最新-2018年中考必备2018年中考数学汇编-1-有理数 精品
- 格式:doc
- 大小:1.36 MB
- 文档页数:27
2018中考数学试题分类汇编:考点1 有理数一.选择题(共28 小题)1.(2018•连云港)﹣8的相反数是()A.﹣8 B.C.8 D.﹣【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:﹣8的相反数是8,故选:C.2.(2018•泰州)﹣(﹣2)等于()A.﹣2 B. 2C.D.±2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣2)=2,故选:B.3.(2018•青岛)如图,点A所表示的数的绝对值是()A.3 B.﹣3C.D.【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.4.(2018•海南)2018的相反数是()A.﹣2018 B.2018C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.5.(2018•自贡)计算﹣3+1的结果是()A.﹣2 B.﹣4C. 4 D. 2【分析】利用异号两数相加取绝对值较大的加数的符号,然后用较大的绝对值减去较小的绝对值即可.【解答】解:﹣3+1=﹣2;故选:A.6.(2018•柳州)计算:0+(﹣2)=()A.﹣2 B.2C.0 D.﹣20【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:0+(﹣2)=﹣2.故选:A.7.(2018•呼和浩特)﹣3﹣(﹣2)的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用有理数的减法运算法则计算得出答案.【解答】解:﹣3﹣(﹣2)=﹣3+2=﹣1.故选:A.8.(2018•铜仁市)计算+++++……+的值为()A.B.C.D.【分析】直接利用分数的性质将原式变形进而得出答案.【解答】解:原式=++++…+=1﹣+﹣+﹣+…+﹣=1﹣=.故选:B.9.(2018•台湾)已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=c B.a=c,b≠c C.a≠c,b=c D.a≠c,b≠c【分析】根据有理数的减法的运算方法,判断出a、c,b、c的关系即可.【解答】解:∵a=(﹣)﹣=﹣﹣,b=﹣(﹣)=﹣+,c=﹣﹣,∴a=c,b≠c.故选:B.10.(2018•台州)比﹣1小2的数是()A.3 B.1 C.﹣2 D.﹣3【分析】根据题意可得算式,再计算即可.【解答】解:﹣1﹣2=﹣3,故选:D.11.(2018•新疆)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高()A.10℃B.6℃C.﹣6℃D.﹣10℃【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8)=2+8=10(℃).故选:A.12.(2018•临安区)我市2018年的最高气温为39℃,最低气温为零下7℃,则计算2018年温差列式正确的()A.(+39)﹣(﹣7)B.(+39)+(+7) C.(+39)+(﹣7)D.(+39)﹣(+7)【分析】根据题意列出算式即可.【解答】解:根据题意得:(+39)﹣(﹣7),故选:A.13.(2018•淄博)计算的结果是()A.0 B.1 C.﹣1 D.【分析】先计算绝对值,再计算减法即可得.【解答】解: =﹣=0,故选:A.14.(2018•天门)8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.15.(2018•宿迁)2的倒数是()A.2 B.C.﹣D.﹣2【分析】根据乘积是1的两数互为倒数可得答案.【解答】解:2的倒数是,故选:B.16.(2018•贵港)﹣8的倒数是()A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.17.(2018•通辽)的倒数是()A.2018 B.﹣2018 C.﹣ D.【分析】根据倒数的定义,互为倒数的两数乘积为1,×2018=1即可解答.【解答】解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.18.(2018•宜宾)我国首艘国产航母于2018年4月26日正式下水,排水量约为65000吨,将65000用科学记数法表示为()A.6.5×10﹣4 B.6.5×104C.﹣6.5×104D.65×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:65000=6.5×104,故选:B.19.(2018•贵港)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106 B.2.18×105 C.21.8×106 D.21.8×105【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据2180000用科学记数法表示为2.18×106.故选:A.20.(2018•天津)计算(﹣3)2的结果等于()A.5 B.﹣5 C.9 D.﹣9【分析】根据有理数的乘方法则求出即可.【解答】解:(﹣3)2=9,故选:C.21.(2018•宜昌)计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.24【分析】根据有理数的乘方、乘法和加法可以解答本题.【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.22.(2018•台湾)如图为大兴电器行的促销活动传单,已知促销第一天美食牌微波炉卖出10台,且其销售额为61000元,若活动期间此款微波炉总共卖出50台,则其总销售额为多少元?()A.305000 B.321000 C.329000 D.342000【分析】根据题意求出此款微波炉的单价,列式计算即可.【解答】解:此款微波炉的单价为(61000+10×800)÷10=6900,则卖出50台的总销售额为:61000×2+6900×30=329000,故选:C.23.(2018•烟台)2018年政府工作报告指出,过去五年来,我国经济实力跃上新台阶.国内生产总值从54万亿元增加到82.7万亿元,稳居世界第二,82.7万亿用科学记数法表示为()A.0.827×1014B.82.7×1012C.8.27×1013D.8.27×1014【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:82.7万亿=8.27×1013,故选:C.24.(2018•绵阳)四川省公布了2017年经济数据GDP排行榜,绵阳市排名全省第二,GDP 总量为2075亿元,将2075亿用科学记数法表示为()A.0.2075×1012B.2.075×1011C.20.75×1010D.2.075×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2075亿用科学记数法表示为:2.075×1011.故选:B.25.(2018•德州)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km,用科学记数法表示1.496亿是()A.1.496×107B.14.96×108C.0.1496×108D.1.496×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据1.496亿用科学记数法表示为1.496×108,故选:D.26.(2017•宜昌)5月18 日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()A.27354 B.40000 C.50000 D.1200【分析】利用精确数和近似数的区别进行判断.【解答】解:27354为准确数,4000、50000、1200都是近似数.故选:A.27.(2017•通辽)近似数5.0×102精确到()A.十分位B.个位C.十位D.百位【分析】根据近似数的精确度求解.【解答】解:近似数5.0×102精确到十位.故选:C.28.(2018•河南)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.二.填空题(共16小题)29.(2018•达州)受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为 5.5×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5.5亿=5 5000 0000=5.5×108,故答案为:5.5×108.30.(2018•东营)东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377个,计划总投资4147亿元.4147亿元用科学记数法表示为 4.147×1011元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4147亿元用科学记数法表示为4.147×1011,故答案为:4.147×101131.(2018•泰州)亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为 4.4×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:44000000=4.4×107,故答案为:4.4×107.32.(2018•湘西州)﹣2018的绝对值是2018 .【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故答案为:201833.(2018•张家界)目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为 1.6×10﹣8米.【分析】由1纳米=10﹣9米,可得出16纳米=1.6×10﹣8米,此题得解.【解答】解:∵1纳米=10﹣9米,∴16纳米=1.6×10﹣8米.故答案为:1.6×10﹣8.34.(2018•南充)某地某天的最高气温是6℃,最低气温是﹣4℃,则该地当天的温差为10 ℃.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:6﹣(﹣4),=6+4,=10℃.故答案为:1035.(2018•香坊区)将数字37000000用科学记数法表示为 3.7×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:37000000=3.7×107.故答案为:3.7×107;36.(2018•玉林)计算:6﹣(3﹣5)= 8 .【分析】直接利用去括号法则进而计算得出答案.【解答】解:6﹣(3﹣5)=6﹣(﹣2)=8.故答案为:8.37.(2018•无锡)﹣2的相反数的值等于 2 .【分析】根据相反数的定义作答.【解答】解:﹣2的相反数的值等于 2.故答案是:2.38.(2018•云南)某地举办主题为“不忘初心,牢记使命”的报告会,参加会议的人员3451人,将3451用科学记数法表示为 3.451×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3451=3.451×103,故答案为:3.451×103.39.(2018•哈尔滨)将数920000000科学记数法表示为9.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:920000000用科学记数法表示为9.2×108,故答案为;9.2×10840.(2018•德州)计算:|﹣2+3|= 1 .【分析】根据有理数的加法解答即可.【解答】解:|﹣2+3|=1,故答案为:141.(2018•邵阳)点A在数轴上的位置如图所示,则点A表示的数的相反数是﹣2 .【分析】点A在数轴上表示的数是2,根据相反数的含义和求法,判断出点A表示的数的相反数是多少即可.【解答】解:∵点A在数轴上表示的数是2,∴点A表示的数的相反数是﹣2.故答案为:﹣2.42.(2018•南京)写出一个数,使这个数的绝对值等于它的相反数:﹣1 .【分析】根据绝对值的意义求解.【解答】解:一个数的绝对值等于它的相反数,那么这个数0或负数.故答案为:﹣143.(2018•云南)﹣1的绝对值是 1 .【分析】第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:∵|﹣1|=1,∴﹣1的绝对值是1.44.(2018•宁波)计算:|﹣2018|= 2018 .【分析】直接利用绝对值的性质得出答案.【解答】解:|﹣2018|=2018.故答案为:2018.三.解答题(共2小题)45.(2018•湖州)计算:(﹣6)2×(﹣).【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.46.(2018•高邑县一模)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30 .(2)经过几秒,点M、点N分别到原点O的距离相等?【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.46.(2018•高邑县一模)如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30 .(2)经过几秒,点M、点N分别到原点O的距离相等?【分析】(1)根据OB=3OA,结合点B的位置即可得出点B对应的数;(2)设经过x秒,点M、点N分别到原点O的距离相等,找出点M、N对应的数,再分点M、点N在点O两侧和点M、点N重合两种情况考虑,根据M、N的关系列出关于x的一元一次方程,解之即可得出结论.【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.。
2018年中考数学知识点大全第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1,零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
2018中考数学试题分类汇编:考点2无理数与实数一.选择题(共24小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(2018•南通模拟)的值是()A.4 B.2 C.±2 D.﹣2 【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.3.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±2【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.4.(2018•黔南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=5【分析】根据算术平方根的定义逐一计算即可得.【解答】解:A、==2,此选项正确;B、==3,此选项错误;1 / 11C、=42=16,此选项错误;D、=25,此选项错误;故选:A.5.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣3【分析】直接利用立方根的定义化简得出答案.【解答】解:=﹣1.故选:B.6.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.7.(2018•衡阳)下列各式中正确的是()A.=±3 ;B.=﹣3;C.=3 D.﹣=【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.8.(2018•广州)四个数0,1,,中,无理数的是()A.B.1 C.D.0【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:0,1,是有理数,是无理数,故选:A.9.(2018•玉林)下列实数中,是无理数的是()A.1 B.C.﹣3 D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:1,﹣3,是有理数,是无理数,故选:B.10.(2018•聊城)下列实数中的无理数是()A.B.C.D.【分析】分别根据无理数、有理数的定义即可判定选择项【解答】解:,,是有理数,是无理数,故选:C.11.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1 【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.12.(2018•黄石)下列各数是无理数的是()A.1 B.﹣0.6 C.﹣6 D.π【分析】依据无理数的三种常见类型进行判断即可.3 / 11【解答】解:A、1是整数,为有理数;B、﹣0.6是有限小数,即分数,属于有理数;C、﹣6是整数,属于有理数;D、π是无理数;故选:D.13.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.14.(2018•荆门)8的相反数的立方根是()A.2 B.C.﹣2 D.【分析】根据相反数的定义、立方根的概念计算即可.【解答】解:8的相反数是﹣8,﹣8的立方根是﹣2,则8的相反数的立方根是﹣2,故选:C.15.(2018•眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个【分析】直接利用绝对值的性质得出答案.【解答】解:绝对值为1的实数共有:1,﹣1共2个.故选:C.16.(2018•天门)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.17.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.18.(2018•常德)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b| C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,5 / 11﹣a>b,故选项D正确,故选:D.19.(2018•福建)在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.20.(2018•苏州)在下列四个实数中,最大的数是()A.﹣3B.0 C.D.【分析】将各数按照从小到大顺序排列,找出最大的数即可.【解答】解:根据题意得:﹣3<0<<,则最大的数是:.故选:C.21.(2018•淄博)与最接近的整数是()A.5 B.6 C.7 D.8【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近的是6.故选:B.22.(2018•南京)下列无理数中,与4最接近的是()A.B.C.D.【分析】直接利用估算无理数的大小方法得出最接近4的无理数.【解答】解:∵=4,∴与4最接近的是:.故选:C.23.(2018•台州)估计+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用2<<3,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,故选:B.24.(2018•重庆)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】首先利用二次根式的乘法化简,进而得出答案.【解答】解:(2﹣)•=2﹣2=﹣2,∵4<<5,∴2<﹣2<3,故选:B.二.填空题(共10小题)25.(2018•广东)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.26.(2017•恩施州)16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,7 / 11∴16的平方根是±4.故答案为:±4.27.(2018•资阳)已知a、b满足(a﹣1)2+=0,则a+b=﹣1.【分析】直接利用非负数的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣1)2+=0,∴a=1,b=﹣2,∴a+b=﹣1.故答案为:﹣1.28.(2018•上海)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.29.(2017•西藏)下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的有②③(填序号).【分析】根据无理数的定义即可判断;【解答】解:下列实数中:①,②,③,④0,⑤﹣1.010010001.其中是无理数的为:②③,故答案为②③30.(2018•襄阳)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.31.(2018•昆明)在实数﹣3,0,1中,最大的数是1.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数进行分析即可.【解答】解:在实数﹣3,0,1中,最大的数是1,故答案为:1.32.(2018•陕西)比较大小:3<(填“>”、“<”或“=”).【分析】首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.【解答】解:32=9,=10,∴3<.33.(2018•咸宁)写出一个比2大比3小的无理数(用含根号的式子表示).【分析】先利用4<5<9,再根据算术平方根的定义有2<<3,这样就可得到满足条件的无理数.【解答】解:∵4<5<9,∴2<<3,即为比2大比3小的无理数.故答案为.34.(2018•烟台)(π﹣3.14)0+tan60°=1+.【分析】直接利用零指数幂的性质和特殊角的三角函数值分别化简得出答案.【解答】解:原式=1+.故答案为:1+.三.解答题(共8小题)35.(2018•怀化)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.36.(2018•台州)计算:|﹣2|+(﹣1)×(﹣3)【分析】首先计算绝对值、二次根式化简、乘法,然后再计算加减即可.【解答】解:原式=2﹣2+3=3.9 / 1137.(2018•曲靖)计算﹣(﹣2)+(π﹣3.14)0++(﹣)﹣1【分析】直接利用立方根的性质以及零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=2+1+3﹣3=3.38.(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.39.(2018•遵义)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.40.(2018•娄底)计算:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°.【分析】根据零指数幂、负整数指数幂、绝对值和特殊角的三角函数值可以解答本题.【解答】解:(π﹣3.14)0+()﹣2﹣|﹣|+4cos30°=1+9﹣+4×=1+9﹣2+2=10.41.(2018•连云港)计算:(﹣2)2+20180﹣.【分析】首先计算乘方、零次幂和开平方,然后再计算加减即可.【解答】解:原式=4+1﹣6=﹣1.42.(2018•桂林)计算:+(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.11 / 11。
3 2a a a a 中考数学复习资料 第一章 实数考点一、实数的概念及分类 (3 分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数 正无理数 无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 7, 等;π(2) 有特定意义的数,如圆周率 π,或化简后含有 π 的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001…等;(4)某些三角函数,如 sin60o 等考点二、实数的倒数、相反数和绝对值 (3 分) 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则 a≥0;若|a|=-a ,则 a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。
倒数等于本身的数是 1 和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10 分)1、平方根如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ ± ”。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a ≥ 0)≥ 0= a =3、立方根- a ( a <0);注意 的双重非负性:a ≥ 0a 2a a a如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
2018年全国中考数学真题分类汇编有理数一、单选题1.【湖南省娄底市2018年中考数学试题】2018的相反数是()A. B. 2018 C. -2018 D.2.【山东省德州市2018年中考数学试题】3的相反数是()A. 3B.C. -3D.3.【山东省淄博市2018年中考数学试题】计算的结果是()A. 0B. 1C. ﹣1D.4.【山东省潍坊市2018年中考数学试题】( )A. B. C. D.5.【江西省2018年中等学校招生考试数学试题】﹣2的绝对值是A. B. C. D.6.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣17.【浙江省金华市2018年中考数学试题】在0,1,﹣,﹣1四个数中,最小的数是()A. 0B. 1C.D. ﹣18.【江苏省连云港市2018年中考数学试题】地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为()A. 1.5×108B. 1.5×107C. 1.5×109D. 1.5×1069.【江苏省盐城市2018年中考数学试题】盐通铁路沿线水网密布,河渠纵横,将建设特大桥梁6座,桥梁的总长度约为146000米,将数据146000用科学记数法表示为()A. B. C. D.10.【湖北省孝感市2018年中考数学试题】的倒数是()A. 4B. -4C.D. 1611.【安徽省2018年中考数学试题】的绝对值是()A. B. 8 C. D.12.【2018年重庆市中考数学试卷(A卷)】的相反数是()A. B. C. D.13.【浙江省衢州市2018年中考数学试卷】﹣3的相反数是()A. 3B. ﹣3C.D. ﹣14.【2018年浙江省绍兴市中考数学试卷】如果向东走记为,则向西走可记为()A. B. C. D.15.【天津市2018年中考数学试题】计算的结果等于()A. 5B.C. 9D.16.【山东省滨州市2018年中考数学试题】若数轴上点A、B分别表示数2、﹣2,则A、B两点之间的距离可表示为()A. 2+(﹣2)B. 2﹣(﹣2)C. (﹣2)+2D. (﹣2)﹣217.【江苏省连云港市2018年中考数学试题】﹣8的相反数是()A. ﹣8B.C. 8D. ﹣18.【江苏省盐城市2018年中考数学试题】-2018的相反数是()A. 2018B. -2018C.D.19.【湖北省黄冈市2018年中考数学试题】-的相反数是()A. -B. -C.D.20.【四川省宜宾市2018年中考数学试题】3的相反数是()A. B. 3 C. ﹣3 D. ±21.【广东省深圳市2018年中考数学试题】260000000用科学计数法表示为( )A. B. C. D.22.【四川省成都市2018年中考数学试题】2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.23.【天津市2018年中考数学试题】今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A. B. C. D.二、填空题24.【山东省德州市2018年中考数学试题】计算:=__________.25.【湖北省黄冈市2018年中考数学试题】实数16 800 000用科学计数法表示为______________________.26.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.27.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.三、解答题28.【江苏省南京市2018年中考数学试卷】如图,在数轴上,点、分别表示数、.(1)求的取值范围.(2)数轴上表示数的点应落在()A.点的左边B.线段上C.点的右边2018年全国中考数学真题分类汇编有理数(答案)一、单选题1.C 2.C 3.A 4.B 5.B 6.D 7.D 8.A 9.A 10.B11.B 12.A 13.A 14.C 15.C 16.B 17.C 18.A 19.C 20.C21.B 22.B 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.23.B二、填空题24.125.1.68×107分析:用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.详解:16800000=1.68×107.故答案为:1.68×107.点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.26.(答案不唯一)分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.27.【江苏省南京市2018年中考数学试卷】写出一个数,使这个数的绝对值等于它的相反数:__________.【答案】(答案不唯一)三、解答题28.【答案】(1).(2)B.。
2018 年中考数学知识点大全第一章实数考点一、实数的概念及分类(3 分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:( 1)开方开不尽的数,如7, 3 2 等;( 2)有特定意义的数,如圆周率ππ,或化简后含有π的数,如+8 等;3(3)有特定结构的数,如 0.1010010001 等;(4)某些三角函数,如 sin60o等考点二、实数的倒数、相反数和绝对值(3 分)1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有a+b=0, a=— b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a≥0;若 |a|=-a,则 a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果 a 与 b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是 1 和 -1,零没有倒数。
考点三、平方根、算数平方根和立方根(3—10 分)1、平方根如果一个数的平方等于a,那么这个数就叫做 a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ a ”。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a 0) a 0a 2 a ;注意 a 的双重非负性:- a(a <0) a 03、立方根如果一个数的立方等于a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。
2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。
4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。
5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。
2018中考数学有理数考点复习(汇总)
整数可以看作分母为1的分数。
正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数(rational number)。
下文就2019中考数学有理数考点进行一一梳理。
【有理数的大小】
有理数的大小比较法则:
比较有理数大小的方法:
数轴法:
1、在数轴上表示的两个数,右边的总比左边的数大。
2、正数都大于零,负数都小于零,正数大于负数。
绝对值法:
1、两个正数比较大小,绝对值大的数大;
2、两个负数比较大小,绝对值大的数反而小。
差值法:
设a、b为任意两有理数,两数做差,若a-b>0,则a>b ; 若a-b
商值比较法:
设a、b为任意两有理数,两数做商,若a/b>1,则a>b;若a/b2019中考数学知识点复习2019:有理数的大小?
【相反数】
只有符号不同,绝对值相等的两个数,我们就说其中一个是另一个的相反数。
0的相反数是0。
一般地,任意的一个有理数a,它的相反数是-a。
a本身既可以是正数,也可以是负数,还可以是零。
更多请
点击:2019年2019中考数学知识点复习:相反数
【科学记数法】
把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.更多请点击:2019中考数学知识点复习:科学记数法
【混合运算法则】
先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.更多请点击:2019年2019中考数学有理数考点复习:混合运算法则。
2018年中考数学《有理数》真题汇编解析2018中考数学真题汇编——有理数一、单选题1.(2017·嘉兴)-2的绝对值为()A. B.C.D.2.(2017•绍兴)研究表明,可燃冰是一种可替代石油的新型清洁能源。
在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为()A.15×1010B. 0.15×1012C. 1.5×1011D. 1.5×10123.(2017·台州)5的相反数是()A.5B.C. D.4.(2017·台州)人教版初中数学教科书共6册,总字数是978000,用科学记数法可将978000表示为()A.B.C. D.5.(2017•宁波)2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为()A.吨B.吨 C.吨 D.吨6.(2017•益阳)目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.4×108B. 4×10﹣8C. 0.4×108D. ﹣4×1087.(2017•营口)﹣5的相反数是()A.﹣5B.±5C. D. 58.(2017•绍兴)-5的相反数是()A. B.5C.D.-59.(2017•玉林)下列四个数中最大的数是()A.0B.﹣1 C.﹣2 D.﹣310.(2017•玉林)一天时间为86400秒,用科学记数法表示这一数字是()A.864×102B. 86.4×103C. 8.64×104D. 0.864×10511.(2017•河北)下列运算结果为正数的是()A.(﹣3)2B. ﹣3÷2C. 0×(﹣2017) D.2﹣312.(2017•河北)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1B.﹣2C.0.813D.8.1313.(2017•河北)=()A. B.C.D.14.(2017•黄石)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B. 1.1×105C. 0.11×105D. 1.1×10615.(2017•荆门)﹣的相反数是()A.﹣B.C.D. ﹣16.(2017•荆门)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.4960亿km,用科学记数法表示1个天文单位是()A.14.960×107kmB. 1.4960×108kmC. 1.4960×109kmD. 0.14960×109km17.(2017•海南)2017的相反数是()A.﹣2017 B.2017C.﹣D.18.(2017•河南)下列各数中比1大的数是()A.2B.0C.﹣1 D.﹣319.(2017•河南)2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B. 7.44×1013C. 74.4×1013D. 7.44×101520.(2017•荆州)中国企业2016年已经在“一带一路”沿线国家建立了56个经贸合作区,直接为东道国增加了180 000个就业岗位.将180 000用科学记数法表示应为()A.18×104B. 1.8×105C. 1.8×106D. 18×10521.(2017•十堰)气温由﹣2℃上升3℃后是()℃.A.1B.3C.5D.﹣522.(2017•海南)海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5B.6C.7D.823.(2017•六盘水)大米包装袋上(10±0.1)kg的标识表示此袋大米重()A.(9.9~10.1)kg B.10.1kgC.9.9kgD.10kg24.(2017•张家界)正在修建的黔张常铁路,横跨渝、鄂、湘三省,起于重庆市黔江区黔江站,止于常德市武陵区常德站.铁路规划线路总长340公里,工程估算金额375000000000元.将数据37500000000用科学记数法表示为()A.0.375×1011B. 3.75×1011C. 3.75×1010D. 375×10825.(2017•呼和浩特)中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A.0.96×107km2B. 960×104km2C. 9.6×106km2D. 9.6×105km226.(2017•内江)下面四个数中比﹣5小的数是()A.1B.0C.﹣4 D.﹣627.(2017•内江)PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们还有一定量的有毒、有害物质,对人体健康和大气环境质量有很大影响.2.3μm用科学记数法可表示为()A.23×10﹣5mB. 2.3×10﹣5mC. 2.3×10﹣6mD. 0.23×10﹣7m28.(2017•随州)﹣2的绝对值是()A.2B.﹣2C. D.29.(2017•张家界)﹣2017的相反数是()A.﹣2017 B.2017C.﹣D.30.(2017•呼和浩特)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃C.10℃D.15℃二、解答题31.(2017·台州)计算:三、填空题32.(2017•营口)随着“互联网+”在各领域的延伸与融合,互联网移动医疗发展迅速,预计到2018年我国移动医疗市场规模将达到29150000000元,将29150000000用科学记数法表示为________.33.(2017•荆门)已知实数m、n满足|n﹣2|+ =0,则m+2n的值为________.34.(2017•六盘水)中国“蛟龙号”深潜器下潜深度为7062米,用科学记数法表示为________米.35.(2017•河南)计算:23﹣=________.36.(2017•十堰)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为________.37.(2017•六盘水)定义:A={b,c,a},B={c},A∪B={a,b,c},若M={﹣1},N={0,1,﹣1},则M∪N={________}.38.(2017•随州)根据中央“精准扶贫”规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为________.答案解析部分一、单选题1.【答案】A【解析】【解答】解:-2的绝对值是|-2|=2.故选A.【分析】-2是负数,它的绝对值是它的相反数.2.【答案】C【解析】【解答】解:150 000 000 000一共有12位数,那么n=12-1=11,则150 000 000 000= 1.5×1011,故选:C.【分析】用科学记数法表示数:把一个数字记为a×10n的形式(1≤|a|<10,n为整数).表示绝对值较大的数时,n=位数-1.3.【答案】B【解析】【解答】解:在数轴上,表示相反数(除零外)的两个点分别在原点的两边,并且到原点的距离相等。
专题1-实数的有关概念和计算一、选择题(每题2分,共30分)1.下列算式中,运算结果为负数的是().A. B. C. D.2.-3的倒数等于()A. B. C. -3 D. 33.|2-5|=( )A. -7B. 7C. -3D. 34.下列各数中:,0,,,,,,中,非负数有()A. 2个B. 3个C. 4个D. 5个5.给出四个数,-1,0,0.5,,其中为无理数的是()A. ﹣1B. 0C. 0.5D.6.某速冻汤圆的储藏温度是-18±2℃,现有四个冷藏室的温度如下,则不适合此种汤圆的温度是( )A. -17℃B. -22℃C. -18℃D. -19℃7.下列各数中,一定为相反数的是()A. ﹣(﹣5)和﹣|﹣5|B. |﹣5|和|+5|C. ﹣(﹣5)和|﹣5|D. |a|和|﹣a|8.规定一种新的运算“∮”,对于任意有理数a,b,满足a∮b=a+b-ab,例如5∮6=5+6-5×6=-19,则3∮2的运算结果是( )A. 6B. -1C. 0D. 19.下列式子正确的是( )A. B. C. D.10.一个数与它的相反数在数轴上的对应点之间的距离为个单位长度,则这个数是()A. 或-B. 或-C. 或D. -或-二、填空题(每题3分,共30分)11.把有理数,,|-|,按从小到大的顺序用“<”连接为________.12.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2016的点与圆周上表示数字______的点重合。
13.1-2+3-4+5-6+……+2015-2016的计算结果等于________.14.计算的结果是____________.15.太阳半径大约是696 000千米,用科学记数法表示为______米。
考向02 有理数的运算【考点梳理】考点一:有理数的四则运算:(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;0与任何数相加都等于任何数(2)有理数减法法则::减去一个数等于加上这个数的相反数(3)有理数的乘法法则:①两个数相乘,同号得正,异号得负,并把绝对值相乘; 0乘以任何一个数都等于0;②多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘(4)有理数的除法法则①两数相除,同号得正,异号得负,再把绝对值相除;0除以任何一个不为0的数都得0; ②除以一个不为0的数,等于乘以这个数的倒数考点二、有理数乘法的运算律:(1)乘法的交换律:ab=ba ; (2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .考点三、比较两个数的大小(1)负数< 0 < 正数,任何一个正数都大于一切负数 (2)数轴上的点表示的有理数,左边的数总比右边的数小(3)两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小 (4)两数相乘(或相除),同号得正 > 0,异号得负 < 0考点四、有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n=-a n或(a -b)n=-(b-a)n, 当n 为正偶数时: (-a)n=an或 (a-b)n =(b-a)n.考点五、科学记数法:一个大于10的数记成a ×10n 的形式,a 是整数数位只有一位的数,这种记数法叫科学记数法.考点六、非负数的性质:若02=++c b a ,则000===c b a 且且【题型探究】题型一:有理数的加法运算1.(2022·浙江温州·中考真题)计算9(3)+-的结果是( ) A .6B .6-C .3D .3-2.(2022·云南省昆明市第十中学三模)在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是213211+-=-的计算过程,则图2表示的过程是在计算( )A .(13)(23)10-++=B .(31)(32)1-++=C .(13)(23)36+++=D .(13)(23)10++-=-3.(2022·贵州贵阳·一模)综合实践课上,同学们在如图所示的三阶幻方中,填写了一些数、式子和图案(其中每个式子或图案都表示一个数),若处于每一横行、每一竖列、两条斜对角线上的3个数之和都相等,则y x 的值为( )A .8-B .2C .16D .64题型二:有理数的减法运算4.(2022·黑龙江·哈尔滨市萧红中学校模拟预测)哈市某天的最高气温为15℃,最低气温为2-℃,则最高气温与最低气温的差为( ) A .5℃B .17℃C .17-℃D .5-℃5.(2022·山西·三模)计算()85---的结果是( ) A .3B .-3C .13D .-136.(2020·浙江温州·二模)如图是我国常年(1991~2020年)冬春两季各节气的平均气温折线统计图,根据图中的信息,各节气的平均气温最大值与最小值的差是( )A .8.75B .13.86C .18.28D .18.91题型三:有理数的加减混合运算7.(2022·湖南·长沙市中雅培粹学校二模)茶颜悦色是长沙本土知名奶茶品牌,更是被全国奶茶爱好者所知的“网红”品牌,2013年创立于长沙,目前在长沙地区有100多家直营门店.黄经理负责其中一家门店,若一杯幽兰拿铁成本是7元,卖17元,某顾客来买了一杯幽兰拿铁,给了黄经理一张50元纸币,黄经理没零钱,于是找邻居换了50元零钱.事后邻居发现那50元纸币是假的,最后黄经理又赔了邻居50元.请问黄经理一共亏了 __元.8.(2021·江苏宿迁·三模)如果△+△=★,〇=□+□,△=〇+〇+〇+〇,那么★÷□的值为_____.9.(2022·河北·邯郸市邯山区芳园实验中学一模)已知一列数2,0,﹣1.﹣12. (1)求最大的数和最小的数的差;(2)若再添上一个有理数m ,使得五个有理数的和为0,求m 的值.题型四:有理数的乘法运算律10.(2022·浙江丽水·三模)如图,运算中的( )处,填写的理由是( ) 5(12)(37)6-⨯-⨯537126=⨯⨯(乘法交换律)537126⎛⎫=⨯⨯ ⎪⎝⎭( ) 3710370=⨯=.A .乘法交换律B .乘法结合律C .分配律D .加括号11.(2022·河北唐山·一模)计算117313(24)126424⎛⎫-+-⨯- ⎪⎝⎭的结果是( )A .1B .1-C .10D .10-12.(2022·河北邯郸·二模)在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭题型五:有理数的除法13.(2022·山西·模拟预测)计算()62-÷的结果是( ) A .-3B .3C .-12D .1214.(2021·安徽·郎溪实验一模)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗的座位,已知火车上的座位的排法如图所示,那么下列座位号码符合要求的是( )A .48,49B .62,63C .75,76D .84,8515.(2021·四川·绵阳外国语实验学校一模)如果□×(﹣12019)=1,则“□”内应填的实数是( ) A .12019B .2019C .﹣12019D .﹣2019题型六:有理数的乘法16.(2022·河北唐山·二模)计算222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个( )A .32m n +B .23+m nC .23m n +D .23n m +17.(2022·广东番禺中学三模)若2423y x x =--,则2022()x y +等于( )A .1B .5C .5-D .1-18.(2022·湖北鄂州·中考真题)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型2n 来表示.即:21=2,22=4,23=8,24=16,25=32,……,请你推算22022的个位数字是( ) A .8B .6C .4D .2题型七:科学计算法19.(2022·浙江·南海实验学校三模)据国家统计局数据公报,2021年虽受“新冠疫情”影响,但全年国内生产总值仍高达1143670亿元,比上年同比增长8.1%.数据“1143670”用科学记数法可表示为( ) A .511.4367010⨯ B .61.14367010⨯C .71.14367010⨯D .80.114367010⨯20.(2022·吉林·长春市第一〇八学校二模)第24届冬季奥林匹克运动会,于2022年2月4日在我国首都北京开幕,据统计,北京冬奥会开幕式电视直播观众规模达3.16亿,是历史上收视率最高的一届冬奥会,数据3.16亿用科学记数法可以表示为( ) A .93.1610⨯ B .90.31610⨯C .731.610⨯D .83.1610⨯21.(2022·四川·威远县凤翔中学二模)据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .733.8610⨯B .83.38610⨯C .90.338610⨯D .93.38610⨯题型八:近似数22.(2022·河北沧州·一模)网聚正能量,构建同心圆.以“奋斗的人民 奋进的中国”为主题的2021中国正能量“五个一百”网络精品征集评选展播活动进入火热的展播投票阶段.截至2021年11月26日18点,“五个一百”活动投票量累计13909615次,数据13909615用科学记数法表示并精确到百万位为( ) A .80.13910⨯B .71.3910⨯C .80.1410⨯D .71.410⨯23.(2022·江苏盐城·一模)西溪天仙缘景区建筑以汉朝风格为主,美丽的传说,各式传统的小吃,吸引着无数游客心驰神往.景区游客日最大接待量为55500人,数字55500用四舍五入法精确到千位可以表示为( ) A .55.610⨯B .45.610⨯C .45610⨯D .50.5610⨯24.(2022·上海金山区世界外国语学校一模)某市参加毕业考试的学生人数约为8.63×410人.关于这里的近似数8.63×410,下列说法正确的是( ) A .精确到百分位,有3个有效数字; B .精确到百位,有3个有效数字; C .精确到百分位,有5个有效数字;D .精确到百位,有5个有效数字.题型九:有理数的混合运算25.(2022·广西·宾阳县教育局教学研究室三模)计算:()()2231524÷-+⨯-+-.26.(2022·河北沧州·一模)计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可) (2)请给出正确解答.27.(2022·山东济宁·一模)阅读材料: 求2320212022122222++++++的值.解:设2320212022122222S =++++++①将①×2得:234202220232222222S =++++++②由②-①得:202321S =-, 即2320212022202312222221++++++=-请你仿照此法计算:2313333n +++++(其中n 为整数)【必刷基础】一、单选题28.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( ) A .71.07610⨯B .81.07610⨯C .610.7610⨯D .80.107610⨯29.(2022·江苏·常州市北郊初级中学二模)42-的值为( ) A .16-B .16C .8-D .830.(2022·四川·绵阳中学英才学校二模)已知点P 的坐标为(),m n ,且22440m n n n -+++=,则点P 关于x 轴的对称点坐标为( ) A .()4,2-B .()4,2-C .()4,2D .()2,4-31.(2022·广东·深圳市南山外国语学校三模)已知a 、b 互为相反数,c 、d 互为倒数,则代数式()52a b cd +-的值为( ) A .3B .2-C .3-D .032.(2022·广东·东莞市光明中学三模)在6-,12,()5--,3--,21-,0这六个数中,负数的个数有( ) A .0个B .1个C .2个D .3个33.(2022·宁夏·中考真题)已知实数a ,b 在数轴上的位置如图所示,则a ba b+的值是( )A .2-B .1-C .0D .234.(2022·内蒙古包头·中考真题)若a ,b 互为相反数,c 的倒数是4,则334a b c +-的值为( ) A .8-B .5-C .1-D .1635.(2022·黑龙江齐齐哈尔·中考真题)下列计算正确的是( ) A .2ab ab b ÷= B .222()a b a b -=- C .448235m m m +=D .33(2)6-=-a a36.(2022·安徽·三模)下列各数中,化简结果最小的是( ) A .-5B .5C .()15--D .()25-37.(2022·新疆·乌鲁木齐市第六十八中学模拟预测)计算:()()1202011322π-⎛⎫-⨯-+-+- ⎪⎝⎭.38.(2022·浙江杭州·中考真题)计算:()32623⎛⎫-⨯-- ⎪⎝⎭■.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算()3216232⎛⎫-⨯-- ⎪⎝⎭.(2)如果计算结果等于6,求被污染的数字.【必刷培优】一、单选题39.(2022·湖南·吉首市教育科学研究所模拟预测)观察下列等式:122=,224=,328=,4216=,5232=,6264=,⋅⋅⋅,根据这个规律,则1234202222222++++⋅⋅⋅+的末尾数字是( )A .0B .2C .4D .640.(2022·江苏苏州·中考真题)下列运算正确的是( ) A .()277-=- B .2693÷= C .222a b ab += D .235a b ab ⋅=41.(2022·河北·中考真题)若x 和y 互为倒数,则112x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的值是( )A .1B .2C .3D .442.(2022·湖北武汉·中考真题)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .1243.(2022·湖南娄底·中考真题)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了( )A .1335天B .516天C .435天D .54天44.(2022·湖南娄底·中考真题)若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( ) A .5B .2C .1D .0二、填空题45.(2022·江苏·靖江市滨江学校三模)5-的倒数是 ____.46.(2022·重庆八中模拟预测)计算:1122-⎛⎫-+-= ⎪⎝⎭________.47.(2022·江苏·常州市北郊初级中学二模)为做好新冠疫情常态化防控,更好保护人民群众身体健康,常州市开展新冠疫苗检测工作.截至4月底,已累计新冠疫苗检测27000000剂次,数据27000000用科学记数法可表示_____ 48.(2022·江苏·盐城市初级中学三模)小余同学计划在某外卖网站点如下表所示的菜品,已知每份订单的配送费为4元,商家为了促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元,如果小余在购买下表中所有菜品时,采取适当的下单方式,那么他点餐总费用最低可为____________元. 菜品单价(含包装费) 数量 水煮牛肉(小份)30元1 醋溜土豆丝(小份) 12元 1 豉汁排骨(小份) 30元1 手撕包菜(小份) 12元1 米饭 3元249.(2022·重庆文德中学校二模)计算:()2022120221212-⎛⎫⋅+-= ⎪⎝⎭______.50.(2022·广东·深圳市南山外国语学校三模)某种细菌培养过程中每半小时分裂1次,每次一分为二,若这种细菌由1个分裂到128个,那么这个过程要经过______小时. 51.(2022·西藏·中考真题)已知a ,b 都是实数,若2120220a b ,则b a =_____.三、解答题52.(2022·广西·南宁二中三模)计算:21116(2)324⎛⎫⨯---÷ ⎪⎝⎭.53.(2023·河北·九年级专题练习)对于任意的实数x ,y ,规定运算“※”如下:x y ax by =+※. (1)当3a =,4b =时,求12-※()的值; (2)若5316=※,232-=-※(),求a 与b 的值.54.(2022·河北·平泉市教育局教研室二模)在城区老旧小区改造中,为了提高居民的宜居环境,某小区规划修建一个广场(平面图如图中阴影部分所示).(1)用含m ,n 的式子表示广场(阴影部分)的面积S ;(2)若30m =米,20n =米,修建每平方米需费用200元,用科学记数法表示修建广场的总费用W 的值.55.(2022·安徽·二模)古老而悠久的民族文化宝典中,有一颗璀璨夺目的明珠一一河图洛书(如图1).人们为河图洛书神话般的传说、高深的奥义、丰富的内容、简洁的形式万分惊讶,对河图洛书与中国的思想文化、社会科学、自然科学的密切联系更是迷惑不解,然而,令我们每个人吃惊和迷惑不解的是,河图洛书只是两个简单的数字图,如图2,在33⨯的九官格中,每行每列及每条对角线上的三数之和都相等.(1)将图2九宫格中的数改为如图3的形式,则九宫格中n= ,e= ;(2)若用-5,-4,-3,-2,-1,0,1,2,3这九个数填在如图4的九宫格中,试求图中m的值.参考答案:1.A【分析】根据有理数的加法法则计算即可.【详解】解:9(3)+-(93)=+-=6故选:A .【点睛】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值时解题的关键.2.A【分析】根据图1可知,一横表示10,一竖表示1,白色为正,黑色为负,由此即可得出答案.【详解】解:由图1可知,一横表示10,一竖表示1,白色为正,黑色为负,则图2表示的过程是在计算()()132310-++=,故选:A .【点睛】本题考查了有理数的加减法,掌握理解每个算筹所表示的数是解题关键.3.D【分析】根据幻方的特点列出算式-2+y +6=2y +y +0=x -2+0,再根据法则计算可得.【详解】解:根据题意知-2+y +6=2y +y +0=x -2+0,则y +4=3y ,3y =x -2,∴y =2,x =3y +2=8,∴y x =82=64,故选:D .【点睛】本题主要考查有理数的加法和乘方,解题的关键是掌握有理数的加减运算法则及幻方的特点.4.B【分析】用该市当天的最高气温减去最低气温,即可求出结果.【详解】解:最高气温与最低气温的差为:()--=15217℃故选:B .【点睛】本题考查了有理数的减法,熟练掌握有理数的运算法则是解决本题的关键.5.C【分析】根据绝对值的意义和有理数的减法运算法则计算即可.【详解】解:原式=8+5=13.故选:C .【点睛】本题考查绝对值的意义,有理数的减法运算,熟练掌握这些知识点是解题关键.6.D【分析】观察折线统计图可得各节气的平均气温最大值为13.86℃,最小值为-5.05℃,即可求解.【详解】解:根据题意得:各节气的平均气温最大值为13.86℃,最小值为-5.05℃,∴各节气的平均气温最大值与最小值的差是()13.86 5.0518.91--=℃.故选:D【点睛】本题主要考查了折线统计图,准确从统计图获取信息是解题的关键.7.40【分析】首先算出黄经理总的支出,再求出他的总收入,进而得出黄经理的亏损.【详解】解:根据题意可得:总支出:幽兰拿铁成本是7元,找零钱()5017-元,赔邻居50元,共()750175090+-+=(元),总收入:和邻居换钱得50元,总共50元,剩余:509040-=-(元),即黄经理一共亏了40元.故答案为:40.【点睛】本题考查有理数加减运算的实际应用,读懂题意,计算出总的收入和总的支出是解题的关键.8.16【分析】根据题意可知★=2个△=8个〇=16个□,再代入★÷□即可计算求解.【详解】解:∵△+△=★,∴★=2个△,∵△=〇+〇+〇+〇,∴★=8个〇,∵〇=□+□,∴★=16个□,∴★÷□=16.故答案为:16.【点睛】本题考查了等式的性质与有理数的混合运算,由题得出★=16个□是解题关键.9.(1)3;(2)m =-12.【分析】(1)首先得出最大数和最小数,进而得出答案;(2)根据题意列出方程,解方程即可求解.(1)解:∵最大的数是2,最小的数是-1,∴最大的数与最小的数之差为2-(-1)=2+1=3;(2)解:根据题意得:2+0+(-1)+(-12)+m =0, 解得:m =-12. 【点睛】本题考查有理数的运算,一元一次方程的应用;熟练掌握解一元一次方程的方法和步骤是解本题的关键.10.B【分析】根据运算过程可知是根据乘法结合律.【详解】解:()()512376-⨯-⨯ 537126=⨯⨯(乘法交换律) 537126⎛⎫=⨯⨯ ⎪⎝⎭(乘法结合律) 3710=⨯=370故选:B .【点睛】本题考查了有理数的乘法运算律,熟练掌握和运用有理数的乘法运算律是解决本题的关键.11.A【分析】原式利用乘法分配律计算即可求出值【详解】解:原式=117313(24)(24)(24)(24) 126424⨯--⨯-+⨯--⨯-=-22+28-18+13=6-18+13=-12+13=1,故选:A【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.A【分析】根据乘法分配律即可求解.【详解】47249948⎛⎫⨯-⎪⎝⎭=12410048⎛⎫⨯-+⎪⎝⎭计算起来最简便,故选A.【点睛】此题主要考查有理数的运算,解题的关键是熟知乘法分配律的运用.13.A【分析】根据有理数的除法法则即可解答.【详解】解:−6÷2=-3,故选A.【点睛】本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.14.D【分析】根据图形中的数据变化,可得被5除余1的数,和能被5整除的座位号靠窗,座位连在一起,且有一个靠窗的座位,通过分析选项即可得结论.【详解】解:由已知图形中座位的排列顺序,可得:被5除余1的数,和能被5整除的座位号靠窗,由于两位旅客希望座位连在一起,且有一个靠窗的座位,48593÷=,故A选项不符合;625122÷=,故B选项不符合;75515÷=,故C选项不符合;85517÷=,故D符合,故选:D.【点睛】本题考查了数据的变化规律,对数据的处理,并能正确找出其中的规律是解题的关键.15.D【分析】根据乘除互逆运算的关系求解可得.【详解】解:1÷(﹣12019 )=﹣2 019 故选:D .【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的乘法与除法是互逆的运算关系.16.D【分析】根据乘法的含义,可得:222m ++⋅⋅⋅+=个2m ,根据乘方的含义,可得:333n ⨯⨯⋅⋅⋅⨯=个3n ,据此求解即可.【详解】解:222333m n ++⋅⋅⋅++⨯⨯⋅⋅⋅⨯=个个2m +3n .故选:D .【点睛】此题主要考查了有理数的乘法、有理数的乘方,解答此题的关键是要明确乘法、乘方的含义.17.A【分析】直接利用二次根式中被开方数是非负数,得出x 的值,进而得出y 的值,再利用有理数的乘方运算法则计算即可. 【详解】解:由题意可得:20420x x -≥⎧⎨-≥⎩, 解得:x =2,故y =-3,∴20222022()(213)=x y +=-.故选:A .【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数为非负数是解题关键.18.C【分析】利用已知得出数字个位数的变化规律进而得出答案.【详解】解:∵21=2,22=4,23=8,24=16,25=32,…,∴尾数每4个一循环,∵2022÷4=505……2,∴22022的个位数字应该是:4.故选:C .【点睛】此题主要考查了尾数特征,根据题意得出数字变化规律是解题关键.19.B【分析】直接利用科学记数法表示即可得到答案.【详解】解:61.143611436707010⨯=,故选B .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数,解题关键是确定a 和n 的值.20.D【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:3.16亿8316000000 3.1610==⨯.故选:D .【点睛】此题考查科学记数法的表示方法,解题的关键是掌握科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.21.B【分析】科学记数法要表示成()n 1010⨯<<0a a .【详解】解:数字338 600 000用科学记数法可简洁表示为83.38610⨯,故选B .【点睛】本题主要考查科学记数法的运用,能够熟练根据要求转化数字是解题关键.22.D【分析】首先精确到百万位,再用科学记数法表示.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:原数精确到百万位为:13909615≈14000000,再用科学记数法表示为:14000000=1.4×107,故选D .【点睛】本题考查取近似数和科学记数法的综合应用,熟练掌握精确度的意义和四舍五入的方法、科学记数法的意义和算法是解题关键.23.B【分析】先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入即可得到答案.【详解】解:用科学记数法表示:455500 5.5510=⨯,四舍五入法精确到千位得:445.551015.60≈⨯⨯.故选:B .【点睛】本题考查了近似数和科学记数法.解题的关键是先用科学记数法表示出所给的数,再按精确度的要求进行四舍五入,注意近似数末尾有意义的0.24.B【分析】在标准形式a ×10n 中a 的部分中,从左边第一个不为0的数字数起,共有3个有效数字是8,6,3,且其展开后可看出精确到的是百位.【详解】解:8.63×104=86300,所以有3个有效数字,8,6,3,精确到百位.故选:B .【点睛】此题主要考查科学记数法与有效数字,解答的关键是明确用科学记数法表示的数的有效数字的确定方法.25.3【详解】解:原式()91104=÷+-+()9104=+-+3=.【点睛】本题考查了有理数的混合运算,解题关键是熟记有理数混合运算顺序和法则,准确进行计算.26.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误; 解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.27.1312n -+ 【分析】仿照材料中的方法解答即可.【详解】解:设231133333n n S -=+++++①,将等式两边同时乘3,得231333333n n S +=+++++②, ②−①,得3S −S =131n -+,即2S =131n -+,则S =1312n -+, 所以23113312333n n+++++=-+. 【点睛】本题主要考查数字的变化规律,解答的关键是理解清楚所给的解答方式,并灵活运用. 28.A【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正整数;当原数的绝对值1<时,n 是负整数,由此即可得到答案.【详解】解:7107610760000 1.07610==⨯万.故选:A .【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.29.A【分析】根据乘方定义计算即可.【详解】422222=16-=-⨯⨯⨯.故选:A .【点睛】本题主要考查了乘方的运算,理解定义是解题的关键. 30.A【分析】根据二次根式的非负性和完全平方公式求出m ,n 的值,进而即可求解.【详解】解:2440n n ++=,()220n+=,∴20,20m n n-=+=,解得:4,2m n=-=-,∴P的坐标为()4,2--,∴点P关于x轴的对称点坐标为()4,2-.故选:A.【点睛】本题主要考查二次根式与平方的非负性,点的坐标,轴对称变换,根据非负数的性质,求出m,n 的值是关键.31.B【分析】根据a,b互为相反数,c,d互为倒数,可以得到a+b=0,cd=1,然后代入所求式子计算即可.【详解】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴5(a+b)﹣2cd=5×0﹣2×1=0﹣2=﹣2,故选:B.【点睛】本题考查了相反数和倒数,有理数的混合运算,解答本题的关键是求出a+b、cd的值.32.D【分析】先利用相反数、绝对值和乘方的意义计算出()55--=,33--=-,211-=-,然后根据实数的分类求解.【详解】解:()55--=,33--=-,211-=-,所以这六个数中,负数为6-,3--,21-.故选:D.【点睛】本题考查了有理数的分类,有理数乘方:求n个相同因数积的运算,叫做乘方.也考查了绝对值和相反数,熟知相关知识是解题的关键.33.C【分析】根据数轴上点的位置可得a<0,0b>,据此化简求解即可.【详解】解:由数轴上点的位置可得a<0,0b >, ∴110a b a b a b a b+=+=-+=-, 故选:C .【点睛】本题主要考查了化简绝对值,根据数轴上点的位置判断式子符号,有理数的除法,正确得到a<0,0b >是解题的关键.34.C【分析】根据a ,b 互为相反数,可得0a b +=,c 的倒数是4,可得14c =,代入即可求解. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c 的倒数是4, ∴14c =, ∴334a b c +-()34a b c =+-130414=⨯-⨯=-, 故选:C 【点睛】本题考查了代数式的求值问题,利用已知求得0a b +=,14c =是解题的关键. 35.A 【分析】根据单项式除以单项式,完全平方公式,合并同类项,有理数的乘方的运算法则进行计算求解即可.【详解】解:A 中2ab ab b ÷=,正确,故符合题意;B 中()222222-=-+≠-a b a ab b a b ,错误,故不符合题意;C 中44482355m m m m +=≠,错误,故不符合题意;D 中()333286a a a -=-≠-,错误,故不符合题意;故选A .【点睛】本题考查了单项式除以单项式,完全平方公式,合并同类项以及有理数的乘方.解题的关键在于熟练掌握运算法则并正确的计算.36.A【分析】分别计算绝对值,负整数指数幂,乘方运算,再比较各数的大小,从而可得答案. 【详解】解:12155,5,525,5而15525,5 125555, 所以最小的数是5,-故选:A【点睛】本题考查的是绝对值的含义,负整数指数幂的含义,有理数的乘方运算,有理数的大小比较,掌握以上基础知识是解本题的关键.37.1【分析】根据()1n -运算、零指数幂、负整数指数幂及绝对值运算分别求解后,利用有理数的混合运算法则求解即可得到结论 【详解】解:()()12020011322π-⎛⎫-⨯-+-+- ⎪⎝⎭ 1122=⨯-+1=. 【点睛】本题考查有理数混合运算,涉及到()1n-运算、零指数幂、负整数指数幂及绝对值运算等知识,熟练掌握运算法则及运算顺序是解决问题的关键.38.(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解方程即可; 【详解】(1)解:()()32116268326⎛⎫-⨯--=-⨯- ⎪⎝⎭189=--=-; (2)设被污染的数字为x ,由题意,得()326263x ⎛⎫-⨯--= ⎪⎝⎭,解得3x =, 所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.39.D【分析】通过观察发现2n 的个位数字是2、4、8、6四个数字依次不断循环,直接填空即可;【详解】解:通过观察发现2n的个位数字是2、4、8、6四个数字依次不断循环,且2+4+8+6=20,尾数为02022÷4=500……2,则尾数为2+4=6,故选D.【点睛】此题考查幂的乘方末尾的数字规律,注意观察循环的数字规律,利用规律解决问题.40.Ba=,判断A选项不正确;C选项中2a、2b不是同类项,不能合并;D选项中,单项式与单项式法则:把单项式的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式;B 选项正确.【详解】A.7,故A不正确;B.2366932÷=⨯=,故B正确;C. 222a b ab+≠,故C不正确;D. 236a b ab⋅=,故D不正确;故选B.【点睛】本题考查二次根式的性质、有理数的除法及整式的运算,灵活运用相应运算法则是解题的关键.41.B【分析】先将112x yy x⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭化简,再利用互为倒数,相乘为1,算出结果,即可【详解】112111 221212121x yy xxy x yx y xyxyxyxyxy⎛⎫⎛⎫+-⎪⎪⎝⎭⎝⎭=-⋅+⋅-=-+-=-+∵x和y互为倒数∴1xy=。
初中数学中考专项复习有理数的运算(选择题)复习习题801-900(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法错误的是()A.倒数和它本身相等的数,只有1和1?-B.相反数与本身相等的数只有0C.立方等于它本身的数只有0、1和1-D.绝对值等于本身的数是正数2.根据2018年全县一般公共预算收入安排和地方财政可用资金,建议安排2018年教育支出为91000万元,数字91000用科学记数法可简洁表示为()A.39.110⨯B.50.9110⨯C.39110⨯D.49.110⨯3.由四舍五入得到的近似数36.810⨯,下列说法正确的是()A.精确到十分位B.精确到百位C.精确到个位D.精确到千位4.如图,点A、B表示的数分别是a、b,点A在0和1对应的两点(不包括这两点)之间移动,点B在﹣3,﹣2对应的两点之间移动,下列四个代数式的值可能比2018大的是()A.11a b-B.b﹣a C.(a﹣b)2D.1b a-5.下列各组的两个幂中,是同底数幂的是()A.-a3与(-a)3B.-a3与a3C.(-a)3与a3D.(a-b)3与(b-a)36.两个数的差是负数,则这两个数一定是()A.被减数是正数,减数是负数B.被减数是负数,减数是正数C.被减数是负数,减数也是负数D.被减数比减数小7.若(-1)2=4,那么的值为()A.27 B.3或-1 C.25或-1 D.-1或278.(-2)11+(-2)10的值是().A.-2 B.(-2)21C.0 D.-2109.下面运用加法结合律的式子是A .45–76=–46+75B .63–128–72=63+(–128–72)C .128–75–45=128–45–75D .a +b +c =b +a +c10.若ab <0,且a ﹣b >0,则下列选项中,正确的是( )A .a <0,b <0B .a <0,b >0C .a >0,b <0D .a >0,b >011.北京时间2007年10月24日18时05分,中国第一颗探月卫星嫦娥一号在西昌卫星发射中心成功升空.经过326个小时的飞行,顺利实施了8次变轨,总飞行距离约180万公里,最终成功进入环月工作轨道.用科学记数法表示1800000km 的是 ( ) A .0.18×107 km B .1.8×107 km C .1.8×106 km D .1.8×105 km 12.把(+6)﹣(﹣10)+(﹣3)﹣(+2)写成省略加号和的形式为( ) A .6+10﹣3+2 B .6﹣10﹣3﹣2 C .6+10﹣3﹣2 D .6+10+3﹣213.10月18日,习主席在中共十九大报告中指出,中国农业现代化稳步推进,粮食生产力达到一万二千亿斤,将一万二千亿用科学记数法表示为( )A .0.12×1011B .1.2×1011C .1.2×1012D .1.2×1013 14.下列各式成立的是( )A .34=3×4B .﹣62=36C .(13)3=19D .(﹣14)2=116 15.清晨蜗牛从树根沿着树干往上爬,树高10m ,白天爬4m ,夜间下滑3m ,它从树根爬上树顶,需( )A .10天B .9天C .8天D .7天16. 下列各对数中,数值相等的是( )A .-27与(-2)7B .-32与(-3)2C .223与(23)2 D .-(-3)2与(-2)3 17.据报道,截至到2016年6月30日,我国移动电话用户总规模达到1300000000户,4G 用户总数达到613000000.将613000000用科学记数法计数表示为( ) A .661310⨯ B .761.310⨯ C .86.1310⨯ D .100.61310⨯ 18.两个有理数的差可以是( )A .正数B .负数C .0D .以上都可能19.下列各组数中,结果相等的是( )A .﹣12与(﹣1)2B .323与3(23)C .(﹣3)3与﹣33D .﹣|﹣2|与﹣(﹣2)20.已知|m|=5,|n|=2,且n<0,则m+n的值是()A.–7 B.+3 C.–7或–3 D.–7或321.下列说法中,错误的是().A.倒数等于它本身的数只有1和-1B.m的5倍与n的差的立方可表示为(5m-n)3C.多项式x+xy-xy2的次数3,最高次数项的系数是-1.D.三种视图都相同的几何体是正方体22.有理数a,b在数轴上的位置如图所示,化简:a b-=( ).A.a–b B.b–a C.a+b D.–a–b 23.有理数a、b在数轴上的对应点的位置如图,下列结论中,错误的( )A.a+b<0 B.a-b<0 C.ab>0 D.ab>024.下列运算错误的是()A.13÷(-3)=3×(-3) B.-5÷(-12)=-5×(-2) C.8-(-2)=8+2 D.0÷3=0 25.-8的倒数的绝对值是()A.8 B.18C.8-D.18-26.据新华社中国青年网报道,新一期全球超级计算机500强榜单发布,中国超算“神威•太潮之光”与“天河二号”连续第三次占据榜单前两位,“神威•太湖之光”获吉尼斯世界纪录认证,成为世界上“运算速度最快的计算机”,它共有40960块处理器,将40960用科学记数法表示为()A.0.4096×105B.4.096×104C.4.0960×103D.40.96×10327.下列各对数中,数值相等的是()A.-27与(-2)7B.-32与(-3)2C.3×23与32×2 D.-(-3)2与(-2)328.“!”是一种运算符号,并且1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4,......则20182017!!的值是()A .1B .2016C .2017D .2018 29.下列运算中,不正确的是( )A .-15+5=-10B .347×(-3.14)-637×3.14=-31.4 C .334-(+3.75)=0 D .-9÷(-3)2=130.下列说法中正确的是( )A .减去一个数等于加上这个数B .两个相反数相减得0C .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数31.下列说法正确的是( )A .若a>b ,则a 2>b 2B .若a 2>b 2,则a>bC .若|a |>|b |,则a 2>b 2D .若a>b ,则|a |>|b |32.2019年端午节假日,中国出游旅客共计395万人次,将395万用科学记数法表示应为( )A .70.39510⨯B .339510⨯C .63.9510⨯D .53.9510⨯ 33.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.则下列符合这一规律的等式是( )A .20=4+16B .25=9+16C .36=15+21D .40=12+28 34.现规定一种新的运算:a b ab a b =-+V ,则()23(-=V) A .11 B .11-C .6D .6- 35.如果()221a b ++-=0, 那么代数式2018()a b +的值是( )A .1B .-1C .±1D .2008 36.某天银行办理了7笔储蓄业务:取出9.5万元,存进5万元,取出8万元,存进12万元,存进25万元,取出12.5万元,取出2万元,这时银行现款增加了( ) A .12.25万元 B .-12.25万元 C .10万元 D .-12万元37.计算:(﹣11112366-+)×(﹣36)=( )A .2B .-2C .-3D .338.按如图所示的程序运算,如果输出y 的结果是4,则输入x 的值可能是( )A .±2B .2或3C .﹣2或3D .±2或3 39.对式子-32+(-2)÷(-12)2的运算顺序排序正确的是( ) ①乘方;②加法;③除法.A .①②③B .①③②C .②③①D .③①② 40.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是 ( )A .2017;B .2018;C .2019;D .2020. 41.小红家的冰箱冷藏室温度是3℃,冷冻室的温度是1-℃,则她家的冰箱冷藏室比冷冻室温度高( )A .2℃B .2-℃C .4℃D .4-℃ 42.一个数的平方是4,这个数的立方是( )A .8B .-8C .8或-8D .4或-443.若x 、y 表示有理数,则下列各数中一定是正数的是( )A .3x +B .212x +C .()26y +D .22x y + 44.下面说法正确的是( )A .几个有理数相乘,当负因数有奇数个时积为负B .近似数3.0万精确到千位C .一个数的平方一定小于这个数D .若a a =-,则0a <45.据海关统计,2018年前两个月,我国进出口总值为37900亿元人民币,将 37900亿用科学记数法表示为( )A .103.9710⨯B .130.37910⨯C .103.7910⨯D .123.7910⨯ 46.如果(m ﹣3)m =1,那么m 应取( )A .m ≥3B .m =0C .m =3D .m =0,4或2 47.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为( )A .26×105B .2.6×102C .2.6×106D .260×104 48.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为( )A .吨B .吨C .吨D .吨49.如果abcd <0,a +b =0,cd >0,那么这四个数中负因数的个数至少有( )A .4个B .3个C .2个D .1个 50.将(﹣3)3,(﹣3)4,(﹣3)5 从小到大排列正确的是( )A .(﹣3)3<(﹣3)4<(﹣3)5B .(﹣3)5<(﹣3)4<(﹣3)3C .(﹣3)5<(﹣3)3<(﹣3)4D .(﹣3)3<(﹣3)5<(﹣3)451.如图,方格中的任一行、任一列及对角线上的数的和相等,则m 等于( )A .9B .10C .13D .无法确定 52.由四舍五入得到的近似数2.6万,精确到( )A .千位B .万位C .个位D .十分位 53.小明家冰箱冷冻室的温度为-5℃,调低4℃后的温度为( )A .4℃B .-9℃C .-1℃D .9℃54.下列各组运算中,其值最小的是( )A .-(-3-2)2B .(-3)×(-2)C .(-3)2÷(-2)2D .(-3)2÷(-2) 55.下列说法正确的有( )①近似数7.4与7.40是一样的;②近似数8.0精确到十分位;③近似数9.62精确到百分位;④由四舍五入得到的近似数46.9610⨯精确到百分位.A .1个B .2个C .3个D .4个 56.在我国各大超市.市场实行塑料购物袋有偿使用制度有利于控制白色污染.已知一个塑料袋丢弃在地上,地面被污染的面积为500cm 2,如果100万名游客每人丢弃一个塑料袋,那么地面受到污染的最大面积用科学记数法表示是( )A .5×104 m 2B .5×106 m 2C .5×103 m 2D .5×10-2 m 2 57.2018年全国高考报名总人数是975万人,用科学记数法表示为( ) A .30.97510⨯人 B .29.7510⨯人 C .69.7510⨯人 D .70.97510⨯人 58.在有理数(3)--,12--,2(5)-,7(1)-,23-中,负数有( )个 A .1 B .2C .3D .4 59.2018年4月10日,“2018博鳌亚洲论坛”在我国海南省博鳌小镇如期举行,据统计,在刚刚过去的一年,亚洲经济总量为29.6万亿美元,高居全球七大洲之首.数据“29.6万亿”用科学记数法可表示为( )A .2.96×108B .2.96×1013C .2.96×1012D .29.6×1012 60.如果mn>0,且m+n<0,则下列选项正确的是( )A .m <0, n <0B .m >0, n <0C .m ,n 异号,且负数的绝对值大D .m ,n 异号,且正数的绝对值大61.计算(–17)÷(–7)的结果为( ) A .1 B .–1 C .149 D .–149 62.若a >0,b <0,|a|<|b|,则a 与b 的和是( )A .﹣|a|﹣|b|B .﹣(|a|﹣|b|)C .|a|+|b|D .﹣(|b|﹣|a|)63.已知|x|=3,|y|=2,且xy <0,则x+y 的值是( )A .-5或5B .-1C .1D .-1或164.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些记数符号与十进制的数之间的对应关系如下表:例如:十进制中的26=16+10,可用十六进制表示为1A;在十六进制中,E+D=1B 等.由上可知,在十六进制中,3×E=()A.42 B.2A C.A2 D.3E65.的倒数是()A.B.-C.D.-66.小虎做了以下4道计算题:①0﹣(﹣1)=1;②11122⎛⎫÷-=-⎪⎝⎭;③111236-+=;④(﹣1)2017=﹣2017,请你帮他检查一下,他一共做对了()A.1题B.2题C.3题D.4题67.如果两数之积为零,那么这两个数()A.都等于零B.至少有一个为零C.互为相反数D.有一个等于零,另一个不等于零68.“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为A.675×102B.67.5×102C.6.75×104D.6.75×105 69.一次水灾中,大约有20万人的生活受到影响,灾情持续一天,就需粮食可能为()A.50万千克B.40万千克C.20万千克D.10万千克70.一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15……按照这种倒水的方法,倒了10次后容器内剩余的水量是( )A .18升B .19升C .110升D .111升 71.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水( )A .23760毫升B .2.376×105毫升C .23.8×104毫升D .237.6×103毫升72.式子595559+9++9m n ⨯⨯⨯nn L L 个个可表示为( ) A .59n m B .59m n C .95m n D .59m n73.下列各组运算中,运算中结果相同的是( )A .3(4)-和34-B .32和23C .25-和2(5)-D .22()3-和33()2- 74.下列运算正确的是( )A .2(3)9-=-.B .2(2)4--=.C .236=.D .328=. 75.算式-25×14+18×14-39×(-14)=(-25+18+39)×14逆用了( )A .加法交换律B .乘法交换律C .乘法结合律D .乘法对加法的分配律 76.下列说法正确的有( )①最大的负整数是﹣1;②数轴上表示﹣3和3的点到原点的距离相等;③1.32×104是精确到百分位;④a+6一定比a 大;⑤(﹣2)4与﹣24结果相等.A .2个B .3个C .4个D .0个77.太阳的半径约为696000km ,把696000这个数用科学记数法表示为A .6.96×103B .69.6×105C .6.96×105D .6.96×106 78.3x ﹣12的值与-13互为倒数,则x 的值为( )A .3B .﹣3C .5D .﹣5 79.计算(﹣1)÷(﹣5)×(﹣15)的结果是( ) A .﹣1 B .﹣125C .﹣25D .1 80.算式(-3)4-72-3(2) 的值为( )A .-138B .-122C .24D .4081.随着北京公交票制票价调整,公交集团更换了新版公交站票,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,计算票价.规则如下表:另外,一卡通刷卡实行5折优惠,小明用一卡通乘车上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么小明乘车的费用是 A .1.5元 B .2元 C .3.5元 D .4元 82.用四舍五入法取近似数:23.96精确到十分位是( )A .24B .24.00C .23.9D .24.0 83.计算(+1317)+(−3.5)+(−6)+(+2.5)+(+6)+(+ 417)的结果是( ) A .12 B .−12 C .317 D .084.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( )A .0.1636×B .1.636×C .16.36×D .163.6×1085.2017年“双11”活动结束的当天,根据天猫官网数据统计,截至2017年11月11日24点,天猫双十一最终成交总额为1682亿元,数据1682亿元用科学记数法表示为( ) A .1.682×103元 B .0.1682×104元C .1.682×1011元D .0.1682×1012元86.改革开放40年,中国教育呈现历史性变化.其中,全国高校年毕业生人数从16.5万增长到820万,40年间增加了近50倍.把数据“820万”用科学记数法可表示为( )A .48210⨯B .58210⨯C .58.210⨯D .68.210⨯87.下列各式中正确的是( ) A .770---=B .5(-6)11+-=C .5+(+3)2-=D .()-2+(5)7-=88.绝对值小于5的所有整数的和是( ) A .8B .-8C .0D .489.对于有理数a ,b ,如果ab <0,a +b >0.则下列各式成立的是 ( ) A .a <0,b <0; B .a >0,b <0且|b|<a ; C .a <0,b >0且|a|>b ;D .a >0,b <0且|b|>a .90.学校、文具店、书店依次坐落在一条南北走向的大街上,学校在文具店的南边20 m 处,书店在文具店的北边100 m 处,张明同学从文具店出发,向北走了50 m ,接着又向北走了-70 m ,此时张明的位置在( ) A .文具店B .学校C .书店D .以上都不对91.对下列各算式计算结果的符号判断正确的一项是( ) A .(-2)×213×(-3)<0 B .(-1)+(-13)+12>0 C .(-5)-|-5|+1<0D .|-1|×(-2)>092.计算3(2)- 的结果是( ) A .-8B .-6C .8D .1993.有理数a 等于它的倒数,有理数b 等于它的相反数,则20162017a b -= ( ) A .-1B .0C .1D .294.算式2.5÷[(15–1)×(2+12)]之值为何?() A .–54B .–12516C .–25D .1195.下列说法中,正确的是( ) A .同号数相乘,符号不变B .两数相乘,若积为负数,则这两个数都为负C .两数相乘,若积为0,则两个因数中至少有一个为0D .两数相乘,积一定大于每一个因数 96.-1+2-3+4-5+6+…-2011+2012的值等于 A .1 B .-1 C .2012 D .100697.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否大于365”为一次操作.如果必须进行3次操作才能得到输出值,那么输入值x必须满足()A.x<50 B.x<95 C.50<x<95 D.50<x≤95 98.润扬长江公路大桥的建设创造了多项国内第一,综合体现了目前我国公路桥梁建设的最高水平.据统计,其混凝土浇灌量为3106000m,用科学记数法表示为()A.631.0610m⨯B.531.0610m⨯C.431.0610m⨯D.5310.610m⨯99.若(a+1)2+│b-2│=0,则a + 6(-a+2b)等于( )A.5 B.-5 C.30 D.29100.12的倒数是()A.﹣12B.2 C.﹣2 D.12参考答案1.D【解析】【分析】根据有理数的乘方,倒数的定义,相反数的定义,立方根的定义以及绝对值的性质对各选项分析判断利用排除法求解.【详解】A.倒数和它本身相等的数,只有1和﹣1,正确,故本选项错误;B.相反数与本身相等的数只有0,正确,故本选项错误;C.立方等于它本身的数只有0、1和﹣1,正确,故本选项错误;D.绝对值等于本身的数是正数和0,原说法错误,故本选项正确.故选D.【点睛】本题考查了有理数的乘方,倒数的定义,绝对值的性质,相反数的定义,是基础题,熟记概念以及一些特殊数是解题的关键.2.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字91000用科学记数法可简洁表示为:9.1×104.故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B【解析】试题解析:个位代表千,那么十分位就代表百,故选B.4.A 【解析】【分析】根据数轴得出-3<b<-2,0<a<1,继而得出11123b-<<-,11a>,再分别求出每个式子的范围,根据式子的范围即可求得答案. 【详解】A、∵-3<b<-2,0<a<1,∴11123b-<<-,11a>,∴11a b-的值可能比2018大,故A选项正确;B、由题意得:a>b,∴b-a<0,故B选项错误;C、∵-3<b<-2,0<a<1,∴2<a-b<4,∴4<(a﹣b)2<16,故C选项错误;D、∵-3<b<-2,0<a<1,∴-4<b-a<-2,∴11124b a-<<--,故D选项错误,故选A.【点睛】本题考查了有理数大小比较以及数轴的相关知识,有一定的难度,解题的关键是正确考虑a、b的取值范围.5.B【解析】【分析】根据同底数幂要求底数形式完全相同,即可求得正确答案.【详解】A.中底数分别为a和﹣a,B.中底数都为a,C.中底数分别为﹣a和a,D.中底数分别为(a-b)与(b-a),故选B.【点睛】此题考查有理数的乘方、有理数的乘方、同底数幂的乘法,解题关键在于判断同底数幂底数形式完全相同.6.D【解析】【分析】根据有理数的减法运算法则进行判断即可.【详解】∵两个数的差是负数,∴被减数比减数小.故选:D.【点睛】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.7.D【解析】由题意得:-1=±2解得:x=3或x=-1那么=27或-1故选D8.D【解析】【分析】乘方的运算可以利用乘法的运算来进行,运用乘法的分配律简便计算.【详解】原式=(﹣2)10×(﹣2+1)=(﹣2)10×(﹣1)=﹣210.故选D.【点睛】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.本题运用乘法的分配律计算.负数的奇数次幂是负数,负数的偶数次幂是正数;﹣1的奇数次幂是﹣1,﹣1的偶数次幂是1.9.B【解析】【分析】解答此题,可逐个分析,看看每题运用的运算定律,进而解决问题.【详解】A.45+76=46+75,运用加法的交换律;B.63–128–72=63+(–128–72),运用加法的结合律;C.128–75–45=128–45–75,没有运用加法结合律;D.a+b+c=b+a+c,运用加法的交换律.故选B.【点睛】此题考查了学生对运算定律的熟练掌握情况.10.C【解析】【分析】先根据同号得正、异号得负判断出a、b异号,再根据有理数的减法运算法则判断即可. 【详解】因为ab<0,所以a、b异号.又因为a-b>0,所以a>0,b<0.选项C正确.【点睛】本题考查了有理数的乘法、减法运算,熟记同号得正,异号得负判断出a、b异号是解题的关键.11.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1800000的小数点向左移动6位得到1.8,所以1800000km用科学记数法表示为1.8×106km,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.12.C【解析】【分析】利用去括号的法则求解即可.【详解】(+6)-(-10)+(-3)-(+2)=6+10-3-2,故选C.【点睛】本题主要考查了有理数加减混合运算,解题的关键是注意符号.13.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将一万二千亿用科学记数法表示应为12000×108=1.2×104×108=1.2×1012,故选:C.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表现形式.14.D【解析】【分析】n 个相同因数的积的运算叫做乘方. 【详解】解:34=3×3×3×3,故A 错误;﹣62=-36,故B 错误;(13)3=127,故C 错误;(﹣14)2=116,故D 正确,故选择D. 【点睛】本题考查了有理数乘方的定义. 15.D【解析】解:(10﹣4)÷1+1=7(天).故选D . 16.A 【解析】 【分析】原式各项计算得到结果,即可做出判断. 【详解】A 、−27=(−2)7=−128,相等;B 、−32=−9,(−3)2=9,不相等;C 、223=43,(23)2=49,不相等;D 、−(−3)2=−9,−(−2)3=8,不相等, 故选:A . 【点睛】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键. 17.C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同:当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数. 【详解】解:613 000 000=86.1310 . 故答案为C. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 18.D 【解析】 【分析】根据有理数的减法运算举例说明即可. 【详解】被减数大于减数,则两个有理数的差是正数, 被减数小于减数,则两个有理数的差是负数, 被减数等于减数,则两个有理数的差是0, 故选D . 【点睛】本题考查了有理数的减法,从被减数与减数的大小考虑求解是解题的关键. 19.C 【解析】 【分析】根据乘方法则、绝对值的性质计算,比较即可. 【详解】解:A 、﹣12=﹣1,(﹣1)2=1,﹣12与≠(﹣1)2;B 、323=83,(23)3=827,323≠(23)3;C 、(﹣3)3=﹣27,﹣33=﹣27,(﹣3)3=﹣33;D 、﹣|﹣2|=﹣2,﹣(﹣2)=2,﹣|﹣2|≠﹣(﹣2); 故选:C . 【点睛】本题考查的是有理数的乘方,掌握有理数的乘方法则是解题的关键. 20.D【解析】因为|m |=5,|n |=2,∴m=±5,n=±2,又∵n<0, ∴n=-2, 当m=5,n=-2时,m+n=3; 当m=-5,n=-2时,m+n= -7. 所以D 选项是正确的. 21.D 【解析】 【分析】根据倒数的性质,列代数式,多项式,三视图进行解答即可. 【详解】A. 倒数等于它本身的数只有1和-1,正确故不符合题意;B. m 的5倍与n 的差的立方可表示为(5m -n )3,正确故不符合题意;C. 多项式x +xy -xy 2的次数3,最高次数项的系数是-1,正确故不符合题意;D. 三种视图都相同的几何体是正方体和球,故错误符合题意; 故选D. 【点睛】此题考查三视图,倒数,多项式,解题关键在于掌握各性质定义. 22.B 【解析】 试题分析:由数轴可知a <b <0,所以a -b <0, 所以|a -b |=-(a -b )=b -a . 故选B .点睛:本题考查了数轴和绝对值的化简,一般思路是先根据数轴判断字母的大小关系,然后判断绝对值里面式子的正负,最后根据绝对值的性质化简即可. 23.B 【解析】由图可知10b a <-<<,∴0?0?0?0a a b a b ab b+->>,,,, ∴A 、C 、D 都正确,B 错误,24.A【解析】有理数运算25.B【解析】【分析】根据倒数的定义,两数的乘积为1,这两个数互为倒数,先求出-8的倒数,然后根据负数的绝对值等于它的相反数即可求出所求的值.【详解】∵-8的倒数是-1 8,∴|-18|=18,则-8的倒数的绝对值是1 8.故选B.【点睛】此题考查了倒数的求法及绝对值的代数意义,其中求倒数的方法就是用“1”除以这个数得到商即为这个数的倒数(0除外),绝对值的代数意义是:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.26.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将40960用科学记数法表示为:4.096×104.故选:B.本题考查的知识点是科学计数法,解题关键是确定a的值.27.A【解析】试题分析:A.(-2)7=-27 ,故正确;B.-32=-9,(-3)2="9" ,不相等,故错误;C.-3×23=-24,-32×2="-18" ,不相等,故错误;D.―(―3)2=-9,―(―2)3="8" ,不相等,故错误;故选A.考点:乘方.28.D【解析】由题意可知:201812320172018==2018 20171232017⨯⨯⨯⨯⨯⨯⨯⨯⨯LL!!.故选D.29.D【解析】分析:按照有理数四则混合运算顺序和运算的方法依次算出结果,进一步比较得出答案即可.详解:A.15+5=﹣10,此选项运算正确;B.347×(﹣3.14)﹣637×3.14=(﹣347﹣637)×3.14=﹣10×3.14=﹣31.4,此选项计算正确;C.(334)﹣(+3.75)=0,此选项计算正确;D.﹣9÷(﹣3)2=﹣9÷9=﹣1,此选项计算错误.故选D.点睛:本题考查了有理数的混合运算,注意运算的方法、运算顺序以及符号的判定.30.D【解析】【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数,对各选项分析判断后利用排除法求解即可.【详解】A.减去一个数等于加上这个数的相反数,故本选项错误;B.两个相反数相减得0,差有可能是正数、负数或零,错误;C.两个数相减,差一定小于被减数错误;正数减去负数,差为正数.D.两个数相减,差不一定小于被减数,正确.故选D.【点睛】本题考查了有理数的减法,熟记运算法则是解题的关键.31.C【解析】【详解】A、a=-2,b=-3时,a>b,a2<b2,故此选项错误;B、a=-3,b=-2时,a2>b2,a<b,故此选项错误;C、此选项正确;D、a=-2,b=-3时,a>b,|a|<|b|,故此选项错误.故选C.【点睛】本题考查了有理数的大小比较和绝对值、乘方的运算,待定特殊值是解决此类题目的关键.32.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】395万=3950000=3.95×106,所以395万用科学记数法表示为:3.95×106,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.33.C【解析】试题分析:“三角形数”的规律为1、3、6、10、15、21…“正方形数”的规律为1、4、9、16、25…题目中A与D中的20与40,不符合正方形数要求,故排除,B中9为正方形数,不是三角形数.选C.考点:规律探究点评:本题难度中等.主要考查学生对探索题的总结能力.这类题型用列举法来排除即可.34.B【解析】【分析】原式利用题中的新定义计算即可求出值.【详解】根据题中的新定义得:原式62311=---=-,故选B.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.35.A【解析】【分析】根据非负数的性质:几个非负数的和等于0,则每个式子等于0,据此即可列方程求得a和b的值,进而求解.【详解】解:根据题意得:a2010b+=⎧⎨-=⎩,解得:a21b=-⎧⎨=⎩,则原式=(-2+1)2014=1.故选A.【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个式子等于0,理解性质是关键.36.C【解析】【分析】存入为正,取出为负,然后列式进行有理数的加减混合运算,求出即可.【详解】规定存入为正,取出为负,则储蓄所该日现金增加量等于(﹣9.5)+(+5)+(﹣8)+(+12)+(+25)+(﹣12.5)+(﹣2)=+10万元,故选C.【点睛】本题考查了有理数的加减混合运算、正负数在实际生活中的意义,熟练掌握和灵活应用所学知识解决问题是关键.37.B【解析】利用乘法的分配律计算原式=(﹣11112366-+)×(﹣36)=3+1﹣6=﹣2.故选:B.点睛:此题主要考查了有理数的混合运算,属于基础应用题,只需学生熟练掌握有理数的乘法和乘法分配律,即可完成。
2018年中考试题专题之1-有理数试题及答案一、选择题1.(2018年福建省泉州市)计算:=-0)5(( ).A .1B .0C .-1D .-5【答案】A2.(2018年梅州市)12-的倒数为( ) A .12B .2C .2-D .1-【答案】C3.(2018年抚顺市)某市在一次扶贫助残活动中,共捐款2580000元.将2580000元用科学记数法表示为( )A .72.5810⨯元B .70.25810⨯元C .62.5810⨯元D .625.810⨯元 【答案】C4.(2018年抚顺市)2-的相反数是( ) A .2 B .12- C .2- D .12【答案】A5.(2018年绵阳市)2018年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是A .0.156³10-5 B .0.156³118 C .1.56³10-6 D .1.56³118【答案】C6.(2018年绵阳市)如果向东走80 m 记为80 m ,那么向西走60 m 记为 A .-60 m B .︱-60︱m C .-(-60)m D .601m 【答案】A7.(2018呼和浩特)2-的倒数是( ) A .12-B .12C .2D .2-答案:A8.(2018年龙岩)-2的相反数是( )A .-2B .2C .21 D .-21 【答案】B9.(2018年铁岭市)目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元B .90.14810⨯元C .101.4810⨯元D .914.810⨯元【答案】C10.(2018年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D11.(2018年广东省)《广东省2018年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元D .117.2610⨯元【答案】A12.(2018年枣庄市)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1a b <D .0a b -<【答案】C 13.(2018年枣庄市)-12的相反数是( ) A .2 B .2- C .12 D .12-【答案】C14.(2018年赤峰市)景色秀美的宁城县打虎石水库,总库容量为119600000立方米,用科学计数法表示为 ( ) A 、1.196×118立方米 B 、1.196×118立方米 C 、11.96×118立方米 D 、0.1196×118立方米 【答案】A15.(2018年赤峰市)3(3)-等于( ) A 、-9 B 、9 C 、-27 D 、2716.(2018贺州)计算2)3(-的结果是( ). A .-6B .9C .-9D .6【答案】B17.(2018年浙江省绍兴市)甲型H1N1流感病毒的直径大约是0.000 000 181米,用科学记数法可表示为( )A .8.1³190-米 B .8.1³180-米 C .81³190-米 D .0.81³170-米 【答案】B18.(2018年江苏省)2-的相反数是( )ab 0A .2B .2-C .12D .12-【答案】A19.(2018贵州黔东南州)下列运算正确的是( C ) A 、39±= B 、33-=- C 、39-=- D 、932=-【答案】B20.(2018年淄博市)如果2()13⨯-=,则“”内应填的实数是( D )A .32 B . 23C .23-D .32-21.(2018襄樊市)通过世界各国卫生组织的协作和努力,甲型H1N1流感疫情得到了有效的控制,到目前为止,全球感染人数约为20000人左右,占全球人口的百分比约为0.0000031,将数字0.0000031用科学记数法表示为( B ) A .53.110-⨯ B .63.110-⨯ C .73.110-⨯D .83.110-⨯解析:本题考查科学记数法,0.0000031=63.110-⨯,故选B 。
【答案】B22.(2018山西省太原市)在数轴上表示2-的点离开原点的距离等于( ) A .2 B .2- C .2± D .4解析:本题考查数轴的有关知识,也是考查绝对值的几何意义,数轴上表示-2的点离开原点的距离等于2,故选A . 【答案】A23.(2018年内蒙古包头)国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( ) A .42610⨯平方米B .42.610⨯平方米 C .52.610⨯平方米D .62.610⨯平方米【答案】D【解析】本题考查科学记数法和有效数字,将一个数用科学记数法表示为()10110na a ⨯≤<的形式,其中a 的有效数字就是10na ⨯的有效数字,且n 等于这个数的整数位数减1。
所以25.8万平方米保留两个有效数字为52.610⨯,选D24.(2018年内蒙古包头)27的立方根是( )A .3B .3-C .9D .9- 【答案】A【解析】本题考查立方根的定义,求27的立方根就是求一个数,这个数的立方是27;而3327=,所以27的立方根是3。
25.(2018年湖南长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -【答案】A【解析】本题考查了绝对值和二次根式的化简。
我们知道,负数的绝对值等于它的相反数,非负数的绝对值等于它本身;)0(2≥=a a a ,)0(2<-=a a a 。
本题由数轴可看出10<<a ,所以01>-a 。
所以原式=(1-a )+a=1,选A 。
26.(2018年安顺)新建的北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为: A .39110⨯ B .291010⨯C .49.110⨯D .39.110⨯【答案】C27.(2018成都)计算2³(12-)的结果是 (A)-1 (B) l (C)一2 (D) 2 【答案】A28.(2018重庆綦江)6的相反数是( ) A .-6 B .6C .16D .16-【答案】A29.(2018年安顺)3的相反数是:A .3B .13-C .13-D .3-【答案】D 30.(2018武汉)今年某市约有102000名应届初中毕业生参加中考.102000用科学记数法表示为( ) A .60.10210⨯B .51.0210⨯C .410.210⨯D .310210⨯【答案】B31.(2018年陕西省)2.1978年,我国国内生产总值是3.645亿元,2018年升至249530亿元,将249530亿元用科学记数法表示为 【 】A .24.953³1013元B .24.953³1012元C .2.4953³1013元D .2.4953³1014元 【答案】C32.(2018年黄冈市)1.8的立方根为( )A .2B .±2C .4D .±4 【答案】A33.(2018武汉)1.有理数12的相反数是( ) A .12-B .12C .2-D .2【答案】A34.(2018年陕西省)1.21-的倒数是 【 】A .2B .-2C .21D .21-【答案】B35.(2018年常德市)为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234 760 000元,其中234 760 000元用科学记数法可表示为( )(保留三位有效数字). A .2.34³118元 B .2.35³118元 C .2.35³118 元 D .2.34³118元 【答案】B 36.(2018年郴州市)我市免费义务教育已覆盖全市城乡,2018年初中招生人数达到47600人,将数据47600用科学记数法表示为( ) A . 44.7610´B . 54.7610´C . 50.47610´D . 347.610´ 【答案】A37.(2018年郴州市))-5的绝对值是( ) A .5 B .5- C .15 D . 15-【答案】A38.(2018年桂林市、百色市)下面的几个有理数中,最大的数是( ). A .2 B .13 C .-3 D .15- 【答案】A39.(2018年桂林市、百色市)8-的相反数是( ). A .8- B .8 C .18 D .18-【答案】B40.(2018年肇庆市)1.2018 年肇庆市工业总产值突破千亿大关,提前两年完成“十一五”规划预期目标.用科学记数法表示数 1 千亿,正确的是( )A .1000³118B .1000³118C .1011D .1012【答案】C41.(2018年黄石市)12-的倒数是( ) A .2 B .12 C .12- D .2-【答案】D42.(2018年广东省)《广东省2018年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元 B .972.610⨯ 元 C .110.72610⨯ 元D .117.2610⨯元43.(2018年达州)下列各数中,最小的数是A.-1B. -2C.0D.1【答案】B44.(2018年达州)下列各数中,最小的数是A.-1B. -2C.0D.1【答案】B45.(2018年新疆乌鲁木齐市)2-的绝对值是( ). A .2-B .2C .12-D .12【答案】B46.(2018年山东青岛市)下列四个数中,其相反数是正整数的是( ). A .3B .13C .2-D .12-【答案】C47.(2018年湖北十堰市)-7的相反数是( ). A .7 B .-7 C .71 D .71- 【答案】A48.(2018年湖北荆州)1在-1,1,0,-2四个实数中,最大的是( ) A .-1 B .1 C .0 D .-2 【答案】B .49.(2018年安徽)2(3)-的值是【 】A .9 B.-9 C .6 D .-6 【答案】A50.(18湖南怀化)2009)1(-的相反数是( )A .1B .1-C .2009D .2009- 【答案】A51.(18湖北宜昌)如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <0 【答案】D52.(2018湖北宜昌)2018年国家将为医疗卫生、教育文化等社会事业发展投资1 500亿元.将1 500用科学记数法表示为( ).A .1.5³10-3B . 0.15³103C .15³103D .1.5³103【答案】D53.(18湖北宜昌)如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26% 【答案】C54..(2018年咸宁市)温家宝总理在2018年政府工作报告中提出,今后三年内各级政府拟投入医疗卫生领域的资金将达到8500亿元人民币,用科学记数表表示“8500亿”为( ) A .108510⨯B .108.510⨯C .118.510⨯D .120.8510⨯55.(2018年咸宁市)4-的绝对值是( ) A .4- B .14-C .4D .14【答案】C56.(2018年潍坊)太阳内部高温核聚变反应释放的辐射能功率为33.8102⨯千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学计数法表示,保留2个有效数字) A .141.910⨯B .142.010⨯C .157.610⨯D .151.910⨯【答案】A57.(2018年潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )A .1a +B .21a +CD 1【答案】B58.(2018年河北)3(1)-等于( )A .-1B .1C .-3D .3 【答案】A59.(2018年宁德市)未来三年,国家将投入8500亿元用于缓解群众“看病难,看病贵”问题.将8500亿元用科学记数法表示为( )A .0.85³104亿元B .8.5³103亿元C .8.5³104亿元D .85³102亿元 【答案】B60.(2018年宁德市)-3的绝对值是( )A .3B .-3C .13D .13-【答案】A61.某市水质监测部门2018年全年共监测水量达28918.6万吨,将数字28918.6用科学计数法(保留两个有效数字)表示为( ).A.2.8³104B.2.9³104C.2.9³118D.2.9³103【答案】B62.(2018年 朝阳)2的倒数的相反数是( ). A.21 B.21- C.2 D.-2 【答案】B 63.(2018年北京市)改革开放以来,我国国内生产总值由1978年的3645亿元增长到2018年的301870亿元。