医院资料如何应用SPSS软件包进行Logistic回归分析
- 格式:pdf
- 大小:128.78 KB
- 文档页数:3
请教:如何在SPSS中进行多项Logistic回归分析?
展开全文
既然你会了二分类变量的Logistic回归分析,那因变量有三个或者三个以上分类就不难了!在SSPS软件上,单项和多项Logistic Regression 的菜单紧挨着,要是多变量多项 Logistic Regression 选多项 Logistic Regression 分析就行了!但注意以下几个事项:
1,要分清从属变量和独立变量,从属变量是被影响因子---比如:0 不发病 1 发病,而独立变量就是那些影响因子。
2,在选多项Logistic Regression 分析,独立变量里可能还包括因子变量和共同变量两种,前者是计数资料,后者是计量资料。
这一点非常重要,在SSPS软件上输入时要注意。
3,从属变量和因子变量里还要注意主次成分,也就是排序,比如:你是判断发病危险还是判断不发病的可能性(与从属变量排序有关),你是判断吸烟对疾病有无危险还是判断吸烟对疾病有无保护(与因子变量排序有关)。
也不知道你明白了没有?总之,统计就是这么抽象,只有自己在实战中才能真正理解!。
多因素logistic回归分析spssLogistic回归分析是一种用来研究影响离散变量的因素的方法,该方法的输出是一个logistic模型,这一模型可以用于预测变量的值,即预测该变量的值有多高的概率会取各种可能的取值。
简言之,logistic回归分析的主要目的是把客观的结果(例如,是否改变某个政策,是否感染某种疾病等)变成可预测的离散变量,以便分析影响客观结果的各种因素。
Spss可以提供多因素logistic回归分析,这种分析可用于识别影响离散变量(例如,是否改变某个政策,是否感染某种疾病等)的多个因素之间的关联。
该分析需要有一个组合变量作为自变量,以及一个离散变量作为因变量。
例如,如果您要研究性别和年龄两个因素如何影响某种疾病的发生率,那么性别和年龄两个因素就是组合变量,而疾病的发生率则是因变量。
1.建立变量和分类(上述示例中需要建立性别和年龄两个变量,以及分类变量的可能的取值)。
2.执行logistic回归分析。
打开spss,并在“分析”菜单中打开多元分析,然后点击“逻辑回归”,并选择您要研究的变量和分类。
3.生成回归模型和检验其统计学意义。
在spss中,您可以使用类似“回归系数”之类的描述性统计学方法来估算回归模型,并可以使用“p-值”来判断回归模型中各变量的统计学意义。
4.Interpret模型。
根据p值判断各变量的统计学意义,进而分析影响离散变量的多个因素之间的关联。
四、总结Logistic回归分析是一种用来研究影响离散变量的因素的方法,spss可以提供多因素logistic回归分析,这种分析可用于识别影响离散变量的多个因素之间的关联,spss中步骤:建立变量和分类,执行logistic回归分析,生成回归模型和检验其统计学意义,Interpret模型。
SPSS软件在医学科研中的应用计算机实习(SPSS10.0)何平平北大医学部流行病与卫生统计学系实习六Logistic回归分析(一)Logistic回归分析的任务影响因素分析在流行病学研究中,logistic回归常用于疾病的危险因素分析,logistic回归分析可以提供一个重要的指标:OR。
(二)Logistic回归分析的基本原理1.变量特点因变量:二分类变量,若令因变量为y,则常用y=1表示“发病”,y=0表示“不发病”(在病例对照研究中,分别表示病例组和对照组)。
自变量:可以为分类变量,也可以为连续变量。
2.Logistic模型Log P1 P = ®+®1x1+ ®2x2+ ...... + ®mxmP=P(y=1|x),为发病概率;1-P=P(y=0|x),为不发病概率。
®0为常数项,®1 ,®2 ….. ®m分别为m个自变量的回归系数。
模型估计方法:最大似然法(Maximum Likelihood Method)。
构造似然函数(L ikelihood function )L= P(y=1|x) P(y=0|x),通过迭代法估计一组参数(®0,®1 ,®2 ….. ®m)使L达到最大。
3.自变量的相对重要性分析衡量变量相对重要性的指标(1)Wald值:(®i /SE(®i ))2,近似⎪2分布,用于检验自变量的显著性。
(2)对自变量作显著性检验的概率P值。
当Wald值越大,P值越小时,自变量的影响就越大。
4.自变量的筛选与多元线性回归分析类似,有Forward法(实际上是逐步向前法)、Backward法(默认方法为Enter,即所有自变量一次全部进入方程)。
5.模型拟合的优良性指标(1)拟合分类表(Classification Table)根据Logistic回归型,对样本重新判别分类,符合率越高,模型拟合越好。
SPSS多元线性回归在医学统计分析中的应用操作及分析之前我们详细讲解了因变量为二分类的变量的影响因素的分析,采用二元Logistic回归分析。
但是在实际情况中,有些因变量的数据类型为连续数值型变量,并无特定的分类,这时候要分析他的影响因素,就无法采用logistics 回归,由于变量数据为线性数值,这里就要采用线性回归模型来分析。
本次我们就来详细讲解SPSS多元线性回归在医学统计分析中的应用操作。
先来看今天的案例,我们采集了80位患者的骨吸收的数值数据,临床上可能对其造成影响的因素有吸烟、牙周炎、CA、固位方式、性别、年龄、固定支架直径、长度、修复类型、位置这些因素。
如下图1:(图1)我们要分析吸烟、牙周炎、CA、固位方式、性别、年龄、固定支架直径、长度、修复类型、位置这些因素这些因素中,哪些确实是对骨吸收有显著的影响。
就要以骨吸收为因变量,以吸烟、牙周炎、CA、固位方式、性别、年龄、固定支架直径、长度、修复类型、位置为自变量,采用多元线性回归模型分析。
这里要注意的是,CA、年龄、为线性变量,可以直接作为自变量,但是吸烟、牙周炎这些属于分类变量,本应先对其进行虚拟化,才能作为自变量,但是由于这里的分类变量全部为二分类,因此虚拟化操作和当前实际一致,因此可直接作为自变量。
关于如何做多分类自变量虚拟化的线性回归,我们将在今后的文章中再另行详解。
下面进行SPSS多元线性回归的操作步骤①点击“分析”--“回归”--“线性”,在弹出的回归对话框中,将骨吸收选入因变量框中,将其他变量选入自变量框中。
(图2)(图3)②进行相关的输出和参数设置,点击右侧“自助抽样”按钮,在弹出的对话框中勾选“执行自助抽样”,“置信区间”级别填写95。
然后点击继续,确定按钮。
(图4)③得到输出结果,并进行分析。
这里我们只对重要的表格进行详细讲解分析。
(图5)模型摘要这张表,主要看R方为52.6%,大于50%,说明数据与模型拟合程度较好。
利用SPSS 进行Logistic 回归分析简要步骤
现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0
和1 表示。
如果我们采用多个因素对0-1 表示的某种现象进行因果关系解释,就可能应用到logistic 回归。
Logistic 回归分为二值logistic 回归和多值logistic 回归两类.
第一步:整理原始数据。
数据整理内容包括两个方面:一
是对各地区按照三大地带的分类结果赋值,用0、1 表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary Logistic
K
”的路径(图8-1-3)打开二值
Logistic 回归分析选项框.
第三步:选项设置。
首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调
入Dependent(因变量)和Covariates(协变量)列表框中(图8-1-5)。
在本例中,将名义变
量“城市化”调入Dependent(因变量)列表框,将“人均GDP”和“中部”调入Covariates (协变量)列表框中。
在Method(方法)一栏有七个选项。
采用第一种方法,即系统默认的强迫回归方法(Enter)。
接下来进行如下4 项设置:
⒈设置Categorical(分类)选项:定义分类变量.
⒉设置Save(保存)选项,
⒊设置Options
第四步,结果解读.。
线性回归是很重要的一种回归方法,但是线性回归只适用于因变量为连续型变量的情况,那如果因变量为分类变量呢?比方说我们想预测某个病人会不会痊愈,顾客会不会购买产品,等等,这时候我们就要用到logistic回归分析了。
Logistic回归主要分为三类,一种是因变量为二分类得logistic回归,这种回归叫做二项logistic回归,一种是因变量为无序多分类得logistic回归,比如倾向于选择哪种产品,这种回归叫做多项logistic回归。
还有一种是因变量为有序多分类的logistic回归,比如病重的程度是高,中,低呀等等,这种回归也叫累积logistic回归,或者序次logistic回归。
二值logistic回归:选择分析——回归——二元logistic,打开主面板,因变量勾选你的二分类变量,这个没有什么疑问,然后看下边写着一个协变量。
有没有很奇怪什么叫做协变量?在二元logistic回归里边可以认为协变量类似于自变量,或者就是自变量。
把你的自变量选到协变量的框框里边。
细心的朋友会发现,在指向协变量的那个箭头下边,还有一个小小的按钮,标着a*b,这个按钮的作用是用来选择交互项的。
我们知道,有时候两个变量合在一起会产生新的效应,比如年龄和结婚次数综合在一起,会对健康程度有一个新的影响,这时候,我们就认为两者有交互效应。
那么我们为了模型的准确,就把这个交互效应也选到模型里去。
我们在右边的那个框框里选择变量a,按住ctrl,在选择变量b,那么我们就同时选住这两个变量了,然后点那个a*b的按钮,这样,一个新的名字很长的变量就出现在协变量的框框里了,就是我们的交互作用的变量。
然后在下边有一个方法的下拉菜单。
默认的是进入,就是强迫所有选择的变量都进入到模型里边。
除去进入法以外,还有三种向前法,三种向后法。
一般默认进入就可以了,如果做出来的模型有变量的p值不合格,就用其他方法在做。
再下边的选择变量则是用来选择你的个案的。
手把手教你SPSS二分类Logistic回归分析木教程手把手教您用SPSS做Logistic回归分析,目录如下:一、数据格式二、对数据的分析理解三、S PSS做Logistic回归分析操作步骤3. 1线性关系检验假设3.2多重共线检验假设3.3离群值、杠杆点和强影响点的识别3. 4 Logistic回归分析四、S PSS计算结果的解释五、结果结论的撰写一、数据格式某研究者想了解年龄、性别、BMI和总胆固醇(TC)预测患心脏病(CVD)的能力,招募了100例研究对象,记录了年龄(age)、性别(gender)、BMI,测量血中总胆固醇水平(TC),并评估研究对象目前是否患有心脏病(CVD)o部分数据如图1。
二、对问题分析使用Logistic模型前,需判断是否满足以下7项假设。
假设1:因变量(结局)是二分类变量。
假设2:有至少1个自变量,自变量可以是连续变量,也可以是分类变量。
假设3:每条观测间相互独立。
分类变量(包括因变量和自变量)的分类必须全而且每一个分类间互斥。
假设4:最小样本量要求为自变量数目的15倍,但一些研究者认为样木量应达到自变量数目的50倍。
假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
假设6:自变量之间无多重共线性。
假设7:没有明显的离群点、杠杆点和强影响点。
假设1-4取决于研究设计和数据类型,本研究数据满足假设1- 4o 那么应该如何检验假设5-7,并进行Logistic回归呢?三、SPSS操作3. 1检验假设5:连续的自变量与因变量的logit转换值之间存在线性关系。
连续的自变量与因变量的logit转换值之间是否存在线性关系,可以通过多种方法检验。
这里主要介绍Box-Tidwell方法, 即将连续自变量与其自然对数值的交互项纳入回归方程。
本研究中,连续的自变量包括age、BMI、TCo使用Box-Tidwell 方法时,需要先计算age、BMI、TC的自然对数值,并命名为ln_age> ln_BMI> ln_TCo(1)计算连续自变量的自然对数值以age 为例,计算age 的自然对数值ln_age 的SPSS 操作如下。
第8 章利用SPSS 进行Logistic 回归分析现实中的很多现象可以划分为两种可能,或者归结为两种状态,这两种状态分别用0和1 表示。
如果我们采用多个因素对0-1 表示的某种现象进行因果关系解释,就可能应用到logistic 回归。
Logistic 回归分为二值logistic 回归和多值logistic 回归两类。
首先用实例讲述二值logistic 回归,然后进一步说明多值logistic 回归。
在阅读这部分内容之前,最好先看看有关SPSS 软件操作技术的教科书。
§8.1 二值logistic 回归8.1.1 数据准备和选项设置我们研究2005 年影响中国各地区城市化水平的经济地理因素。
城市化水平用城镇人口比重表征,影响因素包括人均GDP、第二产业产值比重、第三产业产值比重以及地理位置。
地理位置为名义变量,中国各地区被分别划分到三大地带:东部地带、中部地带和西部地带。
我们用各地区的地带分类代表地理位置。
第一步:整理原始数据。
这些数据不妨录入Excel 中。
数据整理内容包括两个方面:一是对各地区按照三大地带的分类结果赋值,用0、1 表示,二是将城镇人口比重转换逻辑值,变量名称为“城市化”。
以各地区2005 年城镇人口比重的平均值45.41%为临界值,凡是城镇人口比重大于等于45.41%的地区,逻辑值用Yes 表示,否则用No 表示(图8-1-1)图8-1-1 原始数据(Excel 中,局部)将数据拷贝或者导入SPSS 的数据窗口(Data View)中(图8-1-2)。
图8-1-2 中国31 个地区的数据(SPSS 中,局部)第二步:打开“聚类分析”对话框。
沿着主菜单的“Analyze→Regression→Binary Logistic K”的路径(图8-1-3)打开二值Logistic 回归分析选项框(图8-1-4)。
图8-1-3 打开二值Logistic 回归分析对话框的路径对数据进行多次拟合试验,结果表明,像二产比重、三产比重等对城市化水平影响不显著。
如何用spss17.0进行二元和多元logistic回归分析一、二元logistic回归分析二元logistic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logistic回归分析。
(一)数据准备和SPSS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NCAS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NCAS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到spss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图1-1第二步:打开“二值Logistic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regression)→二元logistic (Binary Logistic)”的路径(图1-2)打开二值Logistic 回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与ICAS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Dependent)中,而将性别和年龄选入协变量(Covariates)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
采用第一种方法,即系统默认的强迫回归方法(进入“Enter”)。
接下来我们将对分类(Categorical),保存(Save),选项(Options)按照如图1-4、1-5、1-6中所示进行设置。
SPSS操作:二分类Logistic回归作者:张耀文1、问题与数据某呼吸内科医生拟探讨吸烟与肺癌发生之间的关系,开展了一项成组设计的病例对照研究。
选择该科室内肺癌患者为病例组,选择医院内其它科室的非肺癌患者为对照组。
通过查阅病历、问卷调查的方式收集了病例组和对照组的以下信息:性别、年龄、BMI、COPD病史和是否吸烟。
变量的赋值和部分原始数据见表1和表2。
该医生应该如何分析?表1. 肺癌危险因素分析研究的变量与赋值表2. 部分原始数据ID gender age BMI COPD smoke cancer1 0 34 0 1 1 02 1 32 0 1 0 13 0 27 0 1 1 14 1 28 0 1 1 05 1 29 0 1 0 06 0 60 0 2 0 07 1 29 0 0 1 18 1 29 1 1 1 19 1 37 0 1 0 010 0 17 0 0 0 011 0 20 0 0 1 112 1 35 0 0 0 013 0 17 1 0 1 1…………………2、对数据结构的分析该设计中,因变量为二分类,自变量(病例对照研究中称为暴露因素)有二分类变量(性别、BMI和是否吸烟)、连续变量(年龄)和有序多分类变量(COPD 病史)。
要探讨二分类因变量与自变量之间的关系,应采用二分类Logistic回归模型进行分析。
在进行二分类Logistic回归(包括其它Logistic回归)分析前,如果样本不多而变量较多,建议先通过单变量分析(t检验、卡方检验等)考察所有自变量与因变量之间的关系,筛掉一些可能无意义的变量,再进行多因素分析,这样可以保证结果更加可靠。
即使样本足够大,也不建议直接把所有的变量放入方程直接分析,一定要先弄清楚各个变量之间的相互关系,确定自变量进入方程的形式,这样才能有效的进行分析。
本例中单变量分析的结果见表3(常作为研究报告或论文中的表1)。
表3. 病例组和对照组暴露因素的单因素比较病例组(n=85)对照组(n=259) χ2 /t统计量P性别,男(%)56 (65.9) 126 (48.6) 7.629 <0.01年龄(岁),x± s40.3 ±14.0 38.6 ±12.4 1.081 0.28 BMI,n (%)正常48 (56.5) 137 (52.9) 0.329 0.57超重或肥胖37 (43.5) 122 (47.1)COPD病史,n (%)无21 (24.7) 114 (44.0) 14.123 <0.01轻中度24 (28.2) 75 (29.0)重度40 (47.1) 70 (27.0)是否吸烟,n(%)否18 (21.2) 106 (40.9) 10.829 <0.01是67 (78.8) 153 (59.1)单因素分析中,病例组和对照组之间的差异有统计学意义的自变量包括:性别、COPD病史和是否吸烟。
应用SPSS软件进行多分类Logistic回归分析应用SPSS软件进行多分类Logistic回归分析一、简介Logistic回归是一种常用的统计分析方法,在很多领域中都有广泛的应用。
它主要用于预测一个分类变量的可能性或概率,例如判断一个疾病的患病风险、判断学生成绩的优劣、预测金融市场的涨跌等。
本文将介绍如何使用SPSS软件进行多分类Logistic回归分析,并以一个具体案例来说明其应用。
二、SPSS软件介绍SPSS软件是统计分析的常用工具之一,它具有友好的用户界面和丰富的分析功能。
在进行Logistic回归分析时,SPSS可以帮助我们进行数据处理、模型建立、模型拟合、模型评估等步骤,并输出详细的分析结果。
三、案例描述我们假设有一份数据集,包含了500个样本和5个自变量,要根据这些自变量对样本进行多分类。
自变量包括性别、年龄、教育水平、收入和职业。
而多分类的目标变量是购买冰淇淋的偏好,包括三个分类:喜欢巧克力口味、喜欢草莓口味和喜欢香草口味。
四、数据处理首先,我们需要对数据进行处理。
SPSS可以读取各种文件格式,如Excel、CSV等。
我们将数据导入SPSS后,可以进行缺失值处理、异常值处理等预处理步骤。
这些步骤是为了保证后续的分析结果的准确性和可靠性。
五、模型建立在SPSS中,我们可以使用多分类Logistic回归模型进行建模。
它采用最大似然估计方法来估计模型参数,以便进行分类预测。
我们需要将自变量和目标变量进行指定,SPSS会自动计算出各个自变量对目标变量的系数和统计学意义。
六、模型拟合在模型拟合阶段,SPSS会对模型进行拟合优度的检验,包括卡方拟合优度检验、Hosmer-Lemeshow检验等。
这些检验可以帮助我们评估模型的拟合程度和可靠性。
如果模型的拟合程度不好,我们可以对模型进行进一步调整和改进。
七、模型评估在模型评估阶段,SPSS提供了一系列的统计指标和图表,用于评估多分类Logistic回归模型的性能。
如何用spss17.0进行二元和多元logis tic回归分析一、二元logis tic回归分析二元logis tic回归分析的前提为因变量是可以转化为0、1的二分变量,如:死亡或者生存,男性或者女性,有或无,Yes或No,是或否的情况。
下面以医学中不同类型脑梗塞与年龄和性别之间的相互关系来进行二元logist ic回归分析。
(一)数据准备和SP SS选项设置第一步,原始数据的转化:如图1-1所示,其中脑梗塞可以分为ICAS、ECAS和NC AS三种,但现在我们仅考虑性别和年龄与ICAS的关系,因此将分组数据ICAS、ECAS和NC AS转化为1、0分类,是ICAS赋值为1,否赋值为0。
年龄为数值变量,可直接输入到s pss中,而性别需要转化为(1、0)分类变量输入到spss当中,假设男性为1,女性为0,但在后续分析中系统会将1,0置换(下面还会介绍),因此为方便期间我们这里先将男女赋值置换,即男性为“0”,女性为“1”。
图1-1第二步:打开“二值Logis tic 回归分析”对话框:沿着主菜单的“分析(Analyze)→回归(Regress ion)→二元logis tic (BinaryLogisti c)”的路径(图1-2)打开二值Log istic回归分析选项框(图1-3)。
如图1-3左侧对话框中有许多变量,但在单因素方差分析中与IC AS 显著相关的为性别、年龄、有无高血压,有无糖尿病等(P<0.05),因此我们这里选择以性别和年龄为例进行分析。
在图1-3中,因为我们要分析性别和年龄与ICAS的相关程度,因此将ICAS选入因变量(Depende nt)中,而将性别和年龄选入协变量(Covaria tes)框中,在协变量下方的“方法(Method)”一栏中,共有七个选项。
SPSS实用教程:二元Logistic回归
模型数据,拟研究APACHE2评分与ICU预后的关系,需要校正一些变量,其中血小板计数,红细胞压积,SOFA评分以及APACHE2为定量变量。
菜单选择
参数设置,将因变量选入,自变量选入,选择变量进入方法为输入,点击分类,将分类变量进行定义,即分类变量进行哑变量化。
点击保存
点击选项
最后点击确定
首先是对变量的总体描述,以及应变量的编码规则
然后就是分类变量如何进行编码,也就是如何哑变量
结果1,分析模型的拟合优度
结果2分类结果,以及分类的准确性
最后就是放在文章里面的逻辑回归表格。