工艺流程图-氨肟化 Model (1)
- 格式:pdf
- 大小:219.69 KB
- 文档页数:1
合成氨
合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨,世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。
合成氨主要用作化肥、冷冻剂和化工原料。
①天然气制氨。
天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。
以石脑油为原料的合成氨生产流程与此流程相似。
②重质油制氨。
重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。
空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
③煤(焦炭)制氨。
随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。
o合成氨工艺流程图
o合成氨的在线分析检测点。
实践与经验合成纤维工业,2023,46(6):87CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2023-02-01;修改稿收到日期:2023-09-12㊂作者简介:李新宇(1995 ),男,工程师,从事己内酰胺工业生产㊁运行和管理㊂E-mail:lixy218.blsh@㊂双氧水对环己酮氨肟化反应的影响及优化措施李新宇(中石化湖南石油化工有限公司,湖南岳阳414000)摘㊀要:针对300kt /a 氨肟化装置双氧水(H 2O 2)消耗高㊁己内酰胺产品色度及挥发性碱含量高的现状,探讨了H 2O 2对氨肟化反应的影响,并提出了优化措施㊂结果表明:氨肟化反应过程中,控制H 2O 2/环己酮摩尔比在1.12~1.14,H 2O 2质量分数在29.5%~32.0%,不仅可提高装置的生产能力,而且H 2O 2㊁环己酮消耗也明显降低;H 2O 2总碳含量对环己酮肟色度㊁环己酮肟二段重排反应滴定值有较大影响,通过将吸附树脂床运行工艺由并联优化为串联,可控制H 2O 2总碳含量在100mg /kg 以下;将H 2O 2由反应釜顶部进料调整为底部进料,H 2O 2与环己酮㊁氨的共混效果提高,环己酮的转化率达到99.95%㊂关键词:环己酮㊀双氧水㊀氨肟化反应㊀转化率㊀选择性㊀色度中图分类号:TQ340.42㊀㊀文献标识码:B㊀㊀文章编号:1001-0041(2023)06-0087-04㊀㊀环己酮肟是一种重要的化工中间体,主要用于制备己内酰胺[1]㊂目前工业上主要采用氨肟化法生产环己酮肟,该反应采用淤浆床反应器,以钛硅分子筛(TS-1)为催化剂,使环己酮和氨㊁双氧水(H 2O 2)在反应器内发生反应得到环己酮肟[2-3]㊂相较于传统的羟胺法生产环己酮肟,氨肟化反应将环己酮㊁氨和H 2O 2一步直接氧化合成环己酮肟,反应条件温和㊁环己酮转化率和环己酮肟选择性高㊁污染低,克服了传统工艺的缺点[4]㊂近年来,随着己内酰胺生产能力的扩大和市场竞争的加剧,提高环己酮肟的质量和提升氨肟化反应原料H 2O 2的利用率引起了业界的极大关注㊂中石化湖南石油化工有限公司己内酰胺生产能力为300kt /a,采用TS-1催化环己酮液相氨肟化合成环己酮肟,然后再进行液相重排生产己内酰胺㊂作者针对公司氨肟化装置H 2O 2消耗高㊁己内酰胺产品色度及挥发性碱含量高的现状,探讨了H 2O 2对氨肟化反应的影响,并提出了优化措施,提高了反应产物环己酮肟的收率,降低了原料H 2O 2的消耗㊂1 氨肟化反应工艺流程氨肟化装置采用五釜并联运行工艺,单个反应釜中反应体系由质量分数大于99.9%的环己酮㊁质量分数为27.5%的H 2O 2和液氨为原料,以叔丁醇为溶剂,TS-1为催化剂,采用连续淤浆反应床,反应系统中的催化剂质量分数为3%~8%,通过催化氨肟化反应生成目标产物环己酮肟,含环己酮肟的反应产物在循环泵的推动下经膜系统拦截催化剂后送叔丁醇溶剂回收工序㊁甲苯肟萃取工序,再经过两级精馏后,生产出环己酮肟产品送己内酰胺装置,反应工艺流程见图1㊂图1㊀氨肟化反应工艺流程Fig.1㊀Ammoximation reaction process1 反应釜;2 循环泵;3 膜系统㊀㊀TS-1催化液相氨肟化体系中的氨时,会使体系呈明显的碱性,使得参与反应的H 2O 2不可避免的发生无效分解㊂理论上通过适当提高体系H 2O 2与环己酮的配比,可以保证高的反应转化率㊂但在实际生产中发现当H 2O 2与环己酮的配比超出一定范围时,氨肟化反应体系中环己酮的转化率与环己酮肟的选择性均出现迅速下降,H 2O 2分解加剧㊂因此,H 2O 2作为氨肟化反应的主要原材料之一,能否得到充分的利用,尽可能的氧化氨形成羟胺进而生成环己酮肟,而不是发生副反应及分解,将直接影响到H2O2的消耗和己内酰胺的生产成本㊂2020年公司氨肟化装置生产己内酰胺的环己酮单耗为898.4kg/t,H2O2单耗为1319.6 kg/t,而行业先进装置生产己内酰胺的环己酮单耗为892.5kg/t,H2O2单耗为1276.0kg/t,对比差距显著㊂2㊀H2O2对氨肟化反应的影响及优化措施2.1㊀H2O2/环己酮摩尔比H2O2作为消耗性氧化剂,其成本和消耗量对氨肟化反应工艺的技术经济性起着举足轻重的作用㊂TS-1催化H2O2㊁氨㊁环己酮一步直接氧化合成环己酮肟的反应方程式见式(1)㊂NH3+H2O2+C6H10OңC6H10NOH+2H2O+Q1(1)从式(1)可知,理论上H2O2与环己酮在摩尔比1 1下进行反应,但实际生产过程中,由于副反应的存在和氨肟化碱性体系的影响,H2O2需适当过量才能保证环己酮的高转化率㊂通过试验考察了H2O2/环己酮摩尔比(H2O2质量分数为27.5%)对氨肟化反应的影响,见表1㊂表1㊀H2O2/环己酮摩尔比对氨肟化反应的影响Tab.1㊀Effect of H2O2/cyclohexanone molar ratio onammoximation reactionH2O2/环己酮摩尔比H2O2单耗/(kg㊃t-1)环己酮转化率/%环己酮肟选择性/%1.11122099.9499.761.12123099.9599.851.13124099.9799.871.14124599.9799.931.15125599.9599.881.16128099.9499.871.17129099.9499.87㊀㊀从表1可以看出:随着H2O2/环己酮摩尔比的增大,H2O2单耗随之增大;当H2O2/环己酮摩尔比大于1.14后,环己酮的转化率和环己酮肟的选择性开始下降,且H2O2单耗的增幅增大,这说明部分H2O2直接分解或发生了副反应㊂生产实践表明,H2O2/环己酮摩尔比控制在1.12~1.14既可保持较高的环己酮转化率,又有利于控制原料H2O2的消耗㊂2.2㊀H2O2浓度从反应本征动力学和催化剂反应机理的角度来看,提高H2O2浓度,氨肟化反应体系中催化剂晶粒内部H2O2与氨分子生成羟胺的反应速率会增大,同时会抑制副反应的发生,使催化剂活性稳定期延长,加速正反应,减少副反应发生,提高反应转化率㊂通过试验考察了H2O2浓度对氨肟化反应的影响,见表2㊂表2㊀H2O2浓度对氨肟化反应的影响Tab.2㊀Effect of H2O2concentration on ammoximation reaction H2O2质量分数/%H2O2单耗/(kg㊃t-1)环己酮转化率/%环己酮肟选择性/%26.5129099.8599.8427.5126099.8699.8829.5122599.9199.9530.0124399.9399.9432.0124099.9099.9434.0124599.8699.92㊀㊀从表2可以看出,随着H2O2浓度的提高, H2O2单耗下降,环己酮的转化率和环己酮肟的选择性略有提高,但H2O2浓度过高,在碱性环境下,H2O2的分解会加剧,增加危险性㊂因此,氨肟化反应过程中,H2O2质量分数控制在29.5%~ 32.0%较适宜㊂㊀㊀氨肟化装置原设计进料H2O2质量分数控制在27.5%,通过优化将H2O2质量分数由27.5%提高至30.0%后,氨肟化反应系统的工艺指标见表3㊂从表3可以看出,H2O2质量分数由27.5%提高至30.0%后,H2O2/环己酮摩尔比由1.16降至1.13,清液残酮质量分数由0.019%降至0.014%,清液含水质量分数由39.54%降至39.27%,单釜最高运行负荷由6.5t/h提高至7.8t/h,不仅提高了装置产能,而且H2O2㊁环己酮消耗也明显降低㊂表3㊀H2O2浓度优化前后反应系统的工艺指标Tab.3㊀Technic index of reaction system beforeand after optimization of H2O2concentration项目参数优化前优化后H2O2/环己酮摩尔比 1.16 1.13清液残酮质量分数/%0.0190.014清液含水质量分数/%39.5439.27单釜最高运行负荷/(t㊃h-1) 6.57.8单釜投酮负荷/(t㊃h-1) 5.5 6.0环己酮转化率/%99.9099.97环己酮肟选择性/%99.8599.93 2.3㊀H2O2总碳含量蒽醌法生产H2O2的过程中,少量蒽醌类有88㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷机物会带入H2O2产品,导致H2O2产品总碳含量较高,一般在300mg/kg左右,无法满足己内酰胺的生产,因此,H2O2进入氨肟化系统前必须进行提纯,一般使用大孔吸附树脂吸附H2O2中存在的杂质组分,控制H2O2总碳含量在100mg/kg以下[5-7]㊂通过试验考察了H2O2总碳含量对氨肟化反应的影响,见表4㊂表4㊀H2O2总碳含量对氨肟化反应的影响Tab.4㊀Effect of total carbon content of H2O2onammoximation reactionH2O2总碳含量/(mg㊃kg-1)环己酮肟色度环己酮肟二段重排反应滴定值805~80.7~0.9907~110.9~1.010010~13 1.0~1.112010~16 1.1~1.2㊀㊀从表4可以看出,随着H2O2总碳含量的增大,环己酮肟色度㊁环己酮肟二段重排反应滴定值均会升高,这会导致己内酰胺成品色度和挥发性碱含量增长㊂生产实践表明,经大孔树脂吸附提纯后H2O2总碳含量可稳定控制在100mg/kg,但当H2O2提纯吸附树脂床运行至末期时,因吸附树脂床吸附效率下降,会导致H2O2总碳含量较高,达到200 mg/kg左右㊂因此,为增加树脂吸附停留时间,对吸附树脂床运行工艺进行了优化,由并联运行工艺调整为串联运行㊂优化后氨肟化反应系统的工艺指标见表5㊂表5㊀吸附树脂床运行工艺优化前后反应系统的工艺指标Tab.5㊀Technic index of reaction system before andafter optimizing adsorption resin bed operation process项目参数优化前优化后H2O2总碳含量/(mg㊃kg-1)200100环己酮肟色度2011环己酮肟二段重排反应滴定值 1.9 1.0己内酰胺色度41己内酰胺挥发性碱含量/(mmol㊃kg-1)185㊀㊀从表5可知,树脂床运行工艺优化后,运行末期进料H2O2中夹带的蒽醌组分含量降低,总碳含量由200mg/kg降至100mg/kg,且环己酮肟色度㊁环己酮肟二段重排反应滴定值下降明显㊂2.4㊀H2O2进料方式氨肟化反应系统进料方式见图2,H2O2㊁环己酮㊁气氨通过进入反应釜循环管线上的混合器后汇合反应循环浊液进入反应釜中反应,反应热通过处于循环管上的外取热器循环水转移并控制反应物料温度㊂图2㊀氨肟化反应系统的进料方式Fig.2㊀Feeding method of ammoximation reaction system1 反应釜;2 循环泵;3 无机膜过滤器;4 冷却器;5 混合器㊀㊀应用软件模拟对氨肟化反应釜中的反应热分布进行分析,见图3㊂从图3可以看出:搅拌区域的反应放热量较高,说明物料在搅拌区域可以实现较大程度的混合均匀,反应主要集中在该处进行;而反应釜底放热量较小,说明物料在反应釜底的混合效果不理想㊂图3㊀反应釜的反应热分布Fig.3㊀Reaction heat distribution of reactor为提高反应釜物料的混合效果,对反应釜进料方式进行了优化,见图4,从底部增加一条H2O2管线至反应釜底部,并通过在管线上开孔增加H2O2的进料流速,有效增加反应物料分子间的碰撞速率,提高H2O2与其他反应物料的相对反应速率㊂进料方式优化后氨肟化反应系统的工艺指标见表6㊂从表6可以看出,H2O2从反应釜底部进料后,环己酮肟色度由14降至8,H2O2/环己酮摩尔比由1.16降至1.13,单釜投酮负荷由3.5t/h提高至5.0t/h,环己酮转化率由99.50%提高至99.95%,不仅提高了装置产能和产品质量,而且H2O2㊁环己酮消耗也明显降低㊂98第6期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀李新宇.双氧水对环己酮氨肟化反应的影响及优化措施图4㊀优化后氨肟化反应系统的进料方式Fig.4㊀Feeding method of optimized ammoximationreaction system表6㊀H 2O 2进料方式优化前后反应系统的工艺指标Tab.6㊀Technic index of reaction system beforeand after optimizing feeding method项目参数反应釜顶部进料反应釜底部进料环己酮肟色度148H 2O 2/环己酮摩尔比 1.16 1.13氨/环己酮摩尔比 1.09 1.10单釜投酮负荷/(t㊃h -1) 3.55.0环己酮转化率/%99.5099.95㊀㊀注:反应温度为83ħ,反应压力为0.3MPa㊂3㊀结论a.氨肟化反应过程中,H 2O 2/环己酮摩尔比控制在1.12~1.14,H 2O 2质量分数控制在29.5%~32.0%,不仅可提高装置的生产能力,而且H 2O 2㊁环己酮消耗也明显降低㊂b.H 2O 2总碳含量对环己酮肟色度㊁环己酮肟二段重排反应滴定值有较大影响,将吸附树脂床运行工艺由并联优化为串联,H 2O 2总碳含量可控制在100mg /kg 以下㊂c.H 2O 2由反应釜顶部进料调整为底部进料后,H 2O 2与环己酮㊁氨的共混效果提高,环己酮的转化率达到99.95%,单釜投酮负荷提高至5.0t /h㊂参㊀考㊀文㊀献[1]㊀潘娇阳.环己酮肟生产技术综述[J].广东化工,2019,46(2):150-151.[2]㊀张向京,马瑞平,乔永志,等.钛硅分子筛TS-1上液相氨氧化制环己酮肟机理的原位红外研究[J].河北科技大学学报,2011,32(6):605-610.[3]㊀李永祥,吴巍,闵恩泽,等.钛硅分子筛催化环己酮氨肟化反应过程 本征动力学[J].石油炼制与化工,2003,34(11):39-43.[4]㊀王洪波,傅送保,吴巍.环己酮氨肟化新工艺与HPO 工艺技术及经济对比分析[J].合成纤维工业,2004,27(3):40-42.[5]㊀李红梅.氨肟化反应中双氧水分解的影响因素探讨[J].合成纤维工业,2012,35(4):34-37.[6]㊀陈冠群,周涛,曾平,等.蒽醌法生产双氧水的研究进展[J].化学工业与工程,2006,23(6):550-555.[7]㊀王松林,程义.蒽醌法制过氧化氢中降解物的生成及再生研究进展[J].合成纤维工业,2017,40(2):46-51.Effect of hydrogen peroxide on cyclohexanone ammoximationreaction and optimization measures thereofLI Xinyu(SINOPEC Hunan Petrochemical Co.,Ltd.,Yueyang 414000)Abstract :In response to the high consumption of hydrogen peroxide (H 2O 2)and the high chromaticity and volatile alkali con-tent of caprolactam products on a 300kt /a ammoximation unit,the effect of H 2O 2on the ammoximation reaction was discussed,and the optimization measures were proposed.The results showed that the production capacity of the unit can be improved and theconsumption of H 2O 2and cyclohexanone can be significantly reduced by controlling the molar ratio of H 2O 2/cyclohexanone be-tween 1.12and 1.14and the mass fraction of H 2O 2between 29.5%and 32.0%during the ammoximation reaction process;thetotal carbon content of H 2O 2had a significant impact on the chromaticity of cyclohexanone oxime and the titration value of the two-stage rearrangement reaction of cyclohexanone oxime,and the total carbon content of H 2O 2can be controlled below 100mg /kg byoptimizing the operation process of the adsorption resin bed from parallel to series;and the blending effect of H 2O 2with cyclohex-anone and ammonia was improved and the conversion rate of cyclohexanone reached 99.95%when the feeding method of H 2O 2was optimized from top feeding to bottom feeding.Key words :cyclohexanone;hydrogen peroxide;ammoximation reaction;conversion rate;selectivity;chromaticity09㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷。
合成氨生产示意流程英文回答:Ammonia Production Process.Ammonia production is a crucial industrial process for the production of fertilizers, explosives, and other chemicals. The Haber-Bosch process is the most common method for synthesizing ammonia, which involves the reaction of nitrogen and hydrogen gases at high temperature and pressure in the presence of a catalyst.Process Overview.The synthesis of ammonia is a multi-step process that begins with the production of synthesis gas. Synthesis gas is a mixture of nitrogen and hydrogen gases, which are typically obtained from natural gas or coal. The synthesis gas is then compressed and heated to a high temperature, typically around 450-550°C. A catalyst, usually iron oxidepromoted with potassium oxide, is used to promote the reaction between nitrogen and hydrogen gases.The reaction between nitrogen and hydrogen gases is exothermic, releasing heat. This heat is used to maintain the high temperature required for the reaction. The reaction also produces ammonia gas, which is cooled and separated from the unreacted gases. The unreacted gases are recycled back into the process.The overall reaction for the synthesis of ammonia can be represented by the following equation:N2 + 3H2 → 2NH3。
合成氨工艺流程图合成氨合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨,世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。
合成氨主要用作化肥、冷冻剂和化工原料。
? 天然气制氨。
天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1,,0.3,(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。
以石脑油为原料的合成氨生产流程与此流程相似。
? 重质油制氨。
重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。
空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。
? 煤(焦炭)制氨。
随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。
o 合成氨工艺流程图1o 合成氨的在线分析检测点序检测点被测组分典型量程备注号A1 半水煤气 O2 0~1% A2 脱硫 H2S、SO2 0~5% A3 中变出口 CO 0~5% A4 低变出口 CO 0~1% A5 脱碳出口 CO2 0~2% A6 再生CO2(入口) O2 0~15% A7 精练气(甲烷化)出口 CO2+CO2 0~50ppm A8 合成塔入口新鲜气 H2 50~80% CH4 0~15% A9 合成循环气 H2 40~70% A10 天然气制氢一段炉 CH4 0~15% A11 天然气制氢二段炉 CH4 0~1% A12 重油制氢汽化炉 CH4 0~10%23。
(完整word版)合成氨的工艺流程合成氨工艺流程氨是重要的无机化工产品之一,在国民经济中占有重要地位。
除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。
合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。
德国化学家哈伯1909年提出了工业氨合成方法,即“循环法”,这是目前工业普遍采用的直接合成法。
反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。
合成氨反应式如下:N2+3H2≒2NH3合成氨的主要原料可分为固体原料、液体原料和气体原料。
经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。
1.合成氨的工艺流程(1)原料气制备将煤和天然气等原料制成含氢和氮的粗原料气。
对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
(2)净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
① 一氧化碳变换过程在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。
合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。
变换反应如下:CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。
第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。
因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
概述氮肥生产是高能耗的工业,其生产成本主要取决于系统的能耗,系统能耗除了与采用的工艺流程有关外,在很大程度上取决于系统控制的算法及稳定性,因此,化肥生产过程的控制系统对整个生产成本具有关键意义。
氮肥生产系统是由一个个相对独立的单元(工段)组成的。
各单元之间具有密切关系。
上一单元的产品或输出,即为下一单元的原料或输入,各个单元相互紧密联系形成一个连续的生产过程。
各个单元在地域上相互分散,但距离又不很远。
整个生产过程可以分为造气、脱硫、压缩、变换、脱碳、合成、甲醇、尿素等主要单元(工段)。
上述各单元(工段)的操作在工艺上密切联系,但在地域上分散、在控制上相对独立。
浙江威盛DCS在氮肥生产过程控制方面具有许多特点:●生产工艺的优化控制。
●各单元工艺参数的集中监控。
●在紧急情况下的遥控措施(阀门、马达等)。
●必要的报警和联锁。
●方便地查阅实时趋势和历史趋势。
●可以与企业管理网相连,实现数据共享。
1、造气造气一般是以块煤为原料,采用间歇式固定层常压气化法,在高温和程控机油传动控制下,交替与空气和过热蒸汽反应。
反应方程式:吹风C+O2→CO2+QCO2+C→2CO-Q上、下吹C+H2O(g)→CO+H2-QA、吹风阶段吹风阶段的主要作用是产生热量,提高燃料温度。
B、上吹(加氮)阶段上吹阶段的主要作用是置换炉底空气,吸收热量、制造半水煤气,同时加入部分氮气。
C、下吹阶段下吹阶段作用是制取半水煤气,吸收热量,使上吹后上移的气化层下移。
D、二上吹阶段二上吹的主要作用是将炉底及进风管道中煤气吹净并回收,确保生产安全。
E、吹净阶段吹净的主要作用是回收造气炉上层空间的煤气及补充适量的氮气,以满足合成氨生产对氮氢比的要求。
造气工艺流程图控制方案在生产中,一般均是多个造气炉组成一组。
在多台造气炉同时投入运行时,为了保证造气炉在吹风阶段的风量,必须对造气炉的吹风阶段进行顺序控制。
对造气炉进行吹风排序,也就是要实现吹风时间自寻优及动态跟踪。