2019年高考数学考试大纲
- 格式:pdf
- 大小:458.05 KB
- 文档页数:12
文科数学Ⅰ.考核目标与要求根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容.一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.3.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求,促进学生德智体美劳全面发展.Ⅱ.考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”、“不等式选讲”等2个专题.必考内容(一)集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图像理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.(3)知道对数函数是一类重要的函数模型.(4)了解指数函数x y a =与对数函数log a y x =互为反函数(0a >,且1a ≠).4.幂函数(1)了解幂函数的概念.(2)结合函数y x =,2y x =,3y x =,1y x=,12y x =的图像,了解它们的变化情况. 5.函数与方程 (1) 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)根据具体函数的图像,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三) 立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. • 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. • 公理2:过不在同一条直线上的三点,有且只有一个平面.• 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.• 公理4:平行于同一条直线的两条直线互相平行.• 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.• 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.• 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.• 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.• 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.• 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.• 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.• 垂直于同一个平面的两条直线平行.• 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六) 统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七) 概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八) 基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出π2α±,πα±的正弦、余弦、正切的诱导公式,能画出sin y x =,cos y x =,tan y x =的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间ππ,22⎛⎫- ⎪⎝⎭内的单调性. (4)理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos x x x=.(5)了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图像,了解参数A ,ω,ϕ对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九) 平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十) 三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:2a b (0,0)a b ≥≥ (1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语1.命题及其关系(1)理解命题的概念.(2)了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.(4)理解数形结合的思想.(5)了解圆锥曲线的简单应用.(十六)导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y C = (C 为常数), y x =,2y x =,1y x =的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.• 常见基本初等函数的导数公式:()0C '= (C 为常数); 1()n n x nx -'=,n +∈N ;(sin )cos x x '=;(cos )sin x x '=-;(e )e x x '=;()ln x x a a a '= (0a >,且1a ≠);1(ln )x x '=;1(log )log e a a x x'= (0a >,且1a ≠). • 常用的导数运算法则:法则1: [()()]()()u x v x u x v x '''±=±.法则2: [()()]()()()()u x v x u x v x u x v x '''=+.法则3: 2()()()()()()()u x u x v x u x v x v x v x '''⎡⎤-=⎢⎥⎣⎦(()0v x ≠). 3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题.会利用导数解决某些实际问题.(十七)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.1.独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.2.回归分析了解回归分析的基本思想、方法及其简单应用.(十八)推理与证明1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.(3)了解合情推理和演绎推理之间的联系和差异.2.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.。
2019年江苏省高考说明-数学科一、命题指导思想2019年普通高等学校招生全国统一考试数学学科(江苏卷)命题,将依据《普通高中数学课程标准(实验)》,参照《普通高等学校招生全国统一考试大纲》,结合江苏省普通高中课程标准教学要求,按照“有利于科学选拔人才、促进学生健康发展、维护社会公平”的原则,既考查中学数学的基础知识和方法,又考查进入高等学校继续学习所必须的基本能力.试卷保持较高的信度、效度以及必要的区分度和适当的难度. 1.突出数学基础知识、基本技能、基本思想方法的考查对数学基础知识和基本技能的考查,贴近教学实际,既注意全面,又突出重点,支撑学科知识体系的重点内容在试卷中要占有较大的比例.注重知识内在联系的考查,不刻意追求知识的覆盖面.注重对中学数学中所蕴涵的数学思想方法的考查.2.重视数学基本能力和综合能力的考查数学基本能力主要包括空间想象、抽象概括、推理论证、运算求解、数据处理这几方面的能力.(1)空间想象能力的考查要求是:能够根据题设条件想象并作出正确的平面直观图形,能够根据平面直观图形想象出空间图形;能够正确地分析出图形中基本元素及其相互关系,并能够对空间图形进行分解和组合.(2)抽象概括能力的考查要求是:能够通过对实例的探究,发现研究对象的本质;能够从给定的信息材料中概括出一些结论,并用于解决问题或作出新的判断.(3)推理论证能力的考查要求是:能够根据已知的事实和已经获得的正确的数学命题,运用归纳、类比和演绎进行推理,论证某一数学命题的真假性.(4)运算求解能力的考查要求是:能够根据法则、公式进行运算及变形;能够根据问题的条件寻找与设计合理、简捷的运算途径;能够根据要求对数据进行估计或近似计算.(5)数据处理能力的考查要求是:能够运用基本的统计方法对数据进行整理、分析,以解决给定的实际问题.数学综合能力的考查,主要体现为分析问题与解决问题能力的考查,要求能够综合地运用有关的知识与方法,解决较为困难的或综合性的问题.3.注重数学的应用意识和创新意识的考查数学的应用意识的考查要求是:能够运用所学的数学知识、思想和方法,构造适合的数学模型,将一些简单的实际问题转化为数学问题,并加以解决.创新意识的考查要求是:能够发现问题、提出问题,综合与灵活地运用所学的数学知识和思想方法,创造性地解决问题.二、考试内容及要求数学试卷由必做题与附加题两部分组成.选修测试历史的考生仅需对试题中的必做题部分作答;选修测试物理的考生需对试题中必做题和附加题这两部分作答.必做题部分考查的内容是高中必修内容和选修系列1的内容;附加题部分考查的内容是选修系列2(不含选修系列1)中的内容以及选修系列4中专题4-2《矩阵与变换》、4-4《坐标系与参数方程》、4-5《不等式选讲》这4个专题的内容(考生只需选考其中两个专题).对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C 表示).了解:要求对所列知识的含义有初步的、感性的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的理性认识认识,并能解决有一定综合性的问题.掌握:要求系统地把握知识的内在联系,并能解决综合性较强的问题.具体考查要求如下:1.必做题部分2.附加题部分三、考试形式及试卷结构(一)考试形式闭卷、笔试,试题分必做题和附加题两部分.必做题部分满分为160分,考试时间120分钟;附加题部分满分为40分,考试时间30分钟.(二)考试题型1.必做题必做题部分由填空题和解答题两种题型组成.其中填空题14小题,约占70分;解答题6小题,约占90分.2.附加题附加题部分由解答题组成,共6题.其中,必做题2小题,考查选修系列2中的内容;选做题共4小题,依次考查选修系列4中4-2、4-4、4-5这4个专题的内容,考生只须从中选2个小题作答.填空题着重考查基础知识、基本技能和基本方法,只要求直接写出结果,不必写出计算和推理过程;解答题应写出文字说明、证明过程或演算步骤.(三)试题难易比例必做题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为4:4:2.附加题部分由容易题、中等题和难题组成.容易题、中等题和难题在试卷中的比例大致为5:4:1.四、典型题示例A.必做题部分1. 设复数i 满足(34)|43|i z i -=+(i 是虚数单位),则z 的虚部为_____ 【解析】本题主要考查复数的基本概念,基本运算.本题属容易题. 【答案】452. 设集合}1{},3,{},2,1{2=+==B A a a B A 若,则实数a 的值为_ 【解析】本题主要考查集合的概念、交集运算等基础知识.本题属容易题. 【答案】1.3. 右图是一个算法流程图,则输出的k【解析本题属容易题. 【答案】54. 函数ln(1)()1x f x x +=-的定义域为【解析】本题主要考查对数函数的单调性,本题属容易题. 【答案】(1,1)(1,)-⋃+∞5.某棉纺厂为了解一批棉花的质量,从中 随机抽取了100根棉花纤维的长度(棉花纤 维的长度是棉花质量的重要指标),所得数 据均在区间]40,5[中,其频率分布直方图如图所示,则在抽测的100根中,有_ _根 棉花纤维的长度小于mm 20.【解析】本题主要考查统计中的抽样方法与总体分布的估计.本题属容易题. 【答案】由频率分布直方图观察得棉花纤维长度小于mm 20的频率为3.0501.0501.0504.0=⨯+⨯+⨯,故频数为301003.0=⨯.6. 将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.【解析】本题主要考察古典概型、互斥事件及其发生的概率等基础知识.本题属容易题. 【答案】657. 已知函数)0)(2sin(cos πϕ<≤+==x x y x y 与,它们的图像有一个横坐标为3π的交点,则ϕ的值是________.【解析】本题主要考察特殊角的三角函数值,正弦函数、余弦函数的图像与性质等基础知识,考察数形结合的思想,考察分析问题、解决问题的能力.本题属容易题. 【答案】6π.8.在各项均为正数的等比数列{}n a 中,若64682,,1a a a a a 则+==的值是______.【解析】本题主要考察等比数列的通项公式等基础知识,考察运算求解能力.本题属容易题. 【答案】4.9.在平面直角坐标系xOy 中,双曲线1322=-y x 的右准线与它的两条渐近线分别交于Q P ,,其焦点是1F ,2F ,则四边形Q PF F 21的面积是______.【解析】本题主要考察中心在坐标原点的双曲线的标准方程、渐近线、准线方程、焦点、焦距和直线与直线的交点等基础知识.本题属中等难度题.10.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为cm 3.【解析】本题主要考查四棱锥的体积,考查空间想象能力 和运算能力.本题属容易题. 【答案】6.11.设直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值是 . 【解析】本题主要考查导数的几何意义、切线的求法.本题属中等题. 【答案】ln 21-.12.设)(x f 是定义在R 上且周期为2的函数,在区间)1,1[-上,,,1001,,|52|)(<≤<≤-⎪⎩⎪⎨⎧-+=x x x a x x f 其中R a ∈.若)29()25(f f =-,则)5(a f 的值是 .【解析】本题主要考察函数的概念、函数的性质等基础知识,考查运算求解能力.本题属中等难度题. 【答案】52-13.如图,在ABC ∆中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4=⋅,1-=⋅,则⋅的值是 . 【解析】本题主要考查平面向量的概念、平面向量的运算以及平面向量的数量积等基础知识,考查数形结合和等价转化的思想,考查运算求解能力.本题属难题. 【答案】87.14. 已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则b a的取值范围是 . 【解析】本题主要考查代数形式的变形和转化能力,考查灵活运用有关的基础知识解决问题的能力.本题属难题.DABC 1C 1D1A1B二、解答题15.在ABC ∆中,角c b a C B A ,,,,的对边分别为.已知.2623A B b a ===,, (1)求A cos 值; (2)求c 的值.【解析】本题主要考查三角恒等变换、正弦定理等基础知识,考查运算求解能力. 本题属容易题. 【参考答案】(1)在ABC ∆中,因为A B b a 2623===,,, 故由正弦定理得A A 2sin 62sin 3=,于是362sin cos sin 2=A A A . 所以36cos =A . (2)由(1)得36cos =A .所以33cos 1sin 2=-=A A .又因为A B 2=,所以311cos 22cos cos 2=-==A B . 从而322cos 1sin 2=-=B B . 在π=++∆C B A ABC 中,因为,所以935sin cos cos sin )sin(sin =+=+=B A B A B A C . 因此由正弦定理得5sin sin ==ACa c .16.如图,在三棱锥A-BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC.【解析】本题主要考查直线与直线、直线与平面以及平面与平面的 位置关系,考查空间想象能力和推理论证能力. 本题属容易题 【参考答案】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥. 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC . (2)因为平面ABD ⊥平面BCD , 平面ABD 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B =,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC.17.如图,在平面直角坐标系xOy 中,椭圆10:>>2222x y +=(a b )a bE 的左、右焦点分别为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2.(1)求椭圆E 的标准方程;(2)若直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.【解析】本小题主要考查直线方程、直线与直线的位置关系、椭圆方程、椭圆的几何性质等基础知 识, 考查分析问题能力和运算求解能力.本题属中等难度题. 【参考答案】(1)设椭圆的半焦距为c .因为椭圆E 的离心率为12,两准线之间的距离为8,所以12c a =,228a c =,解得2,1a c ==,于是b 因此椭圆E 的标准方程是22143x y +=.(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>. 当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为001y x -.因为11l PF ⊥,22l PF ⊥,所以直线1l 的斜率为001x y -+,直线2l 的斜率为001x y --,从而直线1l 的方程:001(1)x y x y +=-+, ①直线2l 的方程:001(1)x y x y -=--. ②由①②,解得20001,x x x y y -=-=,所以2001(,)x Q x y --.因为点Q 在椭圆上,由对称性,得2001x y y -=±,即22001x y -=或22001x y +=. 又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00,77x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解.因此点P的坐标为.18. 如图:为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区,规划要求,新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任一点的距离均不少于80m ,经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处,(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?【解析】本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力..【参考答案】 解法一:如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43. 又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=-- k AB =603,04b a -=-解得a =80,b=120. 所以BC 150=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35. 因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半 径,并设MD =r m ,OM =d m(0≤d ≤60). 因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 19. 设函数ax e x g ax x x f x -=-=)(,ln )(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围;(2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 【解析】本题主要考查函数的单调性、最值、零点等基础知识,考查灵活运用数形结合、分类讨论等数学思想方法进行探索、分析与解决问题的能力.本题属难题. 【参考答案】解:(1)令f ′(x )=11axa xx--=<0,考虑到f (x )的定义域为(0,+∞),故a >0,进而解得x >a -1,即f (x )在(a -1,+∞)上是单调减函数.同理,f (x )在(0,a -1)上是单调增函数.由于f (x )在(1,+∞)上是单调减函数,故(1,+∞)⊆(a -1,+∞),从而a -1≤1,即a ≥1.令g ′(x )=e x -a =0,得x =ln a .当x <ln a 时,g ′(x )<0;当x >ln a 时,g ′(x )>0.又g (x )在(1,+∞)上有最小值,所以ln a >1,即a >e. 综上,有a ∈(e ,+∞).(2)当a ≤0时,g (x )必为单调增函数;当a >0时,令g ′(x )=e x -a >0,解得a <e x ,即x >ln a .因为g (x )在(-1,+∞)上是单调增函数,类似(1)有ln a ≤-1,即0<a ≤e -1. 结合上述两种情况,有a ≤e -1.①当a =0时,由f (1)=0以及f ′(x )=1x>0,得f (x )存在唯一的零点;②当a <0时,由于f (e a )=a -a e a =a (1-e a )<0,f (1)=-a >0,且函数f (x )在[e a,1]上的图象不间断,所以f (x )在(e a,1)上存在零点.另外,当x >0时,f ′(x )=1x-a >0,故f (x )在(0,+∞)上是单调增函数,所以f (x )只有一个零点.③当0<a ≤e -1时,令f ′(x )=1x-a =0,解得x =a -1.当0<x <a -1时,f ′(x )>0,当x >a-1时,f ′(x )<0,所以,x =a -1是f (x )的最大值点,且最大值为f (a -1)=-ln a -1.当-ln a -1=0,即a =e -1时,f (x )有一个零点x =e. 当-ln a -1>0,即0<a <e -1时,f (x )有两个零点.实际上,对于0<a <e -1,由于f (e -1)=-1-a e -1<0,f (a -1)>0,且函数f (x )在[e -1,a-1]上的图象不间断,所以f (x )在(e -1,a -1)上存在零点.另外,当x ∈(0,a -1)时,f ′(x )=1x-a >0,故f (x )在(0,a -1)上是单调增函数,所以f (x )在(0,a -1)上只有一个零点.下面考虑f (x )在(a -1,+∞)上的情况.先证f (e a -1)=a (a -2-e a -1)<0.为此,我们要证明:当x >e 时,e x >x 2.设h (x )=e x -x 2,则h ′(x )=e x -2x ,再设l (x )=h ′(x )=e x -2x ,则l ′(x )=e x -2.当x >1时,l ′(x )=e x -2>e -2>0,所以l (x )=h ′(x )在(1,+∞)上是单调增函数.故当x >2时,h ′(x )=e x -2x >h ′(2)=e 2-4>0,从而h (x )在(2,+∞)上是单调增函数,进而当x >e 时, h (x )=e x -x 2>h (e)=e e -e 2>0.即当x >e 时,e x >x 2.当0<a <e -1,即a -1>e 时,f (e a -1)=a -1-a e a -1=a (a -2-e a -1)<0,又f (a -1)>0,且函数f (x )在[a -1,e a -1]上的图象不间断,所以f (x )在(a -1,e a -1)上存在零点.又当x >a -1时,f ′(x )=1x-a <0,故f (x )在(a -1,+∞)上是单调减函数,所以f (x )在(a -1,+∞)上只有一个零点.综合①,②,③,当a ≤0或a =e -1时,f (x )的零点个数为1, 当 0<a <e -1时,f (x )的零点个数为2.20. 设数列{}na 的前n 项和为nS .若对任意的正整数n ,总存在正整数m ,使得n mS a =,则称{}na 是“H 数列”.(1)若数列{}na 的前n 项和2()nn S n *=∈N ,证明:{}na 是“H 数列”;(2)设{}na 是等差数列,其首项11a=,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}na ,总存在两个“H 数列”{}nb 和{}nc ,使得()nn n ab c n *=+∈N 成立.【解析】本题主要考查数列的概念、等差数列等基础知识,考查探究能力与推理论证能力.本题属难题. 【参考答案】 (1)当2n ≥时,111222n n n nn n a S S ---=-=-=当1n =时,112a S ==∴1n =时,11Sa =,当2n ≥时,1n n S a +=∴{}na 是“H 数列” (2)1(1)(1)22nn n n n Sna d n d --=+=+ 对n *∀∈N ,m *∃∈N 使nm S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d =+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}na 的公差为d令111(1)(2)nba n a n a =--=-,对n *∀∈N ,11n nb b a +-=-1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)nn n bc a nd a +=+-=,且{}{}n n b c ,为等差数列{}n b 的前n 项和11(1)()2nn n Tna a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N因此对n ∀,都可找到m *∈N ,使nm Tb =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N 即对n *∀∈N ,都可找到m *∈N ,使得nm Rc =成立,即{}n c 为“H 数列”因此命题得证.B .附加题部分 1.选修24-矩阵与变换 已知矩阵1002A -⎡⎤=⎢⎥⎣⎦,1206B ⎡⎤=⎢⎥⎣⎦,求1A B -. 【解析】本题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.本题属容易题. 【参考答案】 设A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦,则10100201a b c d -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即102201a b c d --⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,故1a =-,0b =,0c =,12d =,从而A 的逆矩阵为110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,所以,11012121060302A B --⎡⎤--⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 2.选修44-坐标系与参数方程 在极坐标中,已知圆C 经过点()4P π,,圆心为直线sin 3ρθπ⎛⎫-= ⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.【解析】本题主要考查直线和圆的极坐标方程等基础知识,考查转化问题的能力。
2019年普通高等学校招生全国统一考试理科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题, 第二部分为非选择题.2. 考生领到试卷后, 须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3. 所有解答必须填写在答题卡上指定区域内. 考试结束后, 将本试卷和答题卡一并交回.第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R ,函数()f x =M , 则C M R 为(A) [-1,1](B) (-1,1)(C) ,1][1,)(∞-⋃+∞-(D) ,1)(1,)(∞-⋃+∞-2. 根据下列算法语句, 当输入x 为60时, 输出y 的值为 (A) 25 (B) 30 (C) 31 (D) 613. 设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的 (A) 充分不必要条件 (B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件4. 某单位有840名职工, 现采用系统抽样方法, 抽取42人做问卷调查, 将840人按1, 2, …, 840随机编号, 则抽取的42人中, 编号落入区间[481, 720]的人数为 (A) 11 (B) 12 (C) 13(D) 145. 如图, 在矩形区域ABCD 的A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源, 基站工作正常). 若在该矩形区域内随机地选一地点, 则该地点无.信号的概率是(A)14π-(B)12π-(C) 22π-(D) 4π6. 设z 1, z 2是复数, 则下列命题中的假命题是 (A) 若12||0z z -=, 则12z z = (B) 若12z z =, 则12z z =(C) 若12||z z =, 则2112··z z z z = (D) 若12||z z =, 则2122z z =7. 设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为(A) 锐角三角形(B) 直角三角形(C) 钝角三角形(D) 不确定8.设函数41,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ , 则当x >0时, [()]f f x 表达式的展开式中常数项为 (A) -20(B) 20 (C) -15(D) 159. 在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是(A) [15,20] (B) [12,25](C) [10,30](D) [20,30]10. 设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有(A) [-x ] = -[x ] (B) [2x ] = 2[x ] (C) [x +y ]≤[x ]+[y ] (D) [x -y ]≤[x ]-[y]二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11. 双曲线22116x y m -=的离心率为54, 则m 等于 .12. 某几何体的三视图如图所示, 则其体积为.13. 若点(x, y)位于曲线|1|=-与y=2所围成的封闭区域, 则2x-y的最小值为.y x14. 观察下列等式:2=1122-=-123222-=+31262222+-=-310-124…照此规律, 第n个等式可为.15. (考生请注意:请在下列三题中任选一题作答, 如果多做, 则按所做的第一题计分)A. (不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为 .B. (几何证明选做题) 如图, 弦AB 与CD 相交于O 内一点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知PD =2DA =2, 则PE = .C. (坐标系与参数方程选做题) 如图, 以过原点的直线的倾斜角θ为参数, 则圆220y x x +-=的参数方程为.x三、解答题: 解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分) 16. (本小题满分12分)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b .(Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.17. (本小题满分12分) 设{}n a 是公比为q 的等比数列. (Ⅰ) 推导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}n a +不是等比数列.18. (本小题满分12分)如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中心, A 1O ⊥平面ABCD, 1AB AA ==1A(Ⅰ) 证明: A 1C ⊥平面BB 1D 1D ;(Ⅱ)求平面OCB 1与平面BB 1D 1D 的夹角θ的大小.19. (本小题满分12分)在一场娱乐晚会上, 有5位民间歌手(1至5号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选3名选手, 其中观众甲是1号歌手的歌迷, 他必选1号, 不选2号, 另在3至5号中随机选2名. 观众乙和丙对5位歌手的演唱没有偏爱, 因此在1至5号中随机选3名歌手.(Ⅰ) 求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(Ⅱ) X表示3号歌手得到观众甲、乙、丙的票数之和, 求X的分布列和数学期望.20. (本小题满分13分)已知动圆过定点A(4,0), 且在y轴上截得的弦MN的长为8.(Ⅰ) 求动圆圆心的轨迹C的方程;(Ⅱ) 已知点B(-1,0), 设不垂直于x轴的直线l与轨迹C交于不同的两点P, Q, 若x轴是PBQ的角平分线, 证明直线l过定点.21. (本小题满分14分) 已知函数()e ,x f x x =∈R . (Ⅰ) 若直线y =kx +1与f (x)的反函数的图像相切, 求实数k 的值; (Ⅱ) 设x >0, 讨论曲线y =f (x) 与曲线2(0)y mx m => 公共点的个数. (Ⅲ) 设a <b , 比较()()2f a f b +与()()f b f a b a--的大小, 并说明理由.。
高考数学全国统一考试大纲高考数学全国统一考试大纲Ⅰ。
考试性质全国统一考试是选拔性考试,由合格的高中毕业生和具有同等学力的考生参加,高等学校依照考生的成绩,按照招生计划进行综合评估,以德、智、体、全面衡量,择优录取。
因此,考试应具有较高的信度、效度、必要的区分度和适当的难度。
Ⅱ。
考试能力要求1.平面向量考试内容包括向量、向量的加法与减法、实数与向量的积、平面向量的坐标表示、线段的定比分点、平面向量的数量积、平面两点间的距离和平移。
考生需要:1) 理解向量的概念,掌握向量的几何表示,了解共线向量的概念。
2) 掌握向量的加法和减法。
3) 掌握实数与向量的积,了解两个向量共线的充要条件。
4) 了解平面向量的差不多定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。
5) 掌握平面向量的数量积及其几何意义,了解用平面向量的数量积能够处理有关长度、角度和垂直的问题,掌握向量垂直的条件。
6) 掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,同时能够熟练运用平移公式。
2.集合、简易逻辑考试内容包括集合、子集、补集、交集、并集、逻辑联结词、四种命题、充分条件和必要条件。
考生需要:1) 理解集合、子集、补集、交集、并集的概念。
了解空集和全集的意义。
了解属于、包含、相等关系的意义。
掌握有关的术语和符号,并能正确表示一些简单的集合。
2) 理解逻辑联结词“或”、“且”、“非”的含义。
理解四种命题及其相互关系。
掌握充分条件、必要条件及充要条件的意义。
3.函数考试内容包括映射、函数、函数的单调性、奇偶性、反函数、互为反函数的函数图像间的关系、指数概念的扩充、有理指数幂的运算性质、指数函数、对数、对数的运算性质、对数函数和函数的应用。
考生需要:1) 了解映射的概念,理解函数的概念。
2) 了解函数单调性、奇偶性的概念,掌握判定一些简单函数的单调性、奇偶性的方法。
3) 了解反函数的概念及互为反函数的函数图像间的关系,能够求一些简单函数的反函数。
安徽省高考考纲指的是《安徽2019年高考大纲》,它是教育部考试中心和各分省命题省市在命题中都应当严格遵循的,是制定《考试说明》的原则依据。
各分省命题省市在《考试大纲》的基础上,可以结合本省市高考方案和教学实际制订《考试说明》。
语文、数学、外语满分均为150分,以原始分计入总分。
各科成绩当次有效。
文史类考生考语文、数学(文)、外语、文科(综合)4科,理工类考生考语文、数学(理)、外语、理科(综合)4科。
自2021年秋季高中新生入学起,全面实施普通高中学业水平考试,分为合格性考试和选择性考试(也称“等级性考试”,以下统称为“选择性考试”)。
如需了解更多关于安徽省高考考纲的信息,建议前往安徽省教育厅或教育考试院官网查询。
2019年高考江苏卷数学高考试题及答案解析(word打印版)2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项:1.本试卷共4页,共20题,均为非选择题。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.请在答题前认真阅读本注意事项及各题答题要求,并将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5.如需作图,请用2B铅笔绘、写清楚,线条、符号等请加黑、加粗。
参考公式:1.样本数据x1,x2,…,xn的方差s=∑(xi-x)²,其中x=∑xi/n。
2.柱体的体积V=Sh,其中S是柱体的底面积,h是柱体的高。
3.锥体的体积V=1/3Sh,其中S是锥体的底面积,h是锥体的高。
一、填空题:本大题共14小题,每小题5分,共计70分。
请将答案填写在答题卡相应位置上。
1.已知集合A={-1,0,1,6},B={x|x>0,x∈R},则AB= {1,6}。
2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是-2.3.下图是一个算法流程图,则输出的S的值是10.4.函数y=7+6x-x²的定义域是(-∞。
+∞)。
5.已知一组数据6,7,8,8,9,10,则该组数据的方差是2.5.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是0.6.7.在平面直角坐标系xOy中,若双曲线x²/4-y²/9=1(b>0)经过点(3,4),则该双曲线的渐近线方程是y=3x/2-5/2.8.已知数列{an}(n∈N)是等差数列,Sn是其前n项和。
若a2+a5+a8=0,S9=27,则S8的值是12.9.如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是80.10.在平面直角坐标系xOy中,P是曲线y=x+1/x的图像上的点,且x>0,则P的最小值是2.11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是多少?解析:设点A的横坐标为a,则其纵坐标为lna。
2019年普通高等学校招生全国统一考试(Ⅰ卷)文科数学试题一、选择题:1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是51-(51-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[-π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生7.tan255°= A .-23B .-3C .23D .38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A + C .A =112A + D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:13.曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________. 14.记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 15.函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 16.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 3,那么P 到平面ABC 的距离为___________.三、解答题:17.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客40 10女顾客30 20(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.82818.(12分)记S n为等差数列{a n}的前n项和,已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.19.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.。
四川高考文科数学考试大纲一、考试时间与方式
本次考试时间为120分钟,采用闭卷形式。
二、考试内容与重点难点
1.函数与方程
(1)函数的初步概念与性质;
(2)一元二次函数的图像、性质及基本应用;(3)一元二次方程的基本概念、解法及其应用。
2.数列与数学归纳法
(1)数列的初步概念、通项公式及其应用;
(2)等差数列与等比数列的性质及其应用;
(3)数学归纳法的理解及应用。
3.三角函数
(1)角度的概念及其表示方法;
(2)三角函数的基本概念、定义及其图像;
(3)三角函数的性质及其应用。
4.导数与微分
(1)导数的概念、基本性质及其计算方法;
(2)微分的概念及其应用;
(3)函数的单调性、最值及其应用。
三、考试要求
1.掌握函数与方程、数列与数学归纳法、三角函数、导数与微
分等基本概念、性质及其应用。
2.熟练掌握一元二次函数、一元二次方程、等差数列、等比数列、三角函数的图像及其基本性质。
3.熟练掌握导数的定义、求导法则、微分的定义及其应用。
4.掌握函数的单调性、最值等基本性质及其应用。
5.掌握数学归纳法的理解及其应用。
6.具备良好的解题能力,能够根据所给条件,选取合适的方法,解决实际问题。
7.注意题目中的单位,答案应给出正确的单位,保证计算准确。
高考数学(文科)考试大纲以下是高考数学(文科)考试大纲:一、考试内容本科目考试内容分为数与式、函数与方程、三角函数与解三角形、解析几何、数列与数学归纳法、概率与统计和数学思想方法等七个部分。
二、考试形式本科目考试采取笔试形式。
三、考试时间考试时间为 120 分钟。
四、知识点1.数与式1.1 数的基本概念1.2 数的运算与性质1.3 数的应用1.4 算式的基本概念1.5 算式的运算1.6 算式的应用2.函数与方程2.1 函数的基本概念2.2 常用函数的性质2.3 函数的图像与性质2.4 函数的应用2.5 方程的基本概念2.6 一元一次方程及应用2.7 一元二次方程及应用2.8 二元一次方程组及图像2.9 其他代数方程及应用3.三角函数与解三角形3.1 角的基本概念3.2 三角函数的定义与性质3.3 三角函数的图像与性质3.4 解三角形4.解析几何4.1 解析几何基本概念4.2 二维坐标系与图形4.3 三维坐标系与图形4.4 平面解析几何4.5 空间解析几何5.数列与数学归纳法5.1 数列的基本概念5.2 数列的通项公式和递推公式5.3 数列的分类5.4 数学归纳法6.概率与统计6.1 概率的基本概念6.2 概率的计算方法6.3 统计的基本概念6.4 统计的数据处理方法7.数学思想方法7.1 数学证明的基本方法7.2 数学建模的基本方法7.3 数学探究的基本方法7.4 数学推理的基本方法以上是高考数学(文科)考试大纲的全文。
新课标高考数学考纲一)命题指导思想1.命题应依据教育部《普通高中数学课程标准(实验)》和《2007年普通高等学校招生全国统一考试新课程标准数学科考试大纲》(待发),并结合我省普通高中数学教学实际,体现数学学科的性质和特点。
2.命题注重考查考生的数学基础知识、基本技能和数学思想、数学方法、数学能力,体现知识与能力、过程与方法、情感态度与价值观等目标要求。
3.命题既要实现平稳过渡,又要体现新课程理念。
4.注重试题的创新性、多样性和选择性,具有一定的探究性和开放性。
5.命题要坚持公正、公平原则。
试题要切合我省中学数学教学实际,数学问题的难度、问题的情景等要符合考生的实际水平。
应用题要“贴近生活,背景公平,控制难度”。
6.命题要注意必修内容和选修内容的有机联系与适当差异,注重数学学科知识的内在联系。
7.试卷要有较高的信度、效度和必要的区分度以及适当的难度,难度系数控制在0.55—0.65之内。
(二)知识和能力要求1.知识要求对知识的要求由低到高分为三个层次,依次是感知和了解、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。
(1)感知和了解:要求对所学知识的含义有初步的了解和感性的认识,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。
(2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻画或解释、举例说明、简单变形、推导或证明、抽象归纳,并能利用相关知识解决有关问题。
(3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识分析和解决较为复杂的或综合性的数学现象与数学问题。
2.能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力以及实践能力和创新意识。
(1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件,寻找与设计合理、简捷的运算途径。
(2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确的判断;能根据要求对数据进行估计和近似计算。
上海数学高考大纲的主要内容
上海数学高考大纲主要依据《数学新课标2020修订版》,考试内容和范围包括必修和选择性必修的内容,具体如下:
1. 考试内容:分为课标有、课标无、教材标※号、课标无、教材有但不标※号几类,其中课标有的内容需要考试,课标无的内容不会考试,而教材标※号的内容是不要求掌握的,但是分析问题和解决问题时可以使用。
2. 考试范围:必修内容是合格考的范围,而选择性必修的内容是春考和秋考的范围。
具体来说,春考的考试范围包括必修和选择性必修的前6章(第7章、第8章不考),而秋考的考试范围是必修和选择性必修的全部内容。
3. 试卷结构:试卷的题量与题型都保持不变,包括21题。
其中选择题的每题分值依次为4分、4分、5分、5分,总分减少2分;解答题的每题分值不固定,会根据内容设立小题数及分值。
高考数学考试大纲
高考数学考试大纲要求学生掌握以下内容:
1. 函数与方程
a. 一次函数与二次函数的性质和图像表示
b. 一元二次方程的解法及应用
c. 一次不等式与二次不等式的解法及应用
2. 平面向量与立体几何
a. 平面向量的基本性质和运算法则
b. 直线和平面的方程及其相互位置关系
c. 空间中点、距离和角的计算方法
3. 三角函数与解三角形
a. 任意角的概念和弧度制
b. 三角函数的基本性质和图像表示
c. 解直角三角形和一般三角形的方法
4. 数列与数列问题
a. 等差数列和等差数列的性质和公式
b. 等比数列和等比数列的性质和公式
c. 求和公式和数列问题的解法
5. 概率与统计
a. 事件的概率和基本概率公式
b. 随机变量、概率分布和期望值
c. 统计指标、样本调查与推断
6. 导数与微分
a. 函数的极限和连续性的概念
b. 导数的定义和计算法则
c. 求函数极值和函数图像的性质
7. 积分与积分应用
a. 不定积分和定积分的定义和计算法则
b. 定积分的几何与物理意义
c. 利用积分计算平均值和面积
备注:以上各大纲部分可能根据具体学校或地区的差异而有所调整,具体以当地相关政策和指导意见为准。
2019年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。
考试结束,务必将试卷和答题卡一并上交。
第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准该条形码上的准考证号、姓名和科目。
2.没小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
在.试.题.卷.上.作.答.无.效.。
3.第I卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)复数13i1i(A)2i(B)2i(C)12i(D)12i(2)已知集合A{1,3,m},B{1,m},A B A,则m(A)0或3(B)0或3(C)1或3(D)1或 3(3)椭圆的中心在原点,焦距为4,一条准线为x4,则该椭圆的方程为(A)22x y16121(B)22x y1281(C)22x y841(D)22x y1241(4)已知正四棱柱A BCD A BC D中,AB2,1111CC122,E为CC1的中点,则直线A C与平面BED的距离为1(A)2(B)3(C)2(D) 1(5)已知等差数列{a}的前n项和为S n,a55,S515,则数列n1{}a an n1的前100项和为(A)100101(B)99101(C)99100(D)101100(6)ABC中,AB边的高为CD,若C B a,CA b,a b0,|a|1,|b|2,则AD(A)11a b(B)3322a b(C)3333a b(D)5544a b55(7)已知为第二象限角,sin cos33,则cos2(A)53(B)59(C)59(D)53(8)已知F、F2为双曲线122C:x y2的左、右焦点,点P在C上,|PF1|2|PF2 |,则cos F1PF2(A)14(B)35(C)34(D)451(9)已知x ln,y log2,52z e,则(A)x y z(B)z x y(C)z y x(D)y z x (10)已知函数33y x x c的图像与x恰有两个公共点,则c(A)2或2(B)9或3(C)1或1(D)3或 1(11)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A)12种(B)18种(C)24种(D)36种(12)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,3AE BF。
总纲普通高等学校招生全国统一考试(以下简称“高考”)是合格的高中毕业生和具有同等学力的考生参加的选拔性考试。
高等学校根据考生成绩,按照招生章程和计划,德智体美劳全面衡量,择优录取。
高考应具有较高的信度、效度,必要的区分度和适当的难度。
《普通高等学校招生全国统一考试大纲》(以下简称《考试大纲》)是高考命题的规范性文件和标准,是考试评价、复习备考的依据。
《考试大纲》明确了高考的性质和功能,规定了考试内容与形式,对实施高考内容改革、规范高考命题具有重要意义。
《考试大纲》依据普通高等学校对新生思想道德素质、科学文化素质的要求及《普通高中课程标准》制定。
《国务院关于深化考试招生制度改革的实施意见》明确提出深化高考考试内容改革,依据高校人才选拔要求和国家课程标准,科学设计命题内容,增强基础性、综合性,着重考查学生独立思考和运用所学知识分析问题、解决问题的能力。
高考考试内容改革全面贯彻党的教育方针,落实构建德智体美劳全面培养教育体系的要求,以立德树人为鲜明导向,以促进素质教育发展为基本遵循,科学构建基于德智体美劳全面发展要求的高考评价体系。
高考评价体系由“一核四层四翼”组成,包括考查目的、考查内容和考查要求。
“一核”为考查目的,即“立德树人、服务选才、引导教学”,是对素质教育中高考核心功能的概括,回答“为什么考”的问题;“四层”为考查内容,即“必备知识、关键能力、学科素养、核心价值”,是素质教育目标在高考中的提炼,回答高考“考什么”的问题;“四翼”为考查要求,即“基础性、综合性、应用性、创新性”,是素质教育评价维度在高考中的体现,回答高考“怎么考”的问题。
《考试大纲》是高考评价体系的具体实现,体现高考考试内容改革的方向和阶段性成果。
《考试大纲》是制定《考试说明》的依据。
各分省命题省份在《考试大纲》的基础上,可以结合本地高考方案和教学实际制订适用的《考试说明》。
《考试大纲》的解释权归教育部考试中心。
语文Ⅰ. 考核目标与要求根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中语文课程标准(实验)》,确定高考语文科考核目标与要求。
理科数学Ⅰ.考核目标与要求根据普通高等学校对新生思想道德素质和科学文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容.一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.3.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容、体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求,促进学生德智体美劳全面发展.Ⅱ.考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列2的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”、“不等式选讲”等2个专题.必考内容(一)集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图像理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.(3)知道对数函数是一类重要的函数模型.(4)了解指数函数x y a =与对数函数log a y x =互为反函数(0a >,且1a ≠).4.幂函数(1)了解幂函数的概念.(2)结合函数y x =,2y x =,3y x =,1y x=,12y x =的图像,了解它们的变化情况. 5.函数与方程 (1)结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)根据具体函数的图像,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三) 立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. • 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. • 公理2:过不在同一条直线上的三点,有且只有一个平面.• 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.• 公理4:平行于同一条直线的两条直线互相平行.• 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.• 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.• 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.• 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.• 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.• 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.• 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.• 垂直于同一个平面的两条直线平行.• 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六) 统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七) 概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八) 基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2. 三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出π2α±,πα±的正弦、余弦、正切的诱导公式,能画出sin y x =,cos y x =,tan y x =的图像,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间ππ,22⎛⎫- ⎪⎝⎭内的单调性. (4)理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tan cos x x x=.(5)了解函数sin()y A x ωϕ=+的物理意义;能画出sin()y A x ωϕ=+的图像,了解参数A ,ω,ϕ对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九) 平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十) 三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一) 解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二) 数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三) 不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:2a b (0,0)a b ≥≥ (1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四) 常用逻辑用语1.命题及其关系(1)理解命题的概念.(2)了解“若p ,则q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.(十五) 圆锥曲线与方程1.圆锥曲线(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质.(3)了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.(4)了解圆锥曲线的简单应用.(5)理解数形结合的思想.2.曲线与方程了解方程的曲线与曲线的方程的对应关系.(十六) 空间向量与立体几何1.空间向量及其运算(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.(2)掌握空间向量的线性运算及其坐标表示.(3)掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直.2.空间向量的应用(1)理解直线的方向向量与平面的法向量.(2)能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.(3)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.(十七) 导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数y C =(C 为常数), y x =,2y x =,3y x =,1y x=,y . (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如()f ax b +的复合函数)的导数.• 常见基本初等函数的导数公式:()0C '= (C 为常数);1()n n x nx -'=,n +∈N ;(sin )cos x x '=;(cos )sin x x '=-;(e )e x x '=;()ln x x a a a '= (0a >,且1a ≠);1(ln )x x '=;1(log )log e a a x x'= (0a >,且1a ≠). • 常用的导数运算法则:法则1: [()()]()()u x v x u x v x '''±=±.法则2: [()()]()()()()u x v x u x v x u x v x '''=+. 法则3: 2()()()()()()()u x u x v x u x v x v x v x '''⎡⎤-=⎢⎥⎣⎦(()0v x ≠). 3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.5.定积分与微积分基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.。