x−4=(x−4)(x+1).故答案是:(x−4)(x+1).42、,,,.43、试题分析:∵a2-b2=(a+b)(a-b)=,a-b=,∴a+b=.考点:平方差公式44、3x2﹣6y2=3(x2﹣2y2) =3(x+y)(x﹣y).答案为:3(x+y)(x﹣y)点睛:本题考查了提公因式法和平方差公式分解因式.如何确定公因式是正确使用提公因式法因式分解的关键,确定公因式从三方面入手:①系数:取各项整数系数的最大公约数;②字母:取各项的相同字母(字母有时可为多项式);③指数:取相同字母的最小指数.利用平方差公式分解因式是因式分解的一种解法.平方差公式:a2−b2=(a+b)(a−b)一个二项式能否用平方差公式因式分解,要满足两个条件:①这两项必须符号相反;②这两项均能写成平方形式.另外注意分解因式一定要彻底.45、试题分析:从两方面计算该图形的面积即可求出该等式本题解析:从整体来计算矩形的面积:m(a+b+c),从部分来计算矩形的面积:ma+mb+mc,所以m(a+b+c)=ma+mb+mc故答案为:m(a+b+c)=ma+mb+mc46、m3n−6m2n+9mn=mn(m2−6m+9)=mn(m−3)2故答案为:47、=3=,故答案为:48、4x²y−4xy²−x²=−x(x²−4xy+4y²)=−x(x−2y)²,故答案为:﹣x(x﹣2y)2.49、试题分析:根据因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),可得x2y﹣y=y(x2﹣1)= y(x+1)(x﹣1).故答案为:y(x+1)(x﹣1)50、试题解析:m(x﹣y)+n(x﹣y)=(x﹣y)(m+n)51、试题分析:首先提取公因式9x,然后利用完全平方公式进行因式分解.原式=9x(-2x+1)=9x.考点:因式分解52、试题解析:a3b-2a2b2+ab3=ab(a2-2ab+b2)=ab(a-b)2.考点:提公因式法与公式法的综合运用.53、试题分析:首先提取公因式a,再利用完全平方公式进行二次分解即可.ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.考点:提公因式法与公式法的综合运用.54、试题分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.试题解析:a3﹣4ab2=a(a2-4b2)=a(a+2b)(a-2b).考点:提公因式法与公式法的综合运用.55、原式=(a−2b+b)(a−2b−b)=(a−b)(a−3b),故答案为:(a−b)(a−3b)56、试题分析:先提取公因式xy,整理后把已知条件直接代入计算即可.解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.考点:因式分解的应用.57、试题分析:根据因式分解的步骤,先根据平方差公式分解,然后再化简即可得:(a+b)2-4b2=(a+b+2b)(a+b-2b)=(a+3b)(a-b).故答案为:(a+3b)(a-b)58、原式=xy(x²-2xy+y²)=xy(x-y)²,故答案为:xy(x-y)².59、2014²−2013×2015=2014²−(2014−1)×(2014+1)=2014²−(2014²−1)=1,故答案为:1.60、试题分析:根据因式分解的方法,先提公因式,再利用平方差公式分解,即=.故答案为:点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).61、∵,∴,∴5+2a-6a²=5-2(3a2-a)=5-2×2=1.62、试题分析:根据因式分解的方法,由乘法的公式(十字相乘法)x2+(p+q)x+pq=(x+q)(x+p)直接分解因式即可得:x2+2x-3=(x+3)(x-1).故答案为:(x+3)(x-1).点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).63、直接利用平方差公式分解即可,即原式=(a-b+2b)(a-b-2b)=(a+b)(a-3b).64、试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m2-6m+3=3(m2-2m+1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解).65、把点A(a,b)代入y=x﹣1得,a-b=1;把点A(a,b)代入y=得,ab=4;∴a2b﹣ab2=ab(a-b)=4×1=4.66、12a2-3b2=3(4a2-b2)=3(2a+b)(2a-b);故答案是:3(2a+b)(2a-b)。