最新北师大版九年级数学下册单元测试题全套及答案
- 格式:doc
- 大小:1.72 MB
- 文档页数:30
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!北师大版九年级下单元测试第1单元班级________姓名________一、选择题:本题共10小题,每小题5分,共50分.1.已知a Ð为锐角,且1sin 2a =,则a Ð=()A.30°B.45°C.60°D.90°2.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直(A ,D ,B 在同一条直线上),设CAB a Ð=,则拉线BC 的长度为()A.sin h aB.cos h aC.tan h aD.cos h a×3.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图,在Rt ACB △中,90C Ð=°,30ABC Ð=°,延长CB 使BD AB =,连接AD ,得15D Ð=°,所以tan152AC CD ==-°.类比这种方法,计算tan 22.5°的值为()1+1- C. D.124.如图,ABC △的顶点是正方形网格的格点,则cos ABC Ð的值为()A.23B.22C.43D.2235.如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为a 时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为b ,已知3sin cos 5a b ==,则梯子顶端上升了()A.1米B.1.5米C.2米D.2.5米6.图(1)是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图(2)所示的四边形OABC .若1AB BC ==,AOB a Ð=,则2OC 的值为()A.211sin a+ B.2sin 1a + C.211cos a+ D.2cos 1a +7.如图,Rt ABC △中,90BAC Ð=°,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B Ð=Ð,连接CE ,则CEAD的值为()A.323 C.15 D.28.如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和ND .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度1:1.25i =.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N2 1.41»3 1.73»)()A.9.0mB.12.8mC.13.1mD.22.7m9.如图,在Rt ABC △中,90ACB Ð=°,CE 是斜边AB 上的中线,过点E 作EF AB ^交AC 于点F .若4BC =,AEF △的面积为5,则sin CEF Ð的值为()A.355 C.452510.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为1:0.75i =、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E )均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据sin240.41°»,cos240.91°»,tan240.45°=)()A.21.7米B.22.4米C.27.4米D.28.8米二、填空题:本题共5小题,每小题5分,共25分.11.如图,在四边形ABCD 中,90B Ð=°,2AB =,8CD =,AC CD ^.若1sin 3ACB Ð=,则tan D =______________.12.如图,在ABC 中,6AB AC ==,2sin 3B =,则ABC 的面积=___________.13.如图,ABC △的顶点B ,C 的坐标分别是(1,0),,且90ABC Ð=°,30A Ð=°,则顶点A 的坐标是____________________.14.如图,运载火箭从地面L 处垂直向上发射,当火箭到达A 点时,从位于地面R 处的雷达测得AR 的距离是40km ,仰角是30°,n 秒后,火箭到达B 点,此时在R 处测得仰角是45°,则火箭在这n 秒中上升的高度是____________km.15.如图,在矩形ABCD 中,BD 是对角线,AE BD ^,垂足为E ,连接CE .若30ADB Ð=°,则tan DEC Ð的值为______________.三、解答题:本题共2小题,第一小题10分,第二小题15分,共25分.16.小明想利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部B ,如图所示.于是他们先在古树周围的空地上选取了一点D ,并在点D 处安装了测倾器DC ,测得古树的顶端A 的仰角为45°;再在BD 的延长线上确定一点G ,使5m DG =,并在点G 处的地面上水平放置了一个小平面镜,小明沿BG 方向移动,当移动到点F 时,他刚好在小平面镜内看到这棵古树的顶端A 的像,此时,测得2m FG =,小明眼睛与地面的距离 1.6m EF =,测倾器的高0.5m CD =.已知点F ,G ,D ,B 在同一水平直线上,且EF ,CD ,AB 均垂直于FB ,求这棵古树的高AB (小平面镜的大小忽略不计).17.如图,在直角梯形ABCD 中,//AB DC ,90DAB Ð=°,8AB =,5CD =,BC =.(1)求梯形ABCD 的面积;(2)连接BD ,求DBC Ð的正切值.参考答案1.A2.B3.B4.B5.C6.A7.D8.C9.A 10.A 11.3412.13.14.20)15.16.如图,过点C 作CH AB ^于点H ,则CH BD =,0.5m BH CD ==.在Rt ACH △中,45ACH Ð=°,AH CH BD \==.0.5AB AH BH BD \=+=+.EF FB ^ ,AB FB ^,90EFG ABG \Ð=Ð=°.由题意知EGF AGB Ð=Ð,EFG ABG \△△.EF FG AB BG \=,即 1.620.55BD BD=++,解得17.5m BD =.17.50.518(m)AB \=+=.答:这棵古树的高AB 为18m.17.(1)如图,过点C 作CE AB ^于点E .//AB DC ,90DAB Ð=°,90D \Ð=°.90A D AEC \Ð=Ð=Ð=°.\四边形ADCE 是矩形.AD CE \=,5AE CD ==.853BE AB AE \=-=-=.BC = ,6AD CE \==.\梯形ABCD 的面积为1(58)6392´+´=.(2)如图,过点C 作CH BD ^于点H .//CD AB ,CDB ABD \Ð=Ð,又90CHD A Ð=Ð=° ,CDH DBA \△△.CH CDAD BD\=.10BD === ,5610CH \=,解得3CH =.6BH \=.31tan 62CH DBC BH \Ð===.。
一、选择题1.如图,Rt △ABC 中,AC =BC =2,正方形CDEF 的顶点D 、F 分别在AC 、BC 边上,设CD 的长度为x ,△ABC 与正方形CDEF 重叠部分的面积为y ,则下列图象中能表示y 与x 之间的函数关系的是( )A .B .C .D .2.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 34 y10 52 125A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根3.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =04.如图所示,二次函数2y ax bx c =++的图象经过点(-1,2),且与x 轴交点的横坐标分别为1x ,2x ,其中121x -<<-,201x <<,下列结论:①0abc >;②420a b c -+<;③20a b -<;④284b a ac +>.其中正确的有( )A .1个B .2个C .3个D .4个5.抛物线23y x =向左平移5个单位,再向下平移1个单位,所得到的抛物线是( ) A .23(5)1y x =-+ B .23(-5)1y x =- C .23(5)1y x =+-D .23(5)1y x =++6.如图,抛物线2y ax bx c =++的对称轴是直线1x =-,下列结论:①0abc >;②240b ac -≥;③80a c +<;④5320a b c -+<,正确的有( )A .1个B .2个C .3个D .4个7.已知抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =.有下列结论:①0abc >;②关于x 的方程20ax bx c ++=有两个不等的实数根;③12a <-.其中正确结论的个数是( ) A .0B .1C .2D .38.如图1,在矩形ABCD 中,动点E 从点A 出发,沿A B C →→的路线运动,当点E 到达点C 时停止运动.若FE AE ⊥,交CD 于点F 设点E 运动的路程为x ,FC y =,已知y 关于x 的图象如图2所示,则m 的值为( )A .2B .2C .1D .239.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( ) A . B . C . D .10.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2ba =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个11.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( )A .10sB .20sC .30sD .40s12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.将抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为_____. 14.已知二次函数2(0)y ax bx c a =++≠的自变量x 与函数值y 之间满足下列数量关系:x0 1 2 3 y75713则代数式的值为_______.15.若A (m-2,n ),B (m+2,n )为抛物线2()2020y x h =--+上两点,则n=_______.16.已知函数y b =的图象与函数23|1|43y x x x =----的图象恰好有四个交点,则b 的取值范围是______.17.有五张正面分别标有数字32112---,,,,的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于以x为自变量的二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是____.18.如图,已知二次函数2(0)y ax bx c a =++<的图象与x 轴交于不同两点,与y 轴的交点在y 轴正半轴,它的对称轴为直线1x =.有以下结论:①0abc >,②0a c ->,③若点()11,y -和()22,y 在该图象上,则12y y <,④设1x ,2x 是方程20ax bx c ++=的两根,若2am bm c p ++=,则()()120p m x m x --≤.其中正确的结论是____________(填入正确结论的序号).19.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与轴的交点为0,6;②抛物线的对称轴是在轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).20.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q 是线段PA 上靠近点A 的三等分点,连结OQ ,则线段OQ 的最大值是__________.三、解答题21.已知:抛物线y 1=﹣x 2﹣2x +3的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)请在平面直角坐标系内画出二次函数y 1=﹣x 2﹣2x +3的草图,并标出点A 的位置; (2)点C 是直线y 2=﹣x +1与抛物线y 1=﹣x 2﹣2x +3异于B 的另一交点,则点C 的坐标为 ;当y 1≥y 2时x 的取值范围是 .22.平面直角坐标系xOy 中,已知抛物线2y x bx c =++经过()21,21m m -++、()20,22mm ++两点,其中m 为常数.(1)求b 的值,并用含m 的代数式表示c ;(2)若抛物线2y x bx c =++与x 轴有公共点,求m 的值;(3)设()1,a y 、()22,a y +是抛物线2y x bx c =++上的两点,请比较2y 与1y 的大小,并说明理由.23.如图, 已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2y ax bx c =++与直线交于A ,E 两点,与x 轴交于B (1,0),C (2,0)两点.(1)求该抛物线的解析式;(2)动点P 在x 轴上移动, 当△PAE 是直角三角形时, 请通过计算写出一个满足条件点P 的坐标.24.一个二次函数图像上部分点的横坐标x ,纵坐标y 的对应值如下表:x … 0 1 2 3 4 … y…m﹣13…的值为 ;(2)在给定的直角坐标系中,画出这个函数的图像; (3)根据图像,写出当y >0时,x 的取值范围.25.已知二次函数223(0)y mx mx m m =-->的图像与x 轴交于A ,B 两点(点A 在点B 左侧),顶点为C .(1)求A ,B 两点的坐标;(2)连接,BC AC ,若ABC 为等边三角形,求m 的值.26.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为()()76120,2030,mx m x x y n x x ⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到2yx ;当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,利用重叠的面积等于正方形的面积减去△MNE 的面积得到()2221y x x =--,配方得到()222y x =--+,然后根据二次函数的性质对各选项进行分析判断即可. 【详解】解:当0<x≤1时,2yx ,当1<x≤2时,ED 交AB 于M ,EF 交AB 于N ,如图,CD=x ,则2AD x =-, ∵Rt △ABC 中,AC=BC=2, ∴△ADM 为等腰直角三角形, ∴2DM x =-,∴()222EM x x x =--=-,∴S △ENM ()()22122212x x =-=-, ()()2222214222y x x x x x =--=-+-=--+∴()()()22012212y x x y x x ⎧=≤⎪⎨=--+≤⎪⎩﹤﹤, 故选:A . 【点睛】本题考查动点问题的函数图象:通过看图获取信息,考查学生问题分析能力,解题的关键是分两种情况考虑:当0<x≤1和当1<x≤2.2.D解析:D 【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意; ∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意. 故选:D . 【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.D解析:D 【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m −n +k =0,则可对D 选项进行判断. 【详解】解:A .∵抛物线与x 轴有两个交点, ∴n 2﹣4mk >0,所以A 选项错误; B .∵抛物线开口向上, ∴m >0,∵抛物线与y 轴的交点在x 轴下方, ∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1, ∴﹣2nm=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∴m ﹣n +k =0,所以D 选项正确; 故选:D . 【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2bx a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.4.D解析:D 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 解:①∵a <0,2ba-<0, ∴b <0.∵抛物线交y 轴与正半轴, ∴c >0.∴abc >0,故①正确.②根据图象知,当x=-2时,y <0,即4a-2b+c <0;故②正确; ③∵该函数图象的开口向下, ∴a <0;又∵对称轴-1<x=2ba-<0, ∴2a-b <0,故③正确;④∵y=244ac b a->2,a <0,∴4ac-b 2<8a ,即b 2+8a >4ac ,故④正确. 综上所述,正确的结论有①②③④.故答案为:D .【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.5.C解析:C【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=3x 2向左平移5个单位所得直线解析式为:y=3(x+5)2;再向下平移1个单位为:y=3(x+5)2-1.故选:C .【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 6.B解析:B【分析】首先根据函数图像分别判断出a 、b 、c 的符号判断结论①;再利用与x 轴交点的个数得出24b ac -的正负判断结论②;利用对称轴以及当2x =时函数值的正负判断结论③;利用当1x =-和2x =-时的函数值的正负来判断结论④.【详解】结论①由抛物线开口方向向上可得0a >;对称轴在y 轴左侧可得a 、b 符号相同,即0b >;函数图像与y 轴交于负半轴,可得0c <;由此可知0abc <,故①错误. 结论②由函数图像与x 轴有两个交点可得240b ac ->,故②正确.结论③由函数图像可知抛物线对称轴为1x =-,所以12b a-=-,整理可得2b a =;当2x =时,420a b c ++>,将2b a =代入420a b c ++>可得,80a c +>,故③错误. 结论④由函数图像可知当2x =-时,420a b c -+<,当1x =-时,0a b c -+<,所以532(42)()0a b c a b c a b c -+=-++-+<,故④正确.综上所述,本题正确结论为②④,共2个.故选B.【点睛】本题主要考查二次函数的系数与图像的关系,关键在利用函数中当1x =-、2x =-和1x =-时的函数值的大小来判断③④结论的对错.7.C解析:C【分析】由二次函数的对称性及题意可得该抛物线与x 轴的另一个交点坐标为()1,0-,进而可得抛物线的开口方向向下,则有a 0,b 0,c 0<>>,然后根据二次函数的性质可进行排除选项.【详解】解:∵抛物线2y ax bx c =++(a ,b ,c 是常数0a ≠,1c >)经过点(2,0),其对称轴是直线12x =, ∴抛物线与x 轴的另一个交点的横坐标为12212⨯-=-, ∴该点坐标为()1,0-,∴抛物线的开口方向向下,即0a <,根据“左同右异”可得0b >,∴0abc <,故①错误; ∴令y=0,则关于x 的方程20ax bx c ++=的解为:122,1x x ==-,故②正确; 根据根与系数的关系可得122c x x a==-, ∴21c a =->, 解得12a <-,故③正确; ∴正确的个数有2个;故选C .【点睛】 本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 8.D解析:D【分析】分别求出点E 在AB 、BC 段运动时函数的表达式,即可求解.【详解】解:由图2可知,AB=6,BC=10-6=4,①当点E 在AB 上运动时,y=FC=BE=AB-AE=6-x ,即y=6-x (0≤x≤6),图象为一次函数;②当点E 在BC 上运动时,如下图,则BE=x-AB=x-6,EC=BC-BE=4-(x-6)=10-x , FC=y ,AB=6,∵∠FEC+∠AEB=90°,∠AEB+∠EAB=90°,∴∠FEC=∠EAB ,∴∠CFE=∠AEB ,∴△ABE ∽△ECF , ∴BE AB CF CE=,即6610x y x -=-, 整理得:()2181061063y x x x =-+-<≤,图象为二次函数, ∵106-<, 故()2218121086363y x x x =-+-=--+有最大值,最大值为23, 即23m =, 故选:D .【点睛】本题考查的是动点图象问题,涉及到二次函数、一次函数、相似三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.9.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数k y x=在一、三象限,而二次函数()20y kx k k =-≠开口向上,与y 轴交点在原点下方,故C 选项错误,B 选项正确; ②当k<0时,反比例函数k y x=在二、四象限,而二次函数()20y kx k k =-≠开口向下,与y 轴交点在原点上方,故A 选项与D 选项错误.故选B .【点睛】 本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.10.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =, ∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.11.B解析:B【分析】当s 取最大值时,飞机停下来,求函数最大值时的自变量即可.【详解】∵当s 取最大值时,飞机停下来,∴t= 6022( 1.5)b a -=-⨯-=20, 故选:B .【点睛】本题考查了二次函数应用-飞机着陆问题,熟练把问题转化为二次函数的最值问题是解题的关键.12.D解析:D【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案.【详解】解:由图象开口向上,可知a<0,与y 轴的交点在x 轴的下方,可知c<0, 又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误; ∵122b a -= ∴=-a b , ∴0a b +=,故B 错误; 当12x =时,则11042y a b c =++>, ∵=-a b , ∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误;当21x n =+时,222(1)(1)y a n b n c =++++4222an an a an a c =++--+42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥,∴22(1)an n c c ++≤,即y c ≤,故D 正确;故选:D .【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.y =3x2+1【分析】根据抛物线平移规律常数项加1即可【详解】解:抛物线y =3x2沿y 轴向上平移1个单位所得的抛物线关系式为y =3x2+1故答案为:y =3x2+1【点睛】本题考查了抛物线平移的变化规解析:y =3x 2+1.【分析】根据抛物线平移规律,常数项加1即可.【详解】解:抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为y =3x 2+1, 故答案为:y =3x 2+1.【点睛】本题考查了抛物线平移的变化规律,解题关键是准确掌握函数平移的规律,左加右减自变量,上加下减常数项.14.91【分析】观察表格可知:x=0时y=7x=2时y=7即可求得抛物线的对称轴为直线x==1根据抛物线的对称性求得x=-1时y=13从而求得4a+2b+c=7a-b+c=13【详解】解:观察表格可知:解析:91【分析】观察表格可知:x=0时,y=7,x=2时,y=7,即可求得抛物线的对称轴为直线x=022+=1,根据抛物线的对称性求得x=-1时,y=13,从而求得4a+2b+c=7,a-b+c=13.【详解】解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x=022+=1, ∵x=3时,y=13,∴x=-1时,y=13,∴4a+2b+c=7,a-b+c=13,∴(4a+2b+c )(a-b+c )的值为91,故答案为91.【点睛】本题考查二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 15.2016【分析】根据二次函数的图象与性质可得抛物线的对称轴为再利用m-2+m+2=2h 解得m=h 则可得A (h −2n )B (h +2n )将B (h +2n )代入函数关系式即可求出结果【详解】解:∵A (m-2n解析:2016【分析】根据二次函数的图象与性质可得抛物线2()2020y x h =--+的对称轴为x h =,再利用m-2+m+2=2h ,解得m=h ,则可得A (h−2,n ),B (h +2,n ),将B (h +2,n )代入函数关系式即可求出结果.【详解】解:∵A (m-2,n ),B (m+2,n )是抛物线2()2020y x h =--+上两点, ∴抛物线2()2020y x h =--+的对称轴为x h =,∴m-2+m+2=2h ,解得m=h ,∴A (h−2,n ),B (h +2,n ),当x =h +2时,n =−(h +2−h )2+2020=2016,故答案为:2016.【点睛】本题考查了二次函数的图象与性质,解题的关键是掌握二次函数图象上的点的坐标特征并灵活运用所学知识解决问题.16.【分析】根据绝对值的意义分两种情形化简绝对值后根据图像确定b 的范围即可【详解】当x≥1时y=;当x <1时y=;∴二图像的交点为(1-6)y=的最小值为画图像如下根据图像可得直线与之间的部分有个交点∴ 解析:2564b -<<- 【分析】根据绝对值的意义,分两种情形化简绝对值,后根据图像确定b 的范围即可.【详解】当x≥1时,y=27x x -;当x <1时,y=26x x --; ∴227(1)6(1)x x x y x x x ⎧-≥=⎨--<⎩, 二图像的交点为(1,-6), y=26x x --的最小值为254-, 画图像如下,根据图像,可得直线6y =-与254y =-之间的部分有4个交点, ∴b 的取值范围为254-<b <-6, 故填254-<b <-6. 【点睛】 本题考查了图像的交点问题,利用分类思想,数形结合思想,最值思想画出图像草图是解题的关键.17.【分析】把点的坐标代入解析式转化为a 的一元二次方程确定方程的根从给出的数字中扣除方程的根就是符合题意的a 值计算概率即可【详解】当二次函数的图象经过点时得解得所以符合题意的a 值有-3-12共三个所以二 解析:35【分析】把点的坐标代入解析式,转化为a 的一元二次方程,确定方程的根,从给出的数字中扣除方程的根就是符合题意的a 值,计算概率即可.【详解】当二次函数22(1)2y x a x a =-++-的图象经过点(1,0)时,得 220a a +-=,解得 122,1a a =-=,所以符合题意的a 值有-3,-1,2,共三个,所以二次函数22(1)2y x a x a =-++-的图象不经过点(1,0)的概率是35,故答案为:35. 【点睛】 本题考查了简单事件的概率计算、二次函数,利用二次函数的图象过点的意义,判定符合题意的a 值是解题的关键.18.③④【分析】利用数形结合思想从抛物线的开口与坐标轴的交点对称轴等方面着手分析判断即可【详解】解:∵抛物线的开口向下对称轴在原点的右边与y 轴交于正半轴∴a <0b >0c >0∴abc <0∴结论①错误;∵抛解析:③④【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】解:∵抛物线的开口向下,对称轴在原点的右边,与y 轴交于正半轴,∴a <0, b >0,c >0,∴abc <0,∴结论①错误;∵抛物线的对称轴为x=1, ∴12b a-=, ∴b=-2a ;∵ c+a+b >0,∴c-a >0,∴a-c <0, ∴结论②错误;∵抛物线的对称轴为直线x=1,抛物线的开口向下,∵点()11,y -和()22,y 在该图象上,∴()11,y -与x=1的距离比()22,y 与x=1的距离远;∴12y y <,∴结论③正确;∵2am bm c p ++=,1x ,2x 是方程20ax bx c ++=的两根,当0p a+b+c <≤时,12m ≤≤x x ;∴()()120<--p m x m x ;当p=0时,()()12=0--p m x m x当p<0时,()()120<--p m x m x∴()()120p m x m x--≤∴结论④正确;③④故答案为:【点睛】本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.19.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y轴的右侧,正确;③由表中数据可知在对称轴左侧,y随x增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x,y轴的交点坐标等.20.【分析】当BCP三点共线且C在BP之间时BP最大连接PB此时△OAQ∽△BAP且相似比为1:3由此即可求得求出BP的最大值即可求解【详解】解:如下图所示连接BP当BCP三点共线且C在BP之间时BP最解析:7 3【分析】当B、C、P三点共线,且C在BP之间时,BP最大,连接PB,此时△OAQ∽△BAP,且相似比为1:3,由此即可求得13=OQ BP,求出BP的最大值即可求解.【详解】解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0), ∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP , ∴13=OQ BP ,故只要BP 最大,则OQ 就最大, 此时BP 最大值为:224327++=BC CP , ∴OQ 的最大值为:73. 【点睛】本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解.三、解答题21.(1)见解析;(2)()2,3-,21x -≤≤【分析】(1)利用五点法作出二次函数的图像,然后令x=0求出A 点坐标即可;(2)将两个函数联立形成新的一元二次方程,然后求解C 点坐标,最后利用图像判断x 的取值范围即可.【详解】(1)由题意得: x ··· -3 -2 -1 0 1 ···y .. 0 3 4 3 0 (1)由上图得A 点坐标为()3,0-;(2)由题意得:2123x x x -+=--+,解得12x =-,21x =,当2x =-时,()213y =--+=,∴C 点坐标为()2,3-,由上图得,当y 1≥y 2时,21x -≤≤.【点睛】本题考查了二次函数的图像和性质,重点是根据五点法作出二次函数的图像,然后利用数形结合思想进行判断.22.(1)b =2,c =m 2+2m +2;(2)m =-1;(3)见解析【分析】(1)由抛物线上两点代入抛物线解析式中即可求出b 和c ;(2)令y =0,抛物线和x 轴有公共点,即△≥0,再结合非负数的性质确定出m 的值, (3)将两点代入抛物线解析式中,表示出y 1,y 2,求出y 2-y 1分情况讨论即可【详解】解:(1)∵抛物线y =x 2+bx +c 经过(-1,m 2+2m +1)、(0,m 2+2m +2)两点, ∴2212122b c m m c m m ⎧-+=++⎨=++⎩, ∴2222b c m m =⎧⎨=++⎩, 即:b =2,c =m 2+2m +2;(2)由(1)得y =x 2+2x +m 2+2m +2,令y =0,得x 2+2x +m 2+2m +2=0,∵抛物线与x 轴有公共点,∴△=4-4(m 2+2m +2)≥0,∴(m +1)2≤0,∵(m +1)2≥0,∴m +1=0,∴m =-1;(3)由(1)得,y =x 2+2x +m 2+2m +2,∵(a ,y 1)、(a +2,y 2)是抛物线的图象上的两点,∴y 1=a 2+2a +m 2+2m +2,y 2=(a +2)2+2(a +2)+m 2+2m +2,∴y 2-y 1=[(a +2)2+2(a +2)+m 2+2m +2]-[a 2+2a +m 2+2m +2]=4(a +2)当a +2≥0,即a ≥-2时,y 2-y 1≥0,即y 2≥y 1,当a +2<0,即a <-2时,y 2-y 1<0,即y 2<y 1.【点睛】此题是二次函数综合题,主要考查了待定系数法,抛物线与x 轴的交点,比较代数式的大小,解本题的关键是求出b ,用m 表示出抛物线解析式,难点是分类讨论.23.(1)213122=-+y x x ;(2)点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2. 【分析】(1)根据直线的解析式求得点A (0,1),然后利用待定系数法求得函数解析式;(2)让直线解析式与抛物线的解析式结合即可求得点E 的坐标.△PAE 是直角三角形,应分点P 为直角顶点,点A 是直角顶点,点E 是直角顶点三种情况探讨.【详解】解:(1)解:(1)∵直线y=12x+1与y 轴交于点A , ∴A (0,1),将A (0,1),B (1,0),C (2,0)代入2y ax bx c =++中 10420c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:12321a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线的解析式为:213122=-+y x x (2) 设点E 的横坐标为m ,则它的纵坐标为213122m m -+即E 点的坐标213(,1)22m m m -+,又∵点E 在直线112y x =+上, ∴213111222m m m -+=+解得10m =(舍 去) ,24m =, E ∴的坐标为(4,3).(Ⅰ)当A 为直角顶点时,过A 作1AP DE ⊥交x 轴于1P 点,设1(,0)P a 易知D 点坐标为(2,0)-,由Rt AOD Rt ∆∽△1POA 得:DO OA OA OP =,即211a=, 12a ∴=, 11(2P ∴,0). (Ⅱ) 同理,当E 为直角顶点时, 过E 作2EP DE ⊥交x 轴于2P 点,由Rt AOD Rt ∆∽△2P ED 得,2DO DE OA EP =,即221=22EP ∴=,2152DP ∴==, 1511222a ∴=-=, 2P 点坐标为11(,0)2.(Ⅲ) 当P 为直角顶点时, 过E 作EF x ⊥轴于F ,设3(P b ,0),由90OPA FPE ∠+∠=︒,得OPA FEP ∠=∠,Rt AOP Rt PFE ∆∆∽, 由AO OP PF EF =得143b b =-, 解得13b =,21b =,∴此时的点3P 的坐标为(1,0)或(3,0),综上所述, 满足条件的点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,直线和抛物线的交点等;分类讨论的思想是解题的关键.24.(1)3;(2)见解析;(3)x<1或x>3.【分析】(1)利用抛物线的对称性得到抛物线的对称轴为直线x=2,则x=4和x=0时的函数值相等,从而得到m的值;(2)利用描点法画出二次函数图象;(3)结合函数图象,写出抛物线在x轴上方所对应的自变量的范围.【详解】解:(1)∵抛物线经过点(1,0),(3,0),∴抛物线的对称轴为直线x=2,顶点坐标为(2,-1),∴x=4和x=0时的函数值相等,∴m=3;故答案为:3;(2)描点,连线,二次函数图象如图所示,y 时,x<1或x>3.(3)观察图象,0【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质. 25.(1)(1,0)A -,(3,0)B ;(2)32m = 【分析】(1)把y=0代入,解方程即可;(2)求出顶点坐标,过C 作CD AB ⊥于D ,求出CD 即可.【详解】解:(1)2230mx mx m --=,∵0m >,方程两边同时除以m 得, 2230x x --=解得,13x =,21x =-∴A ,B 两点的坐标分别为:(1,0)A -,(3,0)B .(2)抛物线223(0)y mx mx m m =-->的顶点横坐标为:212m x m-=-=, 把x=1代入223y mx mx m =--得,y=-4m ,抛物线的顶点C 的坐标为:(1,4)C m -由(1)得,AB=4,过C 作CD AB ⊥于D , ∵ABC 为等边三角形,∴AD=2,AC=4, ∴22224223CD AC AD =-=-=∵点C 在第四象限,∴43m =∴3m =. 【点睛】本题考查求二次函数与x 轴交点,等边三角形的性质,解题关键是熟练的解一元二次方程,根据已知条件,找到坐标与线段的关系.26.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得;(2)在(1)的基础上分段表示利润,讨论最值.【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得 321276m m =-,解得12m =-, 当地26天的售价为25元/千克时,代入y n =,则25n =, 故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +.当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭, ∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+,∵280>,∴W 随x 的增大而增大,∴当30x =时,952W =最大.∵968952>,∴当18x =时,968W =最大.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.。
第三章 圆 单元测试卷一、选择题(本大题10小题,每小题3分,共30分)1. 已知AB 是半径为5的圆的一条弦,则AB 的长不可能是( )A .4B .8C .10D .122.如图,在⊙O 中,AB =AC ,若∠ABC =57.5°,则∠BOC 的度数为( )A. 132.5° B .130° C .122.5° D .115°第2题图 第4题图 第5题图 第6题图 第7题图3.在平面直角坐标系xOy 中,若点P (4,3)在⊙O 内,则⊙O 的半径r 的取值范围是( )A .0<r <4B .3<r <4C .4<r <5D .r >54.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠CDA =122°,则∠C 的度数为( )A .22°B .26°C .28°D .30°5.如图,正方形ABCD 内接于⊙O ,AB =22,则的长是( ) A. π B .23π C .2π D .21π 6.如图所示方格纸中,点A ,B ,C ,D ,O 均为格点,则点O 是( )A .△ABC 的内心B .△ABC 的外心 C .△ACD 的内心 D .△ACD 的外心7.一把直尺、含60°角的直角三角尺和光盘如图所示摆放,A 为60°角与直尺的交点,B 为直尺与光盘的切点.若AB =3,则光盘的直径是( )A .3B .33C .6D .63第8题图 第9题图 第10题图8.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A ,与y 轴交于B ,C 两点,M 的坐标为(3,5),则B 的坐标为( )A .(0,5)B .(0,7)C .(0,8)D .(0,9)9.如图,一个扇形纸片的圆心角为90°,半径为6.将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .6π﹣293 B .6π﹣93 C .12π﹣293 D .49 10.如图,在等边三角形ABC 中,点O 在边AB 上,⊙O 过点B 且分别与边AB ,BC 相交于点D ,E ,F 是AC 上的点,下列说法错误的是( )A .若EF ⊥AC ,则EF 是⊙O 的切线B .若EF 是⊙O 的切线,则EF ⊥ACC .若BE =EC ,则AC 是⊙O 的切线D .若BE =23EC ,则AC 是⊙O 的切线 二、填空题(本大题6小题,每小题4分,共24分)11. 如图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE = °.第11题图 第13题图 第14题图 第15题图 第16题图12.已知⊙O 的半径为3 cm ,点A ,B ,C 是直线l 上的三个点,点A ,B ,C 到圆心O 的距离分别为2 cm ,3 cm ,5 cm ,则直线l 与⊙O 的位置是 .13.如图,点 A ,B ,C 均在6×6的正方形网格格点上,过A ,B ,C 三点的圆除经过A ,B ,C 三点外还能经过的格点数为 .14. 如图,Rt △ABC 的内切圆⊙I 分别与斜边AB ,直角边BC ,CA 切于点D ,E ,F ,AD=3,BD=2,则Rt △ABC 的面积为 .15.木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O 于点A ,并使较长边与⊙O 相切于点C .记角尺的直角顶点为B ,量得AB =2 cm ,BC =4 cm ,则⊙O 的半径是 cm .16.如图,⊙O 的直径为25 cm ,弦AB ⊥弦CD 于点E ,连接AD ,BC ,若AD =4 cm ,则BC 的长为 cm .三、解答题(本大题7小题,共66分)17.(6分)如图,AB 为⊙O 的直径,C ,D 是⊙O 上的两点,且BD ∥OC ,求证:=.第17题图 第18题图 第19题图18. (8分)如图,I 是△ABC 的内心,AI 的延长线交△ABC 的外接圆于点D ,试判断DB 与DI 相等吗?说明理由.19. (8分)一些不便于直接测量的圆形孔道的直径可以用如下方法测量.如图,把一个直径为10 mm 的小钢球紧贴在孔道边缘,测得钢球顶端离孔道口的距离为8 mm ,求这个孔道的直径AB .20.(10分)如图,以等边三角形ABC 的边AB 为直径的圆,与另两边BC ,AC 分别交于点E ,F ,请仅用无刻度的直尺作出△ABC 的边AB 上的高CD .第20题图 第21题图 第22题图21.(10分)如图,四边形ABCD是⊙O的内接四边形,延长DC,AB交于点E,且BE=BC.(1)求证:△ADE是等腰三角形;(2)若∠D=90°,⊙O的半径为5,BC∶DC=1∶2,求△CBE的周长.22.(12分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,C是⊙O外一点且∠DBC=∠A,连接OE并延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.23.(12分)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE 交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.①②③第23题图第24题图24.我们知道,如图①,AB是⊙O的弦,F是的中点,过点F作EF⊥AB于点E,易得E是AB的中点,即AE=EB.若⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.(1)当点C在弦AB的上方时(如图②),过点F作EF⊥AC于点E,求证:E是“折弦ACB”的中点,即AE=EC+CB;(2)当点C在弦AB的下方时(如图③),其他条件不变,则上述结论是否仍然成立?若成立,说明理由;若不成立,那么AE,EC,CB满足怎样的数量关系?(直接写出,不必证明.)第三章 圆 单元测试卷 参考答案 答案详解 10.C 提示:连接OE ,如图所示,则OB =OE.因为∠B =60°,所以∠BOE =60°.因为∠BAC =60°,所以∠BOE =∠BAC.所以OE ∥AC.因为EF ⊥AC ,所以OE ⊥EF.所以EF 是⊙O 的切线.选项A 正确;因为EF 是⊙O 的切线,所以OE ⊥EF.由A 知OE ∥AC ,所以AC ⊥EF. 选项B 正确;因为∠B =60°,OB =OE ,所以BE =OB.因为BE =CE ,所以BC =AB =2BO.所以AO =OB.如图,过点O 作OH ⊥AC 于点H ,所以∠OHA=90°.因为∠BAC =60°,所以∠AOH=30°. 在Rt △OAH 中 ,由勾股定理,得OH =22OA AH -= 222OA OA ⎛⎫- ⎪⎝⎭=23AO ≠OB. 选项C 错误;因为BE =23EC ,所以CE =332BE.因为AB =BC ,BO =BE ,所以AO =CE =332OB. 在Rt △OAH 中 ,由勾股定理,得OH =22OA AH -=23AO =OB.所以AC 是⊙O 的切线. 选项D 正确.16.2 提示:如图,作直径DH ,连接AH ,CH ,AC .因为DH 是直径,所以∠DCH =∠DAH =90°.因为AB ⊥CD ,所以∠AED =∠DCH =90°.所以CH ∥AB.所以∠CAB =∠ACH.所以=.所以AH =BC. 在Rt △ADH 中,AH =22224)52(-=-AD DH =2(cm ),所以BC =AH =2 cm .三、17.证明:因为OB =OD ,所以∠D =∠B.因为BD ∥OC ,所以∠D =∠COD ,∠AOC =∠B.所以∠AOC =∠COD.所以=.18.解:DB =DI.理由:连接BI.由圆周角定理,得∠DBC =∠DAC.因为I 是△ABC 的内心,所以∠ABI =∠CBI ,∠BAD =∠CAD. 由三角形的外角的性质,知∠DIB =∠IBA+∠BAI.又∠DBI =∠DBC+∠IBC ,所以∠DIB =∠DBI.所以DB =DI .19.解:连接OA ,过点O 作OD ⊥AB 于点D ,则AB =2AD.答案速览一、1. D 2.B 3.D 4.B 5.A 6.D 7. D 8.D 9.A 10.C二、11. n 12.相交 13.5 14. 6 15.5 16.2三、解答题见“答案详解”因为钢球的直径是10 mm ,所以钢球的半径是5 mm ,即OA=5 mm.因为钢球顶端离孔道口的距离为8 mm ,所以OD =3 mm.在Rt △AOD 中,由勾股定理,得AD =222235-=-OD OA =4(mm ), 所以AB =8 mm . 20.解:如图所示,CD 即为所求.21.(1)证明:因为四边形ABCD 是⊙O 的内接四边形,所以∠A+∠DCB=180°.又∠DCB+∠BCE=180°,所以∠A =∠BCE.因为BE =BC ,所以∠BCE =∠E.所以∠A =∠E.所以DA =DE ,即△ADE 是等腰三角形.(2)解:连接AC.设BC =k ,则CD =2k.因为∠D =90°,所以∠CBE =90°,AC 是⊙O 的直径.因为BE =BC ,所以∠E =45°.所以BE =BC =k ,EC =2k.所以DA=DE =22k.在Rt △DAC 中,由勾股定理,得AC =10k.因为⊙O 的半径为5,所以10k =10,解得k =10.所以BC+BE+CE=210+25,即△CBE 的周长为210+25.22.(1)证明:连接OB.因为E 是弦BD 的中点,所以BE =DE ,OE ⊥BD ,=12.所以∠BOE =∠A ,∠OBE+∠BOE =90°.因为∠DBC =∠A ,所以∠BOE =∠DBC.所以∠OBE+∠DBC =90°.所以∠OBC =90°,即BC ⊥OB.所以BC 是⊙O 的切线.(2)解:因为OB =6,BC =8,BC ⊥OB ,所以OC =22BC OB +=10.因为△OBC 的面积=12OC •BE =12OB •BC ,所以BE =OB BC OC ⋅=6810⨯=4.8.所以BD =2BE =9.6,即弦BD 的长为9.6. 23.证明:(1)因为AB 是⊙O 的直径,所以∠ADB =90°.所以∠A+∠ABD =90°.因为∠A =∠DEB ,∠DEB =∠DBC ,所以∠A =∠DBC.所以∠DBC+∠ABD =90°.所以BC 是⊙O 的切线.(2)连接OD.因为BF =BC =2,∠ADB =90°,所以∠CBD =∠FBD.因为OE ∥BD ,所以∠FBD =∠OEB.因为OE =OB ,所以∠OEB =∠OBE.所以∠OBE=∠FBD.所以∠CBD =∠FBD =∠OBE =13∠ABC =13×90°=30°.所以∠C =60°,∠A =30°.所以AC=4. 在Rt △ABC 中,由勾股定理,得AB =22AC BC -=23,所以⊙O 的半径为3.因为OA=OD ,所以∠ODA =∠A=30°.所以∠DOB=60°. 在Rt △ABD 中,由勾股定理,得AD=22AB BD -=3.所以S 阴影=S 扇形DOB -S △DOB =61π×(3)2-12×12×3×3=2π-433. 24.(1)证明:在AC 上截取AG =BC ,连接FA ,FG ,FB ,FC ,如图①所示.因为F 是的中点,所以FA=FB.在△FAG和△FBC中,FA FBFAG FBCAG BC=⎧⎪∠=∠⎨⎪=⎩,,,所以△FAG≌△FBC(SAS).所以FG=FC.因为FE⊥AC,所以EG=EC.所以AE=AG+EG=BC+CE. (2)解:结论AE=EC+CB不成立,新结论为CE=BC+AE.理由:在CA上截取CG=CB,连接FA,FB,FC,如图②所示.因为F 是的中点,所以FA=FB ,.所以∠FCG=∠FCB.在△FCG和△FCB中,CG CBFCG FCBFC FC=⎧⎪∠=∠⎨⎪=⎩,,,所以△FCG≌△FCB(SAS).所以FG=FB.所以FA=FG.因为FE⊥AC,所以AE=GE.所以CE=CG+GE=BC+AE.①②第24题图。
北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( ) A. sin A= B.cos A=C.sin A= D.tan A=2.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A. B. C. D.3.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=,AB=4,则AD的长为 ( )A.3 B.C. D.二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案1.C[提示:sinA=.]2.D[提示:过A点作垂线交底部于C点,则△ACB为直角三角形,∴BC==8(m),∴tan a==.故选D.]3.B[提示:∠ADE和∠EDC互余,∴cos a=sin∠EDC=,sin∠EDC=∴EC=.由勾股定理,得DE=.在Rt△AED中,cos a=,∴AD=.故选B.]4.4[提示:在Rt△BCA中,AC=3米,cos∠BAC=,所以AB=4米,即梯子的长度为4米.]5.48°[提示:∵sin2a+cos2 a=l,∴a=48°.]6.提示:sin A=,cos A=,tan A=.7.解:∵∠ACB=90°,CD⊥AB,∴△ACD∽△CBD,∴CD2=AD·DB=16,∴CD=4,∴AC=.∴sin A==,cos A=,tan A=. 8.解:(1)如图l-27所示,作BH⊥OA,垂足为H.在Rt△OHB中,∵BO=5,sin∠BOA=,∴BH=3,∴OH=4,∴点B的坐标为(4,3). (2)∵OA=10,OH=4,∴AH=6.在Rt△AHB中,∵BH=3,∴AB=,∴cos∠BAO== .9.解:(1)根据题意画出图形,如图1-28所示,∵AB=AC,AD⊥BC,AD=BC,∴BD=B C= AD,即AD=2BD,∴AB=BD,∴tan∠ABC==2,sin∠ABC== (2)作BE⊥AC于E,在Rt△BEC中,sinC=sin∠ABC=.又∵sin C=∴故BE=(米).1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC中,∠A,∠B都是锐角,且 sin A=,cos B=,则△ABC三个角的大小关系是()A.∠C>∠A>∠B B.∠B>∠C>∠AC.∠A>∠B>∠C D.∠C>∠B>∠A2.若0°<<90°,且|sin-|+,则tan的值等于()A. B. C. D.3.如图1—37所示,在△ABC中,∠A=30°,tan B=,AC=,则AB的长是 ( ) A.3+ B.2+C. 5 D.4.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a,则其底边上的高是( ) A.a B.a C.a D.a或a二、选择题5.在Rt△ACB中,∠C=90°,AC=,AB=2,则tan= .6.若a为锐角,且sin a=,则cos a= .7.在Rt△ACB中,若∠C=90°,sin A=,b+c=6,则b= .8.(1)在△ABC中,∠C=90°,sin A=,则 cos B=________;(2)已知为锐角,且cos(90°-)=,则=________;(3)若,则锐角=________.三、计算与解答9.计算(1)sin 60°·cos 30°-.(2) 2 cos230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt△ACB中,∠BCA=90°,CD是斜边上的高,∠ACD=30°,AD =1,求AC,CD,BC,BD,AB的长.11.如图1—39所示,在相距100米的A,B两处观测工厂C,测得∠BAC=60°,∠ABC=45°,则A,B两处到工厂C的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=,若关于x的方程(+b)x2+2ax+(-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案1. D; 2 。
2020-2021学年北师大新版九年级下册数学《第2章二次函数》单元测试题一.选择题1.抛物线y=x2﹣6x+24的顶点是()A.(﹣6,﹣6)B.(﹣6,6)C.(6,6)D.(6,﹣6)2.二次函数y=ax2+bx+c的图象如图所示,则点P(a,)所在的象限是()A.一B.二C.三D.四3.若直线y=ax+b(a≠0)在第一、二、三象限,则抛物线y=ax2+bx+c的图象()A.开口向下,对称轴在y轴左侧B.开口向上,对称轴在y轴左侧C.开口向上,对称轴在y轴右侧D.开口向下,对称轴在y轴右侧4.将抛物线y=4x2向上平移3个单位,再向左平移2个单位,所得抛物线的表达式为()A.y=4(x+2)2+3B.y=4(x+2)2﹣3C.y=4(x﹣2)2+3D.y=4(x﹣2)2﹣35.如图,一次函数y=﹣2x+3的图象与x、y轴分别相交于A、C两点,二次函数y=x2+bx+c 的图象过点C且与一次函数在第二象限交于另一点B,若AC:CB=1:2,那么,这个二次函数的顶点坐标为()A.(﹣,)B.(﹣,﹣)C.(,)D.(,﹣)6.二次函数y=x2﹣x﹣2的图象如图所示,则不等式x2﹣x﹣2<0的解集是()A.x<﹣1B.x>2C.﹣1<x<2D.x<﹣1或x>2 7.下面给出了6个函数:①y=3x2﹣1;②y=﹣x2﹣3x;③y=;④y=x(x2+x+1);⑤y=;⑥y=.其中是二次函数的有()A.1个B.2个C.3个D.4个8.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成()A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m9.已知抛物线y=x2+bx+c与y轴交于A,与x轴的正半轴交于B、C,且BC=2,S=△ABC 3,则c的值为()A.1B.2C.3D.410.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3和x2=()A.﹣1.3B.﹣2.3C.﹣0.3D.﹣3.3二.填空题11.利用函数图象求得方程x2+x﹣12=0的解是x1=,x2=.12.汽车刹车后行驶的距离s(单位:m)与行驶的时间t(单位:s)的函数关系式是s=12t ﹣4t2,汽车刹车后到停下来前进了m.13.圆的面积y(cm2)与圆的半径x(cm)之间的函数关系式是.14.用配方法将二次函数y=4x2﹣24x+26写成y=a(x﹣h)2+k的形式是,对称轴为,顶点坐标为.15.已知点(m+1,m2)在函数y=x2+2x的图象上,则m=.16.函数y=x2中,自变量x的取值范围是,函数值y的取值范围是.17.已知二次函数y=x2﹣2x﹣3的函数值y<0,则x的取值范围为.18.已知抛物线与x轴有两个交点(﹣1,0),(3,0),并且与y轴交点的纵坐标为﹣6,则这个二次函数的解析式为.19.抛物线y=x2﹣k的顶点为P,与x轴交于A、B两点,如果△ABP是正三角形,那么k =.20.将抛物线y=﹣2x2+4x向上平移3个单位,再向左平移2个单位得到抛物线的解析式为.三.解答题21.用配方法求出下列二次函数y=x2﹣2x﹣3图象的顶点坐标和对称轴.22.已知(m,n)是抛物线y=ax2上的点,求证:点(﹣m,n)也在抛物线y=ax2上.23.在平面直角坐标系中画出y=5x2的草图,并且作出将其向右移动2个单位,向上移动1个单位后的抛物线的图象.24.到姜堰观光旅游的客人越来越多,某景点每天都吸引大量的游客前来观光.事实表明,如果游客过多,不利于保护珍贵文物,为了实施可持续发展,兼顾社会效益和经济效益,该景点拟采用浮动门票价格的方法来控制游览人数.已知每张门票原价为40元,现设浮动门票为每张x元,且40<x<70,经市场调研发现一天游览人数y与票价x之间存在着如图所示的一次函数关系.(1)根据图象,求y与x之间的函数关系式;(2)设该景点一天的门票收入为w元.①试用x的代数式表示w;②试问:当门票定为多少时,该景点一天的门票收入最高?最高门票收入是多少?25.在平面直角坐标系xOy中,已知关于x的二次函数y=x2+(k﹣1)x+2k﹣1的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣3).求这个二次函数的解析式及A,B两点的坐标.26.(1)在同一直角坐标系中画抛物线y=x2﹣2x﹣3与双曲线y=;(2)观察图形,方程组的解的近似值为.27.已知抛物线y=x2﹣2x,求抛物线的顶点坐标和对称轴.参考答案与试题解析一.选择题1.解:抛物线y=x2﹣6x+24=(x﹣6)2+6,所以抛物线y=x2﹣6x+24的顶点是(6,6).故选:C.2.解:由函数图象可得各系数的关系:a>0,b<0,c>0,则a>0,<0,因此P(a,)位于第四象限.故选:D.3.解:∵直线y=ax+b(a≠0)在第一、二、三象限,∴a>0,b>0,则抛物线y=ax2+bx+c开口方向向上,对称轴x=﹣<0,在y轴左侧.故选:B.4.解:原抛物线的顶点为(0,0),向上平移3个单位,再向左平移2个单位,那么新抛物线的顶点为(﹣2,3).)可设新抛物线的解析式为:y=4(x﹣h)2+k,代入得:y =4(x+2)2+3.故选:A.5.解:由图象y=﹣2x+3知:C(0,3),A(1.5,0)即c=3,因为y=x2+bx+3,可设B(a,a2+ba+3),又∵B在函数y=﹣2x+3的图象上则有a2+ba+3=﹣2a+3…(1),又∵AC:CB=1:2,…(2),则由(1)和(2)解得:a=﹣3,b=1(负值已舍).由顶点坐标(﹣,)得(﹣).故选:A.6.解:由图可知,抛物线与x轴的交点为(﹣1,0)、(2,0),所以,不等式x2﹣x﹣2<0的解集是﹣1<x<2.故选:C.7.解:①符合二次函数的定义;②符合二次函数的定义;③不是整式,不符合二次函数的定义;④整理后x的最高次数为3,不符合二次函数的定义;⑤不是整式,不符合二次函数的定义;⑥不是整式,不符合二次函数的定义;所以是二次函数的共有2个,故选B.8.解:设长为x,则宽为,S=x,即S=﹣x2+2x,要使做成的窗框的透光面积最大,则x=﹣=﹣==1.5m.于是宽为==1m,所以要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成1.5m,1m.故选:A.9.解:∵BC=2,S=3,△ABC∴×c×2=3,解得c=3,故选:C.10.解:方法一:∵二次函数y=ax2+bx+c的顶点坐标(﹣1,﹣3.2)∴﹣=﹣1则﹣=﹣2∵x1x2是一元二次方程ax2+bx+c=0的两根∴x1+x2=﹣又∵x1=1.3∴x1+x2=1.3+x2=﹣2解得x2=﹣3.3.方法二:根据对称轴为;x=﹣1,关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=1.3,则=﹣1,即=﹣1,解得:x2=﹣3.3,故选:D.二.填空题11.解:∵方程x2+x﹣12=0的解就是函数y=x2+x﹣12的图象与x轴的交点的横坐标,而y=x2+x﹣12的图象如图所示:∴y=x2+x﹣12的图象与x轴的交点坐标为(﹣4,0)、(3,0),∴方程x2+x﹣12=0的解是x1=﹣4,x2=3.12.解:∵s=12t﹣4t2=﹣4(t﹣)2+9,∴汽车刹车后到停下来前进了9m.故答案为9.13.解:由圆的面积计算公式,得y=πx2.14.解:y=4x2﹣24x+26=4(x2﹣6x)+26=4(x2﹣6x+9﹣9)+26=4(x﹣3)2﹣10∴对称轴是x=3,顶点坐标是(3,﹣10)故本题答案为:y=4(x﹣3)2﹣10;x=3;(3,﹣10).15.解:依题意,得(m+1)2+2(m+1)=m2,解得m=﹣.16.解:函数y=x2中,自变量x的取值范围是全体实数,函数值y的取值范围是非负数.17.解:当y=0时,即x2﹣2x﹣3=0,∴x1=﹣1,x2=3,∴图象与x轴的交点是(﹣1,0),(3,0),当y<0时,图象在x轴的下方,此时﹣1<x<3.故填空答案:﹣1<x<3.18.解:设抛物线解析式为y=a(x+1)(x﹣3),把(0,﹣6)代入得a•(﹣3)=﹣6,解得a=2.所以抛物线解析式为y=2(x+1)(x﹣3),即y=2x2﹣4x﹣6.故答案为y=2x2﹣4x﹣619.解:∵抛物线y=x2﹣k的顶点为P,∴P点的坐标为:(0,﹣k),∴PO=K,∵抛物线y=x2﹣k与x轴交于A、B两点,且△ABP是正三角形,∴OA=OB,∠OPB=30°,∴tan30°==,∴OB=k,∴点B的坐标为:(k,0),点B在抛物线y=x2﹣k上,∴将B点代入y=x2﹣k,得:0=(k)2﹣k,整理得:﹣k=0,解方程得:k1=0(不合题意舍去),k2=3.故答案为:3.20.解:抛物线y=﹣2x2+4x=﹣2(x﹣1)2+2的顶点坐标为(1,2),向上平移3个单位,再向左平移2个单位得到抛物线的顶点坐标为(﹣1,5),得到新抛物线的解析式是y=﹣2(x+1)2+5.故答案为:y=﹣2(x+1)2+5.三.解答题21.解:y=x2﹣2x﹣3=(x2﹣2x+1)﹣1﹣3=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4),对称轴为x=1.22.证明:∵抛物线y=ax2的对称轴是y轴,而点(m,n)与点(﹣m,n)也关于y轴对称,∴当点(m,n)在抛物线y=ax2上时,点(﹣m,n)也在抛物线y=ax2上.23.解:原抛物线的顶点为(0,0),分别右移动2个单位,向上移动1个单位后,那么新抛物线的顶点为(2,1);可设新抛物线的解析式为y=5(x﹣h)2+k,代入得:y=5(x﹣2)2+1.24.解:(1)设y与x的函数关系式为y=kx+b(k≠0),∵函数图象经过点(50,3500),(60,3000),∴,解得.∴y与x之间的函数关系式为y=﹣50x+6000;(2)①w=xy=x(﹣50x+6000)=﹣50x2+6000x,即w=﹣50x2+6000x;②w=﹣50x2+6000x=﹣50(x﹣120x+3600)+180000=﹣50(x﹣60)2+180000,∵a=﹣50<0,=180000.∴当x=60时,w有最大值,w最大答:当门票定为60元时,该景点一天的门票收入最高,最高门票收入是180000元.25.解:(1)把点C(0,﹣3)代入y=x2+(k﹣1)x+2k﹣1得,2k﹣1=﹣3,解得k=﹣1,所以,二次函数的解析式为y=x2﹣2x﹣3;令y=0,则x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∵点A在点B的左侧,∴A(﹣1,0),B(3,0).26.解:(1)(2)由题意知,方程组的解即为图象交点的坐标,∴由图象可知交点坐标为(3.2,0.6),∴方程组的解为:.27.解:y=x2﹣2x=(x﹣1)2﹣1,故顶点坐标是(1,﹣1),对称轴是直线x=1.。
(北师大版 )九年级|数学下册 (全册 )章节检测卷汇总北师大版九年级|数学下册单元检测第1章 -直角三角形的边角关系 (3 )附答案参考数值:41.12≈ ,73.13≈一、选择题 (每题3分 ,共30分 )1、在Rt △ABC 中 ,∠C =90° ,AC =3 ,BC =4 ,那么B cos 的值是 ( ) A 、54 B 、53 C 、43 D 、34 2、在Rt △ABC 中 ,如果各边长度都扩大为原来的2倍 ,那么锐角A 的正弦值 ( ) A 、扩大2倍 B 、缩小2倍 C 、扩大4倍D 、没有变化A 、A a c sin =B 、Aac cos =C 、A a c tan ⋅=D 、A a c sin ⋅=4.在△ABC 中 ,假设1tan =A ,22sin =B ,你认为对△ABC 最|确切的判断是 ( ) A .是等腰三角形 B .是等腰直角三角形 C .是直角三角形D .是一般锐角三角形5、等腰三角形的底角为30° ,底边长为23 ,那么腰长为 ( ) A .4B .23C .2D .226、如图1 ,在菱形ABCD 中 ,∠ABC =60° ,AC =4 ,那么BD 长为 ( ) A .83B .43C .23D .87.在△ ABC 中 ,∠C =90° ,53sin =B ,那么A cos 的值是( ) A 、53 B 、34 C 、54 D .438、如图2 ,沿AC 方向开山修路 ,为了加快施工进度 ,要在小山的另一边AC同时施工.从AC 上的一点B ,取∠ABD =145° ,BD =500米 ,∠D =55° ,要使A ,C ,E 成一直线 ,那么开挖点E 离点D 的距离是 ( ) A 、500sin55°米 B 、500cos55°米 C 、500tan55°米D 、500tan35°米9、如图3 ,在矩形ABCD 中 ,D E ⊥AC ,垂足为E ,设∠ADE =α ,且cos α =35,AB =4 , 那么AD 的长为 ( ) A 、3 B 、163C 、203D 、16510.甲、乙、丙三个梯子斜靠在一堵墙上 (梯子顶端靠墙 ) , 小明测得:甲与地面的夹角为60°;乙的底端距离墙脚3米 ,且顶端距离墙脚3米;丙的坡度为3 .那么 ,这三张梯子的倾斜程度 ( )A .甲较陡B .乙较陡C .丙较陡D .一样陡二、填空题 (每题5分 ,共25分 )11、在△ABC 中 ,∠A ,∠B ,∠C 的对边分别是a 、b 、c ,1=a ,1=b ,2=c ,那么=A sin __________12、比拟以下三角函数值的大小:︒40sin ︒50sin13、小芳为了测量旗杆高度 ,在距旗杆底部6米处测得顶端的仰角是60° ,小芳的身高不计 ,那么旗杆高 米 . (保存根号 ) 14、在ABC ∆中 ,假设90C ∠=︒ ,1sin 2A = ,2AB = ,那么ABC ∆的周长为 (保存根号 )15.如图 ,在某建筑物AC 上 ,挂着 "多彩云南〞的宣传条幅BC ,小明站在点F 处 ,看条幅顶端B ,测的仰角为︒30 ,再往条幅方向前行20米到达点E 处 ,看到条幅顶端B ,测的仰角为︒60 ,那么宣传条幅BC 的长为 米 (小明的身高不计 ,结果精确到0.1米 )三、解答题 (16题6分 ,17题9分 ,18题9分 ,19题10分 ,20题11分 )16、计算:︒+︒-︒60tan 245cos 330sin17、如图10 ,在电线杆上离地面高度5米的C点处引两根拉线固定电线杆.一根拉线AC和地面成60°角,另一根拉线BC与地面成45°角,试求两根拉线的长度. (精确到0.1米)18、某村方案开挖一条长1500米的水渠,渠道的断面为等腰梯形,渠道深0.8米,下底宽1.2米,坡角为450 (如下图) ,求挖土多少立方米.19、如图,CD是平面镜,光线从A出发经CD上点E发射后照射到B点.假设入射角为α,AC⊥CD ,BD⊥CD ,垂足分别为C、D ,且AC =3 ,BD =6 ,CD =11求tanα的值.BαAC E DD CBA20、如图,为测得峰顶A到河面B的高度h ,当游船行至|C处时测得峰顶A的仰角为α ,前进m米至|D处时测得峰顶A的仰角为β (此时C、D、B三点在同一直线上).(2)当α =45°,β =60°,m =50米时,求h的值.(精确到0.1m ,2≈1.41 ,3≈1.73 )如图,在东海中某小岛上有一灯塔A ,A塔附近方圆25海里范围内有暗礁.我海军110舰在O 点处测得A塔在其西北30°方向;再向正西方向行驶20海里到达B处,测得A塔在其西北方向45° ,如果该舰继续向西航行,是否有触礁的危险?请通过计算说明理由.答案:11、2212、< 13、3614、33+解答题 16、解:原式=3222321⋅+⨯-............3分 =62621+-....................5分 =2621+=261+...........6分17、解:根据题意 ,△CDA 和△CDB 是Rt △CD =5在Rt △CDA 中︒=60sin ACCD................................1分 ∴8.5331031032523560sin ≈==⨯=÷=︒=CD AC (米 )...................4分在Rt △CDB 中︒=45sin CBCD.................................5分 ∴1.725221021022522545sin ≈===⨯=÷=︒=CD CB (米 ) (8)分答:两根拉线AC 为5.8米 ,CB 为7.1米.....................................9分18、解:过A 、B 两点作AE ⊥DC ,BF ⊥CD ,垂足分别是E 、F..............1分那么AE =BF =0.8米 ,EF =AB =1.2米..............................2分 ∵坡角为45° ,CD//AB∴∠EDA =∠BCF =45°..................................3分 在Rt △DEA 和Rt △FCB 中8.045tan =⋅︒=DE AE ;8.045tan =⋅︒=FC BF ..................................5分 ∴DC =DE +EF +FC =0.8 +1.2 +0.8=2.8米..................................6分()150021⨯⋅+⨯=AE AB DC V ..................................7分=15008.0421⨯⨯⨯ ×1500=2400 (米3 )..................................8分答:挖出的土有2400米3..................................9分19、解:∵AC ⊥CD ,BD ⊥CD ,∴∠ACE =∠BDE =90°..................................1分∴∠A +∠AEC =90°..................................2分 又∵∠α +∠AEC =90°∴∠A =∠α..................................3分根据题意 ,∠AEC =∠BED..................................4分 ∠ACE =∠BDE∴△AEC ∽△BED..................................5分∴2163===ED CE BD AC ..................................6分 ∴2111=-CE CE ..................................8分 CE CE -=112311=CE ..................................9分∴91133113311tan tan =÷====∠AC CE A α..................................10分20、解:根据题意:△ABD 和△ABC 是Rt △在Rt △ABD 中βtan =BDh..................................1分 βtan hBD =..................................2分 在Rt △ABC 中αtan =BCAB..................................3分 αtan hC B =..................................4分又∵DC =BC -BD ∴()βααββαtan tan tan tan tan tan ⋅-=-=h h h m ..................................6分 ()αβαβtan tan tan tan -⋅=m h .......................................7分 (2 )根据 (1 )的结果可得:()3.1181335045tan 60tan 60tan 45tan 50≈-=︒-︒︒⋅︒=h ...........10分答:h 的值为:118.3米............................11分附加题解:不会触礁过A 作AC ⊥BD ,垂足为C 设AC =x在Rt △ACB 中 ,∠ABC =45° ∴︒=45tan BCACBC BC AC =︒⋅=45tan∴OC =BC +BO =AC +BO =x +20 在Rt △ACO 中 ,∠AOC =30° ∴︒=30tan OCAC3120=+x x ;203+=x x203=-x x()2013=-x()()()()73.21310131313201320≈+=+-+=-=x∵253.27>=x ,∴不会触礁 .参考题22. (6分 )某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法 ,如以下图所示.图中a b c ,,表示长度 ,β表示角度.请你求出AB 的长度 (用含有a b c β,,,字母的式子表示 ).(1 )______AB =______(2 )______AB =_______ (3 )______AB =_______23. (9分 )如图 ,在梯形ABCD 中 ,AD ∥BC ,∠B =90° ,AD =2 ,BC =5 ,tanC =34.(1 )求点D 到BC 边的距离; (2 )求点B 到CD 边的距离.24. (10分 )一°°方向上.之后 ,轮船继续向东航行多少海里 ,距离小岛C 最|近 ?(参考数据:sin21.3°≈925,°≈25 ,tan21.3°≈25 ,sin63.5°≈910°≈21 ,tan63.5°≈2 )(1 ) A C Bab(2 ) ACBaβ(3 ) AC Ba DEcbA BC北东北师大版九年级|数学下册单元检测第2章 -二次函数 (3 )附答案一、选择题(本大题共8小题 ,每题4分 ,共32分)1.在以下函数关系式中 ,y 是x 的二次函数的是( ).A .x y=6 B .xy =-6 C .x 2+y =6 D .y =-6x 2.抛物线①y =2x 2,②y =223x -7 ,③y =213x +5中 ,开口从大到小的顺序为( ).A .①②③B .③②①C .①③②D .②①③3.如图 ,平面直角坐标系中 ,两条抛物线有相同的对称轴 ,那么以下关系正确的选项是( ).A .m =n ,k >hB .m =n ,k <hC .m >n ,k =hD .m <n ,k =h4.在反比例函数y =a x中 ,当x >0时 ,y 随x 的增大而减小 ,那么二次函数y =ax 2-ax 的图象大致是以下图中的( ).5.如下图的二次函数y =ax 2+bx +c 的图象中 ,刘星同学观察得出了下面四条信息:(1)b 2-4ac >0;(2)c >1;(3)2a -b <0;(4)a +b +c <0.你认为其中错误的有( ).A .2个B .3个C .4个D .1个6.二次函数y =2x 2+9x +34 ,当自变量x 取两个不同的值x 1 ,x 2时 ,函数值相等 ,那么当自变量x 取x 1+x 2时的函数值与( ).C .x =14时的函数值相等D .x =94-时的函数值相等 7.函数y 1=x 2与函数y 2=12x -+3的图象如下图 ,假设y 1<y 2 ,那么自变量x 的取值范围是( ).A .32-<x <2 B .x >2或x <32- C .-2<x <32 D .x <-2或x >328.根据下表中的二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值 ,可判断该二次函数的图象与x 轴( ).x … -1 0 1 2 …y … -174--274-…A .只有一个交点B .有两个交点 ,且它们分别在y 轴两侧C .有两个交点 ,且它们均在y 轴同侧D .无交点 二、填空题(本大题共5小题 ,每题5分 ,共25分)9.把抛物线y =3x 2先向左平移3个单位长度 ,再向上平移2个单位长度 ,所得抛物线的解析式为______.10.二次函数y =x 2-mx +3的图象与x 轴的交点如下图 ,根据图中信息可得到m 的值是__________.11.二次函数的图象开口向下 ,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的关系式__________.12.假设直线y =ax -6与抛物线y =x 2-4x +3只有一个交点 ,那么a 的值是__________.13.给出以下命题:命题1.点(1,1)是双曲线y =1x 与抛物线y =x 2的一个交点. 命题2.点(1,2)是双曲线y =2x 与抛物线y =2x 2的一个交点.命题3.点(1,3)是双曲线y =3x与抛物线y =3x 2的一个交点.……请你观察上面的命题 ,猜测出命题n(n是正整数):__________________________.三、解答题(本大题共4小题 ,共43分)14.(8分)点A(1,1)在二次函数y=x2-2ax+b图象上.(1)用含a的代数式表示b;(2)如果该二次函数的图象与x轴只有一个交点 ,求这个二次函数的图象的顶点坐标.15.(10分)如图① ,是苏州某河上一座古拱桥的截面图 ,拱桥桥洞上沿是抛物线形状 ,抛物线两端点与水面的距离都是1 m ,拱桥的跨度为10 m ,桥洞与水面的最|大距离是5 m ,桥洞两侧壁上各有一盏距离水面4 m的景观灯.假设把拱桥的截面图放在平面直角坐标系中(如图②).(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.图①图②16.(12分)如下图 ,二次函数y=-x2+2x+m的图象与x轴的一个交点为A(3,0) ,另一个交点为B ,且与y轴交于点C.(1)求m的值;(3)该二次函数图象上有一点D(x ,y)(其中x>0 ,y>0) ,使S△ABD=S△ABC ,求点D的坐标.17.(13分)宏达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源 ,待货物售出后再进行结算 ,未售出的由厂家负责处理).当每吨售价为260元时 ,月销售量为45吨.该经销店为提高经营利润 ,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时 ,月销售量就会增加吨.综合考虑各种因素 ,每售出一吨建筑材料共需支付厂家及其他费用100元.设每吨材料售价为x(元) ,该经销店的月利润为y(元).(1)当每吨售价是240元时 ,计算此时的月销售量;(2)求出y与x的二次函数关系式(不要求写出x的取值范围);(3)请把(2)中的二次函数配方成y=a(x-h)2+k的形式 ,并据此说明 ,该经销店要获得最|大月利润 ,售价应定为每吨多少元 ?(4)小静说: "当月利润最|大时 ,月销售额也最|大.〞你认为对吗 ?请说明理由参考答案1.答案:C2.解析:二次项系数的绝|对值越小 ,开口越大. ∵1233<-<2 ,∴抛物线的开口从大到小的顺序为③②① 答案:B 3.答案:A4.解析:在反比例函数y =ax中 ,当x >0时 ,y 随x 的增大而减小 ,所以a >0. 所以二次函数y =ax 2-ax 开口向上 ,且与x 轴交于(0,0)和(1,0)点 ,应选A . 答案:A5.解析:∵抛物线y =ax 2+bx +c 与x 轴有两个交点 , ∴b 2-4ac >0.∵抛物线y =ax 2+bx +c 与y 轴的交点坐标是(0 ,c ) , 又a <0 ,∴2a -b <0.当x =1时 ,y <0 ,即当x =1时 ,y =a +b +c <0 , ∴只有(2)错误. 答案:D6.解析:利用抛物线的对称性可知 ,x 1+x 2正好是对称轴的横坐标x 的值的2倍 ,即x 1+x 2=ba-.以对称轴为根底 ,正好与x =0时的函数值相等. 答案:B7.解析:y 1<y 2 ,即抛物线在直线下方的那局部对应的自变量x 的取值范围 ,需求出直线与抛物线的两交点坐标.答案:C8.解析:根据表中x ,y 的对应值描出函数y =ax 2+bx +c 的大致图象 ,可以看出 ,该二次函数的图象与x 轴有两个交点 ,且它们分别在y 轴两侧.答案:B9.解析:抛物线y =3x 2的顶点是(0,0) ,先向左平移3个单位长度 ,再向上平移2个单位长度后是(-3,2).所以 ,所得抛物线的解析式是y =3(x +3)2+2.答案:y =3(x +3)2+210.解析:把(1,0)的坐标代入二次函数y =x 2-mx +3的解析式 ,得1-m +3=0.解得m =4.答案:411.答案:y =-x 2-2x +3(满足条件即可 ,答案不惟一)12.解析:由题意 ,知26,43y ax y x x =-⎧⎨=-+⎩只有一个解 ,即方程x 2-(4+a )x +9=0有两个相等的实数根.所以(4+a )2-4×1×9=0. 解得a =2或a =-10. 答案:2或-1013.答案:点(1 ,n )是双曲线y =n x与抛物线y =nx 2的一个交点 14.解:(1)∵点A(1,1)在二次函数y =x 2-2ax +b 的图象上 ,∴1=1-2a +B .可得b =2A(2)根据题意 ,方程x 2-2ax +b =0有两个相等的实数根 ,∴4a 2-4b =4a 2-8a =0.解得a =0或a =2.当a =0时 ,y =x 2,这个二次函数的图象的顶点坐标是(0,0);当a =2时 ,y =x 2-4x +4=(x -2)2,这个二次函数的图象的顶点坐标为(2,0). ∴这个二次函数的图象的顶点坐标为(0,0)或(2,0).15.解:(1)抛物线的顶点坐标为(5,5) ,与y 轴的交点坐标是(0,1).设抛物线的解析式是y =a (x -5)2+5 , 把(0,1)代入y =a (x -5)2+5得a =425-. ∴y =425-(x -5)2+5(0≤x ≤10). (2)由得两盏景观灯的纵坐标都是4 , ∴4=425-(x -5)2+5. ∴425(x -5)2=1.∴x 1=152 ,x 2=52. ∴两盏景观灯间的距离为5米.16.解:(1)将(3,0)代入二次函数解析式 ,得-32+2×3+m =0.解得m =3.(2)二次函数解析式为y =-x 2+2x +3 ,令y =0 ,得-x 2+2x +3=0 解得x =3或x =-1.∴点B 的坐标为(-1,0).(3)∵S △ABD =S △ABC ,点D 在第|一象限 , ∴点C ,D 关于二次函数的对称轴对称.∵由二次函数解析式可得其对称轴为x =1 ,点C 的坐标为(0,3) ,∴点D 的坐标为(2,3).17.解:(1)45+26024010-×=60(吨).(2)y =(x -100)260457.510x -⎛⎫+⨯ ⎪⎝⎭,化简得y =234x -+315x -24 000.(3)y =234x -+315x -24 000要获得最|大月利润 ,售价应定为每吨210元.(4)小静说的不对.理由:当月利润最|大时 ,x 为210元 ,而对于月销售额W =x 260457.510x -⎛⎫+⨯ ⎪⎝⎭=34-(x -160)2+19 200来说 ,当x 为160元时 ,月销售额W 最|大.∴当x 为210元时 ,月销售额W 不是最|大. ∴小静说的不对.北师大版九年级|数学下册单元检测第3章 -圆 (3 )附答案一、选择题 (每题4分 ,共40分 )每题只有一个正确答案 ,请将正确答案的番号填在括号内.1、平行四边形的四个顶点在同一圆上 ,那么该平行四边形一定是 ( )A 、正方形B 、菱形C 、矩形D 、等腰梯形2、假设⊙A 的半径为5 ,圆心A 的坐标是(3 ,4) ,点P 的坐标是(5 ,8) ,你认为点P 的位置为 ( )3、以下所述图形中对称轴最|多的是 ( )A 、圆B 、正方形C 、正三角形D 、线段4、以下四个命题中正确的选项是 ( )A 、①②B 、②③C 、③④D 、①④5、过⊙O 外一点P 作⊙O 的两条切线PA 、PB ,切点为A 和B ,假设AB =8 ,AB 的弦心距为3 ,那么PA 的长为( ) A 、5B 、320C 、325 D 、86、如图1 ,PA 切⊙O 于A ,AB ⊥OP 于B ,假设PO =8 cm ,BO =2 cm ,那么PA 的长为( )A 、16 cmB 、48 cmC 、3 cmD 、43 cmA BOPO 1O2AB C A'C '图1 图2 图37、如图2 ,半径为1的四个圆两两相切 ,那么图中阴影局部的面积为 ()A 、4-πB 、8-πC 、(4-π)D 、4-2πA 、16πB 、38π C 、364π D 、316π 9、如图4 ,△ABC 是正三角形 ,曲线ABCDEF …叫做 "正三角形的渐开线〞 ,其中、 、、 、… 圆心依次按A 、B 、C 循环 ,它们依次相连接 ,如果AB =1 ,那么曲线CDEF 的长是 ( )A 、8πB 、6πC 、4πD 、2πBCDE FABCDE mnOOABC D图4 图5 图6 图7 10、一个圆台形物体的上底面积是下底面积的41.如图5 ,放在桌面上 ,对桌面的压强是200 帕 ,翻过来放 ,对桌面的压强是 ( )A 、50帕B 、80帕C 、600帕D 、800帕 二、填空题(每题3分 ,共30分)11、如果⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么:①点P 在⊙O 外 ,那么______;②______ 那么d =r ;③______那么d <r .12、两个同心圆的直径分别为5 cm 和3 cm ,那么圆环局部的宽度为_____ cm.13、如图6,⊙O ,AB 为直径 ,AB ⊥CD ,垂足为E ,由图你还能知道哪些正确的结论?请把它们一一写出来. .14、 ,⊙O 的直径为10 cm ,点O 到直线a 的距离为d :①假设a 与⊙O 相切 ,那么d =______;②假设d =4 cm ,那么a 与⊙O 有_____个交点;③假设d =6 cm ,那么a 与⊙O 的位置关系是_____.15、两个同心圆的半径分别为3 cm 和4 cm ,大圆的弦BC 与小圆相切 ,那么BC =_____ cm. 16、如图7 ,在△ABC 中 ,AB =AC ,∠C =72° ,⊙O 过AB 两点且与BC 切于B ,与AC 交于D ,DE EF连结BD ,假设BC =5-1 ,那么AC =_____.17、要修一段如图8所示的圆弧形弯道 ,它的半径是48 m ,圆弧所对的圆心角是60° ,那么这段弯道长_____________________m(保存π).图8 图9 图10 图1118、如图9 ,两个半圆中 ,长为6的弦CD与直径AB平行且与小半圆相切 ,那么图中阴影局部的面积等于_____________.19、要制造一个圆锥形的烟囱帽 ,如图10 ,使底面半径r与母线l的比r∶l =3∶4 ,那么在剪扇形铁皮时 ,圆心角应取_____.20、将一根长24 cm的筷子 ,置于底面直径为5 cm ,高为12 cm的圆柱形水杯中(如图11).设筷子露在杯子外面的长为h cm ,那么h的取值范围是_____.三、解答题 (每题10分 ,共30分 )21、(10分)如图12,小虎牵着小狗上街 ,小虎的手臂与绳长共为2.5 m(手臂与拉直的绳子在一条直线上)手臂肩部距地面1.5 m.当小虎站立不动时 ,小狗在平整的地面上活动的最|大区域是多少 ?并画出平面图.1.5m小图1222、(10分):三角形ABC 内接于⊙O ,过点A 作直线EF .(1)如图13 ,AB 为直径 ,要使得EF 是⊙O 的切线 ,只需保证∠CAE =∠_____ ,并证明之;(2)如图14 ,AB 为⊙O 非直径的弦 ,(1)中你所添出的条件仍成立的话 ,EF 还是⊙O 的切线吗 ?假设是 ,写出证明过程;假设不是 ,请说明理由并与同学交流.A B CEFOAE F图13图1423、(10分)中华民族的科学文化历史悠久、灿烂辉煌 ,我们的祖先几千年前就能在生产实践中运用数学.1300多年前 ,我国隋代建筑的赵州石拱桥的桥拱是圆弧形(如图15).经测量 ,桥拱下的水面距拱顶6 m 时 ,水面宽34.64 m ,桥拱跨度是37.4 m ,运用你所学的知识计算出赵州桥的大致拱高.(运算时取37.4 =147 ,34.64 =203)图15参考答案一、选择题 1、C ;2、A ;3、A ;4、C ;5、B ;6、D ;7、A ;8、D ;9、C ;10、D. 二、填空题 1、d >r 点P 在⊙O 上 点P 在⊙O 内;2、1;3、C E =ED ,,AC AD CmB DmB ==;4、①5 cm ②两 ③外离;5、27;6、2;7、16π;8、29π;9、270°;10、11≤h ≤12. 三、解答题21、解:小狗在地平面上环绕跑圆的半径为225.15.2- =2.0(m).小狗活动的区域是以2.0 m 为半径的圆 ,如右图. 22、(1)ABC 证明:∵AB 为⊙O 直径, ∴∠ACB =90°.∴∠BAC +∠ABC =90°. 假设∠CAE =∠ABC . ∴∠BAC +∠CAE =90°, 即∠BAE =90° ,OA ⊥AE . ∴EF 为⊙O 的切线.(2)证明:连接AO 并延长交⊙O 于点D ,连接CD , ∴∠ADC =∠ABC . ∵AD 为⊙O 的直径, ∴∠DAC +∠ADC =90°.∵∠CAE =∠ABC =∠ADC , ∴∠DAC +∠CAE =90°. ∴∠DAE =90°, 即OA ⊥EF ,EF 为⊙O 的切线. 23、解:如图 ,设圆弧所在圆的圆心为O ,AB =37.4 =147 m, CD =34.6 =203 m, GE =6 m.在Rt △OCE 中, OE =OC -6, CE =103. ∵OC 2=CE 2+OE 2, ∴OC 2=(103)2+(OC -6)2.∴OC =28(m) . ∴OA =28. 在Rt △OAF 中 ,AF =77, ∴)m (21)77(282222=-=-=AFOA OF .∴拱高GF =28-21 =7(m) .∴FA =FN +NM -AM =82 +1.6-42 =42≈7.26.ABS 四边形ADEF =21(AF +DE )·EN =21(7.26 +1.6)×≈25.07(m 2). V 体积 =S 四边形ADEF ×××103(m 3).×103m 3的土方.北师大版九年级|数学下册单元检测第4章 -统计与概率 (3 )附答案一、选择题(本大题共8小题 ,每题5分 ,共40分)1.以下说法中 ,不正确的选项是( ).A .可以很清楚地表示出各局部同总体之间关系的统计图是条形统计图B .能清楚地反映出数量增减变化的统计图是折线统计图D .为了清楚地反映出全校人数同各年级|人数之间的关系 ,应选择扇形统计图2.某次考试中 ,某班级|的数学成绩统计图如下.以下说法错误的选项是( ).A .得分在70~80分之间的人数最|多B .该班的总人数为40C .得分在90~100分之间的人数最|少D .及格(≥60分)人数是263.如图是光明中学乒乓球队队员年龄分布的条形图.这些年龄的众数、中位数、极差依次分别是( ).A .15,15,5B .15,15.5,6 ,84.如图 ,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域 ,假设指针固定不变 ,转动这个转盘一次(如果指针指在等分线上 ,那么重新转动 ,直至|指针指在某个扇形区域内为止) ,那么指针指在甲区域内的概率是( ).5.在拼图游戏中 ,从图①中的四张纸片中 ,任取两张纸片 ,能拼成 "小房子〞(如图②)的概率等于( ).① ②A .1 B.12 C.13 D.236.小洋在一次转转盘活动中得知获得100元代金券的概率是5% ,获得50元代金券的概率是10% ,获得20元代金券的概率是20% ,无其他面额的代金券 ,那么他每转动一次转盘获得代金券金额的平均数是( ).A .14元B .16元C .18元D .20元7.如图是两个可以自由转动的转盘 ,每个转盘被分成两个扇形 ,同时转动两个转盘 ,转盘停止后 ,指针所指区域内的数字之和为4的概率是( ).A.12 B.13 C.14 D.158.甲、乙两人打赌 ,甲说: "我从去掉大小|王的一副扑克牌中任意抽取一张 ,如果是红色 ,我赢.〞乙说: "如果我抽到的是方片 ,我赢.〞甲又说: "如果我赢 ,我就弹你一下脑壳.〞乙答复: "如果我赢 ,就弹你两下〞.你认为他们的这个游戏( ).A .公平B .不公平 ,对甲有利C .不公平 ,对乙有利D .不能判断 二、填空题(本大题共4小题 ,每题5分 ,共20分)9.如图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图 ,甲户、乙户全年食品支出费用相比__________.(填 "甲户多〞 "甲户少〞或 "无法比拟〞)10.某超市在 "六一〞期间开展有奖销售活动 ,凡购物满100元的顾客可得奖券1张.本次活动共发放奖券1 000张 ,经过摇奖产生一等奖1名 ,奖金400元;二等奖2名 ,奖金各200元;三等奖10名 ,奖金各50元.某人在这次活动中购物满100元 ,他中三等奖的概率是________.11.甲邀请乙玩一个同时抛掷两枚硬币的游戏 ,游戏的规那么如下:甲、乙轮流抛掷 ,假设同时抛出两个正面 ,乙得1分;抛出其他结果 ,甲得1分 ,谁先累积到10分 ,谁就获胜 ,你认为________(填 "甲〞或 "乙〞)获胜的可能性更大.12.今年 "五一〞节 ,益阳市某超市开展 "有奖促销〞活动 ,凡购物不少于30元的顾客均有一次转动转盘的时机(如图 ,转盘被分为8个全等的小扇形) ,当指针最|终指向数字8时 ,该顾客获一等奖;当指针最|终指向2或5时 ,该顾客获二等奖(假设指针指向分界线那么重转).经统计 ,当天发放一、二等奖奖品共600份 ,那么据此估计参与此次活动的顾客为__________人次.三、解答题(本大题共4小题 ,共40分)13.(10分)某一音响制品店一天的销售情况如下图:(1)民歌类唱片与通俗歌曲唱片销售量之比是多少 ?(2)要使读者更为直观地看出这几类音响制品的销售量之比 ,上图应作怎样的改动 ?14.(8分)如图②是中国象棋棋盘的一局部 ,图中红方有两个马 ,黑方有三个卒子和一个炮 ,按照中国象棋中马的行走规那么(马走日字 ,例如 ,按图①中的箭头方向走) ,红方的马现在走一步能吃到黑方棋子的概率是多少 ?15.(10分)从-2 ,-1,1,2这四个数中任取两个不同的数作为一次函数y=kx+b的系数k ,b ,求所得一次函数y=kx+b的图象不经过第四象限的概率.16.(12分)在一个不透明的口袋中装有4张相同的纸牌 ,它们分别标有数字1,2,3,4.随机地摸取出一张纸牌然后放回 ,再随机摸取出一张纸牌.(1)计算两次摸取纸牌上数字之和为5的概率;(2)甲、乙两个人进行游戏 ,如果两次摸出纸牌上数字之和为奇数 ,那么甲胜;如果两次摸出纸牌上数字之和为偶数 ,那么乙胜.这是个公平的游戏吗 ?请说明理由.参考答案1.答案:A2.解析:由图可知 ,及格(≥60分)人数是12+14+8+2=36 ,所以选项D错误.答案:D3.答案:A4.答案:D5.解析:运用列表法或树状图计算概率 ,注意是 "无放回〞型.答案:D6.解析:每转动一次转盘获得代金券金额的平均数是100×5%+50×10%+20×20%=14(元).答案:A7.解析:将左边的转盘分成3个相等的扇形区域 ,采取列表法或画树状图法列举所有等可能的情况 ,共有6种 ,其中指针所指区域内的数字之和为4的情况共有2种 ,所以所求概率为13.答案:B8.解析:P(甲胜)=261522= ,甲平均每次弹乙的下数为12×1=12;P(乙胜)=131524= ,乙平均每次弹甲的下数为14×2=12.因此游戏是公平的.答案:A9.答案:无法比拟10.解析:他中三等奖的概率是101 1000100=.答案:1 10011.解析:共有(正 ,正) ,(正 ,反) ,(反 ,正) ,(反 ,反)四种时机均等的情况 ,其中(正 ,正)发生的概率为14,其余情况发生的概率为34,所以甲获胜的可能性更大.答案:甲12.解析:600÷38=1 600.答案:1 60013.解:(1)民歌类唱片与通俗歌曲唱片销售量之比为80∶120=2∶3.(2)纵轴上的数值应从0开始.14.解:红方马走一步可能的走法有14种 ,其中有3种情况吃到了黑方棋子 ,所以红马现在走一步能吃到黑方棋子的概率是3 14.15.-2 -1 1 2-2 (-2 ,-1) (-2,1) (-2,2)-1 (-1 ,-2) (-1,1) (-1,2)1 (1 ,-2) (1 ,-1) (1,2)2 (2 ,-2) (2 ,-1) (2,1)由上表可知 ,共12种等可能结果 ,其中满足k>0 ,b≥0的有(1,2) ,(2,1)两种 ,所以所得一次函数y=kx+b不经过第四象限的概率是21 126=.列表法:列表如下:乙甲1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8由上表可以看出 ,摸取一张纸牌然后放回 ,再随机摸取一张纸牌 ,可能结果有16种 ,它们出现的可能性相等.(1)两次摸取纸牌上数字之和为5(记为事件A)的有4个 ,P(A)=41 164=.(2)这个游戏公平 ,理由如下:两次摸出纸牌上数字之和为奇数(记为事件B)的有8个 ,P(B)=81 162= ,两次摸出纸牌上数字之和为偶数(记为事件C)的有8个 ,P(C)=81 162= ,两次摸出纸牌上数字之和为奇数和为偶数的概率相同 ,所以这个游戏公平.。
2022-2023学年北师大版九年级数学下册《第2章二次函数》单元综合达标测试题(附答案)一.选择题(共10小题,满分30分)1.在下列关于x的函数中,一定是二次函数的是()A.y=﹣3x B.xy=2C.y=ax2+bx+c D.y=2x2+52.下列各点中,在抛物线y=x2﹣4上的是()A.(1,3)B.(﹣1,﹣3)C.(1,﹣5)D.(﹣1,﹣5)3.抛物线y=﹣(x﹣5)2+3的顶点坐标是()A.(﹣5,3)B.(5,3)C.(3,5)D.(5,﹣3)4.将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是()A.y=x2﹣1B.y=x2﹣5C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 5.已知b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示:根据图象分析,a的值等于()A.﹣2B.﹣1C.1D.26.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加()A.1m B.2m C.(2﹣4)m D.(﹣2)m 7.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y28.如图,抛物线y1=a(x+1)2﹣5与抛物线y2=﹣a(x﹣1)2+5(a≠0)交于点A(2,4),B(m,﹣4),若无论x取任何值,y总取y1,y2中的最小值,则y的最大值是()A.4B.5C.2D.19.已知函数y=,若使y=k成立的x值恰好有两个,则k的值为()A.﹣1B.1C.0D.±110.抛物线y=ax2+bx+c的顶点坐标(﹣2,3),抛物线与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a﹣b=0;②a﹣b+c=0;③若(﹣4,y1),(1,y2)是抛物线上的两点,则y1>y2;④b2+3b=4ac.其中正确的个数有()A.4B.3C.2D.1二.填空题(共7小题,满分21分)11.已知抛物线y=(a+3)x2开口向下,那么a的取值范围是.12.请写出一个开口向下,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.13.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.14.抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y=x+2上,则m=,n=.15.二次函数y=ax2+bx+c的部分对应值如下表:x…﹣3﹣20135…y…70﹣8﹣9﹣57…则当x=2时对应的函数值y=.16.如图在平面直角坐标系中,二次函数y=x2+mx+2的图象与x轴交于A、B两点,与y 轴交于C点,其顶点为D,若△ABC与△ABD的面积比为3:5,则m值为.17.如图,在平面直角坐标系中,直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+2x+1与y轴交于C点,若点E在抛物线的对称轴上移动,点F在直线AB上移动,则CE+EF的最小值为.三.解答题(共9小题,满分69分)18.用配方法把二次函数y=x2﹣4x+5化为y=a(x﹣m)2+k的形式,并写出该函数图象的顶点坐标.19.已知抛物线y=ax2+bx+1经过点(1,﹣2),(﹣2,13).(1)求a,b的值;(2)若(5,n),(m,n)是抛物线上不同的两点,求m的值.20.已知二次函数的图象经过点A(﹣1,0)和点B(3,0),且有最小值为﹣2.(1)求这个函数的解析式;(2)函数的开口方向、对称轴;(3)当y>0时,x的取值范围.21.已知函数y=(n+1)x m+mx+1﹣n(m,n为实数)(1)当m,n取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>﹣1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.22.如图所示,抛物线y=x2+bx+c与x轴交于点A和点B(5,0),与y轴交于点C(0,5).(1)求抛物线的表达式;(2)若点M是抛物线在x轴下方的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值.23.如图1,地面OB上两根等长立柱AO,CB之间悬挂一根近似成抛物线y=x2﹣x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AO为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)保持(2)中点N的位置不变,将立柱MN的长度提升为3米,发现抛物线F1和F2的形状和大小都一样,测得抛物线F1和F2的最低点到地面的高度相差0.5米,求抛物线F1对应函数的二次项系数.24.已知二次函数y=x2+px+q图象的顶点M为直线y=x与y=﹣x+m的交点.(1)用含m的代数式表示顶点M的坐标;(2)若二次函数y=x2+px+q的图象经过点A(0,3),求二次函数的表达式;(3)当m=6且x满足t﹣1≤x≤t+3时,二次函数y=x2+px+q的最小值为2,求t的取值范围.25.某商品的进价为每件20元,售价为每件30元,每月可卖出180件.如果该商品的售价每上涨1元,就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x 元(x为整数)时,月销售利润为y元.(1)求y与x之间的函数解析式,并直接写出自变量x的取值范围.(2)当每件商品的售价定为多少元时,可获得的月利润最大?最大月利润是多少?26.在平面直角坐标系中,点A(0,4),点B(2m,4)(m为常数,且m>0),将点A绕线段AB中点顺时针旋转90°得到点C.经过A、B、C三点的抛物线记为G.(1)当m=2时,求抛物线G所对应的函数表达式.(2)用含m的式子分别表示点C的坐标和抛物线G所对应的函数表达式.(直接写出即可)(3)当抛物线G在直线x=﹣2和x=2之间的部分(包括边界点)的最高点与最低点的纵坐标之差为8时,直接写出m的取值范围.(4)连结AC,点R在线段AC上,过点R作x轴的平行线与抛物线G交于P、Q两点,连结AP、AQ.当点R将线段PQ分成1:3两部分,且△APQ的面积为时,求m的值.参考答案一.选择题(共10小题,满分30分)1.解:A、y=﹣3x是一次函数,不是二次函数,故此选项不符合题意;B、xy=2不是二次函数,故此选项不符合题意;C、a=0时不是二次函数,故此选项不符合题意;D、y=2x2+5是二次函数,故此选项符合题意;故选:D.2.解:当x=1时,y=x2﹣4=﹣3;当x=﹣1时,y=x2﹣5=﹣3;∴点(﹣1,﹣3)在抛物线上,点(1,3)、(1,﹣5)、(﹣1,﹣5)都不在抛物线上.故选:B.3.解:抛物线y=﹣(x﹣5)2+3的顶点坐标是(5,3).故选:B.4.解:将抛物线y=x2﹣3向左平移2个单位后得到的抛物线表达式是y=(x+2)2﹣3.故选:C.5.解:因为前两个图象的对称轴是y轴,所以﹣=0,又因为a≠0,所以b=0,与b>0矛盾;第三个图的对称轴﹣>0,a>0,则b<0,与b>0矛盾;故第四个图正确.由于第四个图过原点,所以将(0,0)代入解析式,得:a2﹣1=0,解得a=±1,由于开口向下,a=﹣1.故选:B.6.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,可求出OA和OB为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面宽度增加到2米,比原先的宽度当然是增加了2﹣4.故选:C.7.解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是直线x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选:A.8.解:由题意可知:y的函数图象如图所示:观察函数图象可知:点A为函数y的图象的最高点,∴y的最大值为4.故选:A.9.解:函数y=的图象如图:根据图象知道当y=﹣1或y=1时,对应成立的x有恰好有2个,则k的值为±1.故选:D.10.解:∵抛物线y=ax2+bx+c的对称轴是直线x=﹣2,∴﹣=﹣2,∴4a﹣b=0,因此①正确;∵抛物线的对称轴为x=﹣2,图象与x轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,∴抛物线与x轴的另一个交点在点(﹣1,0)和点(0,0)之间,∴当x=﹣1时,y=a﹣b+c>0,因此②不正确;∵|﹣4﹣(﹣2)|<|1﹣(﹣2)|,∴(﹣4,y1)到对称轴的水平距离小于(1,y2)到对称轴的水平距离,且抛物线开口向下,∴y1>y2,故③正确;∵抛物线的顶点坐标为(﹣2,3),∴=3,∴b2+12a=4ac,∵4a﹣b=0,∴b=4a,∴b2+3b=4ac,故④正确;∴正确的有:①③④,故选:B.二.填空题(共7小题,满分21分)11.解:∵抛物线y=(a+3)x2开口向下,∴a+3<0,∴a<﹣3.故答案为:a<﹣3.12.解:∵抛物线开口向下,∴a<0,令a=﹣1,设抛物线的关系式为y=﹣(x﹣h)2+k,∵对称轴为直线x=2,∴h=2,把(0,3)代入得,3=﹣(0﹣2)2+k,解得,k=7,∴抛物线的关系式为:y=﹣(x﹣2)2+7,故答案为:y=﹣(x﹣2)2+7(答案不唯一).13.解:抛物线的对称轴为直线x=﹣=﹣m,∵a=1>0,∴抛物线开口向上,∵当x>2时,y的值随x值的增大而增大,∴﹣m≤2,解得m≥﹣2.故答案为:m≥﹣2.14.解:∵抛物线y=(m2﹣2)x2﹣4mx+n的对称轴是直线x=2,且它的最高点在直线y =x+2上,∴,当x=2时,y=×2+2=3,∴m=﹣1,该抛物线的顶点坐标为(2,3),∴3=[(﹣1)2﹣2]×22﹣4×(﹣1)×2+n,解得,n=﹣1,故答案为:﹣1,﹣1.15.解:观察表格可知,当x=﹣3或5时,y=7,根据二次函数图象的对称性,(﹣3,7),(5,7)是抛物线上两对称点,对称轴为直线x==1,顶点(1,﹣9),根据对称性,x=2与x=0时,函数值相等,都是﹣8.16.解:∵y=x2+mx+2=(x+)2+2﹣,∴顶点D(﹣,2﹣),C(0,2),∴OC=2,∵S△ABC=AB•OC=AB×2=AB,S△ABD=AB•|2﹣|,△ABC与△ABD的面积比为3:5,∴AB:AB•|2﹣|=3:5,解得:m=﹣.故答案是:﹣.17.解:如图,设C点关于抛物线对称轴的对称点为C′,由对称的性质可得CE=C′E,∴CE+EF=C′E+EF,∴当F、E、C′三点一线且C′F与AB垂直时CE+EF最小,直线AB的解析式为y=x+3,∵C(0,1),∴C′(2,1),∴直线C′F的解析式为y=﹣x+,联立直线C′F和直线AB得:x+3=﹣x+,解得x=,代入解得y=,∴F(,),∴C′F==,即CE+EF的最小值为.故答案为.三.解答题(共9小题,满分69分)18.解:y=x2﹣4x+5=(x2﹣8x)+5=(x2﹣8x+16)+5﹣8=(x﹣4)2﹣3,∴顶点(4,﹣3).19.解:(1)把点(1,﹣2),(﹣2,13)代入y=ax2+bx+1得,,解得:;(2)由(1)得函数解析式为y=x2﹣4x+1,∴对称轴是直线x=﹣=2,∵(5,n),(m,n)是抛物线上不同的两点,纵坐标相同,∴(5,n),(m,n)是对称点,∴=2,解得m=﹣1.20.解:(1)由题意得:函数的对称轴为x=1,此时y=﹣2,则函数的表达式为:y=a(x﹣1)2﹣2,把点A坐标代入上式,解得:a=,则函数的表达式为:y=x2﹣x﹣(2)a=>0,函数开口向上,对称轴为:x=1;(3)当y>0时,x的取值范围为:x>3或x<﹣1.21.解:(1)①当m=1,n≠﹣2时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是一次函数,它一定与x轴有一个交点,∵当y=0时,(n+1)x m+mx+1﹣n=0,∴x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;②当m=2,n≠﹣1时,函数y=(n+1)x m+mx+1﹣n(m,n为实数)是二次函数,当y=0时,y=(n+1)x m+mx+1﹣n=0,即:(n+1)x2+2x+1﹣n=0,△=22﹣4(1+n)(1﹣n)=4n2≥0;∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;③当n=﹣1,m≠0时,函数y=(n+1)x m+mx+1﹣n是一次函数,当y=0时,x=,∴函数y=(n+1)x m+mx+1﹣n(m,n为实数)与x轴有交点;(2)①假命题,若它是一个二次函数,则m=2,函数y=(n+1)x2+2x+1﹣n,∵n>﹣1,∴n+1>0,抛物线开口向上,对称轴:﹣==﹣<0,∴对称轴在y轴左侧,当x<0时,y有可能随x的增大而增大,也可能随x的增大而减小,②当x=1时,y=n+1+2+1﹣n=4.当x=﹣1时,y=0.∴它一定经过点(1,4)和(﹣1,0).22.解:(1)将(5,0),(0,5)代入y=x2+bx+c得,解得,∴y=x2﹣6x+5.(2)设直线BC解析式为y=kx+n,将(5,0),(0,5)代入y=kx+n得,解得,∴y=﹣x+5,设点M坐标为(m,m2﹣6m+5),则点N坐标为(m,﹣m+5),∴MN=﹣m+5﹣(m2﹣6m+5)=﹣m2+5m=﹣(m﹣)2+,∴MN最大值为.23.解:(1)∵>0,∴抛物线开口向上,抛物线的顶点为最低点,∵y=x2﹣x+3=(x﹣4)2+,∴绳子最低点离地面的距离为m;(2)由(1)可知,对称轴为x=4,则BO=8,令x=0得y=3,∴A(0,3),C(8,3),由题意可得:抛物线F1的顶点坐标为:(2,1.8),设F1的解析式为:y=a(x﹣2)2+1.8,将(0,3)代入得:4a+1.8=3,解得:a=0.3,∴抛物线F1为:y=0.3(x﹣2)2+1.8,当x=3时,y=0.3×1+1.8=2.1,∴MN的长度为2.1米;(3)∵MN=3,点M(3,3),∵抛物线F1和F2的形状和大小都一样,∴设抛物线F1的解析式为y=a(x﹣)2+k1,F2的解析式为y=a(x﹣)2+k2,抛物线F1和F2的最低点到地面的高度分别为k1和k2,由题意,得k1﹣k2=0.5,把点M(3,3)分别代入y=a(x﹣)2+k1和y=a(x﹣)2+k2,得k1=3﹣a,k2=3﹣a,∴3﹣a﹣(3﹣a)=0.5,解得:a=.∴抛物线F1对应函数的二次项系数为.24.解:(1)由,得,即顶点M坐标为(m,m);(2)∵此时二次函数为y=(x﹣m)2+m过点A(0,3),∴3=(0﹣m)2+m得m1=﹣3,m2=,∴y=(x+2)2﹣1或y=(x﹣)2+;(3)当m=6时,顶点为M(4,2),∴抛物线为y=(x﹣4)2+2,函数的最小值为2,∵x满足t﹣1≤x≤t+3时,二次函数的最小值为2,∴,解得1≤t≤5.25.解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x==4时,y最大=1960元;∴每件商品的售价为34元.答:每件商品的售价为34元时,商品的利润最大,为1960元;26.解:(1)由题意可知,点C为抛物线G的顶点,当m=2时,C(2,6),设G所对应的函数的表达式为y=a(x﹣2)2+6(a≠0),将点A(0,4)代入y=a(x﹣2)2+6得4=4a+6,解得a=﹣.∴y=﹣(x﹣2)2+6.(2)∵抛物线对称轴为直线x==m,∴点C坐标为(m,m+4),设抛物线解析式为y=a(x﹣m)2+m+4,把(0,4)代入y=a(x﹣m)2+m+4得4=am2+m+4,解得a=﹣,∴y=﹣(x﹣m)2+m+4.(3)①0<m≤2时,在直线x=﹣2和x=2之间的部分的抛物线最高点为顶点(m,m+4),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),m+4﹣(﹣)=8时,解得m=2.②当m>2时,图象最高点为直线x=2与抛物线交点(2,﹣+8),最低点为直线x=﹣2与抛物线交点(﹣2,﹣),﹣+8﹣(﹣)=8,∴m>2符合题意,∴m≥2.(4)作CD⊥PQ于点D,∵点R将线段PQ分成1:3两部分,∴PQ=4PR=2PD,∴PR=RD,∴CD=RD,∴PQ=4CD,设CD=t,则PQ=4t,∴点Q的坐标为(m+2t,m+4﹣t),∴=﹣(m+2t﹣m)2+m+4=m+4﹣t.解得t=m.∴点Q坐标为(m,m+4),PQ=m,∵△APQ的面积为,∴m(m+4﹣4)=,解得m=或m=﹣(舍).∴m=.。
北师大版九年级数学下册单元测试题及答案第一章达标测试卷一、选择题(每题3分,共30分)1.cos 30°的值为( )A.12B.32C.22D.332.如图,已知Rt △BAC 中,∠C =90°,AC =4,tan A =12,则BC 的长是( ) A .2 B .8 C .2 5 D .45(第2题) (第3题)3.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D 点,已知AC =5,BC =2,那么sin ∠ACD 等于( ) A.53 B.23 C.253 D.524.若3tan (α+10°)=1,则锐角α的度数是( )A .20°B .30°C .40°D .50°5.已知cos θ=0.253 4,则锐角θ约等于( )A .14.7°B .14°7′C .75.3°D .75°3′6.如图,某课外活动小组在测量旗杆高度的活动中,已测得仰角∠CAE =33°,AB =a ,BD =b ,则下列求旗杆CD 长的式子中正确的是( )A .CD =b sin 33°+aB .CD =b cos 33°+aC .CD =b tan 33°+a D .CD =b tan 33°+a(第6题) (第7题)7.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则∠ABC的正切值是( )A .2 B.255 C.55 D.128.在△ABC 中,∠A =30°,∠B =45°,AB =2(1+3),则BC 等于( )A .2 B. 6 C .2 2 D .1+ 39.如图,在高楼前D 点测得楼顶的仰角为30°,向高楼前进60 m 到C 点,又测得仰角为45°,则该高楼的高度大约为( )A .82 mB .163 mC .52 mD .30 m(第9题) (第10题)10.如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC ′的位置,此时露在水面上的鱼线B ′C ′长为3 3 m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°二、填空题(每题3分,共30分)11.已知α为等腰直角三角形的一个锐角,则tan α=________. 12.若反比例函数y =k x的图象经过点(tan 30°,cos 60°),则k =________.13.在△ABC中,∠C=90°,BC=6,sin A=23,则AB=________.14.某梯子与地面所成的角α满足45°≤α≤60°时,人可以安全地爬上斜靠在墙面上的梯子的顶端,现有一个长6 m的梯子,则使用这个梯子最高可以安全爬上__________高的墙.15.某游客在山脚处看见一个标注海拔40 m的牌子,当他沿山坡前进50 m时,他又看见一个标注海拔70 m的牌子,于是他走过的山坡的坡度是__________.16.如图,△ABC的顶点A,C的坐标分别是(0,23),(2,0),且∠ACB=90°,∠B=30°,则顶点B的坐标是__________.(第16题) (第17题) (第18题)(第19题) (第20题)17.如图,一棵树的枝叶部分AB在太阳光下的投影CD的长是5.5 m,此时太阳光线与地面的夹角是52°,则AB的长约为__________ (结果精确到0.1 m.参考数据:sin 52°≈0.79,tan 52°≈1.28).18.如图,秋千链子的长度OA=3 m,静止时秋千踏板处于A位置,此时踏板距离地面0.3 m,秋千向两边摆动,当踏板处于A′位置时,摆角最大,此时∠AOA′=50°,则在A′位置,踏板与地面的距离约为________m(sin 50°≈0.766,cos 50°≈0.642 8,结果精确到0.01 m).19.如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20 n m i l e 的速度沿南偏西50°方向匀速航行,1 h 后到达码头B 处,此时,观测灯塔C 位于北偏西25°方向上,则灯塔C 与码头B 的距离约是________n m i l e(结果精确到个位,参考数据:2≈1.4,3≈1.7,6≈2.4).20.如图,正方形ABCD 的边长为22,过点A 作AE ⊥AC ,AE =1,连接BE ,则tan E =________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.计算:(1)2-1-3sin 60°+(π-2 019)0+⎪⎪⎪⎪⎪⎪-12;(2)12-3+4cos 60°·sin 45°-(tan 60°-2)2.22.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,2a =3b ,求∠B 的正弦、余弦和正切值.23.如图,在△ABD 中,AC ⊥BD 于点C ,BC CD =32,点E 是AB 的中点,tan D =2,CE =1,求sin ∠ECB 的值和AD 的长.(第23题)24.为建设“宜居宜业宜游”山水园林城市,正在对某城市河段进行区域性景观打造.某施工单位为测得某河段的宽度,测量员先在河对岸岸边取一点A ,再在河这边沿河边取两点B 和C ,在B 处测得点A 在北偏东30°方向上,在C 处测得点A 在西北方向上,如图,量得BC 长为200 m ,求该河段的宽度(结果保留根号).(第24题)25.如图,海中一小岛上有一个观测点A,某天上午9:00观测到某渔船在观测点A的西南方向上的B处跟踪鱼群由南向北匀速航行.当天上午9:30观测到该渔船在观测点A的北偏西60°方向上的C处.若该渔船的速度为30 n m i l e/h,在此航行过程中,该渔船从B处开始航行多少小时,离观测点A 的距离最近?(计算结果用根号表示,不取近似值)(第25题)26.如图,MN表示一段笔直的高架道路,线段AB表示高架道路旁的一排居民楼.已知点A到MN的距离为15 m,BA的延长线与MN相交于点D,且∠BDN=30°.假设汽车在高架道路上行驶时,周围39 m以内会受到噪音的影响.(1)过点A作MN的垂线,垂足为点H.如果汽车沿着从M到N的方向在MN上行驶,当汽车到达点P处时,噪音开始影响这一排居民楼,那么此时汽车与点H的距离为多少米?(2)降低噪音的一种方法是在高架道路旁安装隔音板.当汽车行驶到点Q时,它与这一排居民楼的距离QC为39 m,那么对于这一排居民楼,高架道路旁安装的隔音板至少需要多少米长?(结果精确到1 m,参考数据:3≈1.7)(第26题)答案一、1.B 2.A 3.A 4.A 5.C 6.C 7.D 8.A 9.A10.C 点拨:∵sin ∠CAB =BC AC =326=22,∴∠CAB =45°. ∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°. ∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.二、11.1 12.36 13.9 14.3 3 m 15.3∶4 16.(8,23) 17.7.0 m 点拨:过点B 作BE ∥CD ,交AD 于点E . ∵太阳光线与地面的夹角是52°,且太阳光线是平行的,∴tan 52°=AB BE,BE =CD =5.5 m. ∴AB =5.5×tan 52°≈5.5×1.28=7.04≈7.0(m).18.1.37 点拨:如图,作A ′D ⊥OA 于点D ,A ′C 垂直地面于点C ,延长OA 交地面于点B .(第18题)易得四边形BCA ′D 为矩形,∴A ′C =DB .∵∠AOA ′=50°,且OA =OA ′=3 m ,∴在Rt △OA ′D 中,OD =OA ′·cos ∠AOA ′≈3×0.642 8≈1.93(m). 又AB =0.3 m ,∴OB =OA +AB =3.3 m. ∴A ′C =DB =OB -OD ≈1.37 m.19.2420.23点拨:延长CA 到F 使AF =AE ,连接BF ,过B 点作BG ⊥AC ,垂足为G .根据题干条件证明△BAF ≌△BAE ,得出∠E =∠F ,然后在Rt △BGF 中,求出tan F 的值,进而求出tan E 的值.三、21.解:(1)原式=12-3×32+1+12=12-32+1+12=12; (2)原式=-(2+3)+4×12×22-(3-2)=-2-3+2-3+2=-23+ 2.22.解:由2a =3b ,可得a b =32. 设a =3k (k >0),则b =2k ,由勾股定理,得c =a 2+b 2=9k 2+4k 2=13k . ∴sin B =bc =2k 13k=21313, cos B =a c =3k 13k=31313, tan B =b a =2k 3k =23. 23.解:∵AC ⊥BD ,∴∠ACB =∠ACD =90°.∵点E 是AB 的中点,CE =1,∴BE =CE =1,AB =2CE =2.∴∠B =∠ECB . ∵BC CD =32, ∴设BC =3x ,则CD =2x .在Rt △ACD 中,tan D =2,∴AC CD=2. ∴AC =4x .在Rt △ACB 中,由勾股定理得AB =AC 2+BC 2=5x ,∴sin ∠ECB =sin B =AC AB =45. 由AB =2,得x =25, ∴AD =AC 2+CD 2=(4x )2+(2x )2=25x =25×25=455. 24.解:如图,过点A 作AD ⊥BC 于点D .(第24题)根据题意知∠ABC =90°-30°=60°,∠ACD =45°, ∴∠CAD =45°.∴∠ACD =∠CAD .∴AD =CD .∴BD =BC -CD =200-AD .在Rt △ABD 中,tan ∠ABD =AD BD, ∴AD =BD ·tan ∠ABD =(200-AD )·tan 60°=3(200-AD ). ∴AD +3AD =200 3.∴AD =20033+1=300-1003(m).答:该河段的宽度为(300-1003)m. 25.解:如图,过点A 作AP ⊥BC , 垂足为P ,设AP =x n mi l e.(第25题)在Rt △APC 中,∵∠APC =90°, ∠PAC =90°-60°=30°,∴tan ∠PAC =CP AP =33.∴CP =33x n mi l e.在Rt △APB 中,∵∠APB =90°, ∠PAB =45°, ∴BP =AP =x n mi l e.∵PC +BP =BC =30×12=15(n mi l e),∴33x +x =15.解得x =15(3-3)2.∴PB =15(3-3)2n mi l e.∴航行时间为15(3-3)2÷30=3-34(h).答:该渔船从B 处开始航行3-34h ,离观测点A 的距离最近.26.解:(1)如图,连接PA.(第26题)由已知得AP=39 m,在Rt△APH中,PH=AP2-AH2=392-152=36(m).答:此时汽车与点H的距离为36 m.(2)由题意,隔音板位置应从P到Q,在Rt△ADH中,DH=AHtan 30°=1533=153(m);在Rt△CDQ中,DQ=CQsin 30°=3912=78(m).∴PQ=PH+HQ=PH+DQ-DH=36+78-153≈114-15×1.7≈89(m).答:高架道路旁安装的隔音板至少需要89 m长.第二章达标测试卷1.下列函数属于二次函数的是( )A.y=5x+3 B.y=1x2C.y=2x2+x+1 D.y=x2+12.二次函数y=x2-2x+4化为y=a(x-h)2+k的形式,下列正确的是( ) A.y=(x-1)2+2 B.y=(x-1)2+3 C.y=(x-2)2+2 D.y=(x-2)2+43.一小球被抛出后,距离地面的高度h (m)和飞行时间t (s)满足的函数表达式为h=-5(t -1)2+6,则小球距离地面的最大高度是( )A.1 m B.5 m C.6 m D.7 m4.下列抛物线中,开口向下且开口最大的是( )A.y=-x2B.y=-23x2C.y=13x2D.y=-3x25.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:x-1 0 1 2 3y 5 1 -1 -1 1 则该二次函数图象的对称轴为( )A.y轴B.直线x=52C.直线x=2 D.直线x=326.抛物线y=x2+2x+m-1与x轴有两个不同的交点,则m的取值范围是( ) A.m<2 B.m>2 C.0<m≤2 D.m<-27.将抛物线y=x2-4x-4向左平移3个单位长度,再向上平移5个单位长度,得到抛物线的函数表达式为( )A.y=(x+1)2-13 B.y=(x-5)2-3C.y=(x-5)2-13 D.y=(x+1)2-38.二次函数y=ax2+bx+c的图象如图所示,反比例函数y=ax与正比例函数y=bx在同一坐标系内的大致图象是( )9.以x为自变量的二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,则实数b的取值范围是( )A.b≥54B.b≥1或b≤-1 C.b≥2 D.1≤b≤210.如图是抛物线y 1=ax2+bx+c(a≠0)的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点为B(4,0),直线y2=m x+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是( )A.①②③B.①③④C.①③⑤D.②④⑤二、填空题(每题3分,共30分)11.当a =________时,函数y =(a -1)xa 2+1+x -3是二次函数.12.已知抛物线y =-2(x -3)2+1,当x 1>x 2>3时,y 1________y 2(填“>”或“<”). 13.某一型号飞机着陆后滑行的距离y (单位:m)与滑行时间x (单位:s)之间的函数表达式是y =60x -1.5x 2,该型号飞机着陆后滑行距离为__________时才能停下来. 14.如图是二次函数y =ax 2-x +a 2-1的图象,则a =________.15.已知二次函数的图象经过原点及⎝⎛⎭⎪⎫-12,-14,且图象与x 轴的另一个交点到原点的距离为1,则该二次函数的表达式为________________________.16.若抛物线y =kx 2-7x -7和x 轴有交点,则k 的取值范围是__________________. 17.抛物线y =x 2-2kx +4k 通过一个定点,这个定点坐标是____________.18.廊桥是我国古老的文化遗产,如图是一抛物线形的廊桥示意图,已知抛物线的函数表达式为y=-140x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8 m的点E,F处要安装两盏警示灯,则这两盏警示灯的水平距离EF约是________m(结果精确到1 m,5≈2.236).19.某商店经营一种水产品,成本为每千克40元,据市场分析,若按每千克50元销售,一个月能售出500 k g;销售单价每涨1元,月销售量减少10 k g,针对这种水产品的销售情况,销售单价定为________元时,获得的月利润最大.20.如图,在边长为10 cm的正方形ABCD中,P为AB边上任意一点(P不与A,B两点重合),连接DP,过点P作PE⊥DP,垂足为P,交BC于点E,则BE的最大长度为__________.三、解答题(21~24题每题9分,其余每题12分,共60分)21.已知二次函数y=ax2+bx+c(a≠0)的图象上部分点的横坐标x与纵坐标y的对应值如下表所示:求:(1)这个二次函数的表达式;(2)这个二次函数图象的顶点坐标及上表中m的值.22.如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.23.如图,已知抛物线与x轴交于A(-1,0),E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线对应的函数表达式;(2)若抛物线的顶点为D,求四边形AEDB的面积.24.已知函数y=(m+6)x2+2(m-1)x+m+1的图象与x轴总有交点.(1)求m的取值范围;(2)当函数图象与x轴两交点的横坐标的倒数和等于-4时,求m的值.25.某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润为6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1 120元,求该产品的质量档次.26.有一个例题:有一个窗户形状如图①,上部是一个半圆,下部是一个矩形.如果制作窗框的材料总长为6 m,如何设计这个窗户,使透光面积最大?这个例题的答案:当窗户半圆的半径约为0.35 m时,透光面积的最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m.解答下列问题:(1)若AB为1 m,求此时窗户的透光面积;(2)与上面的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明理由.答案一、1.C 2.B 3.C 4.B 5.D 6.A 7.D8.C 点拨:由y =ax 2+bx +c 的图象开口向下,得a <0;由图象,得-b2a>0;由不等式的基本性质,得b >0. ∵a <0,∴y =a x的图象位于第二、四象限. ∵b >0,∴y =bx 的图象经过第一、三象限. 9.A10.C 点拨:对于抛物线y 1=ax 2+bx +c (a ≠0),对称轴为直线x =-b 2a ,∴-b2a=1,∴2a+b =0,①正确;由图象可知a <0,c >0,x =-b2a>0, ∴b >0,∴abc <0,②错误;∵抛物线y 1=ax 2+bx +c (a ≠0)与直线y =3只有一个交点,∴方程ax 2+bx +c =3有两个相等的实数根,③正确;设抛物线与x 轴的另一个交点是(x 2,0),由抛物线的对称性可知4+x 22=1,∴x 2=-2,即抛物线与x 轴的另一个交点是(-2,0),④错误; 通过函数图象可直接得到当1<x <4时,有y 2<y 1,⑤正确. 故选C .二、11.-1 12.< 13.600 m14.1 点拨:∵抛物线过原点,∴0=a ×02-0+a 2-1,∴a =±1.又∵抛物线开口向上,∴a =1.15.y =x 2+x 或y =-13x 2+13x点拨:由题意知,抛物线与x 轴的另一个交点坐标为(1,0)或(-1,0),故可得相应函数表达式为y =-13x 2+13x 或y =x 2+x .16.k ≥-74且k ≠0 17.(2,4)18.18 点拨:当y =8时,-140x 2+10=8,得x =±45,∴E (-45,8),F (45,8).∴EF =2×45=85≈18(m).19.70 点拨:设销售单价为x (元),且利润为y (元),则y =(x -40)·[500-10(x -50)],即y =-10(x -70)2+9 000(50≤x ≤100),当x =70时,y 有最大值,获得月利润最大. 20.52cm 点拨:设AP =x cm ,BE =y cm.如图,∵四边形ABCD 是正方形,∴∠A =∠B =90°.∴∠1+∠2=90°.∵PE ⊥DP ,∴∠2+∠3=90°.∴∠1=∠3.∴△ADP ∽△BPE .∴AD BP =APBE ,即1010-x =x y .整理得y =-110(x -5)2+52(0<x <10),∴当x =5时,y 有最大值52.三、21.解:(1)将点(-1,-5),(0,1),(2,1)的坐标代入y =ax 2+bx +c ,得⎩⎨⎧a -b +c =-5,c =1,4a +2b +c =1,解得⎩⎨⎧a =-2,b =4,c =1.∴这个二次函数的表达式为y =-2x 2+4x +1.(2)y =-2x 2+4x +1=-2(x -1)2+3,故图象的顶点坐标为(1,3).当x =4时,m =-2×16+16+1=-15.22.解:(1)将点A (1,0)的横纵坐标代入y =(x -2)2+m ,得(1-2)2+m =0,解得m =-1.∴二次函数的表达式为y =(x -2)2-1. 当x =0时,y =4-1=3, ∴C 点坐标为(0,3).∵点C 和点B 关于对称轴直线x =2对称,∴B 点坐标为(4,3).分别将A (1,0),B (4,3)的坐标代入y =kx +b ,得⎩⎨⎧k +b =0,4k +b =3,解得⎩⎨⎧k =1,b =-1.∴一次函数的表达式为y =x -1. (2)A ,B 两点的坐标分别为(1,0),(4,3).当kx +b ≥(x -2)2+m 时,在坐标系内对应的直线不在抛物线的下方,此时1≤x ≤4. 23.解:(1)因为抛物线与y 轴交于点B (0,3),所以设抛物线对应的函数表达式为y =ax 2+bx +3(a ≠0). 由题意得⎩⎨⎧a -b +3=0,9a +3b +3=0,解得⎩⎨⎧a =-1,b =2.所以抛物线对应的函数表达式为y =-x 2+2x +3.(2)由顶点坐标公式得抛物线的顶点坐标为(1,4). 作抛物线的对称轴,与x 轴交于点F , 所以S四边形AEDB =S △ABO +S梯形BOFD +S △DEF=12AO ·BO +12(BO +DF )·OF +12EF ·DF =12×1×3+12×(3+4)×1+12×2×4=9.24.解:(1)当m +6=0即m =-6时,函数y =(m +6)x 2+2(m -1)x +m +1,即y =-14x -5的图象与x 轴有交点;当m +6≠0时,Δ=4(m -1)2-4(m +6)·(m +1)=4(-9m -5)≥0,解得m ≤-59,即m ≤-59且m ≠-6时抛物线与x 轴有交点.综合m +6=0和m +6≠0两种情况可知,当m ≤-59时,此函数的图象与x 轴有交点.(2)设x 1,x 2是方程(m +6)x 2+2(m -1)x +m +1=0的两个实数根,则x 1+x 2=-2(m -1)m +6,x 1x 2=m +1m +6.∵1x 1+1x 2=-4,即x 1+x 2x 1x 2=-4,∴-2(m -1)m +1=-4,解得m =-3.当m =-3时,m +6≠0,Δ>0,符合题意,∴m 的值是-3.25.解:(1)∵第1档次的产品一天能生产95件,每件利润为6元,每提高一个档次,每件利润增加2元,但一天产量减少5件,生产第x 档次的产品提高了(x -1)档, ∴y =[6+2(x -1)][95-5(x -1)],即y =-10x 2+180x +400(其中x 是正整数,且1≤x ≤10).(2)由题意,得-10x 2+180x +400=1 120,整理得x 2-18x +72=0, 解得x 1=6,x 2=12(舍去). ∴该产品的质量档次为第6档.26.解:(1)由已知得AD =54 m ,∴窗户的透光面积为54×1=54(m 2).(2)窗户透光面积的最大值变大. 理由:设AB =x m , 则AD =⎝ ⎛⎭⎪⎫3-74x m ,∵3-74x >0,且x >0,∴0<x <127. 设窗户透光面积为S m 2,由已知得S =x ⎝ ⎛⎭⎪⎫3-74x =-74x 2+3x =-74⎝ ⎛⎭⎪⎫x -672+97,当x =67时(x =67在0<x <127的范围内),S 最大=97>1.05.∴与例题比较,现在窗户透光面积的最大值变大.第三章达标测试卷一、选择题(每题3分,共30分)1.⊙O的半径为6,点P在⊙O内,则OP的长可能是( )A.5 B.6 C.7 D.82.如图,在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径为( ) A.5 B.10 C.8 D.6(第2题)(第3题)(第4题)3.如图,AB是⊙O的直径,BC是⊙O的弦,若∠OBC=60°,则tan∠BAC的值是( )A. 3 B.1 C.32D.334.如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD等于( ) A.128° B.100° C.64° D.32°5.已知扇形的面积为4π,扇形的弧长为π,则该扇形的半径为( ) A.4 B.6 C.8 D.8π6.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则⊙O的半径是( ) A.1 B.2 C. 3 D. 5(第6题)(第7题)(第9题)(第10题)7.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,CD ⊥AB 于点E ,则下列结论中不成立的是( )A .∠A =∠D B.CB ︵=BD ︵C .∠ACB =90° D.∠COB =3∠D8.同一个圆的内接正六边形和外切正六边形的周长之比为( )A .3∶4 B.3∶2 C .2∶ 3 D .1∶29.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A (8,0),与y 轴分别交于点B (0,4)和点C (0,16),则圆心M 到坐标原点O 的距离是( ) A .10 B .8 2 C .413 D .24110.如图,已知⊙O 是等腰直角三角形ABC 的外接圆,点D 是AC ︵上一点,BD 交AC 于点E ,若BC =4,AD =45,则AE 的长是( ) A .3 B .2 C .1 D .1.2 二、填空题(每题3分,共30分)11.如图,在⊙O 中,AB ︵=AC ︵,∠A =40°,则∠B =________.(第11题)(第12题)(第13题)(第14题)12.如图,已知△ABC的内切圆⊙O与BC边相切于点D,连接OB,OD.若∠ABC=40°,则∠BOD的度数是________.13.如图,AB为⊙O的直径,点C在AB的延长线上,CD,CE分别与⊙O相切于点D,E,若AD=2,∠DAC=∠DCA,则CE=________.14.如图,⊙P的半径为2,P在函数y=8x(x>0)的图象上运动,当⊙P与x轴相切时,点P的坐标为__________.15.如图,AB是⊙O的直径,AB=8,点C在圆上,且∠BAC=30°,∠ABD=120°,CD⊥BD 于点D,则BD=________.(第15题)(第16题)(第17题)16.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧BC的长为________.17.如图,已知在⊙O中,直径MN=10,正方形ABCD的四个顶点分别在半径OM,OP以及⊙O 上,而且∠POM=45°,则AB的长为________.18.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.(第18题)(第19题)(第20题)19.如图,直线y =33x +3与x 轴、y 轴分别相交于A ,B 两点,圆心P 的坐标为(1,0),⊙P 与y 轴相切于点O ,若将⊙P 沿x 轴向左移动,当⊙P 与该直线相交时,横坐标为整数的点P 有________个.20.如图,在Rt △ABC 中,∠ACB =90°,AC =23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将BD ︵绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为__________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.如图,A ,B ,C 三点都在⊙O 上,AE 是⊙O 的直径,AD 是△ABC 的高,⊙O 的半径R =4,AD =6.求证:AB ·AC 的值是一个常数.(第21题)22.如图,⊙O 的直径AB =10,弦DE ⊥AB 于点H ,AH =2. (1)求DE 的长;(2)延长ED 到点P ,过P 作⊙O 的切线,切点为C ,若PC =25,求PD 的长.(第22题)23.如图,已知P为反比例函数y=4x(x>0)图象上一点,以点P为圆心,OP长为半径画圆,⊙P与x轴相交于点A,连接PA,且点A的坐标为(4,0).求:(1)⊙P的半径;(2)图中阴影部分的面积.(第23题)24.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆O交AC于点D,点E为BC的中点,连接DE.(1)求证:DE是半圆O的切线;(2)若∠BAC=30°,DE=2,求AD的长.(第24题)25.如图,在直角坐标系中,点O′的坐标为(-2,0),⊙O′与x轴相交于原点O和点A,B,C两点的坐标分别为(0,b),(1,0).(1)当b=3时,求经过B,C两点的直线对应的函数表达式.(2)当B点在y轴上运动时,直线BC与⊙O′有哪几种位置关系?并求出每种位置关系时b的取值范围.(第25题)26.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB,BC于点M,N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=25,sin ∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.(第26题)答案一、1.A 2.A 3.D 4.A 5.C 6.A7.D 8.B9.D 点拨:连接BM,OM,AM,过点M作MH⊥BC于点H.∵⊙M与x轴相切于点A(8,0),∴AM⊥OA,OA=8.∴∠OAM=∠MHO=∠HOA=90°.∴四边形OAMH是矩形,∴AM=OH.∵点B的坐标为(0,4),点C的坐标为(0,16),∴OB=4,OC=16.∴BC=12.∵MH⊥BC,∴CH=BH=12BC=12×12=6.∴OH=OB+BH=4+6=10.∴AM=10.在Rt△AOM中,OM=AM2+OA2=102+82=241.10.C点拨:∵⊙O是等腰直角三角形ABC的外接圆,BC=4,∴AB为⊙O的直径,AC=4,AB=4 2.∴∠D=90°.在Rt△ABD中,AD=45,AB=42,∴BD=28 5.∵∠D=∠C,∠DAE=∠CBE,∴△ADE∽△BCE.∴AD∶BC=AE∶BE=DE∶CE=45∶4=1∶5.∴相似比为1∶5.设AE=x,∴BE=5x.∴DE=285-5x.∴CE =5DE =28-25x . 又∵AC =4,∴x +28-25x =4. 解得x =1.二、11.70° 12.70° 13.2 14.(4,2) 15.2 16.4π3 17. 518.392 点拨:延长CO 与圆交于点D ,连接AD ,可得∠B =∠D ,故sin B =sin D .∴AH AB =AC CD ,即18AB =2426,可得AB =392. 19.3 20.23-2π3点拨:依题意,有AD =BD ,又∠ACB =90°,所以CB =CD =BD ,即△BCD 为等边三角形,∠BCD =∠ABC =60°,∠BAC =∠ACD =30°;由AC =23,得BC =2,AB =4.阴影部分面积为S △ACD -S 弓形AD =S △ACD -S 弓形BD =S △ACD -(S 扇形BCD -S △BCD )=S △ABC -S 扇形BCD ,根据面积公式计算即可.三、21.证明:连接BE ,如图所示.(第21题)∵AE 为⊙O 的直径,AD 是△ABC 的高, ∴∠ABE =∠ADC =90°. 又∵∠C =∠E ,∴△ADC ∽△ABE .∴AC AE =AD AB. ∴AB ·AC =AD ·AE =6×2R=6×2×4=48, 即AB ·AC 的值是一个常数. 22.解:(1)连接OD .∵AB =10,∴OA =OD =5.∵AH=2,∴OH=3.∵AB⊥DE,∴∠DHO=90°,DH=EH.∴DH=OD2-OH2=52-32=4.∴DE=2DH=2×4=8.(2)连接OC,OP.∵CP与⊙O相切,∴OC⊥CP.∴OP=OC2+CP2=52+(25)2=3 5.∴PH=OP2-OH2=(35)2-32=6.∴PD=PH-DH=6-4=2.23.解:(1)过点P作PD⊥x轴于点D.∵A点的坐标为(4,0),∴OA=4.∴OD=2,即点P的横坐标为2.将x=2代入y=4x,可得y=2,即PD=2.在Rt△OPD中,根据勾股定理可得OP=22,即⊙P的半径为2 2.(2)由(1)可得PD=OD,且∠ODP=90°,∴∠OPD=45°.又∵OP=PA,∴∠APD=∠OPD=45°.∴∠OPA=90°.又∵OA=2OD=4,∴S阴影=S扇形OPA-S△OPA=90×(22)2×π360-4×22=2π-4.24.(1)证明:连接OD,OE,BD.∵AB为半圆O的直径,∴∠ADB=∠BDC=90°.在Rt△BDC中,E为斜边BC的中点,∴DE=BE.在△OBE和△ODE中,⎩⎨⎧OB =OD ,OE =OE ,BE =DE ,∴△OBE ≌△ODE (SSS ).∴∠ODE =∠OBE =90°.∴DE 为半圆O 的切线.(2)解:在Rt △ABC 中,∠BAC =30°,∴BC =12AC . ∵BC =2BE =2DE =4,∴AC =8.由题知∠C =60°,DE =BE =EC ,∴△DEC 为等边三角形.∴DC =DE =2.∴AD =AC -DC =8-2=6.25.解:(1)设经过B ,C 两点的直线对应的函数表达式为y =m x +n (m≠0且m ,n 为常数).由题易知B (0,3),C (1,0),分别将B (0,3),C (1,0)的坐标代入y =m x +n ,得⎩⎨⎧3=n ,0=m +n ,解得⎩⎨⎧m =-3,n =3.∴经过B ,C 两点的直线对应的函数表达式为y =-3x +3.(2)当BC 切⊙O ′于第二象限时,记切点为D ,易得DC = 5.∵BO =BD =b ,∴BC =5-b .在Rt △OBC 中,易得12+b 2=(5-b )2,解得b =255. 同理当BC 切⊙O ′于第三象限D 1点时,可求得b =-25 5. 故当b >255或b <-255时,直线BC 与⊙O ′相离; 当b =255或-255时,直线BC 与⊙O ′相切;当-255<b <255时,直线BC 与⊙O ′相交. 26.(1)证明:如图,连接AN .∵∠ABC =∠ACB ,∴AB =AC .∵AC 为直径,∴AN ⊥BC .∴∠CAN =∠BAN ,BN =CN .∵∠CAB =2∠BCP ,∴∠CAN =∠BCP .∵∠CAN +∠ACN =90°,∴∠BCP +∠ACN =90°,即∠ACP =90°.∴直线CP 是⊙O 的切线.(第26题)(2)解:如图,过点B 作BH ⊥AC 于点H ,由(1)得BN =CN =12BC = 5. ∵AN ⊥BC ,∴sin ∠CAN =CN AC. 又∵∠CAN =∠BCP ,sin ∠BCP =55, ∴CNAC =55,∴AC =5. ∴AN =AC 2-CN 2=2 5.∵∠ANC =∠BHC =90°,∠ACN =∠BCH ,∴△CAN ∽△CBH .∴AC BC =AN BH. ∴BH =4,即点B 到AC 的距离为4.(3)解:易知CH=BC2-BH2=2,则AH=AC-CH=3.∵BH∥CP,∴BHPC=AHAC.∴PC=20 3.∴AP=AC2+PC2=253.∴△ACP的周长是AC+AP+PC=5+253+203=20.。
北师大版初中数学九年级下册全册同步练习1.1锐角三角函数一、选择题1.在△ABC中,∠C=90°,BC=2,AB=3,则下列结论正确的是( )A. sin A=53B.cos A=23C.sin A=23D.tan A=522.如图l-2l所示的是一水库大坝横截面的一部分,坝高h=6 m,迎水坡AB=10 m,斜坡的坡角为a,则tan a的值为 ( )A.35B.45C.43D.343.如图1-22所示,在矩形ABCD中,DE⊥AC于E,设∠ADE=a,且cos a=35,AB=4,则AD的长为 ( )A.3 B.16 3C. 203D.165二、填空题4.如图1-23所示,一架梯子斜靠在墙上,若梯子底端到墙的距离AC=3米,cos∠BAC=34,则梯子AB的长度为米.5.若a是锐角,且sin2 a+cos2 48°=1,则a= .6.如图l-24所示,在Rt△ACB中,∠C=90°,AB=3,BC=1,求∠A的三角函数值.三、计算与解答题7.如图1-25所示,在Rt△ACB中,∠ACB=90°,CD为AB边上的高,BD=3,AD =163,求sin A,cos A,tan A的值.8.如图1-26所示,在平面直角坐标系内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=35.(1)求点B的坐标;(2)求cos∠BAO的值.9.请你画出一个以BC为底边的等腰三角形ABC,使底边上的高AD=BC(1)求tan∠ABC和sin∠ABC的值;(2)在你所画的等腰三角形ABC中,假设底边BC=5米,求腰上的高BE.参考答案 1.C[提示:sinA=BCAB.] 2.D[提示:过A 点作垂线交底部于C 点,则△ACB 为直角三角形,∴BC =2222106AB AC -=-=8(m),∴tan a =68=34.故选D .]3.B[提示:∠ADE 和∠EDC 互余,∴cos a =sin ∠EDC =35,sin ∠EDC =3,45EC EC DC ==∴EC =125.由勾股定理,得DE =165.在Rt △AED 中,cos a =16355DE AD AD ==,∴AD=163.故选B .] 4.4[提示:在Rt △BCA 中,AC =3米,cos ∠BAC =34AC AB =,所以AB =4米,即梯子的长度为4米.]5.48°[提示:∵sin 2a +cos 2a =l ,∴a =48°.] 6.提示:sin A =13,cos A =223,tan A =24.7.解:∵∠ACB =90°,CD ⊥AB ,∴△ACD ∽△CBD ,∴CD 2=AD ·DB =16,∴CD =4,∴AC =22203AD CD +=.∴sin A ==35CD AC =,cos A =45AD AC =,tan A =34CD AD =. 8.解:(1)如图l -27所示,作BH ⊥OA , 垂足为H .在Rt △OHB 中,∵BO =5,sin ∠BOA =35,∴BH =3,∴OH =4,∴点B 的坐标为(4,3). (2)∵OA =10,OH =4,∴AH =6.在Rt △AHB 中,∵BH =3,∴AB =22223635BH AH +=+=,∴cos ∠BAO=635AH AB == 255. 9.解:(1)根据题意画出图形,如图1-28所示,∵AB =AC ,AD ⊥BC ,AD =BC ,∴BD =12B C = 12AD ,即AD =2BD ,∴AB =225BD AD +=BD ,∴tan ∠ABC=ADBD=2,sin ∠ABC=AD AB =255 (2)作BE ⊥AC 于E ,在Rt △BEC 中,sinC=sin ∠ABC=255.又∵sin C=,BEBC.5BE故BE=.1.2 30°,45°,60°角的三角函数值一.选择题:1.在△ABC 中,∠A ,∠B 都是锐角,且 sin A =21,cos B =22,则△ABC 三个角的大小关系是( )A .∠C >∠A >∠B B .∠B >∠C >∠A C .∠A >∠B >∠CD .∠C >∠B >∠A2.若0°<<90°,且|sin -41|+223cos ⎪⎪⎭⎫ ⎝⎛-θ,则tan 的值等于( )A .3B .33 C .21 D .233.如图1—37所示,在△ABC 中,∠A =30°,tan B =32,AC =23,则AB 的长是 ( ) A .3+3 B .2+23 C. 5 D .924.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为a ,则其底边上的高是( ) A .32a B .a C.12a D .12a 或32a 二、选择题5.在Rt △ACB 中,∠C =90°,AC =3,AB =2,则tan2B= . 6.若a 为锐角,且sin a =22,则cos a = . 7.在Rt △ACB 中,若∠C =90°,sin A =32,b +c =6,则b = . 8.(1)在△ABC 中,∠C =90°,sin A =21,则 cos B =________; (2)已知为锐角,且cos(90°-)=21,则 =________;(3)若1)10(tan 3=︒+α,则锐角 =________.三、计算与解答9.计算(1)sin 60°·cos 30°-12.(2) 2 cos 230°-2 sin 60°·cos 45°;(3) 2 sin30°-3 tan 45°+4 cos 60°;10.如图1—38所示,在Rt △ACB 中,∠BCA =90°,CD 是斜边上的高,∠ACD =30°,AD =1,求AC ,CD ,BC ,BD ,AB 的长.11.如图1—39所示,在相距100米的A ,B 两处观测工厂C ,测得∠BAC =60°,∠ABC =45°,则A ,B 两处到工厂C 的距离分别是多少?12.在△ABC中,a,b,c分别是∠A,∠B,∠C的对边,且c=53,若关于x的方程(53+b)x2+2ax+(53-b)=0有两个相等的实数根,方程2x2-(10sin A)x+5sin A=0的两个实数根的平方和为6,求△ABC的面积.参考答案 1. D ; 2 。
北师大版九年级数学下册单元测试卷附答案第一章直角三角形的边角一、选择题(共15小题;共60分)1. 如图,在中,斜边的长为,,则直角边的长是A. B. C. D.2. ,锐角的度数应是A. B. C. D.3. 小新站在高楼上的点处看一棵小树顶端的仰角为,同时看小树底端的俯角为,则等于A. B. C. D.4. 已知,则约为A. B. C. D.5. 如图是拦水坝的横断面,斜坡的水平宽度为米,斜面坡度比为,则斜坡的长为A. 米B. 米C. 米D. 米6. ,,的大小关系是A. B.C. D.7. 在中,,,则等于B. C.8. 如图,传送带和地面所成斜坡的坡度为,物体从地面沿着该斜坡前进了米,那么物体离地面的高度为A. 米B. 米C. 米D. 米9. 如图,在中,,定义:斜边与的邻边的比叫做的正割,用“”表示,如设该直角三角形各边为,,,则,则下列说法正确的是A. B.C. D.10. 在中,,,则的度数是A. B. C. D.11. 用科学计算器算得①;②;③;④若,则锐角.其中正确的是A. ①②③B. ①②④C. ②③④D. ①③④12. 计算:A. B. C. D.13. 对于正数,规定,例如,,计算的结果是A. B. C. D.14. 如图,在网格中,小正方形的边长均为,点,,都在格点上,则的正切值是A. B.15. 如图,在平面直角坐标系上有个点,点第次向上跳动个单位至点,紧接着第次向右跳动个单位至点,第次向上跳动个单位,第次向左跳动个单位,第次又向上跳动个单位,第次向右跳动个单位,,依此规律跳动下去,点第次跳动至点的坐标是A. B.C. D.二、填空题(共6小题;共25分)16. .17. 若是锐角,,则度.18. 请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在中,和是的两条角平分线.若,则的度数为.B..(结果精确到)19. 若,则锐角的大小为;若,则锐角的大小为.20. 如图,厂房屋顶人字形(等腰三角形)钢架的跨度,中柱(为中点)的长是,则(用科学计算器计算,结果精确到).21. 如果,,是整数,且,那么我们规定一种记号,例如,那么记作,根据以上规定,求.三、解答题(共5小题;共65分)22. 基本事实:“若,则或”.一元二次方程可通过因式分解化为,由基本事实得或,即方程的解为或.(1)试利用上述基本事实,解方程:;(2)解方程:.23. 计算:.24. 计算:.25. 已知是经过顶点的一条直线,,,分别是直线上的两点,且.(1)若直线经过的内部,且在射线上,请解决下面两个问题.如图若,,则,(填“”、“”、“”);如图,若,则与的关系还成立吗?请说明理由;(2)如图,若直线经过的外部,,请写出,,三条线段数量关系(不要求说明理由).26. 如图是一过街天桥的示意图,天桥高为为,在距点处有一建筑物.为方便行人上下天桥,现准备减小坡道的坡角,但要求建筑物与新坡角的顶点处之间地面要留出不少于宽的人行道.(1)若将倾斜角改建为(即),则建筑物是否需要拆除? (2)若不拆除建筑物,则坡角最小能改成多少度(精确到)?答案第一部分1. A 【解析】在中,根据锐角三角函数的概念得,.2. D3. B4. B5. B6. C7. A8. C 【解析】作地面于点.设米,传送带和地面所成斜坡的坡度为,米,由勾股定理得,即,解得,即米.9. A10. C11. A12. B13. B14. D 【解析】如图,连接.由勾股定理,得,,,所以为直角三角形,且,所以.15. A【解析】经过观察可得:和的纵坐标均为,和的纵坐标均为,和的纵坐标均为,因此可以推知为.其中的倍数的跳动后的点都在轴的左侧,那么第次跳动得到的点也在轴左侧.第次跳动得到的点在轴右侧.横坐标为,横坐标为横坐标为依此类推可得到:的横坐标为(是的倍数).的横坐标为.故点的横坐标为:.点第次跳动至点的坐标是.第二部分16.17.18. ,【解析】A.,,平分,平分,,,B..19. ,20.21.【解析】根据规定可设,则,又由,所以,即.第三部分22. (1)方程左边因式分解可得:,或,解得:或.(2)原方程整理可得:,左边因式分解可得:,,解得:.23.24.25. (1);时,中两个结论仍然成立;证明:如图中,,,,在和中,,,,,当在的右侧时,同理可证,.【解析】如图中,点在点的左侧,,,,,,,,在和中,,,,,当在的右侧时,同理可证,.(2).26. (1)当时,,则,所以建筑物要拆除.(2)若不拆除建筑物,最长为,则,得,即坡角最小能改到.。
一、选择题1.已知二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则m 的取值范围是( )A .18m >B .18mC .18m >-且0m ≠ D .18m 且0m ≠ 2.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( ) A . B . C . D . 3.对称轴为y 轴的二次函数是( )A .y=(x+1)2B .y=2(x-1)2C .y=2x 2+1D .y=-(x-1)2 4.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .5.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<;②13a c =-;③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个B .2个C .3个D .4个 6.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1)7.二次函数223y x =-+在14x -≤≤内的最小值是( )A .3B .2C .-29D .-308.汽车刹车后行驶的距离s (单位:m )关于行驶的时间t (单位:s )的函数解析式是2156s t t =-.汽车刹车后到停下来前进了多远?( )A .10.35mB .8.375mC .8.725mD .9.375m 9.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个10.已知二次函数223y x x =--+,下列叙述中正确的是( )A .图象的开口向上B .图象的对称轴为直线1x =C .函数有最小值D .当1x >-时,函数值y 随自变量x 的增大而减小11.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④ 12.如图,二次函数2y ax bx c =++的图象与x 轴交于,A B 两点,与y 轴负半轴交于点C ,它的对称轴为直线12x =,则下列选项中正确的是( )A .0abc <B .0a b -=C .40a c ->D .当2(1x n n =+为实数)时,y c ≤二、填空题13.如图,直线334y x =-+与x 轴交于点C ,与y 轴交于点B ,抛物线233384y x x =-++经过B ,C 两点,点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,则EM 的最大值为_____.14.如图,二次函数2y x mx =-+的图象与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在14x <<的范围内有解,则t 的取值范围是_______.15.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc >;②20a b -=;③320b c +>;④2(am bm a b m +≤-为实数).其中正确结论是_____________(只填序号).16.如图1,AO ,BC 是两根垂直于地面的立柱,且长度相等.在两根立柱之间悬挂着一根绳子,如图2建立坐标系,绳子形如抛物线21410y x x =-+的图象.因实际需要,在OA 与BC 间用一根高为2.5m 的立柱MN 将绳子撑起,若立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,则点D 到地面的距离为______.17.已知抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点.若()15,P y ,()2,Q m y 是抛物线上的两点,且12y y >,则m 的取值范围是______.18.写出一个二次函数,使其满足:①图象开口向下;②当0x >时,y 随着x 的增大而减小.这个二次函数的解析式可以是______.19.若函数2(1)42y a x x a =+-+的图像与x 轴有且只有一个交点,则a 的值为____. 20.把函数y =x 2+3的图像向下平移1个单位长度得到的图像对应的函数关系式为________.三、解答题21.某产品的成本是120元/件,在试销阶段,当产品的售价为x (元/件)时,日销售量为(200-x )件.(1)写出用售价x (元/件)表示每日的销售利润y (元)的表达式(2)当日销售利润是1500元时,产品的售价是多少?日销售量是多少件?(3)当售价定位多少时,日销售利润最大?最大日销售利润是多少元?22.已知地物线2y x bx c =-++()0a ≠与y 轴交于点A ,点()3,2B 在该抛物线上 (1)若抛物线的对称轴是直线x m =,请用含b 的式子表示m ;(2)如图1,过点B 作x 轴的垂线段,垂足为点C .连结AB 和AC ,当ABC 为等边三角形时,求抛物线解析式;(3)如图2,在(2)条件下,已知P 为x 轴上的一动点,连结AP 和BP ,当30APB ∠=︒时,求满足条件的点P 的坐标.23.抛物线y =2x 2+4mx +m -5的对称轴为直线x =1,求m 的值及抛物线的顶点坐标. 24.已知抛物线的顶点坐标是()1,4-,且过点(0,3).()1求这个抛物线对应的函数表达式.()2在所给坐标系中画出该函数的图象.()3当x 取什么值时,函数值小于0?25.已知抛物线2y ax c =+经过点()0,2A 和点()1,0B -.(1)求抛物线的解析式;(2)将(1)中的抛物线平移,使其顶点坐标为()2,1,平移后的抛物线与x 轴的两个交点分别为点,C D (点C 在点D 的左边).求点,C D 的坐标;(3)将(1)中的抛物线平移,设其顶点的纵坐标为m ,平移后的抛物线与x 轴两个交点之间的距离为n .若15m <≤,直接写出n 的取值范围.26.如图,已知某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A(1)求该二次函数的表达式;(2)点(,)P m n 是该二次函数图象上一点,若点P 到y 轴的距离不大于4,请根据图象直接写出n 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,可得△=221410m m m -⨯->(+)()且0m ≠求解后即可得出结论.【详解】解:∵原函数是二次函数,∴0m ≠,∵二次函数2(21)1y mx m x m =+++-的图象与x 轴有两个交点,则△=240b ac ->,即221410m m m -⨯->(+)(), 解得18m >-. ∴m 的取值范围是18m >-且0m ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点问题,掌握抛物线与x 轴的交点问题与一元二次方程根之间的关系是解题的关键.2.A解析:A【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解.【详解】解:2(0)y ax bx a =+≠,0c ,∴二次函数经过坐标原点,故B 、C 选项错误; A 、根据二次函数开口向上0a >,对称轴b x 02a =->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交,所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A .【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.3.C解析:C【分析】由已知可知对称轴为x =0,从而确定函数解析式y =ax 2+bx +c 中,b =0,由选项入手即可.【详解】解:二次函数的对称轴为y 轴,则函数对称轴为x =0,即函数解析式y =ax 2+bx +c 中,b =0,故选:C .【点睛】本题考查二次函数的性质;熟练掌握二次函数的图象及性质是解题的关键.4.B解析:B【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-, ∴抛物线一定经过原点,∴选项A 排除;∵()222y mx m x =+- , ∴对称轴为直线x=22224m m m m ---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m -<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m ->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合;故选B.【点睛】 本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.5.D解析:D【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c 7=-,∴a 73c =-=.Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-= Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.6.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 7.C解析:C【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C . 【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.8.D解析:D 【分析】求出函数的最大值即可得求解. 【详解】∵22575156648s t t t ⎛⎫--- ⎪⎝⎭==+, ∴当54t =时,s 取得最大值759.3758=,即汽车刹车后到停下来前进的距离是9.375m 故选D . 【点睛】本题主要考查二次函数的应用,根据题意理解其最大值的实际意义是解题的关键.9.D解析:D 【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论. 【详解】解:∵抛物线的开口向下,∴a <0.∵02ba -<, ∴b <0.∵抛物线与y 轴交于正半轴, ∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确; 根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确. 则其中正确的有3个,为①②③. 故选:D . 【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.10.D解析:D 【分析】将函数图形变成顶点式,依照二次函数的性质对比四个选项即可得出结论. 【详解】解:A. 2223=(1)4y x x x =--+-++∵a=-1<0,∴图象的开口向下,故选项A 错误; B.2223=(1)4y x x x =--+-++∴图象的对称轴为直线1x =-,故选项B 错误; C.2223=(1)4y x x x =--+-++ ∵a=-1<0,∴图象的开口向下,函数有最大值,故选项C 错误; D. 2223=(1)4y x x x =--+-++∴当1x >-时,函数值y 随自变量x 的增大而减小,故选项D 正确; 故选:D . 【点睛】本题考查二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联立二次函数性质对比四个选项即可.11.A解析:A 【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案. 【详解】 解:图像开口向下, a ∴<0,12bx a=-=-<0, b ∴<0,函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12bx a=-=-, 2,b a ∴= 即1,2a b =当1x =时,y a b c =++<0, 12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A 【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.12.D解析:D 【分析】根据二次函数的图像和性质,分别对每个选项进行判断,即可得到答案. 【详解】解:由图象开口向上,可知a<0, 与y 轴的交点在x 轴的下方,可知c<0,又对称轴方程为12x =,所以122b a -=>0,所以b >0, ∴abc >0,故A 错误;∵122b a -= ∴=-a b ,∴0a b +=,故B 错误;当12x =时,则11042y a b c =++>,∵=-a b ,∴11042a a c -+>, ∴104a c -+>, ∴40a c -<,故C 错误; 当21x n =+时,222(1)(1)y a n b n c =++++ 4222an an a an a c =++--+ 42an an c =++22(1)an n c =++;∵n 为实数,∴20an ≤,211n +≥, ∴22(1)an n c c ++≤, 即y c ≤,故D 正确; 故选:D . 【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】设出E 的坐标表示出M 坐标进而表示出EM 化成顶点式即可求得EM 的最大值【详解】解:∵点E 是直线BC 上方抛物线上的一动点∴点E 的坐标是(m )点M 的坐标是(m )∴EM =﹣()==(m2﹣4m )=(解析:32【分析】设出E 的坐标,表示出M 坐标,进而表示出EM ,化成顶点式即可求得EM 的最大值. 【详解】解:∵点E 是直线BC 上方抛物线上的一动点, ∴点E 的坐标是(m ,233384m m -++),点M 的坐标是(m ,334m -+), ∴EM =233384m m -++﹣(334m -+)=23382m m -+=38-(m 2﹣4m )=38-(m ﹣2)2+32, ∴当m =2时,EM 有最大值为32, 故答案为32. 【点睛】本题考查了二次函数图象上点的坐标特征,一次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.14.【分析】求出函数解析式求出函数值取值范围把t 的取值范围转化为函数值的取值范围【详解】先由已知可得二次函数y=−x2+mx 的图象与x 轴交于坐标原点和(40)所以对称轴x==所以m=4代入方程y=−x2 解析:04t <≤【分析】求出函数解析式,求出函数值取值范围,把t 的取值范围转化为函数值的取值范围. 【详解】先由已知可得,二次函数 y=−x 2+mx 的图象与 x 轴交于坐标原点和 (4,0) 所以对称轴 x=2b a-=()221m -=⨯-, 所以m=4,代入 方程y=−x 2+mx 得, y=-x 2+4x , 当x=2时,y=4 即顶点坐标是(2,4) 当x=1时,y=3, 当x=4时,y=0 由x 2−mx+t=0 得 t=-x 2+4x=y因为当 1<x<4 时, 0<y≤4,所以在 1<x<4 范围内有实数解,则 t 的取值范围是0<t≤4, 故答案为:0<t≤4 . 【点睛】本题考查了二次函数和一元二次方程数形结合分析问题,注意函数的最低点和最高点.15.①②④【分析】根据抛物线开口向下对称轴抛物线与轴相交于正半轴可得可以判断①和②正确;当时有解得由图像可知化简后可判断得③错误;由图像可知当时抛物线有最大值当时根据得到化简后得故④正确【详解】解:抛物解析:①②④. 【分析】根据抛物线开口向下,对称轴12bx a=-=-,抛物线与y 轴相交于正半轴,可得0a <,20b a =<,0c >,可以判断①和②正确;当0y =时,有210a x c a ,解得11a cx a ,21a cx a,由图像可知,011a c a,化简后可判断得③错误;由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,根据12y y ≥得到20a bcam bmc化简后得2am bm a b +≤-,故④正确.【详解】 解:抛物线开口向下,0a ∴<,抛物线的对称轴12bx a=-=-, 20b a ∴=<,抛物线与y 轴相交于正半轴,0c ∴>,∴0abc >,故①正确;∴2220a b a a -=-=,故②正确;当0y =时,2220ax bx c ax ax c ,∴210a x c a∴11a cx a, 21a cx a由图像可知,011a c a∴14a c a则有30a c +<,∴62320a c b c +=+<,故③错误; 由图像可知,当1x =-时,抛物线有最大值1y a bc ,当x m =时,22y am bmc ,∵12y y ≥ ∴20a bcam bmc则2am bm a b +≤-,故④正确; 故答案是:①②④. 【点睛】本题考查了二次函数的图象与系数的关系,熟悉相关性质是解题的关键.16.2m 【分析】根据起始抛物线确定点A 的坐标结合已知确定N 的坐标从而确定新抛物线的解析式即可求解【详解】∵抛物线解析式为∴点A 的坐标为(04)∵立柱到的水平距离为左侧抛物线的最低点与的水平距离为∴新抛物解析:2m . 【分析】根据起始抛物线,确定点A 的坐标,结合已知确定N 的坐标,从而确定新抛物线的解析式即可求解. 【详解】∵抛物线解析式为21410y x x =-+, ∴点A 的坐标为(0,4),∵立柱MN 到OA 的水平距离为3m ,MN 左侧抛物线的最低点D 与MN 的水平距离为1m ,∴新抛物线的顶点坐标的横坐标为2,点N 的坐标为(3,52), 设抛物线的解析式为y=a 2(2)x k -+,把(0,4),(3,52)分别代入解析式,得 5a 244k a k ⎧+=⎪⎨⎪+=⎩, 解得1a 22k ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为y=21(2)22x -+, ∴抛物线的最小值为2即点D 到地面的距离为2, 故答案为:2. 【点睛】本题考查了二次函数的生活应用,解析式的确定,熟练把生活问题转化为函数问题,灵活确定抛物线的解析式是解题的关键.17.【分析】根据图像经过的两点确定抛物线的对称轴利用对称轴确定P 的对称点利用数形结合思想确定m 的范围即可【详解】∵抛物线经过两点∴解得b=-6a ∴抛物线的对称轴为直线x==3∴的对称点为∵∴故填【点睛】解析:15m <<. 【分析】根据图像经过的两点,确定抛物线的对称轴,利用对称轴,确定P 的对称点,利用数形结合思想,确定m 的范围即可. 【详解】∵抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点,∴4201640a b c a b c ++=⎧⎨++=⎩, 解得b=-6a ,∴抛物线的对称轴为直线x=2ba-=3, ∴()15,P y 的对称点为()11,P y ', ∵12y y >, ∴15m <<, 故填15m <<. 【点睛】本题考查了二次函数的对称性,熟记二次函数的性质是解题的关键.18.y=-x2-2x-1【分析】首先由①得到a <0;由②得到-≤0;只要举出满足以上两个条件的abc 的值即可得出所填答案【详解】解:二次函数y=ax2+bx+c①开口向下∴a <0;②当x >0时y 随着x 的解析:y=-x 2-2x-1. 【分析】首先由①得到a <0;由②得到-2ba≤0;只要举出满足以上两个条件的a 、b 、c 的值即可得出所填答案. 【详解】解:二次函数y=ax 2+bx+c , ①开口向下, ∴a <0;②当x >0时,y 随着x 的增大而减小,-2ba≤0,即b <0; ∴只要满足以上两个条件就行,如a=-1,b=-2,c=-1时,二次函数的解析式是y=-x 2-2x-1.故答案为:y=-x2-2x-1.【点睛】本题主要考查了二次函数的性质,熟练运用性质进行计算是解此题的关键.此题是一道开放型的题目.19.或或【分析】分该函数是一次函数和二次函数两种情况求解若为二次函数由抛物线与x轴只有一个交点时b2−4ac=0据此求解可得【详解】解:当a+1=0即a=−1时函数解析式为y=−4x−2与x轴只有一个交-或1解析:2-或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2−4ac=0,据此求解可得.【详解】解:当a+1=0,即a=−1时,函数解析式为y=−4x−2,与x轴只有一个交点;当a+1≠0,即a≠−1时,根据题意知,(−4)2−4×(a+1)×2a=0,整理,得:a2+a−2=0,解得:a=1或a=−2;综上,a的值为−1或−2或1.-或1.故答案为:2-或1【点睛】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:△=b2−4ac决定抛物线与x轴的交点个数:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.20.y=x2+2【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标再利用顶点式写出解析式即可【详解】解:函数y=x2+3的顶点坐标为(03)∵函数图象向下平移1个单位长度∴得到的函数图象顶点坐标为(0解析:y=x2+2.【分析】根据向下平移纵坐标减求出平移后函数的顶点坐标,再利用顶点式写出解析式即可.【详解】解:函数y=x2+3的顶点坐标为(0,3),∵函数图象向下平移1个单位长度,∴得到的函数图象顶点坐标为(0,2),∴得到函数解析式为y=x2+2.故答案为:y=x2+2.【点睛】本题考查了二次函数的平移变换,通过平移求出新图象顶点坐标是关键.三、解答题21.(1)y=-x 2+320x-24000 ;(2)当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件;(3)当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【分析】(1)根据利润=(销售价-成本价)×销售量可以得到解答;(2)令(1)中y=1500可以得到关于x 的一元二次方程,解方程即可得到产品售价x 的值,并进一步得到日销售量;(3)把(1)得到的函数配方,再根据二次函数的性质即可得到解答 . 【详解】解:(1)y =(x -120)(200-x )=-x 2+320x-24000 ; (2)日销售利润是1500元,即y=1500,则 1500=-x 2+320x-24000 解得:x 1=170,x 2=150当x=170时,日销售量是30件,当x=150时,日销售量是50件∴当日销售利润1500元时,产品的售价是170元/件或150元/件,日销售量是30件或50件 .(3)∵y=-x 2+320x-24000 =-(x-160)2+1600∴当售价定为160元/件时,日销售利润最大,最大日销售利润是1600元. 【点睛】本题考查二次函数的综合应用,由题意列出二次函数关系式,然后根据二次函数的性质求解即可.22.(1)2b m =;(2)21y x =-+;(3))12,0P ,)22,0P【分析】(1)直接根据对称轴为2bx a=-代入a ,b 计算即可得出答案; (2)首先根据点B 的坐标及等边三角形求出AC ,OC 的长度,然后利用勾股定理求出AO 的长度,从而得出c 的值,最后将点B 代入解析式中即可求解;(3)根据等边三角形的性质及圆周角定理确定出点P 的位置从而可确定出点P 的坐标. 【详解】 (1)∵22b b x a =-=, ∴2b m =.(2)∵ABC 为等边三角形,BC x ⊥轴,)B ,∴2AC BC ==,3OC =, 在Rt AOC 中, 221AO AC OC =-=∴1c =把()3,2B 代入21y x bx =-++,得43b =, ∴2431y x x =-++. (3)如图,由(2)知ABC 为等边三角形,∴60ACB ∠=︒,∵30APB ∠=︒,∴2ACB APB =∠∠,由同弦所对圆周角等于圆心角的一半可知,以点C 为圆心,BC 为半径作圆,经过点P . ∵P 在x 轴上,∴点P 即为圆C 与x 轴的交点,∵2BC =,∴2r,2CP = ∵()3,0C, ∴()132,0P -, 由轴对称性可知,()232,0P +.【点睛】本题主要考查二次函数与几何综合,掌握待定系数法,等边三角形的性质及圆的有关性质是解题的关键.23.m 的值是-1,抛物线的顶点坐标是(1,-8).【分析】根据y=2x 2+4mx+m-5的对称轴为直线x=1,可以求得m 的值,然后代入原来的解析中,将解析式化为顶点式即可解答本题.【详解】解:∵y =2x 2+4mx +m -5的对称轴为直线x =1,∴-422m ⨯=1, 解得m =-1, ∴y =2x 2-4x -6=2(x -1)2-8,∴此抛物线的顶点坐标为(1,-8),∴m 的值是-1,抛物线的顶点坐标是(1,-8).【点睛】本题考查二次函数的性质,解答本题的关键是知道抛物线的对称轴是直线x=-2b a,由二次函数的顶点式可以写出它的顶点坐标.24.()()2114y x =-++或223y x x =--+;()2见解析;()33x <-或1x > 【分析】(1)由抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,由抛物线()214y a x =++过点(0,3),1a =-即可;(2)列表,描点在平面直角坐标系中描出点(-3,0),(-2,3),(-1,4),(0,3),(1,0)用平滑曲线连接即可;(3)由函数值小于0,可得函数图像再x 轴下方,在-3左侧和1右侧即可.【详解】解:(1)∵抛物线的顶点坐标是()1,4-,设抛物线的解析式为()214y a x =++,抛物线()214y a x =++过点(0,3), 4=3a +,1a =-,抛物线的解析式为()214y x =-++;(2)列表:0)连线:用平滑曲线连接,(3)∵函数值小于0,∴函数图像再x 轴下方,在-3左侧和1右侧,当x<-3或x>1时,函数值小于0.【点睛】本题考查抛物线的解析式,画函数图像,函数图像的位置关系,掌握抛物线的解析式的求法,描点画函数图像的方法,函数图像与x 轴关系自变量范围是解题关键.25.(1)222y x =-+;(2)222,0,222C D ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭;(3210n <≤【分析】(1)把点A 、B 的坐标分别代入函数解析式,列出关于a 、c 的方程组,通过解方程求得它们的值;(2)根据平移的规律写出平移后抛物线的解析式,然后令0y =,则解关于x 的方程,即可求得点C 、D 的横坐标;(3)根据抛物线与x 轴两个交点之间的距离为2211212||()4x x x x x x -+-的关系来即可求n 的取值范围;【详解】解:(1)抛物线2y ax c =+经过点(0,2)A 和点(1,0)B -, ∴20c a c =⎧⎨+=⎩, 解得:22a c =-⎧⎨=⎩, ∴此抛物线的解析式为222y x =-+;(2)此抛物线平移后顶点坐标为(2,1),∴抛物线的解析式为22(2)1y x =--+,令0y =,即22(2)10x --+=,解得 1222x =+,2222x =-,点C 在点D 的左边,(C ∴ 2-0),(2D +,0); (3)设平移后抛物线的解析式是22y x m =-+,该抛物线与x 轴的两交点横坐标为1x ,2x ,整理为:220x m -=.此时120x x +=,122m x x =-.则21||x x n -==.当1m =时,n =当5m =时,n =.所以,n n <≤【点睛】本题考查了待定系数法求二次函数解析式,二次函数图象的几何变换.要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.26.(1)223y x x =--;(2)421n -.【分析】(1)设二次函数的解析式是y=a (x-h )2+k ,先代入顶点A 的坐标,再把B 的坐标代入,即可求出a ,即可得出解析式;(2)由点P 到y 轴的距离不大于4,得出 ,结合二次函数的图象可知,请根据图象直接写出n 的取值范围.【详解】解:(1)某二次函数的顶点坐标是(1,4)-,且经过点(4,5)A ,设二次函数的解析式为2(1)4y a x =--,把(4,5)A 代入得:25(41)4a =--解得:1a =,所以函数表达式为:223y x x =--.(2)点P 到y 轴的距离为||m ,∴||m ≤4,∴44m -,∵2223(1)4y x x x =--=--,在44m -时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=21,∴421n -.【点睛】本题考查了待定系数法求二次函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键.。
九年级数学下册单元测试题全套及答案第一章检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦函数值( A )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定2.计算sin 60°cos 30°-tan 45°的值为( B ) A .1 B .0 C.32 D.123.在Rt △ABC 中,∠C =90°,AB =6,cos B =23,则BC 的长为( A ) A .4 B .2 5 C.181313 D.1213134.如图,∠α的顶点在原点,一条边在x 轴上,另外一边经过点P(3,-4),则sin α的值为( B )A .-45 B.45 C.35 D .-34,第5题图) ,第6题图),第7题图)5.小强和小明去测量一座古塔的高度(如图),他们在离古塔60 m 的A 处,用测角仪器测得塔顶B 的仰角为30°,已知测角仪器高AD =1.5 m ,则古塔BE 的高为( B )A .(203-1.5) mB .(203+1.5) mC .31.5 mD .28.5 m6.如图,BD 是菱形ABCD 的对角线,CE ⊥AB 于点E ,交BD 于点F ,且点E 是AB 中点,则tan ∠BFE 的值是( D )A.12 B .2 C.33D. 3 7.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DE =1,则BC 长为( C )A. 3 B .2 C .3 D.3+28.如图,要在宽为22米的九洲大道AB 两边安装路灯,路灯的灯臂CD 长为2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的中轴线DO 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线时照明效果最佳.此时,路灯的灯柱BC 高度应该设计为( D )A .(11-22)米B .(113-22)米C .(11-23)米D .(113-4)米,第8题图) ,第9题图),第10题图)9.如图,在△ADC 中,∠C =90°,B 为AC 上一点,∠DBC =30°,AB =BD ,则利用此图可求得tan 75°等于( B )A .2- 3B .2+ 3 C.3+1 D.3-110.如图,在平面直角坐标系中,四边形OABC 是正方形,点A 的坐标是(4,0),点P 为边AB 上一点,∠CPB =60°,沿CP 折叠正方形,折叠后点B 落在平面内的点B′处,则点B′的坐标为( C )A .(2,23)B .(32,2-3) C .(2,4-23) D .(32,4-23) 二、细心填一填(每小题3分,共24分)11.计算:9-4sin 30°+(2016-π)0-22=__-2__.12.在△ABC 中,∠A ,∠B 的度数满足:⎪⎪⎪⎪sin A -22+(32-cos B)2=0,则∠C =__105°__.13.若22<cos α<1,则锐角α的范围是__0°<α<45°__. 14.如果方程x 2-4x +3=0的两个根分别是Rt △ABC 的两条边,△ABC 最小角是∠A ,那么tan A 的值为__13或24__. 15.如图,CD 是Rt △ABC 斜边上的高,AC =4,BC =3,则cos ∠BCD 的值是__45__ ,第15题图) ,第16题图) ,第17题图),第18题图) 16.如图,△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE=9,BC =12,则cos C =__23__. 17.如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼的C 处测得旗杆顶端A 的仰角为30°,旗杆底端B 的俯角为45°,若旗杆与教学楼的距离为9 m ,则旗杆AB 的高度是__(9+33)__m .(结果保留根号)18.如图,点D 在△ABC 的边BC 上,∠C +∠BAD =∠DAC ,tan ∠BAD =47,AD =65,CD =13,则线段AC 的长为__413__.三、用心做一做(共66分)19.(6分)计算:(1-3)0+|-2|-2cos 45°+⎝⎛⎭⎫14-1. 解:原式=1+2-2×22+4=520.(10分)如图,在Rt △ABC 中,∠ACB =90°,已知CD ⊥AB ,BC =1.(1)如果∠BCD =30°,求AC 的长;(2)如果tan ∠BCD =13,求CD 的长.解:(1)∵CD ⊥AB ,∴∠BDC =90°,∵∠DCB =30°,∴∠B =60°.在Rt △ACB 中,AC =BC·tan60°=3 (2)在Rt △BDC 中,tan ∠BCD =BD CD =13,设BD =k ,则CD =3k ,由勾股定理得k 2+(3k )2=12,解得k 1=1010,k 2=-1010(不合题意,舍去),∴CD =3101021.(10分)一个长方体木箱沿斜面下滑,当木箱滑至如图位置时,AB=3 m.已知木箱高BE= 3 m,斜面坡角为30°,求木箱端点E距地面AC的高度EF.解:连接AE,在Rt△ABE中,已知AB=3,BE=3,∴AE=AB2+BE2=2 3.又∵tan∠EAB=BEAB=33,∴∠EAB=30°.在Rt△AEF中,∠EAF=∠EAB+∠BAC=60°,∴EF=AE·sin∠EAF=23×sin60°=23×32=3(m)22.(10分)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东45°的方向.已知在小岛周围270海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(3≈1.732)解:该轮船不改变航向继续前行,没有触礁危险.理由如下:由题意可知∠ABD=30°,∠ACD=45°.设AD=x海里,CD=x·tan∠BAD=x·tan(90°-∠ABD)=3x,∴BC=3 x-x=200,解得x=100(3+1)≈273.2,∵273.2>270.∴轮船无触礁的危险23.(10分)如图,放置在水平桌面上的台灯的灯臂AB长为40 cm,灯罩BC长为30 cm,底座厚度为2 cm,灯臂与底座构成的∠BAD=60°,使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少?(结果精确到0.1 cm,参考数据:3≈1.732)解:过点B作BF⊥CD于点F,作BG⊥AD于点G,在Rt△BCF中,∠CBF=30°,∴CF=BC·sin30°=30×12=15,在Rt△ABG中,∠BAG=60°,∴BG=AB·sin60°=40×32=203,∴CE=CF+FD+DE=15+203+2=17+203≈51.64≈51.6 cm 24.(10分)如图,某市对位于笔直公路AC上两个小区A,B的供水路线进行优化改造,供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A,B之间的距离为300(3+1)米.求供水站M分别到小区A,B的距离.(结果可保留根号)解:作MN⊥AB交AB于点N.设BN=x米.在Rt△BNM中,∵∠NBM=90°-45°=45°,∴BN=MN=x米.在Rt△ANM中,∵∠NAM=90°-60°=30°,∴AN=3 MN=3x.∵AB=AN+BN,∴300(3+1)=3x+x,解得x=300.∴BN=MN=300米.在Rt△BNM中.BM=2BN=3002米.在Rt△ANM中,AM=2MN=2×300=600(米).答:供水站M到小区A的距离为600米,到小区B的距离为3002米25.(10分)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD,大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N的俯角β为45°,已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离;(结果精确到1米)(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底加宽后变为BH,加固后背水坡DH的坡度i=1:1.75,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)解:(1)在Rt△PEN中,EN=PE=30米.在Rt△PEM中,ME=PEtan∠PME=30tan31°≈50(米),∴MN=EM-EN=20米.答:两渔船M,N之间的距离约为20米(2)过点D作DF ⊥AH 交直线AH 于点F.由题意得,tan ∠DAB =4,tanH =47.在Rt △DAF 中,AF =DF tan ∠DAB =244=6(米).在Rt △DHF 中,HF =DF tanH =2447=42(米).AH =HF -AF =42-6=36(米).∴S △ADH =12·AH·DF =432平方米,∴需要填筑的土石方的体积为:V =S·L =432×100=43 200(立方米).设原计划平均每天填x 立方米,则原计划用43 200x天完成,增加机械设备后,平均每天填筑2x 立方米.∴2x·(43 200x-20-10)+10x =43 200,解得x =864.经检验,x =864是原分式方程的解,且满足实际意义.答:施工队原计划平均每天填筑土石方864立方米第二章检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.已知一个函数图象经过(1,-4),(2,-2)两点,在自变量x 的某个取值范围内,都有函数值y 随x 的增大而减小,则符合上述条件的函数可能是( D )A .正比例函数B .一次函数C .反比例函数D .二次函数2.已知抛物线y =ax 2-2x +1与x 轴没有交点,那么该抛物线的顶点所在的象限是( D )A .第四象限B .第三象限C .第二象限D .第一象限3.已知二次函数y =a(x -1)2+b(a ≠0)有最小值-1,则a ,b 的大小关系为( A )A .a >bB .a <bC .a =bD .不能确定4.已知函数y =⎩⎨⎧(x -1)2-1(x ≤3),(x -5)2-1(x >3),若使y =k 成立的x 值恰好有三个,则k 的值为( D )A .0B .1C .2D .35.二次函数y =ax 2+bx +c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax +b 与反比例函数y =c x在同一平面直角坐标系中的图象可能是( C )6.设二次函数y 1=a(x -x 1)(x -x 2)(a ≠0,x 1≠x 2)的图象与一次函数y 2=dx +e(d ≠0)的图象交于点(x 1,0).若函数y =y 1+y 2的图象与x 轴仅有一个交点,则( B )A .a (x 1-x 2)=dB .a (x 2-x 1)=dC .a (x 1-x 2)2=dD .a (x 1+x 2)2=d7.如图,两条抛物线y 1=-12x 2+1,y 2=-12x 2-1与分别经过点(-2,0),(2,0)且平行于y 轴的两条平行线围成的阴影部分的面积为( A )A .8B .6C .10D .4,第7题图) ,第8题图),第9题图) ,第10题图)8.一个函数的图象如图,给出以下结论:①当x =0时,函数值最大;②当0<x<2时,函数y 随x 的增大而减小;③存在0<x 0<1,当x =x 0时,函数值为0.其中正确的结论是( C )A .①②B .①③C .②③D .①②③9.某公园草坪的防护栏是由100段形状相同的抛物线形组成的,为了牢固起见,每段护栏需要间距0.4 m 加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m (如图),则这条防护栏需要不锈钢支柱的总长度至少为( C )A .50 mB .100 mC .160 mD .200 m10.如图,等边△ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿A →B →C 的方向运动,到达点C 时停止,设运动时间为x(秒),y =PC 2,则y 关于x 的函数的图象大致为( C )二、细心填一填(每小题3分,共24分)11.按照下图所示的操作步骤,若输入x 的值为2,则输出的值为__20__.12.已知抛物线y =x 2-2x -3,若点P(-2,5)与点Q 关于该抛物线的对称轴对称,则点Q 的坐标为__(4,5)__.13.用配方法将二次函数y =4x 2-24x +26写成y =a(x -h)2+k 的形式是__y =4(x -3)2-10__.14.如图,正方形ABCD 中,E 为BC 边上的点,F 为CD 边上的点,且AE =AF ,AB=4,设EC =x ,△AEF 的面积为y ,则y 与x 之间的函数关系式是__y =-12x 2+4x (0<x <4)__.,第14题图) ,第15题图),第16题图) ,第17题图)15.已知函数y 1=x 2与函数y 2=-12x +3的图象大致如图,若y 1<y 2,则自变量x 的取值范围是__-2<x <32__. 16.某一型号的飞机着陆后滑行的距离y(单位:m )与滑行时间x(单位:s )之间的函数关系是y =60x -1.5x 2,该型号飞机着陆后滑动__600__m 才能停下来.17.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9 m ,AB =36 m ,D ,E 为桥拱底部的两点,且DE ∥AB ,点E 到直线AB 的距离为7 m ,则DE 的长为__48__m.18.如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是__②③__.(写出所有正确说法的序号)①方程x 2-x -2=0是倍根方程;②若(x -2)(mx +n )=0是倍根方程,则4m 2+5mn +n 2=0;③若点(p ,q )在反比例函数y =2x的图象上,则关于x 的方程px 2+3x +q =0是倍根方程; ④若方程ax 2+bx +c =0是倍根方程,且相异两点M (1+t ,s ),N (4-t ,s )都在抛物线y=ax 2+bx +c 上,则方程ax 2+bx +c =0的一个根为54. 三、用心做一做(共66分)19.(10分)已知函数y =mx 2-6x +1(m 是常数).(1)求证:无论m 为何值,该函数的图象都经过y 轴上的一个定点;(2)若该函数的图象与x 轴只有一个交点,求m 的值.解:(1)因为无论m 取何值,当x =0时,y =1,所以该函数的图象都经过y 轴上的一定点(0,1) (2)当m =0时,函数为y =-6x +1,其图象与x 轴只有一个交点;当m ≠0时,Δ=(-6)2-4m =0,解得m =9,此时抛物线y =mx 2-6x +1与x 轴只有一个交点,所以m =0或920.(10分)画出y =x 2-2x -3的图象,并根据图象,回答下列问题:(1)方程x 2-2x -3=0的根是什么?(2)x 取何值时,函数值y 大于零?x … -1 0 1 2 3 …y … 0 -3 -4 -3 0 …(1)由图象可知,它与x 轴的交点坐标为(-1,0),(3,0);故方程x 2-2x -3=0的根是x 1=-1,x 2=3 (2)由图象可知,x <-1或x >3时,y >021.(10分)如图,已知抛物线y =ax 2+bx +c 与x 轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的表达式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y =-x 上,并写出平移后抛物线的表达式.解:(1)∵抛物线与x 轴交于点A (1,0),B (3,0),可设抛物线的表达式为y =a (x -1)(x -3),把C (0,-3)代入,得3a =-3,∴a =-1.∴抛物线的表达式为y =-(x -1)(x -3),即y =-x 2+4x -3.∵y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1) (2)(答案不唯一,合理即正确),如先向左平移2个单位,再向下平移1个单位,得到的抛物线的表达式为y =-x 222.(12分如图,某足球运动员站在点O 处练习射门,将足球从离地面0.5 m 的A 处正对球门踢出(点A 在y 轴上),足球的飞行高度y(单位:m )与飞行时间t(单位:s )之间满足函数关系y =at 2+5t +c.已知足球飞行0.8 s 时,离地面的高度为3.5 m .(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m )与飞行时间t(单位:s )之间满足函数关系x =10t ,已知球门的高度为2.44 m ,如果该运动员正对球门射门时,离球门的水平距离为28 m ,他能否将球直接射入球门?解:(1)将(0,0.5)和(0.8,3.5)代入y =at 2+5t +c ,得a =-2516,c =12,∴y =-2516t 2+5t +12=-2516(t -85)2+92,∴足球飞行的时间是85 s 时,足球离地面最高,最大高度是92 m (2)当x =28时,28=10t ,∴t =2.8.当t =2.8时,y =-2516 ×19625+5×145+12=2.25.∵0<2.25<2.44,∴他能将球直接射入球门23.(12分)如图,已知抛物线y =12x 2+bx 与直线y =2x 交于点O(0,0),A(a ,12).点B 是抛物线上O ,A 之间的一个动点,过点B 分别作x 轴、y 轴的平行线与直线OA 交于点C ,E.(1)求抛物线的函数表达式;(2)若点C 为OA 的中点,求BC 的长;(3)以BC ,BE 为边构造矩形BCDE ,设点D 的坐标为(m ,n),求出m ,n 之间的关系式.解:(1)∵点A (a ,12)在直线y =2x 上,∴12=2a ,即a =6.∴点A 的坐标为(6,12).又∵点A 是抛物线y =12x 2+bx 上的一点,把A (6,12)代入y =12x 2+bx ,得b =-1.∴抛物线的函数表达式为y =12x 2-x (2)∵点C 为OA 的中点,∴点C 的坐标为(3,6).把y =6代入y =12x 2-x ,解得x 1=1+13,x 2=1-13(舍去),∴BC =1+13-3=13-2 (3)∵点D 的坐标为(m ,n ),∴点E 的坐标为⎝⎛⎭⎫12n ,n ,点C 的坐标为(m ,2m ).∴点B 的坐标为⎝⎛⎭⎫12n ,2m ,把⎝⎛⎭⎫12n ,2m 代入y =12x 2-x ,可得m =116n 2-14n.∴m ,n 之间的关系式是m =116n 2-14n24.(12分)某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示. 销售量p(件)p =50-x 销售单价q(元/件)当1≤x ≤20时,q =30+12x ; 当21≤x ≤40时,q =20+525x .(1)请计算第几天该商品的销售单价为35元/件?(2)求该网店第x 天获得的利润y 关于x 的函数关系式;(3)这40天中该网店第几天获得的利润最大?最大利润是多少?解:(1)当1≤x ≤20时,令30+12x =35,得x =10.当21≤x ≤40时,令20+525x=35,得x =35.即第10天或者第35天该商品的销售单价为35元/0件(2)当1≤x ≤20时,y =⎝⎛⎭⎫30+12x -20(50-x )=-12x 2+15x +500;当21≤x ≤40时,y =⎝⎛⎭⎫20+525x -20(50-x )=26250x -525.∴y =⎝⎛-12x 2+15x +500(1≤x ≤20),26250x -525(21≤x ≤40) (3)当1≤x ≤20时,y =-12x 2+15x +500=-12(x -15)2+612.5.∵-12<0,∴当x =15时,y 有最大值y 1,且y 1=612.5;当21≤x ≤40时,∵26250>0,∴26250x随着x 的增大而减小,∴x =21时,26250x 最大.即当x =21时,y =26250x -525有最大值y 2,且y 2=2625021-525=725.∵y 1<y 2,∴这40天中第21天时该网店获得利润最大,最大利润为725元第三章检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.如图,在⊙O 中,直径CD 垂直于弦AB ,若∠C =25°,则∠BOD 的度数是( D )A .25°B .30°C .40°D .50°,第1题图) ,第2题图) ,第3题图) ,第4题图)2.如图,AB 是⊙O 的弦,AO 的延长线交过点B 的⊙O 的切线于点C ,如果∠ABO =20°,则∠C 的度数是( B )A .70°B .50°C .45°D .20°3.如图,CD 是⊙O 的直径,弦AB ⊥CD 于点G ,直线EF 与⊙O 相切于点D ,则下列结论中不一定正确的是( C )A .AC =BCB .AB ∥EFC .AD ∥BC D .∠ABC =∠ADC4.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA =50°,AB =4,则BC ︵的长为( B )A.103πB.109πC.59πD.518π 5.点O 是△ABC 的外心,若∠BOC =80°,则∠BAC 的度数为( C )A .40°B .100°C .40°或140°D .40°或100°6.如图,⊙C 过原点,且与两坐标轴分别交于点A ,B ,点A 的坐标为(0,3),M 是第三象限内OB ︵上一点,∠BMO =120°,则⊙O 的半径长为( C )A .6B .5C .3D .3 2 ,第6题图) ,第7题图),第8题图) ,第9题图)7.如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( B )A.2π3-32B.2π3- 3 C .π-32D .π- 3 8.如图,在等腰直角三角形ABC 中,AB =AC =4,点O 为BC 的中点,以O 为圆心作⊙O 交BC 于点M ,N ,⊙O 与AB ,AC 相切,切点分别为D ,E ,则⊙O 的半径和∠MND 的度数分别为( A )A .2,22.5°B .3,30°C .3,22.5°D .2,30°9.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a)(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是( B )A .4B .3+ 2C .3 2D .3+ 310.如图,矩形ABCD 中,AB =8,AD =6,将矩形ABCD 在直线l 上按顺时针方向不滑动地每秒转动90°,转动3秒后停止,则顶点A 经过的路线长为( C )A .10πB .11πC .12πD .13π,第10题图) ,第12题图),第13题图) ,第14题图)二、细心填一填(每小题3分,共24分)11.一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为__40__度.12.如图,点A ,B ,C 都在圆上,如果∠AOB +∠ACB =84°,那么∠ACB 的大小是__28°__.13.如图,∠AOB =30°,C 是射线OB 上的一点,且OC =4,若以点C 为圆心,r 为半径的圆与射线OA 有两个不同的交点,则r 的取值范围是__2<r ≤4__. 14.如图,直线MN 与⊙O 相切于点M ,ME =EF 且EF ∥MN ,则cos E =__12__. 15.如图,AC ⊥EC ,AC =EC =4,以EC 为直径作半圆,圆心为O ;以点C 为圆心,EC 为半径作弧AE ,过点O 作AC 的平行线交两弧于点D ,B ,则阴影部分的面积是__53π-23__.,第15题图) ,第16题图) ,第17题图) ,第18题图)16.如图,⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =__215__°.17.如图,AC ⊥BC 于点C ,BC =4,AC =3,⊙O 与直线AB ,BC ,CA 都相切,则⊙O 的半径为__2__.18.如图,在平面直角坐标系中,点A 1是以原点O 为圆心,半径为2的圆与过点(0,1)且平行于x 轴的直线l 1的一个交点;点A 2是以原点O 为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l 2的一个交点;……,按照这样的规律进行下去,点A n 的坐标为__(2n +1,n )__.三、用心做一做(共66分)19.(8分)如图,在Rt △ABC 中,∠C =90°,AC =5 cm ,BC =12 cm ,以C 为圆心,AC 为半径的圆交斜边于点D ,求AD 的长.解:过C 点作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,AE =AC 2-CE 2=2513cm ,AD =2AE =5013cm20.(8分)如图,在⊙O 中,点C 为AB ︵的中点,∠ACB =120°,OC 的延长线与AD 交于点D ,且∠D =∠B.(1)求证:AD 与⊙O 相切;(2)若点C 到弦AB 的距离为2,求弦AB 的长.解:(1)连接OA ,∵CA ︵=CB ︵,∴CA =CB ,又∠ACB =120°,∴∠B =30°,∴∠O=2∠B =60°,∵∠D =∠B =30°,∴∠OAD =180°-(∠O +∠D )=90°,∴AD 与⊙O 相切(2)设OC 交AB 于点E ,由题意得OC ⊥AB ,∴CE =2,在Rt △BCE 中,BE =CE tanB =2×33=23,∴AB =2BE =4321.(9分)如图,在Rt △ABC 中,∠ACB =90°,内切圆⊙I 与BC 相切于点D ,∠BIC =105°,AB =8 cm ,求:(1)∠IBA 和∠A 的度数;(2)BC 和AC 的长;(3)内切圆⊙I 的半径和BI 的长.解:(1)连接ID ,∵∠CID =45°,∴∠BID =60°,∴∠IBA =∠IBD =30°,∠A =30° (2)∵∠A =30°,∴BC =4 cm ,AC =4 3 cm (3)∵在Rt △BID 中,ID 2+BD 2=IB 2,∴r 2+(4-r )2=(2r )2,r =(23-2)cm ,IB =(43-4)cm22.(8分)如图,以AB 为直径的⊙O 交∠BAD 的角平分线于点C ,过点C 作CD ⊥AD 于点D ,交AB 的延长线于点E.(1)求证:CD 为⊙O 的切线;(2)若CD AD =34,求cos ∠DAB. 解:(1)连接CO ,证OC ∥AD 则OC ⊥CD 即可(2)连接BC ,∵AB 为直径,∴∠ACB =90°,∵AC 平分∠BAD ,∴∠CAD =∠CAB ,∵CD AD =34,∴令CD =3,AD =4,得AC =5,∴BC AC =34,∴BC =154,由勾股定理得AB =254,∴OC =258,∵OC ∥AD ,∴OC AD =OE AE ,∴2584=AE -258AE ,解得AE =1007,∴cos ∠DAB =AD AE=72523.(9分)如图,有一个⊙O 和两个正六边形T 1,T 2,T 1的6个顶点都在圆周上,T 2的6条边都和⊙O 相切(我们称T 1,T 2分别为⊙O 的内接正六边形和外切正六边形).(1)设T 1,T 2的边长分别为a 、b ,⊙O 的半径为r ,求r :a 及r :b 的值;(2)求正六边形T 1,T 2的面积比S 1:S 2的值.解:(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形.∴r ∶a =1∶1.连接圆心O 和T 2中相邻的两个顶点,得以⊙O 半径为高的正三角形,∴r ∶b =3∶2=32 (2)∵T 1与T 2的边长比是3∶2,∴S 1∶S 2=3∶4=3424.(12分)如图,AC 与⊙O 相切于点C ,线段AO 交⊙O 于点B ,过点B 作BD ∥AC 交⊙O 于点D ,连接DC ,OC ,且OC 交DB 于点E ,若∠CDB =30°,DB =5 3 cm .(1)求⊙O 的半径长;(2)求由弦CD ,BD 与弧BC 所围成的阴影部分的面积.(结果保留π)解:(1)∵∠ACO =90°,BD ∥AC ,∴∠BEO =∠ACO =90°,∴DE =EB =12BD =532cm ,∵∠O =2∠D =60°,∠EBO =30°,∴OE =12OB ,由勾股定理可求OB =5,∴⊙O 的半径长为5 cm (2)∵∠EBO =∠D =30°,又BE =ED ,∠CED =∠BEO ,∴△CDE ≌△OBE ,∴S 阴影=S 扇形OBC =60360π·52=25π6(cm 2)25.(12分)如图,在直角坐标系中,⊙M 经过原点O(0,0)、点A(6,0)与点B(0,-2),点D 在劣弧OA 上,连接BD 交x 轴于点C ,且∠COD =∠CBO.(1)求⊙M 的半径;(2)求证:BD 平分∠ABO ;(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标. 解:(1)在Rt △OAB 中,由勾股定理得AB =OA 2+OB 2=22,∴⊙M 的半径=12AB =2 (2)由圆周角定理的推论可知:∠COD =∠ABD.∵∠COD =∠CBO ,∴∠CBO =∠ABD ,∴BD 平分∠ABO (3)如图,过点E 作EH ⊥y 轴于点H ,易得△ABE ≌△HBE.∴BH =BA=22,∴OH = 2.在Rt △AOB 中,OA OB=3,∴∠ABO =60°,∴∠CBO =30°.在Rt △BHE 中,HE =BH·tan30°=263,∴点E 的坐标为(263,2)期中检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.在△ABC 中,∠C =90°,若cos B =32,则sin A 的值为( B ) A. 3 B.32 C.33 D.12 2.下列关于抛物线y =x 2+2x +1的说法中,正确的是( D )A .开口向下B .对称轴为直线x =1C .与x 轴有两个交点D .顶点坐标是(-1,0)3.若∠α为锐角且tan α=3,则tan (90°-α)等于( C )A.1010 B .3 C.13 D.1034.将二次函数y =x 2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( A )A .y =(x -1)2+2B .y =(x +1)2+2C .y =-(x -1)2-2D .y =-(x +1)2-25.已知一次函数y =ax +c 与二次函数y =ax 2+bx +c ,它们在同一坐标系内的大致图象是( C )6.已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点(-45,y 1),(-54,y 2),(16,y 2),y 1,y 2,y 3的大小关系是( A ) A .y 1<y 2<y 3 B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 2<y 37.如图,机器人从A 点出发,沿着西南方向行了4个单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来点A 的坐标为( A )A .(0,22+236)B .(0,22)C .(0,236) D .(0,3)8.小敏在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分如图所示,若命中篮圈中心,则他与篮圈中心的水平距离l 是( C )A .4.6 mB .4.5 mC .4 mD .3.5 m9.一人乘雪橇沿坡比1∶3的斜坡笔直滑下,滑下的距离s(m )与时间t(s )间的关系为s =10t +2t 2,若滑到坡底的时间为4s ,则此人下降的高度为( C )A .72 mB .36 3 mC .36 mD .18 3 m10.如图,抛物线y =-x 2+2x +m +1交x 轴于点A(a ,0)和B(b ,0),交y 轴于点C ,抛物线的顶点为D.下列四个判断:①当x >0时,y >0;②若a =-1,则b =4;③抛物线上有两点P(x 1,y 1)和Q(x 2,y 2),若x 1<1<x 2,且x 1+x 2>2,则y 1>y 2;④点C 关于抛物线对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,当m =2时,四边形EDFG 周长的最小值为6 2.其中正确判断的序号是( C )A .①B .②C .③D .④二、细心填一填(每小题3分,共24分)11.在△ABC 中,AC ∶BC ∶AB =3∶4∶5,则sin A +sin B =__75__. 12.二次函数y =x 2+2x 的顶点坐标为__(-1,-1)__,对称轴是__直线x =-1__.13.△ABC 中,锐角A ,B 满足(sin A -32)2+|tan B -3|=0,则△ABC 是__等边三角形__.14.抛物线y =x 2-(2m -1)x -2m 与x 轴的两个交点坐标分别为A(x 1,0),B(x 2,0),且⎪⎪⎪⎪x 1x 2=1,则m 的值为__12__. 15. 4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播,如图,在直升机的镜头下,观察马拉松景观大道A 处的俯角为30°,B 处的俯角为45°,如果此时直升机镜头C 处的高度CD 为200米,点A ,D ,B 在同一直线上,则AB 两点的距离是__200(3+1)__米. ,第15题图) ,第16题图),第17题图) ,第18题图)16.如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为__14.1__cm.(参考数据:sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,计算结果精确到0.1 cm ,可用科学计算器)17.如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶,它的拱宽AB 为4 m ,拱高CO 为0.8 m .如图建立坐标系,则模板的轮廓线所在的抛物线的表达式为__y =-0.2x 2__.18.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3),若平移该抛物线使其顶点P 沿直线移动到点P′(2,-2),点A 的对应点为A′,则抛物线上PA 所扫过的区域(阴影部分)的面积为__12__.三、用心做一做(共66分)19.(8分)(1)(2)0+12-tan 60°+(13)-2; (2)(1-tan 60°)2-4cos 30°. 解:10+ 3 解:-1-320.(8分)如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解:∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5.∴AC =AD 2+CD 2=13,∴sinC =AD AC =121321.(8分)已知锐角α关于x 的一元二次方程x 2-2x sin α+3sin α-34=0有相等的实数根,求α.解:∵关于x 的一元二次方程x 2-2xsin α+3sina -34=0有相等实数根,∴Δ=0,即(2sin α)2-4(3sin α-34)=4sin 2α-43sin α+3=0,∴sin α=32,∴α=60°22.(10分)如图,抛物线y =-x 2+bx +c 经过坐标原点,且与x 轴交于点A(-2,0).(1)求此抛物线的表达式及顶点B 的坐标;(2)在抛物线上有一点P ,满足S △AOP =3,请直接写出点P 的坐标.解:(1)将A ,O 两点的坐标代入表达式y =-x 2+bx +c ,得⎩⎨⎧c =0,-4-2b +c =0,解得⎩⎨⎧b =-2,c =0.∴此抛物线的表达式为y =-x 2-2x ,变化形式得y =-(x +1)2+1,顶点B 的坐标为(-1,1) (2)P 1(-3,-3),P 2(1,-3)23.(8分)如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C 处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上,求A,C之间的距离.(结果精确到0.1海里,参考数据:2≈1.41,3≈1.73)解:作AH⊥BC,设AH=x,则CH=x,BH=3x,由x+3x=20,解得x≈7.3,∴在Rt△AHC中,AC=2AH≈10.3,∴AC=10.3海里24.(12分)某农庄计划在30亩(1亩≈666.7平方米)空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图①所示;小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是__140__元,小张应得的工资总额是__2_800__元;此时,小李种植水果__10__亩,小李应得的报酬是__1_500__元.(2)当10<n ≤30时,求z 与n 之间的函数关系式;(3)设农庄支付给小张和小李的总费用为W (元),当10<m ≤30时,求W 与m 之间的函数关系式.解:(2)当10<n ≤30时,z 关于n 的函数图象经过点(10,1 500),(30,3 900),设z =kn +b ,则⎩⎨⎧10k +b =1 500,30k +b =3 900,解得⎩⎨⎧k =120,b =300,∴z =120n +300(10<n ≤30) (3)当10<m ≤30时,y =-2m +180,∵m +n =30,又∵当0<n ≤10时,z =150n ;当10<n ≤20时,z =120n +300.∴当10<m ≤20时,10<n ≤20,∴W =m (-2m +180)+120n +300=m (-2m +180)+120(30-m )+300=-2m 2+60m +3 900;当20<m ≤30时,0<n ≤10,∴W =m (-2m +180)+150n =m (-2m +180)+150(30-m )=-2m 2+30m +4 500.∴W 与m 之间的函数关系式为W =⎩⎨⎧-2m 2+60m +3 900(10<m ≤20),-2m 2+30m +4 500(20<m ≤30)25.(12分)在平面直角坐标系xOy 中,抛物线y =mx 2-2mx -2(m ≠0)与y 轴交于点A ,其对称轴与x 轴交于点B.(1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的表达式;(3)若该抛物线在-2<x<-1这一段位于直线l 的上方,并且在2<x<3这一段位于直线AB 的下方,求该抛物线的表达式.解:(1)当x =0时,y =-2.∴点A 的坐标为(0,-2).将y =mx 2-2mx -2配方,得y =m (x -1)2-m -2.∴抛物线的对称轴为直线x =1.∴点B 的坐标为(1,0) (2)由题意,点A 关于直线x =1的对称点的坐标为(2,-2).设直线l 的表达式为y =kx +b.∵点(1,0)和(2,-2)在直线l 上,∴⎩⎨⎧0=k +b ,-2=2k +b ,解得⎩⎨⎧k =-2,b =2.∴直线l 的表达式为y =-2x +2 (3)由题意可知,抛物线关于直线x =1对称,直线AB 与直线l 也关于直线x =1对称.∵抛物线在2<x<3这一段位于直线AB 的下方,∴抛物线在-1<x<0这一段位于直线l 的下方.又∵抛物线在-2<x<-1这一段位于直线l 的上方,∴抛物线与直线l 的一个交点的横坐标为-1.∴由直线l 的表达式y =-2x +2可得这个点的坐标为(-1,4).∵抛物线y =mx 2-2mx -2经过点(-1,4),∴m =2.∴所求抛物线的表达式为y =2x 2-4x -2期末检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.在Rt △ABC 中,∠C =90°,AB =15,sin A =13,则BC 的长为( B ) A .45 B .5 C.15 D.1452.已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则线段AB 长度的最小值为( C )A .1 B. 2 C. 3 D .23.如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB ,CD 分别表示一楼、二楼地面的水平线,∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点C 上升的高度h 是( B ) A.833 m B .4 m C .4 3 m D .8 m,第3题图) ,第4题图),第5题图) ,第6题图)4.如图,PA ,PB 是⊙O 的两条切线,切点分别是A ,B ,如果OP =4,PA =23,那么∠APB 等于( D )A .90°B .100°C .110°D .60°5.函数y =-x 2+2(m -1)x +m +1的图象如图,它与x 轴交于A ,B 两点,线段OA 与OB 的比为1∶3,则m 的值为( D )A.13或2B.13C .1D .2 6.如图,一根5 m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动)那么小羊A 在草地上的最大活动区域面积是( D )A.1712π m 2B.176π m 2C.254π m 2D.7712π m 2 7.某商人将单价为8元的商品按每件10元出售,每天可销售100件,已知这种商品每提高2元,其销量就要减少10件,为了使每天所赚利润最多,该商人应将销售价(为偶数)提高( A )A .8元或10元B .12元C .8元D .10元8.如图,在△ABC 中,cos B =22,sin C =35,AC =5,则△ABC 的面积是( A ) A.212 B .12 C .14 D .21 ,第8题图) ,第9题图),第10题图)9.如图,射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM =MB =2 cm ,QM =4 cm .动点P 从Q 出发,沿射线QN 以每秒1 cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径与△ABC 的边相切(切点在边上),则t(单位:秒)可以取的一切值为( D )A .t =2B .3≤t ≤7C .t =8D .t =2或3≤t ≤7或t =810.如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确的是( C )A .当弦PB 最长时,△APC 是等腰三角形 B .当△APC 是等腰三角形时,PO ⊥ACC .当PO ⊥AC 时,∠ACP =30°D .当∠ACP =30°时,△BPC 是直角三角形二、细心填一填(每小题3分,共24分)11.已知锐角A 满足关系式2sin 2A -3sin A +1=0,则sin A 的值为__12__. 12.若抛物线y =ax 2+bx +c 的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__y =-x 2+4x -3__.13.在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为__3或73__.14.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为BC ︵上一点,若∠CEA =28°,则∠ABD=__28°__.,第14题图) ,第15题图) ,第16题图),第17题图) ,第18题图)15.如图,已知AB 是⊙O 的直径,BC 为弦,∠ABC =30°,过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB =__30°__.16.如图,⊙A ,⊙B ,⊙C 两两不相交,且半径都是0.5 cm ,则图中三个扇形(即三个阴影部分)的面积之和为__π8cm 2__. 17.如图,把抛物线y =x 2沿直线y =x 平移2个单位后,其顶点在直线上的A 处,则平移后的抛物线表达式是__y =(x -1)2+1__.18.如图,AB ,CD 是半径为5的⊙O 的两条弦,AB =8,CD =6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA +PC 的最小值为__72__.三、用心做一做(共66分)19.(8分)计算:(1)sin 45°+cos 60°3-2cos 60°-sin 60°(1-cos 30°); (2)cos 30°sin 60°-cos 45°-(2-tan 60°)2+tan 45°. 解:1+24-32 解:2+6+320.(8分)如图,一大桥的桥拱为抛物线形,跨度AB =50米,拱高(即顶点C 到AB 的距离)为20米,求桥拱所在抛物线的表达式.解:y =-4125(x -25)221.(8分)如图所示,体育场内一看台与地面所成夹角为30°,看台最低点A 到最高点B 的距离为103米,A ,B 两点正前方有垂直于地面的旗杆DE ,在A ,B 两点处用仪器测量旗杆顶端E 的仰角分别为60°和15°(仰角即视线与水平线的夹角).(1)求AE 的长;(2)已知旗杆上有一面旗在离地面1米的F 点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?解:(1)∵BG ∥CD ,∴∠GBA =∠BAC =30°.又∠GBE =15°,∴∠ABE =45°.∵∠EAD =90°,∴∠AEB =45°,∴AB =AE =103 (2)在Rt △ADE 中,∵∠EDA =90°,∠EAD =60°,AE =103,∴DE =15.又DF =1,∴FE =14.∴t =140.5=28(秒).故这面旗到达旗杆顶端需要28秒22.(10分)如图,P 为正比例函数y =32x 图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y).(1)求⊙P 与直线x =2相切时点P 的坐标;(2)请直接写出⊙P 与直线x =2相交、相离时x 的取值范围.解:(1)过P 作直线x =2的垂线,垂足为A.当点P 在直线x =2右侧时,AP =x -2=3,得x =5,∴P ⎝⎛⎭⎫5,152;当点P 在直线x =2左侧时,PA =2-x =3,得x =-1,∴P ⎝⎛⎭⎫-1,-32,。
第二章二次函数数学九年级下册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、已知烟花弹爆炸后某个残片的空中飞行轨迹可以看成为二次函数y=﹣x2+2x+5 图象的一部分,其中x为爆炸后经过的时间(秒),y为残片离地面的高度(米),请问在爆炸后1秒到6秒之间,残片距离地面的高度范围为()A.0米到8米B.5米到8米C. 到8米D.5米到米2、某超市一月份的营业额是100万元,月平均增加的百分率相同,第一季度的总营业额是364万元,若设月平均增长的百分率是,那么可列出的方程是()A. ;B. ;C. ;D. .3、二次函数y=3x2-6x+5的图象的顶点坐标是()A.(1,2)B.(1,8)C.(﹣1,2)D.(1,﹣4)4、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+c的图象可能是()A. B. C. D.5、二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③a ﹣b+c>0;④当x≠1时,a+b>ax2+bx;⑤4ac<b2.其中正确的有()个A.1个B.2个C.3个D.4个6、在下列函数关系式中,y是x的二次函数的是()A. B. C. D.7、如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB 位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为()A.y=B.y=﹣C.y=﹣D.y=8、已知某二次函数的图象与轴相交于A,B两点.若该二次函数图象的对称轴是直线,且点A的坐标是,则AB的长为()A.5B.8C.10D.119、如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定10、如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=1,如果关于x的方程ax2+bx﹣8=0(a≠0)的一个根为4,那么该方程的另一个根为()A.﹣4B.﹣2C.1D.311、抛物线y=(x﹣1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)12、小明在解二次函数时,只抄对了,,求得图象过点.他核对时,发现所抄的比原来的值大2.则抛物线与轴交点的情况是()A.只有一个交点B.有两个交点C.没有交点D.不确定13、二次函数y=﹣3x2﹣2的图象经过哪几个象限()A.一、三象限B.二、四象限C.一、二象限D.三、四象限14、将抛物线y=﹣2(x+3)2+1向左平移2个单位,再向上平移1个单位后所得到的抛物线的解析式为()A.y=2(x+1)2B.y=﹣2(x+5)2+2C.y=﹣2(x+5)2+3 D.y=﹣2(x﹣5)2﹣115、下列函数是二次函数的是()A.y=﹣B.y=x 2+xz+1C.x 2+2y﹣1=0D.xy=x 2﹣y二、填空题(共10题,共计30分)16、已知二次函数y=ax2﹣2ax+c(a<0)图象上的两点(x1, y1)和(3,y2),若y1>y2,则x1的取值范围是________.17、已知二次函数y=ax2+bx+c(a≠0)经过点A(1,-1)、B(3,3),且当1≤x≤3时,-1≤y≤3,则a的取值范围是________18、如图,抛物线与x轴正半轴交于点A, 点B的坐标为(0,-3),线段AB绕点P旋转180°,A,B的对应点C,D均落在抛物线上,则点P的坐标为________19、如果抛物线的开口向下,那么的取值范围是________.20、二次函数y=ax2﹣12ax+36a﹣5的图象在4<x<5这一段位于x轴下方,在8<x<9这一段位于x轴上方,则a的值为________21、某个函数具有性质:当x<0时,y随x的增大而减小,这个函数的表达式可以是________(只要写出一个符合题意的答案即可).22、如果是二次函数,则m=________.23、将抛物线:向下平移3个单位,再向右平移4个单位得到的抛物线是________.24、抛物线y=ax2+bx+c中,已知a:b:c=1:2:3,y最小值为6,则此抛物线的解析式为________.25、某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 …y …﹣7.5 ﹣2.5 0.5 1.5 0.5 …根据表格提供的信息,有下列结论:①该抛物线的对称轴是直线x=﹣2;②该抛物线与y轴的交点坐标为(0,﹣2.5);③b2﹣4ac=0;④若点A(0.5,y1)是该抛物线上一点.则y1<﹣2.5.则所有正确的结论的序号是________.三、解答题(共5题,共计25分)26、一个二次函数y=(k﹣1).求k值.27、已知二次函数图象顶点坐标(﹣3,)且图象过点(2,),求二次函数解析式及图象与y轴的交点坐标.28、如果二次函数y=x2﹣x+c的图象过点(1,2),求这个二次函数的解析式,并求出该函数图象的顶点坐标.29、矩形的长和宽分别是4cm, 3cm ,如果将长和宽都增加x cm ,那么面积增加ycm2(1)求y与x之间的关系式.(2)求当边长增加多少时,面积增加8 cm230、如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(m2)与它与墙平行的边的长x(m)之间的函数.参考答案一、单选题(共15题,共计45分)1、B2、B4、C5、C6、C7、C8、C9、C10、B11、A12、B13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、。
最新北师大版九年级数学下册单元测试题及答案全套含期中期末试题第一章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.计算:cos 245°+sin 245°=( )A .12B .1C .14D .322.把△ABC 三边的长度都缩小为原来的13,则锐角A 的正弦值( )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定3.在Rt △ABC 中,∠C =90°,若sin A =23,则cos B 的值等于( ) A .12 B .22 C .23D .1 4.在△ABC 中,∠C =90°,BC =2,sin A =23,则边AC 的长度是( )A . 5B .3C .43D .135.如图,将一张矩形纸片ABCD 折叠,使顶点C 落在C′处,测量得AB =4,DE =8,则sin ∠C ′ED 为( )A .2B .12C .22 D .32,第6题图) ,第8题图)6.(2017·益阳)如图,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =α,则拉线BC的长度为(点A ,D ,B 在同一条直线上)( )A .h sin α B .h cos α C .htan αD .h ·cos α 7.在Rt △ABC 中,∠C =90°,∠A ,∠B 的对边分别是a ,b ,且满足a 2-ab -b 2=0,则tan A 等于( )A .1B .1+52 C .1-52 D .1±528.如图,某校数学兴趣小组用测倾器测量某大桥的桥塔高度,在距桥塔AB 底部50米的C 处,测得桥塔顶部A 的仰角为41.5°,已知测倾器CD 的高度为1米,则桥塔AB 的高度为( )(参考数据:sin 41.5°≈0.663,cos 41.5°≈0.749,tan 41.5°≈0.885)A .34米B .38米C .45米D .50米9.如图,在菱形ABCD 中,AB =6,∠DAB =60°,点E 在BC 边上,且CE =2,AE 与BD 交于点F ,连接CF ,则下列结论不正确的是( )A .△ABF ≌△CBFB .△ADF ∽△EBFC .tan ∠EAB =3D .S =6 310.(2017·深圳)如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60°,然后在坡顶D 测得树顶B 的仰角为30°,已知斜坡CD 的长度为20 m ,DE 的长为10 m ,则树AB 的高度是( )m .A .20 3B .30C .30 3D .40,第9题图) ,第10题图),第13题图),第14题图)二、填空题(每小题3分,共24分)11.计算:tan 245°-1=________.12.某坡面的坡度为1∶3,则坡角是________.13.如图,在坡屋顶的设计图中,AB =AC ,屋顶的宽度l 为10米,坡角α为35°,则坡屋顶高度h 为________米.(结果精确到0.1米,参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70)14.如图,P 是∠α的边OA 上的一点,且点P 的坐标为(1,3),则sin α=________. 15.如图,在正八边形ABCDEFGH 中,AC ,AE 是对角线,则sin ∠CAE 的值为________.,第15题图) ,第16题图) ,第17题图) ,第18题图)16.如图,小明发现在教学楼走廊上有一拖把以15°的倾斜角斜靠在栏杆上,严重影响了同学们的行走安全.他自觉地将拖把挪动位置,使其倾斜角度为75°,如果拖把的总长为1.80 m ,则小明拓宽了行走通道________m .(结果精确到0.01 m ,参考数据:sin 15°≈0.26,cos 15°≈0.97)17.如图,海中有一个小岛A ,它的周围15海里内有暗礁,今有货船由西向东航行,开始在A 岛南偏西60°的B 处,往东航行20海里后到达该岛南偏西30°的C 处后,货船继续向东航行,你认为货船航行途中________触礁的危险.(填“有”或“没有”)18.如图,在四边形ABCD 中,AB =AD =6,AB ⊥BC ,AD ⊥CD ,∠BAD =60°,点M ,N 分别在AB ,AD 边上,若AM∶MB=AN∶ND=1∶2.则cos ∠MCN =________.三、解答题(共66分) 19.(8分)计算:(1)(-1)2-2cos 30°+3+(-2 017)0;(2)3tan 30°-2tan 60°+4sin 60°.20.(8分)已知锐角α使关于x 的一元二次方程x 2-2sin α·x +3sin α-34=0有两个相等的实数根,求α的度数.21.(8分)在△ABC 中,已知AB =6,∠B =45°,∠C =60°,求AC ,BC 的长.22.(9分)如图,某校课外活动小组,在距离湖面7米高的观测台A 处,看湖面上空一热气球P 的仰角为37°,看P 在湖中的倒影P′的俯角为53°(P′为P 关于湖面的对称点).请你计算出这个热气球P 距湖面的高度PC 约为多少米?(参考数据:sin 37°≈35,cos 37°≈45,tan 37°≈34;sin 53°≈45,cos 53°≈35,tan 53°≈43)23.(10分)如图,海中两个灯塔A,B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这时测得灯塔A在北偏西60°方向上,求灯塔A,B间的距离.(结果用根号表示,不取近似值)24.(11分)如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF=35,求AB的长.25.(12分)小红家的阳台上放置了一个晒衣架,如图所示的是晒衣架的侧面示意图,立杆AB 、CD 相交于点O ,B 、D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,扣链EF 成一条线段,且EF =32 cm .(1)求扣链EF 与立杆AB 的夹角∠OEF 的度数.(精确到0.1°)(2)小红的连衣裙挂在衣架后的总长度达到122 cm ,垂挂在晒衣架上是否拖落到地面?通过计算说明理由.(结果精确到0.1,参考数据:sin 61.9°≈0.882,cos 61.9°≈0.471,tan 28.1°≈0.534)第一章检测题1.B 2.A 3.C 4.A 5.B 6.B 7.B 8.C 9.C 10.B 11.0 12.30° 13.3.5 14.32 15.2216.1.28 17.没有 18.1314点拨:如图,连接MN ,AC ,∵AB =AD =6,AM ∶MB =AN∶ND =1∶2,∴AM =AN =2,BM =DN =4.在Rt △ABC 与Rt △ADC 中,⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC(HL ),∴∠BAC =∠DAC=12∠BAD=30°,MC =NC ,∴BC =AB·tan 30°=23,在Rt △BMC 中,CM =BM 2+BC 2=27.∵AN=AM ,∠MAN =60°,∴△MAN是等边三角形,∴MN =AM =AN =2,过M 点作ME⊥CN 于点E ,设NE =x ,则CE =27-x ,∴MN 2-NE 2=MC2-EC 2,即4-x 2=(27)2-(27-x)2,解得x =77,∴EC =27-77=1377,∴cos ∠MCN =CE CM =137727=131419.(1)2 (2)0 20.由题意,得(2sin α)2-4(3sin α-34)=0,即4sin 2α-43sin α+3=0,解得sin α=32.∵α为锐角,∴α=60° 21.BC =3+1,AC =2 22.过点A 作AD⊥PP′,垂足为点D ,图略,则有CD =AB =7米.设PC 为x 米,则P′C=x 米,PD =(x -7)米,P ′D =(x +7)米,在Rt △PDA 中,AD =PD tan 37°≈43(x -7),在Rt △P ′DA 中,AD =P′Dtan 53°≈34(x +7),∴43(x -7)=34(x +7),解得x =25,则热气球P 距湖面的高度PC 约为25米 23.过点A 作AF⊥CD,垂足为点F ,图略,由题意,得∠FCA=∠ACN=45°,∠NCB =30°,∠ADE =60°,则∠FAD=60°,∠FAC =∠FCA=45°,∠ADF =30°,∴AF =FC =AN =NC ,设FC =AF =x ,∵tan 30°=AF FD ,∴x x +30=33,解得x =15(3+1),∵tan 30°=BN NC ,∴BN 15(3+1)=33,解得BN =15+53,∴AB =AN +BN =15(3+1)+15+53=30+203,则灯塔A ,B 间的距离为(30+203)海里 24.(1)有三对相似三角形,即△AMP∽△BPQ∽△CQD (2)设AP =x ,∴由折叠知BP =AP =EP =x ,AB =DC =2x.由△AMP∽△BPQ 得AM BP =APBQ ,∴BQ =x 2.由△AMP∽△CQD 得AP CD =AM CQ,∴CQ =2,∴AD =BC =BQ +CQ =x 2+2,MD =AD -AM =x 2+1.∵在Rt △FDM 中,sin ∠DMF =35,DF =DC =2x ,∴2x x 2+1=35,变形,得3x 2-10x +3=0,解得x 1=3,x 2=13(不合题意,舍去),∴AB =2x =625.(1)如图,在△OEF 中,OE =OF =34 cm ,EF =32 cm ,作OM⊥EF 于点M ,则EM =16 cm ,∴cos ∠OEF =EM OE =1634≈0.471,∴∠OEF ≈61.9° (2)小红的连衣裙垂挂在晒衣架上会拖落到地面.理由:∵EF∥BD,∴∠ABD =∠OEF ≈61.9°.如图,过点A 作AH⊥BD 于点H.在Rt △ABH 中,∵sin ∠ABD =AHAB ,∴AH =AB ·sin∠ABD =136×sin 61.9°≈136×0.882≈120.0(cm ).∵小红的连衣裙挂在晒衣架后总长度122 cm >晒衣架高度120.0 cm ,∴会拖落到地面上第二章检测题一、选择题(每小题3分,共30分)1.下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .y =12(x -1)(x +4) D .y =(x -2)2-x 22.二次函数y =ax 2+bx +c(a≠0)图象上部分点的坐标(x ,y)对应值列表如下:则该函数图象的对称轴是( )A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =03.已知抛物线y =ax 2+bx +c 过(1,-1),(2,-4)和(0,4)三点,那么a ,b ,c 的值分别是( ) A .a =-1,b =-6,c =4 B .a =1,b =-6,c =-4 C .a =-1,b =-6,c =-4 D .a =1,b =-6,c =44.若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为( )A .x 1=0,x 2=4B .x 1=1,x 2=5C .x 1=1,x 2=-5D .x 1=-1,x 2=55.将抛物线y =x 2-1向下平移8个单位长度后与x 轴的两个交点之间的距离为( ) A .4 B .6 C .8 D .106.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x≥1时,y 随x 的增大而减小D .若a <0,则当x≤1时,y 随x 的增大而增大 7.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出;若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出……为了投资少而获利大,每个每天应提高( )A .4元或6元B .4元C .6元D .8元8.在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx +c 的图象可能为( )9.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )10.(2017·广安)如图所示,抛物线y =ax 2+bx +c 的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b 2-4ac =0;②a+b +c >0;③2a-b =0;④c-a =3. 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(每小题3分,共24分)11.二次函数y =2(x -3)2-4的最小值为________.12.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则一元二次不等式ax 2+bx +c >0的解是____________.第12题图第16题图第17题图13.若二次函数y =x 2+2x +m 的图象与x 轴没有公共点,则m 的取值范围是________.14.已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系是________________.15.抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,则a +b +c =________. 16.二次函数y =x 2-2x -3的图象如图所示,若线段AB 在x 轴上,且AB 为23个单位长度,以AB 为边作等边△ABC,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为______________.17.二次函数y =ax 2+bx +c 的图象如图所示,且P =|2a +b|+|3b -2c|,Q =|2a -b|-|3b +2c|,则P ,Q 的大小关系是__________.18.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t 秒时在空中与第二个小球的离地高度相同,则t =________.三、解答题(共66分)19.(6分)已知:二次函数y =-2x 2+(3k +2)x -3k.(1)若二次函数的图象过点A(3,0),求此二次函数图象的对称轴;20.(8分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(-1,8)并与x轴交于A,B两点,且点B坐标为(3,0).(1)求抛物线的表达式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.21.(8分)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.22.(8分)已知P(-3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.(1)求b的值;(2)若A(-2,y1),B(5,y2)是抛物线y=2x2+bx+1上的两点,试比较y1与y2的大小关系;(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位长度,使平移后的图象与x轴无交23.(10分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的平面直角坐标系,最左边的抛物线可以用y =ax 2+bx(a≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32m .(1)求最左边拋物线的函数表达式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线型图案?24.(12分)天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x 天生产的粽子数量为y 只,y 与x满足如下关系:y =⎩⎪⎨⎪⎧32x (0≤x≤5),20x +60(5<x≤19).(1)李红第几天生产的粽子数量为260只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,若李红第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)25.(14分)如图,在平面直角坐标系中,点A ,B ,C 分别为坐标轴上的三个点,且OA =1,OB =3,OC =4.(1)求经过A ,B ,C 三点的抛物线的表达式. (2)在平面直角坐标系xOy 中是否存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当|PM -AM|的最大值时点M 的坐标,并直接写出|PM -AM|的最大值.第二章检测题1.D 2.B 3.D 4.D 5.B 6.D 7.C 8.A 9.B10.B 11.-4 12.-1<x<3 13.m >1 14.y 1>y 2>y 3 15.0 16.(1+7,3)或(2,-3) 17.P >Q18.1.6 19.(1)将点A(3,0)代入y =-2x 2+(3k +2)x -3k 中,得-2×32+(3k +2)×3-3k =0,解得k=2.∴y=-2x 2+8x -6,对称轴为直线x =2 (2)由题意,得Δ=(3k +2)2-4×(-2)×(-3k)=0,整理,得9k 2-12k +4=0,(3k -2)2=0,∴k =2320.(1)∵抛物线y =x 2+bx +c 经过点(-1,8)与点B(3,0),∴⎩⎪⎨⎪⎧1-b +c =8,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的表达式为y =x 2-4x +3(2)∵y=x 2-4x +3=(x -2)2-1,∴P(2,-1),C(0,3).过点P 作PH⊥y 轴于点H ,过点B 作BM∥y 轴交直线PH 于点M ,过点C 作CN⊥y 轴交直线BM 于点N ,如图所示,S △CPB =S 矩形CHMN -S △CHP -S △PMB -S △CNB =3×4-12×2×4-12×1×1-12×3×3=3,即△CPB 的面积为3 21.(1)将点A(1,0)代入y =(x -2)2+m 中得(1-2)2+m =0,解得m =-1,所以二次函数的表达式为y =(x -2)2-1.当x =0时,y =4-1=3,所以点C 坐标为(0,3),由于点C 和点B 关于对称轴对称,而抛物线的对称轴为直线x =2,所以点B 坐标为(4,3),将A(1,0),B(4,3)代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =0,4k +b =3,解得⎩⎪⎨⎪⎧k =1,b =-1.所以一次函数的表达式为y =x -1 (2)当kx +b≥(x-2)2+m 时,1≤x ≤4 22.(1)∵点P ,Q 是二次函数y =2x 2+bx +1图象上的两点,∴此抛物线的对称轴是直线x =-1.∵二次函数的表达式为y =2x 2+bx +1,∴-b 4=-1,解得b =4 (2)y 1<y 2(3)平移后抛物线的表达式为y =2x 2+4x +1+k.要使平移后的图象与x 轴无交点,则有b 2-4ac =16-8(1+k)<0,解得k >1.∵k 是正整数,∴k 的最小值为2 23.(1)根据题意,得B(12,34),C(32,34),把点B ,点C 代入y =ax 2+bx ,得⎩⎪⎨⎪⎧34=14a +12b ,34=94a +32b ,解得⎩⎪⎨⎪⎧a =-1,b =2,∴最左边抛物线的函数表达式为y =-x 2+2x ,∴图案最高点到地面的距离为-224×(-1)=1 (2)令y =0,即-x 2+2x =0,解得x 1=0,x 2=2,10÷2=5,∴最多可以连续绘制5个这样的抛物线型图案 24.(1)设李红第x 天生产的粽子数量为260只,根据题意,得20x +60=260,解得x =10,答:李红第10天生产的粽子数量为260只 (2)根据图象,得当0≤x≤9时,p =2;当9<x≤19时,设表达式为p =kx +b ,把(9,2),(19,3)代入得⎩⎪⎨⎪⎧9k +b =2,19k +b =3,解得⎩⎪⎨⎪⎧k =110,b =1110,所以p =110x +1110.①当0≤x≤5时,w =(4-2)·32x=64x ,x =5时,此时w 有最大值为320元;②当5<x≤9时,w =(4-2)·(20x+60)=40x +120,x =9时,此时w 有最大值为480元;③当9<x ≤19时,w =[4-(110x +1110)]·(20x+60)=-2x 2+52x +174=-2(x -13)2+512,即x =13时,此时w 有最大值为512元.综上所述,第13天的利润最大,最大利润是512元 25.(1)设抛物线的表达式为y =ax 2+bx +c ,∵A(1,0),B(0,3),C(-4,0),∴⎩⎪⎨⎪⎧a +b +c =0,c =3,16a -4b +c =0,解得⎩⎪⎨⎪⎧a =-34,b =-94,c =3,∴经过A ,B ,C 三点的抛物线的表达式为y =-34x 2-94x +3(2)存在.理由如下:如图所示,∵OB =3,OC =4,OA =1,∴BC =AC =5,当BP 平行且等于AC时,四边形ACBP 为菱形,∴BP =AC =5,且点P 到x 轴的距离等于OB ,∴点P 的坐标为(5,3),当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5,3)时,以点A ,B ,C ,P 为顶点的四边形为菱形 (3)设直线PA 的表达式为y =kx +b (k≠0),∵A(1,0),P(5,3),∴⎩⎪⎨⎪⎧5k +b =3,k +b =0,解得⎩⎪⎨⎪⎧k =34,b =-34,∴直线PA 的表达式为y =34x -34,当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系|PM -AM|<PA ,当点M 与点P ,A 在同一直线上时,|PM -AM|=PA ,∴当点M 与点P ,A 在同一直线上时,|PM -AM|的值最大,即点M 为直线PA 与抛物线的交点,解方程组⎩⎪⎨⎪⎧y =34x -34,y =-34x 2-94x +3,得⎩⎪⎨⎪⎧x 1=1,y 1=0或⎩⎪⎨⎪⎧x 2=-5,y 2=-92,∴点M 的坐标为(1,0)或(-5,-92)时,|PM -AM|的值最大,此时|PM -AM|的最大值为5第三章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分) 1.下列判断中正确的是( )A .平分弦的直径垂直于弦B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦 2.在⊙O 中,同一条弦AB 所对的圆周角( ) A .相等 B .互补 C .互余 D .相等或互补3.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于( )A .116°B .32°C .58°D .64°,第3题图) ,第4题图) ,第5题图),第6题图)4.如图,石拱桥的桥顶到水面的距离CD 为8 m ,桥拱半径OC 为5 m ,则水面宽AB 为( ) A .4 m B .5 m C .6 m D .8 m5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的点,∠CDB =25°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于( )A .40°B .50°C .60°D .70°6.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是( )A .13B .3C . 5D .27.(2017·福建)如图,AB 是⊙O 的直径,C ,D 是⊙O 上位于AB 异侧的两点.下列四个角中,一定与∠ACD 互余的角是( )A .∠ADCB .∠ABDC .∠BACD .∠BAD,第7题图) ,第8题图) ,第10题图)8.如图,四边形ABCD 为⊙O 的内接四边形,延长AB 与DC 相交于点G ,AO ⊥CD ,垂足为点E ,连接BD ,∠GBC =50°,则∠DBC 的度数为( )A .50°B .60°C .80°D .90°9.(2017·南京)过三点A(2,2),B(6,2),C(4,5)的圆的圆心坐标为( )A .(4,176)B .(4,3)C .(5,176) D .(5,3)10.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( )A .24329 B .81329 C .8129 D .81328 二、填空题(每小题3分,共24分)11.若⊙O 的半径为8,点P 在⊙O 内,则线段PO 的长度范围是________. 12.圆内接四边形ABCD 的内角∠A∶∠B∶∠C=2∶3∶4,则∠D=________.13.如图,AB 是⊙O 的直径,点D 在⊙O 上,∠AOD =130°,BC ∥OD 交⊙O 于点C ,则∠A=________.,第13题图) ,第16题图) ,第17题图) ,第18题图)14.若正多边形的边心距与边长的比为1∶2,则这个正多边形的边数是________.15.(2016·宁夏)已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是______.16.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA =45°,则弦CD的长为________.17.如图,⊙O的半径为6 cm,B为⊙O外一点,OB交⊙O于点A,AB=OA,动点P从点A出发,以πcm/s的速度在⊙O上按逆时针方向运动一周回到点A立即停止.当点P运动的时间为________s时,BP与⊙O相切.18.(2017·恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=23,则图中阴影部分的面积为________.(结果不取近似值)三、解答题(共66分)19.(8分)如图,两个同心圆中,大圆的弦AB,AC分别切小圆于点D,E,△ABC的周长为12 cm,求△ADE的周长.20.(8分)如图,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC 的面积.21.(9分)如图,AB是⊙O的弦,OA⊥OD,AB,OD交于点C,且CD=BD.(1)判断BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.22.(9分)如图,PA ,PB 是⊙O 的切线,A ,B 为切点,∠APB =60°,连接PO 并延长与⊙O 交于C 点,连接AC ,BC.(1)求证:四边形ACBP 是菱形;(2)若⊙O 半径为1,求菱形ACBP 的面积.23.(10分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为BC ︵的中点,作DE⊥AC,交AC 的延长线于点E ,ED ,AB 的延长线交于点F ,连接DA.(1)求证:EF 为半圆O 的切线;(2)若DA =DF =63,求阴影区域的面积.(结果保留根号和π)24.(10分)如图,⊙O 是△ABC 的外接圆,弦BD 交AC 于点E ,连接CD ,且AE =DE ,BC =CE. (1)求∠ACB 的度数;(2)过点O 作OF⊥AC 于点F ,延长FO 交BE 于点G ,DE =3,EG =2,求AB 的长.25.(12分)如图,已知⊙O 上依次有A ,B ,C ,D 四个点,AD ︵=BC ︵,连接AB ,AD ,BD ,弦AB 不经过圆心O ,延长AB 到E ,使BE =AB ,连接EC ,F 是EC 的中点,连接BF.(1)若⊙O 的半径为3,∠DAB =120°,求劣弧BD ︵的长; (2)求证:BF =12BD ;(3)设G 是BD 的中点,探索:在⊙O 上是否存在点P(不同于点B),使得PG =PF ?并说明PB 与AE 的位置关系.第三章检测题1.C 2.D 3.B 4.D 5.A 6.C 7.D 8.C 9.A10.D 11.0≤PO<8 12.90° 13.40° 14.4 15.2 3 16.14 17.2或10 18.33-32π19.连接OD ,OE ,图略.∵AB,AC 分别切小⊙O 于点D ,E ,∴OD ⊥AB ,OE ⊥AC ,∴AD =DB ,AE =EC ,∴DE 是△ABC 的中位线,∴DE =12BC ,∴C △ADE =12C △ABC =12×12=6(cm ) 20.∵AB 是⊙O 的直径,∴∠ACB =∠ADB=90°.在Rt △ABC 中,由勾股定理,得BC =AB 2-AC 2=42.∵CD 平分∠ACB,∴AD ︵=BD ︵,∴AD =BD.在Rt △ABD 中,由勾股定理,得AD =DB =22AB =22×6=32,∴S 四边形ADBC =S △ABC +S △ABD =12AC·BC +12AD·BD=12×2×42+12×32×32=42+9 21.(1)BD 与⊙O 相切.证明:连接OB ,图略.∵OA =OB ,∴∠OAC =∠OBC.∵OA⊥OD,∴∠AOC =90°,∴∠OAC +∠OCA =90°.∵DC =DB ,∴∠DCB =∠DBC.∵∠DCB=∠ACO,∴∠ACO =∠DBC,∴∠DBC +∠OBC=90°,∴∠OBD =90°,即OB⊥BD,∴BD 与⊙O 相切 (2)设BD =x ,则CD =x ,OD =x +1 ,OB =OA =3,由勾股定理,得32+x 2=(x +1)2,解得x =4,∴BD =4 22.(1)证明:连接AO ,BO ,图略.∵PA,PB 是⊙O 的切线,∴∠OAP =∠OBP=90°,PA =PB ,∠APO =∠BPO=12∠APB=30°,∴∠AOP =60°,∵OA =OC ,∴∠CAO =∠ACO,又∠AOP =∠CAO+∠ACO,∴∠ACO =30°,∴∠ACO =∠APO,∴AC =AP ,同理BC =PB ,∴AC =BC =BP =AP ,∴四边形ACBP 是菱形 (2)连接AB 交PC 于D ,图略,则AD⊥PC,∵OA =1,∠AOP =60°,∴AD =32OA =32,∴PD =32,∴PC =3,AB =3,∴菱形ACBP 的面积=12AB·PC=332 23.(1)证明:连接OD ,图略.∵D 为BC ︵的中点,∴∠CAD =∠BAD,∵OA =OD ,∴∠BAD =∠ADO,∴∠CAD =∠ADO,∴OD ∥AE.∵DE ⊥AC ,∴OD ⊥EF ,∴EF 为半圆O 的切线 (2)连接OC 与CD ,图略.∵DA=DF ,∴∠BAD =∠F ,∴∠BAD =∠F=∠CAD,又∵∠BAD +∠CAD +∠F=90°,∴∠F =30°,∠BAC =60°,∵OC =OA ,∴△AOC 为等边三角形,∴∠AOC =60°.∵OD ⊥EF ,∠F =30°,∴∠DOF =60°,在Rt △ODF 中,DF =63,∴OD =DF·tan 30°=6,在Rt △AED 中,DA =63,∠CAD =30°,∴DE =DA·sin 30°=33,EA =DA·cos 30°=9,∵∠COD =180°-∠AOC-∠DOF=60°,易证CD∥AB,故S △ACD =S △COD ,∴S 阴影=S △AED -S 扇形COD =12×9×33-60360π×62=2732-6π 24.(1)在△AEB 和△DEC 中,∠A =∠D,AE =ED ,∠AEB =∠DEC,∴△AEB ≌△DEC(ASA ),∴EB =EC.又∵BC=CE ,∴BE =CE =BC ,∴△EBC 为等边三角形,∴∠ACB =60° (2)作BM⊥AC 于点M ,图略,∵OF ⊥AC,∴AF =CF.∵△EBC 为等边三角形,∴∠GEF =60°,∴∠EGF =30°.∵EG =2,∴EF =1.又∵AE=ED =3,∴CF =AF =4,∴AC =8,EC =5,∴BC =5.∵∠BCM =60°,∴∠MBC =30°,∴CM =52,BM =BC 2-CM 2=523,∴AM =AC -CM =112,∴AB =AM 2+BM 2=7 25.(1)连接OB ,OD ,图略,∵∠DAB =120°,∴BCD ︵所对圆心角的度数为240°,∴∠BOD =120°.∵⊙O 的半径为3,∴劣弧BD ︵的长为120180×π×3=2π (2)证明:连接AC ,图略,∵AB =BE ,∴点B 为AE 的中点.∵F 是EC 的中点,∴BF 为△EAC 的中位线,∴BF =12AC.∵AD ︵=BC ︵,∴AD ︵+AB ︵=BC ︵+AB ︵,∴BD ︵=CA ︵,∴BD =AC ,∴BF =12BD (3)存在.过点B 作AE 的垂线,与⊙O 的交点即为所求的点P ,图略.∵BF为△EAC 的中位线,∴BF ∥AC ,∴∠FBE =∠CAE.∵AD ︵=BC ︵,∴∠DBA =∠CAB,∴∠FBE =∠DBA.由作法可知BP⊥AE,∴∠GBP =∠FBP.∵G 为BD 的中点,∴BG =12BD ,∴BG =BF.在△PBG 和△PBF 中,BG =BF ,∠PBG =∠PBF,BP =BP ,∴△PBG ≌△PBF(SAS ),∴PG =PF.故在⊙O 上存在点P ,使得PG =PF ,此时PB⊥AE期中检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.在△ABC 中,∠A =105°,∠B =45°,cos C 的值是( )A .12B .33 C .32D . 3 2.抛物线y =-35(x +12)2-3的顶点坐标是( )A .(12,-3) B .(-12,-3) C .(12,3) D .(-12,3)3.(2017·日照)在Rt △ABC 中,∠C =90°,AB =13,AC =5,则sin A 的值为( )A .513B .1213C .512D .1254.(2017·怀化)如图,在平面直角坐标系中,点A 的坐标为(3,4),那么sin α的值是( )A .35B .34C .45D .43,第4题图) ,第7题图) ,第9题图) ,第10题图)5.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线相应的函数表达式是( )A .y =(x +2)2+1B .y =(x +2)2-1C .y =(x -2)2+1D .y =(x -2)2-16.a≠0,函数y =a x与y =-ax 2+a 在同一平面直角坐标系中的大致图象可能是( )7.(2017·滨州)如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为( )A .2+ 3B .2 3C .3+ 3D .3 38..若一次函数y =(a +1)x +a 的图象过第一、三、四象限,则二次函数y =ax 2-ax( )A .有最大值a 4B .有最大值-a 4C .有最小值a 4D .有最小值-a 49.如图,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x≥0)和抛物线C 2:y =x24(x≥0)交于A ,B 两点,过点A 作CD∥x 轴分别与y 轴和抛物线C 2交于点C ,D ,过点B 作EF∥x 轴分别与y 轴和抛物线C 1交于点E ,F ,则S △OFBS △EAD的值为( )A .26 B .24 C .14 D .1610.(2017·安顺)二次函数y =ax 2+bx +c(a≠0)的图象如图,给出下列四个结论:①4ac-b 2<0;②3b+2c <0;③4a+c <2b ;④m(am+b)+b <a(m≠1),其中结论正确的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分)11.在△ABC 中,若|sin A -12|+(32-cos B)2=0,则∠C=________度.12.如图,在建筑平台CD 的顶部C 处,测得大树AB 的顶部A 的仰角为45°,测得大树AB 的底部B的俯角为30°,已知平台CD 的高度为5 m ,则大树的高度为________m .(结果保留根号),第12题图) ,第13题图),第15题图),第17题图)13.如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A(-1,p),B(4,q)两点,则关于x 的不等式mx +n >ax 2+bx +c 的解集是____________.14.某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与日销售量y(件)之间的关系如下表.按照这样的规律可得,日销售利润w(元)与销售单价x(元/件)之间的函数关系式是____________.15.(2017·临沂)如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,若AB =4,BD =10,sin ∠BDC =35,则▱ABCD 的面积是________.162①该抛物线的对称轴是直线x =-2;②该抛物线与y 轴的交点坐标为(0,-2.5);③b 2-4ac =0;④若点A(0.5,y 1)是该抛物线上一点.则y 1<-2.5.所有正确的结论的序号是________.17.(2017·黔东南州)如图所示把多块大小不同的30°直角三角板,摆放在平面直角坐标系中,第一块三角板AOB 的一条直角边与y 轴重合且点A 的坐标为(0,1),∠ABO =30°;第二块三角板的斜边BB 1与第一块三角板的斜边AB 垂直且交y 轴于点B 1;第三块三角板的斜边B 1B 2与第二块三角板的斜边BB 1垂直且交x 轴于点B 2;第四块三角板的斜边B 2B 3与第三块三角板的斜边B 1B 2垂直且交y 轴于点B 3;…按此规律继续下去,则点B 2 017的坐标为________.18.如图,△ABC 是边长为8的等边三角形,F 是边BC 上的动点,且DF⊥AB,EF ⊥AC.则四边形ADFE 面积的最大值是________.三、解答题(共66分)19.(9分)计算:(1)tan 30°×sin 45°+tan 60°×cos 60°;(2)(2017·怀化)|3-1|+(2017-π)0-(14)-1-3tan 30°+38;(3)12-3tan 30°+(π-4)0-(12)-1.20.(8分)已知二次函数的顶点坐标为A(1,9),且其图象经过点(-1,5). (1)求此二次函数的表达式;(2)若该函数图象与x 轴的交点为B ,C ,求△ABC 的面积.21.(8分)密苏里州圣路易斯拱门是座雄伟壮观的抛物线型的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.22.(8分)(2017·宿迁)如图所示,飞机在一定高度上沿水平直线飞行,先在点A处测得正前方小岛C的俯角为30°,面向小岛方向继续飞行10 km到达B处,发现小岛在其正后方,此时测得小岛的俯角为45°,如果小岛高度忽略不计,求飞机飞行的高度.(结果保留根号)23.(10分)(2017·济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.经市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).(1)设这种双肩包每天的销售利润为w元.求w与x之间的函数表达式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?24.(10分)(2017·广东)如图,在平面直角坐标系中,抛物线y =-x 2+ax +b 交x 轴于A(1,0),B(3,0)两点,点P 是抛物线上在第一象限内的一点,直线BP 与y 轴相交于点C.(1)求抛物线y =-x 2+ax +b 的表达式;(2)当点P 是线段BC 的中点时,求点P 的坐标; (3)在(2)的条件下,求sin ∠OCB 的值.25.(13分)(2017·菏泽)如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B(4,0),与过A 点的直线相交于另一点D(3,52),过点D 作DC⊥x 轴,垂足为点C.(1)求抛物线的表达式.(2)点P 在线段OC 上(不与点O ,C 重合),过P 作PN⊥x 轴,交直线AD 于点M ,交抛物线于点N ,连接CM ,求△PCM 面积的最大值.(3)若P 是x 轴正半轴上的一动点,设OP 的长为t ,是否存在t ,使以点M ,C ,D ,N 为顶点的四边形是平行四边形?若存在,求出t 的值;若不存在,请说明理由.期中检测题1.C 2.B 3.B 4.C 5.C 6.D 7.A 8.B 9.D 10.C 11.120 12.(5+53) 13.x <-1或x >414.w =-10x 2+500x -4 000 15.24 16.①②④ 17.(0,-(3)2 018) 18.12 3 19.(1)tan 30°×sin 45°+tan 60°×cos 60°=33×22+3×12=66+32 (2)|3-1|+(2017-π)0-(14)-1-3tan 30°+38=3-1+1-4-3×33+2=3-4-3+2=-2 (3)12-3tan 30°+(π-4)0-(12)-1=23-3×33+1-2=3-1 20.(1)设抛物线表达式为y =a(x -1)2+9,把(-1,5)代入得a(-1-1)2+9=5,解得a =-1,所以抛物线表达式为y =-(x -1)2+9 (2)当y =0时,-(x -1)2+9=0,解得x 1=4,x 2=-2,所以B ,C 两点的坐标为(-2,0),(4,0),所以△ABC 的面积为12×9×(4+2)=27 21.如图所示建立平面直角坐标系,此时,抛物线与x 轴的交点为C(-100,0),D(100,0),设这条抛物线的表达式为y =a(x -100)(x +100),∵抛物线经过点B(50,150),可得150=a(50-100)(50+100),解得a =-150,∴y =-150(x -100)(x +100),即抛物线的表达式为y =-150x 2+200,顶点坐标是(0,200),∴拱门的最大高度为200米22.如图,过点C 作CD ⊥AB 于点D ,设CD =x ,∵∠CBD =45°,∴BD =CD =x ,在Rt △ACD 中,∵tan ∠CAD =CD AD ,∴AD=CD tan ∠CAD =x tan 30°=x 33=3x ,由AD +BD =AB 可得3x +x =10,解得x =53-5,答:飞机飞行的高度为(53-5)km 23.(1)w =y·(x-30)=(-x +60)·(x-30)=-x 2+30x +60x -1 800=-x 2+90x -1800,w 与x 之间的函数表达式为w =-x 2+90x -1 800 (2)根据题意,得w =-x 2+90x-1800=-(x -45)2+225,∵-1<0,∴当x =45时,w 有最大值,最大值是225,∴这种双肩包销售单价为45元时,每天的销售利润最大,最大利润是225元 (3)当w =200时,-x 2+90x -1 800=200,解得x 1=40,x 2=50,∵50>48,∴x 2=50不符合题意,舍去,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元 24.(1)将点A ,B 代入抛物线y =-x 2+ax +b ,可得⎩⎪⎨⎪⎧0=-12+a +b ,0=-32+3a +b ,解得⎩⎪⎨⎪⎧a =4,b =-3,∴抛物线的表达式为y =-x 2+4x -3(2)∵点C在y 轴上,所以C 点横坐标x =0,∵点P 是线段BC 的中点,∴点P 横坐标x P =0+32=32,∵点P 在抛物线y =-x 2+4x -3上,∴y P =-(32)2+4×32-3=34,∴点P 的坐标为(32,34) (3)∵点P 的坐标为(32,34),点P 是线段BC 的中点,∴点C 的纵坐标为2×34-0=32,∴点C 的坐标为(0,32),∴BC =(32)2+32=352,∴sin ∠OCB =OBBC=3352=255 25.(1)把点B(4,0),点D(3,52),代入y =ax 2+bx +1中,得⎩⎪⎨⎪⎧16a +4b +1=0,9a +3b +1=52,解得⎩⎪⎨⎪⎧a =-34,b =114,∴抛物线的表达式为y =-34x 2+114x +1 (2)设直线AD 的表达式为y =kx +b ,∵A(0,1),D(3,52),∴⎩⎪⎨⎪⎧b =1,3k +b =52,∴⎩⎪⎨⎪⎧k =12,b =1,∴直线AD 的表达式为y =12x +1,设P(t ,0),∴M(t ,12t +1),∴PM =12t +1,∵CD ⊥x 轴,∴PC =3-t ,∴S △PCM =12PC ·PM =12×(3-t)(12t +1),∴S △PCM =-14t 2+14t +32=-14(t -12)2+2516,∴△PCM 面积的最大值是2516 (3)存在.求t 值如下:∵OP=t ,∴点M ,N 的横坐标为t ,设M(t ,12t +1),N(t ,-34t 2+114t +1),∴|MN|=|-34t 2+114t +1-12t -1|=|-34t 2+94t|,CD =52,如图1,如果以点M ,C ,D ,N 为顶点的四边形是平行四边形,则MN =CD ,即-34t 2+94t =52,∵Δ=-39,∴方程-34t 2+94t =52无实数根,∴不存在t ;如图2,如果以点M ,C ,D ,N 为顶点的四边形是平行四边形,则MN =CD ,即34t 2-94t=52,∴t =9+2016或t =9-2016(负值舍去),∴当t =9+2016时,以点M ,C ,D ,N 为顶点的四边形是平行四边形期末检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.在△ABC 中,∠C =90°,sin B =12,则tan A 的值为( )A . 3B .1C .33 D .122.如图,△ABC 的三个顶点都在正方形网格的格点上,则cos A 的值为( )A .65 B .56C .56161 D .66161,第2题图) ,第3题图) ,第4题图)3.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( ) A .80° B .50° C .40° D .30°4.如图,在Rt △ABC 中,∠A =90°,BC =22,以BC 的中点O 为圆心分别与AB ,AC 相切于D ,E 两点,则DE ︵的长为( )A .π4B .π2C .πD .2π5.抛物线y =-12(x +1)2+3的顶点坐标为( )A .(1,3)B .(1,-3)C .(-1,-3)D .(-1,3)6.抛物线y =3x 2+2x -1向上平移4个单位长度后的函数表达式为( ) A .y =3x 2+2x -5 B .y =3x 2+2x -4 C .y =3x 2+2x +3 D .y =3x 2+2x +47.二次函数y =ax 2+bx +c 与一次函数y =ax +c ,它们在同一直角坐标系中的图象大致是( )8.已知二次函数y =kx 2-7x -7的图象与x 轴有两个交点,则k 的取值范围为( )A .k >-74B .k >-74且k≠0 C .k ≥-74D .k ≥-74且k≠09.如图,某幢建筑物从10米高的窗口A 用水管向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面403米,则水流下落点B 离墙的距离OB 是( )A .2米B .3米C .4米D .5米。
一、选择题1.如图,ABC 是O 的内接三角形,BD 为O 的直径.若10BD =,2ABD C ∠=∠,则AB 的长度为( )A .4B .5C .5.5D .62.一定滑轮的起重装置如图,滑轮半径为6cm ,当重物上升4cm π时,滑轮的一条半径OA 按逆时针方向旋转的度数为(假设绳索与滑轮之间没有滑动)( )A .30B .60︒C .90︒D .120︒ 3.如图,AB 是O 的直径,弦CD AB ⊥于点E ,1BE =,6CD =,则AE 的长度为( )A .10B .9C .5D .4 4.如图,O 是ABC 的外接圆,其半径为3cm ,若3BC cm =,则A ∠的度数是( )A .10︒B .15︒C .20︒D .30︒ 5.如图,O 的半径为5,3OP =,则经过点P 的弦长可能是( )A .3B .5C .9D .126.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是O 上一动点,点C 为弦AB 的中点,直线334y x =-与x 轴、y 轴分别交于点D E 、,则CDE △面积的最小值为( )A .2B .2.5C .3D .347.如图,已知,ABC O △为AC 上一点,以OB 为半径的圆经过点A ,且与BC OC 、交于点E D 、,设,C a A β∠=∠=,则( )A .若70αβ+=︒,则弧DE 的度数为20︒B .若70αβ+=︒,则弧DE 的度数为40︒C .若70αβ-=︒,则弧DE 的度数为20︒D .若70αβ-=︒,则弧DE 的度数为40︒ 8.如图,在ABC 中,5AB AC ==,6BC =,D ,E 分别为线段AB ,AC 上一点,且AD AE =,连接BE 、CD 交于点G ,延长AG 交BC 于点F .以下四个结论正确的是( )①BF CF =;②若BE AC ⊥,则CF DF =;③若BE 平分ABC ∠,则32FG =; ④连结EF ,若BE AC ⊥,则2DFE ABE ∠=∠. A .①②③B .③④C .①②④D .①②③④ 9.如图,AB 是O 的直径,CD 是弦,四边形OBCD 是菱形,AC 与OD 相交于点P ,则下列结论错误的是( )A .OD AC ⊥B .AC 平分OD C .2CB DP = D .2AP OP = 10.如图,ABC 内接于O ,50A ∠=︒,点E 是边BC 的中点,连接OE 并延长交O 于点D ,连接BD ,则D ∠的大小为( )A .55°B .65°C .70°D .75°11.往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为( )A .12cmB .18cmC .20cmD .24cm 12.如图,四边形OABC 是平行四边形,以点O 为圆心,OA 为半径的⊙O 与BC 相切于点B ,CO 的延长线交⊙O 于点E ,连接AE ,若AB =2,则图中阴影的面积为( ).A .2πB .πC .22πD .2π二、填空题13.如图,PA 、PB 切⊙O 于A 、B ,点C 在AB 上,DE 切⊙O 于C 交PA 、PB 于D 、E ,已知PO =13cm ,⊙O 的半径为5cm ,则△PDE 的周长是_____.14.如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是()0,8.则点D的坐标是______.15.如图,把一只篮球放在高为16cm 的长方体纸盒中,发现篮球的一部分露出盒,其截图如图所示.若量得EF =24cm ,则该篮球的半径为_____cm .16.边长为6的正三角形的外接圆的周长为__________.17.如图,在ABC 中,A 30∠=︒,45B ∠=︒,72cm AB =,点O 以2/cm s 的速度在ABC 边上沿A B C A →→→的方向运动.以O 为圆心作半径为2cm 的圆,运动过程中O 与ABC 三边所在直线首次相切和第三次相切的时间间隔为__________秒.18.如图所示的是边长为4的正方形镖盘ABCD ,分别以正方形镖盘ABCD 的三边为直径在正方形内部作半圆,三个半圆交于点O ,乐乐随机地将一枚飞镖投掷到该镖盘上,飞镖落在阴影区域的概率为________.19.如图,在ABCD 中,2AD =,3AB =,45A ∠=︒,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则图中阴影部分的面积为__________(结果保留π).20.如图,正方形ABCD 的边长为8,M 是AB 的中点,一动点P 从点B C D --运动,连接PM ,以点P 为圆心,PM 的长为半径作P ,当P 与正方形ABCD 的边相切时,BP 的长为_________.三、解答题21.已知关于x 的一元二次方程x 2+2mx ﹣n 2+5=0.(1)当m =1时,该一元二次方程的一个根是1,求n 的值;(2)若该一元二次方程有两个相等的实数根.①求m 、n 满足的关系式;②在x 轴上取点H ,使得OH =|m |,过点H 作x 轴的垂线l ,在垂线l 上取点P ,使得PH =|n |,则点P 到点(3,4)的距离最小值是 .22.如图所示,在△ABC 中,AB =CB ,以BC 边为直径的⊙O 交AC 于点E .点D 在BA 的延长线上,且∠ACD =12∠ABC .(1)求证:CD 是⊙O 的切线;(2)若∠ACB =60°,BC =12,连接OE ,求劣弧BE 所对扇形BOE 的面积(结果保留π).23.如图,直径为5的M 的圆心在x 轴正半轴上,M 和x 轴交于,A B 两点,和y 轴交于,C D 两点且4CD =,抛物线2y ax bx c =++经过,,A B C 三点,顶点为N .(1)求,,A B C 三点的坐标.(2)求经过,,A B C 三点的抛物线的解析式.(3)直线NC 与x 轴交于点E ,试判断直线CN 与M 的位置关系,并说明理由. 24.如图,AB 是O 的直径,弦CD AB ⊥与点E ,点P 在O 上,1C ∠=∠.(1)求证://CB PD ;(2)若3BC =,2sin 3C ∠=,求CD 的长. 25.如图,在ABC 中,90,C ABC ∠=︒∠的平分线交AC 于点E ,过点E 作BE 的垂线交AB 于点,F O 是BEF 的外接圆.(1)求证:AC 是O 的切线;(2)过点E 作EH AB ⊥于点H ,若8,4BC EH ==,求O 的半径. 26.如图,已知BC 是O 的直径,AC 切O 于点C ,AB 交O 于点D ,E 为AC 的中点,连接CD ,DE .(1)求证:DE 是O 的切线;(2)若8BD =,6CD =,求AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接OA ,首先求出∠ACB=30°得∠AOB=60°,从而证得△AOB 是等边三角形,进一步得出结论.【详解】解:∵BD 是圆O 的直径,且BD=10∴OB=5连接OA ,如图,∵BD 是圆O 的直径,∴90ACB ABD ∠+∠=︒又2ABD C ∠=∠∴3∠C=90°,即∠C=30°,∴∠AOB=60°∴△AOB 是等边三角形,∴AB=OB=5故选:B .【点睛】此题主要考查了圆周角定理,熟练掌握圆周角定理是解答此题的关键.2.D解析:D【分析】重物上升的距离恰好是滑轮转过的弧长,根据弧长公式计算即可.【详解】∵重物上升的距离恰好是滑轮转过的弧长,∴4π=n 6180π⨯⨯, 解得n=120,故选D.【点睛】 本题考查了弧长的计算,熟记弧长公式,读懂题意是解题的关键.3.B解析:B【分析】利用垂径定理EC 的长,再在Rt OEC 中,利用勾股定理求解即可.【详解】解:设OC=OB=x ,OE=OB-BE= x-1∵在O 中,AB ⊥CD ,AB 是直径,6CD = ∴11=6=322CD EC DE =⨯=, ∵在Rt OEC 中,OC 2=CE 2+OE 2,即x 2=32+(x-1)2,解得:x=5,∴OE = x-1=4,∴AE=OA+OE=5+4=9,故选:B .【点睛】本题考查垂径定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题.4.D解析:D【分析】连接OB 、OC ,则判断△OBC 是等边三角形,则∠BOC=60°,再根据圆周角定理,即可得到答案.【详解】解:连接OB 、OC ,如图:∵3OB OC BC cm ===,∴△OBC 是等边三角形,∴∠BOC=60°,∴∠BAC=30°,故选:D .【点睛】本题考查了圆周角定理,等边三角形的判定和性质,解题的关键是熟练掌握圆周角定理进行解题.5.C解析:C【分析】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 是垂直时,弦最短为8;判断即可.【详解】当经过点O 、P 的弦是直径时,弦最长为10;当弦与OP 垂直时,根据垂径定理,得半弦长2253-,所以最短弦为8;所以符合题意的弦长为8到10,故选C.【点睛】本题考查了直径是最长的弦,垂径定理,熟练运用分类思想,垂径定理,勾股定理是解题的关键.6.A解析:A【分析】连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,先证明点C 的运动轨迹是以点(1,0)M 为圆心,1为半径的M ,设M 交MN 于点C ',解得直线DE 与坐标轴的交点,即可解得OD OE 、的长,再由勾股定理解得DE 的长,接着证明DNM DOE 解得MN 的长,最后当点C 与点C '重合时, 此时CDE △面积的最小值,据此解题.【详解】解:如图,连接OB ,取OA 的中点M ,连接CM ,过点M 作MN DE ⊥于N ,,AC CB AM OM ==112MC OB ∴== C ∴的运动轨迹是以点(1,0)M 为圆心、半径为1的圆,设M 交MN 于点C ', 直线DE 的解析式为334y x =-, 令0x =,得3y =- (0,3)E ∴-令0y =,得4x =(4,0)D ∴3,4,OE OD ∴==3DM =22345DE ∴+=,MDN ODE MND DOE ∠=∠∠=∠DNM DOE ∴MN DM OE DE ∴= 335MN ∴= 95MN ∴= 94155C N '∴=-= 当点C 与点C '重合时,此时CDE △面积的最小值11452225DE C N '=⋅=⨯⨯= 故选:A .【点睛】本题考查圆的综合题,涉及一次函数与坐标轴的交点、勾股定理、相似三角形的判定与性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.7.B解析:B【分析】连接BD ,根据直径所对的圆周角是直角,可求得∠ABD =90°,又由A β∠=,可求得∠ADB =90β︒-,再根据∠ADB =∠DBC +∠C ,可得∠DBC =90βα︒--,从而求出弧DE 的度数.【详解】解:连接BD ,∵AD 是直径,∴90ABD ∠=︒,∴90A ADB ∠+∠=︒,∴90ADB β∠=︒-,又∵∠ADB =∠DBC +∠C ,∴()90DBC αβ∠=︒-+,若70αβ+=︒,则()90907020DBC αβ∠=︒-+=︒-︒=︒,∴弧DE 的度数20240=︒⨯=︒,故选B .【点睛】此题主要考查了圆周角定理及推论、三角形外角的性质,熟练掌握圆周角定理、构造直径所对圆周角是解题的关键.8.D解析:D【分析】先证明∆BAE ≅∆CAD ,再证明∆ABG ≅ ∆ACG ,得AF 是∠BAC 的平分线,进而即可判断①;先证明BDC=∠CEB=90°,根据直角三角形的性质,即可判断②;根据角平分线的性质,得点G 到∆ABC 的三边距离都相等,结合“等积法”即可判断③;先证明B ,C ,D ,E 在以点F 为圆心的圆上,进而即可判断④.【详解】∵AB=AC ,∠BAE=∠CAD ,AE=AD ,∴∆BAE ≅ ∆CAD ,∴∠ABE=∠ACD ,∵AB=AC ,∴∠ABC=∠ACB ,∴∠ABC-∠ABE=∠ACB-∠ACD ,即:∠GBC=∠GCB ,∴BG=CG ,∴∆ABG ≅ ∆ACG ,∴∠BAG=∠CAG ,即AF 是∠BAC 的平分线,∴BF CF =,故①正确;∵BE AC ⊥,∴∠CEB=90°,由①可知:BD=CE ,∠ABC=∠ACB ,又∵BC=CB ,∴∆BDC ≅∆CEB ,∴∠BDC=∠CEB=90°,∵点F 是BC 的中点,∴CF DF =,故②正确;∵BE 平分ABC ∠,AF 平分∠BAC ,∴点G 是角平分线的交点,∴点G 到∆ABC 的三边距离都相等,且等于FG ,∵5AB AC ==,6BC =,AF ⊥BC ,∴4=, ∴S ∆ABC =12(AB+AC+BC)∙FG=12×16FG=8FG ,S ∆ABC =12BC∙AF=12, ∴8FG=12,即:32FG =,故③正确; ∵BE AC ⊥,由①可知:CD ⊥AB , ∴B ,C ,D ,E 在以点F 为圆心的圆上,∴2DFE ABE ∠=∠,故④正确. 故选D .【点睛】本题主要考查等腰三角形的性质,全等三角形的判定和性质,直角三角形的性质,勾股定理,角平分线的性质,圆周角定理,熟练掌握“等腰三角形三线合一”,“直角三角形,斜边上的中线等于斜边的一半”,是解题的关键.9.D解析:D【分析】根据菱形的性质可以得出四条边平行并且都相等,又根据AB 是直径,即可知道∠ACB=90°,即可判断A ,因为三角形ABC 为直角三角形,根据求∠A 的正弦值即可判断∠A=30°,即可判断D ,根据中位线的性质即可B 、C 选项;【详解】∵ 四边形OBCD 是菱形,∴ OB ∥CD ,OD ∥BC ,OB=OD=CD=BC ,∵ AB 是直径,∴ ∠ACB=90°,∵OD ∥BC ,∴ ∠APO=90°,∴OD ⊥AC ,故A 正确; ∵12BC OD A AB AB ===sin ∠ , ∴∠A=30°,∴2OA OP = ,故D 错误,∵2OA OP =,∴2OD OP = ,∴DP=OP ,∴AC平分OD,故C正确;∴BC=2DP,故B正确;故选:D.【点睛】本题考查了菱形的性质,锐角三角函数、三角形的中位线的性质,圆周角的性质,熟练掌握知识点是解题的关键;10.B解析:B【分析】连接CD,根据圆的内接四边形的性质得到∠CDB=180°-∠A=130°,根据垂径定理得到OD⊥BC,求得BD=CD,根据等腰三角形的性质即可得到结论;【详解】如图:连接CD,∵∠A=50°,∴∠CDB=180°-∠A=130°,∵ E是边BC的中点,∴ OD⊥BC,∴ BD=CD,∠BDC=65°,∴∠ODB=∠ODC=12故选:B.【点睛】本题考查了三角形的外接圆与外心,圆内接四边形的性质,垂径定理,等腰三角形的性质,正确的理解题意是解题的关键.11.D解析:D【分析】连接OB,过点O作OC⊥AB于点D,交圆O于点C,由题意可知CD为8,然后根据勾股定理求出BD的长,进而可得出AB的长.【详解】如图,连接OB,过点O作OC⊥AB于点D,交圆O于点C,则AB=2BD,∵圆的直径为26cm ,∴圆的半径r=OB=13cm ,由题意可知,CD=8cm ,∴OD=13-8=5(cm ), ∴()221692512BD OB OD cm =-=-= ,∴AB=24cm ,故选:D .【点睛】本题考查了垂径定理的应用,过圆心向弦作垂线构造垂径定理是解题的关键.12.A解析:A【分析】连接OB ,根据平行四边形的判定及平行线的性质得出2OF ⊥BE 于F ,根据=()OBE OEA OBE S S SS S ---阴扇扇OEA 求解即可.【详解】 解:连接OB ,∴OB=OE=OA ,∵BC 与⊙O 相切于B ,∴OB ⊥BC ,∵四边形ABCD 是平行四边形,∴BC ∥OA ,OC ∥AB ,∴∠BOA=∠OBC=90°, ∵OB=OA ,AB=2,∴∠OAB=∠OBA=45°,2,即2作OF ⊥BE 于F ,∵OA ∥BC ,∴∠COB=∠OBA=45°,∴∠EOB=180°-∠COB=180°-45°=135°, ∴2135(2)33604OBE S ππ==扇形,112sin 22sin(135)222OBE S ab C ==︒=,245(2)13604OEA S ππ==扇形, ∴=()OBE OEA OBE S S SS S ---阴扇扇OEA =32124242ππ--+=21=42ππ, 故选A .【点睛】本题考查了平行线的性质,平行四边形的判定与性质,解题的关键是正确作出辅助线.二、填空题13.24cm 【分析】连接OAOB 由切线长定理可得:PA=PBDA=DCEC=EB ;由勾股定理可得PA 的长△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB 即可求得△PDE 的周长【解析:24cm【分析】连接OA 、OB ,由切线长定理可得:PA=PB ,DA=DC ,EC=EB ;由勾股定理可得PA 的长,△PDE 的周长=PD+DC+CE+PE=PD+DA+PE+EB=PA+PB ,即可求得△PDE 的周长.【详解】解:连接OA 、OB ,如图所示:∵PA 、PB 为圆的两条切线,∴由切线长定理可得:PA=PB ,同理可知:DA=DC ,EC=EB ;∵OA ⊥PA ,OA=5cm ,PO=13cm ,∴在Rt △POA 中,由勾股定理得:=cm,12∴PA=PB=12cm;∵△PDE的周长=PD+DC+CE+PE,DA=DC,EC=EB;∴△PDE的周长=PD+DA+PE+EB=PA+PB=24cm,故答案为:24cm.【点睛】本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.14.(92)【分析】设圆与x轴y轴的切点分别是EF连接EP并延长交AC于点N连接FP并延长交BC于点M连接PCPD利用切线的性质垂径定理勾股定理计算PMCM的长即可【详解】如图设圆与x轴y轴的切点分别是解析:(9,2).【分析】设圆与x轴,y轴的切点分别是E,F,连接EP,并延长,交AC于点N,连接FP,并延长,交BC于点M,连接PC,PD,利用切线的性质,垂径定理,勾股定理计算PM,CM的长即可.【详解】如图,设圆与x轴,y轴的切点分别是E,F,连接EP,并延长,交AC于点N,连接FP,并延长,交BC于点M,连接PC,PD,∵P与x轴、y轴都相切,∴PE⊥OB,PF⊥OA,∵FO⊥OE,PE=PF,∴四边形PFOE是正方形,∵P的半径为5,∴PE=PF=PC=PD=5,∵四边形AOBC是矩形,∴PN⊥AC,PM⊥BC,∴四边形AOEN,四边形NEBC都是矩形,∵点A的坐标是()0,8,∴OA=EN=8,∴AF=PN=CM=3,∴=,∴AC=OB=AN+NC=9,∵PM⊥BC,∴CM=DM=3,∴BD=BC-CD=8-6=2,∴点D的坐标为(9,2).故答案为:(9,2).【点睛】本题考查了切线的性质,正方形的判定,矩形的性质和判定,勾股定理,垂径定理,根据题意熟练运用切线的性质是解题的关键.15.5【分析】取EF的中点M作MN⊥AD于点M取MN上的球心O连接OF 设OF=x则OM=16-xMF=12在Rt△MOF中利用勾股定理求得OF的长即可【详解】取EF的中点M作MN⊥AD于点M取MN上的球解析:5【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=16-x,MF=12,在Rt△MOF中利用勾股定理求得OF的长即可.【详解】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=16cm,设OF=x cm,则ON=OF,∴OM=MN-ON=16-x,MF=12cm,在Rt△MOF中,OM2+MF2=OF2,即:(16-x)2+122=x2,解得:x=12.5 (cm),故答案为:12.5.【点睛】本题主考查垂径定理、矩形的性质及勾股定理的应用,正确作出辅助线构造直角三角形是解题的关键.16.【分析】根据题意画出图形先求出边长为6的正三角形的外接圆的半径再求出其周长即可【详解】解:如图所示连接OBOC过O作OD⊥BC于D∵△ABC 是边长为6的等边三角形BC=6∴∠BOC==120°∠BO解析:43π【分析】根据题意画出图形,先求出边长为6的正三角形的外接圆的半径,再求出其周长即可.【详解】解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵△ABC是边长为6的等边三角形,BC=6,∴∠BOC=3603︒=120°,∠BOD=12∠BOC=60°,BD=3,∴OB=3 sin603BD==︒∴外接圆的周长33.故答案为:3.【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用数形结合求解是解答此题的关键.17.【分析】要求第一次相切和第三次相切的时间间隔题目已知速度那么就要求第一次相切圆心运动的距离与第三次相切圆心运动的距离之差根据公式:时间=路程÷速度即可求解【详解】解:第一次相切如图①∵∴即第一次相切解析:521 2+【分析】要求第一次相切和第三次相切的时间间隔,题目已知速度,那么就要求第一次相切圆心运动的距离与第三次相切圆心运动的距离之差,根据公式:时间=路程÷速度即可求解.【详解】解:第一次相切如图①,∵12O P cm,1O P AC⊥,∴11222sin sin 30O P O A cm A ===︒,即第一次相切圆心运动的距离为22cm .第二次相切如图②, 22O P cm =,2O P BC ⊥, 第三次相切如图③,∵32O P cm =,3O P AB ⊥,∴3322sin O P O B cm B ===, 第三次相切圆心运动的距离为3722AB O B +=+,∴第一次相切圆心运动的距离与第三次相切圆心运动的距离之差为:72222522+-=+,∴52252122s t v +===+, 故答案为:5212+.【点睛】本题考查的是特殊角的三角函数值以及求圆平移到与直线相切时圆心经过的距离,解题的关键是求出第一次相切圆心运动的距离与第三次相切圆心运动的距离之差.18.【分析】先判断出两半圆交点为正方形的中心连接OAOD 则可得出所产生的四个小弓形的面积相等先得出2个小弓形的面积即可求阴影部分面积根据即可求得概率【详解】解:由题意易知两半圆的交点即为正方形的中心设此解析:12【分析】先判断出两半圆交点为正方形的中心,连接OA ,OD ,则可得出所产生的四个小弓形的面积相等,先得出2个小弓形的面积,即可求阴影部分面积,根据ABCD S S 阴影正方形即可求得概率.【详解】解:由题意,易知两半圆的交点即为正方形的中心,设此点为O ,连接AO ,DO ,则图中的四个小弓形的面积相等,∵两个小弓形面积=14AOD AOD AOD ABCD S S S S --△半圆半圆正方形=, 又∵正方形ABCD 的边长为4,∴各半圆的半径为2,∴两个小弓形面积=2112-44=2-424ππ⨯⨯⨯⨯, ∴=2S S ⨯阴影半圆-4个小弓形的面积=()22-22-4=8ππ⨯,∴飞镖落在阴影部分的概率为:81==162ABCD S S 阴影正方形, 故答案为:12. 【点睛】 本题考查扇形的面积、正方形的性质、几何概率,解题的关键是求出小弓形的面积. 19.【分析】过点作于点根据等腰直角三角形的性质求得从而求得最后由结合扇形面积公式平行四边形面积公式三角形面积公式解题即可【详解】解:过点作于点故答案为:【点睛】本题考查等腰直角三角形平行四边形的性质扇形 52π-【分析】过点D 作DF AB ⊥于点F ,根据等腰直角三角形的性质求得DF ,从而求得EB ,最后由ABCD EBC ADE S SS S =--阴影扇形结合扇形面积公式、平行四边形面积公式、三角形面积公式解题即可.【详解】解:过点D 作DF AB ⊥于点F ,2,3,45AD AB A ==∠=︒,22DF AD ∴==, 2AE AD ==,1EB AB AE ∴=-=,ABCD EBC ADE S S S S ∴=--阴影扇形2452132123602π⨯=-⨯2322π= 22π=, 故答案为:522π-. 【点睛】 本题考查等腰直角三角形、平行四边形的性质、扇形的面积公式等知识,是重要考点,难度较易,掌握相关知识是解题关键.20.3或或【分析】由线段中点的性质解得当与正方形的边相切时分别作出相应的图形分三种情况讨论:①当与正方形的边相切切点为点时设在中利用勾股定理解得的值即可解出的长;②当与正方形的边相切切点为点时可证明四边 解析:3或35【分析】由线段中点的性质解得4BM =,当P 与正方形ABCD 的边相切时,分别作出相应的图形,分三种情况讨论:①当P 与正方形ABCD 的边CD 相切,切点为点C 时, 设PC PM x ==,在Rt PBM △中,利用勾股定理解得x 的值,即可解出BP 的长;②当P 与正方形ABCD 的边AD 相切,切点为点K 时,可证明四边形PKDC 是矩形,由矩形对边相等的性质结合圆的半径相等,解得2PM PK DC BM ===,再在Rt PBM △中,利用勾股定理解题;③当P 与正方形ABCD 的边AB 相切,切点为点M 时,在Rt PMB 中,利用勾股定理解题即可.【详解】解:M 是AB 的中点,118422BM AB ∴==⨯=分三种情况讨论:①如图,当P 与正方形ABCD 的边CD 相切,切点为点C 时,设PC PM x ==,在Rt PBM △中,222PM BM BP =+2224(8)x x ∴=+-22246416x x x ∴=+-+5x ∴=5,3PC BP BC PC ∴==-=;②如图,当P 与正方形ABCD 的边AD 相切,切点为点K 时,连接PK ,则PK AD ⊥,四边形PKDC 是矩形,2PM PK DC BM ∴===48BM PM ∴==,在Rt PBM △中, 228443PB =-=;③如图,当P 与正方形ABCD 的边AB 相切,切点为点M 时,,8,4PM AB PM BC BM ⊥===在Rt PMB 中,228445BP =+=综上所述,当P与正方形ABCD的边相切时,BP的长为:3或435故答案为:3或4345【点睛】本题考查切线的性质、勾股定理等知识,是重要考点,难度一般,掌握相关知识是解题关键.三、解答题21.(1)2;(2)①m2+n2=5;②55【分析】(1)把m=1,x=1代入方程得1+2-n2+5=0,然后解关于n的方程即可;(2)①利用判别式的意义得到△=4m2-4(-n2+5)=0,从而得到m与n的关系;②利用勾股定理得到22m n+5P在以O5上,然后根据点与圆的位置关系判断点P到点(3,4)的距离最小值.【详解】解:(1)把m=1,x=1代入方程得1+2﹣n2+5=0,解得n=2,即n的值为2;(2)①根据题意得△=4m2﹣4(﹣n2+5)=0,整理得m2+n2=5;②∵OH=|m|,PH=|n|,∴OP22+5m n即点P在以O5∴原点与点(3,4)的连线与⊙O的交点P使点P到点(3,4)的距离最小,∵原点到点(3,422+5,34∴点P到点(3,4)的距离最小值是55故答案为55【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了点与圆的位置关系.22.(1)见解析;(2)12π【分析】(1)连接BE ,由圆周角定理可得出∠BEC =90°,由等腰三角形的性质得出∠ABE =∠CBE =12∠ABC ,得出∠ACD =∠CBE ,证得∠BCE+∠ACD =90°,则可得出结论; (2)求出∠BOE =120°,由扇形的面积公式可得出答案.【详解】(1)证明:连接BE ,∵BC 是⊙O 的直径,∴∠BEC =90°,∴BE ⊥AC ,又∵AB =CB ,∴∠ABE =∠CBE =12∠ABC , ∵∠ACD =12∠ABC , ∴∠ACD =∠CBE ,又∵∠BCE+∠CBE =90°,∴∠BCE+∠ACD =90°,∵点C 在⊙O 上,∴CD 是⊙O 的切线.(2)解:∵∠ACB =60°,∴∠BOE =120°,∵BC =12,∴⊙O 的半径是6,∴S 扇形BOE =21206360π⨯⨯=12π. 【点睛】本题考查了切线的性质、圆周角定理、等腰三角形的性质、扇形面积公式等知识,熟练掌握切线的判定方法是解题的关键;23.(1)点A 的坐标为()1,0-,点B 的坐标为()4,0,C 点的坐标为()0,2-;(2)213222y x x =--;(3)直线CN 与M 相切,见解析. 【分析】 (1)连接DM ,在Rt △DOM 中,求出OM ,OC 、OA 、OB ,则可求出A 、B 、C 三点的坐标即可; (2)由A 、B 两点坐标,设抛物线y =a (x +1)(x−4),将C (0,−2)代入求出a 即可解决问题;(3)连接MC ,根据勾股定理的逆定理证明CM ⊥EN 即可.【详解】(1)如图,连接DM ,∵M 的直径5,∴52DM =, ∵4CD =,∴2OD OC ==,∴C 点的坐标为()0,2-,∴2232OM DM OD =-=, ∴53122OA =-=,∴54OB OA =-=, ∴点A 的坐标为()1,0-,点B 的坐标为()4,0;(2)由A 、B 两点坐标,设抛物线()()14y a x x =+-,将()0,2C -代入,得()()-20104a =+-解得:12a =, ∴()()1142y x x =+-, ∴经过,,A B C 三点的抛物线解析式为213222y x x =--; (3)直线CN 与M 相切;如图,连接CM ,设过CN 直线的解析式为y kx b =+,∵抛物线的顶点为N , ∴332-12222b a -=-=⨯,()219424252414842ac b a ⨯⨯---==-⨯, ∴N 点的坐标为325,28⎛⎫- ⎪⎝⎭, 将C ()0,2-,N 325,28⎛⎫-⎪⎝⎭代入y kx b =+得 232528b k b =-⎧⎪⎨+=-⎪⎩ 解得342k b ⎧=-⎪⎨⎪=-⎩ , ∴CN 直线的解析式为324y x =--, 当y=0时,x=8-3∴点E 的坐标为8,03⎛⎫- ⎪⎝⎭ ∴22103CE OC OE =+=, ∴256EM OE OM =+=, ∵2254CM =,21009CE =,262536EM =, ∴222CM CE EM +=,∴ECM ∆是直角三角形,即MC EC ⊥,∴直线CN 与M 相切.【点睛】此题考查待定系数法求函数解析式,圆、垂径定理、圆的切线的判定、勾股定理以及逆定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.24.(1)见解析;(2)CD =【分析】(1)根据同弧所对圆周角相等可以确定∠C=∠P ,又知∠1=∠C ,即可得∠1=∠P ,进而得到//CB PD ;(2)先利用三角函数求出BE 的长,再根据勾股定理求EC 得长,最后根据垂径定理得DE EC =,即可求出CD DE EC =+的长.【详解】(1)证明:∵C P ∠=∠,1C ∠=∠.∴1P ∠=∠.∴//CB PD .(2)解:∵CD AB ⊥,3BC =,2sin 3C ∠=. ∴在t R △CEB 中,2sin =3BE C BC ∠=,则2=33BE . ∴=2BE .又∵3BC =,CD AB ⊥∴t R △CEB 中,DE EC ==, ∴CD DE EC =+=【点睛】本题考查了三角函数解直角三角形、勾股定理、垂径定理和圆周角性质,平行线的判定,解题的关键是利用垂径定理和圆周角定理找到边与角的关系.25.(1)见解析;(2)5【分析】(1)连接OE ,由于BE 是角平分线,则有CBE ABE ∠=∠,再证可得OE//BC ;根据平行线的性质和切线的判定即可证得结论;(2)先证明△BCE ≌△BHE ,再根据勾股定理列方程求解即可.【详解】 ()1证明:连结OE,∵BE 平分ABC ∠,CBE ABE ∴∠=∠又,=OB OE,∴∠=∠ABE BEO∴∠=∠CBE BEO ,//OE AC ∴,又90C ∠=︒,即AC BC ⊥.OE AC ∴⊥,∴AC 是O 的切线,()2解:∵BE 平分,ABC AC BC EH AB ∠⊥⊥、,CE EH ∴=,∵BE BE =,∴()Rt CBE Rt HBE HL ≌,8CB HB ∴==,设OE=OB=r ,8HO BH OB r ∴=-=-,222OE OH HE =+,()22284r r ∴=-+.解得:=5r .【点睛】本题主要考查了切线的证明、角平分线的性质定理以及全等三角形的判定与性质,勾股定理,掌握切线的证明、角平分线的性质定理以及全等三角形的判定与性质,勾股定理是解题关键.26.(1)证明见解析;(2)152 【分析】(1)连接OD ,根据切线的性质和直角三角形斜边的中线以及等腰三角形的性质得出,EDC ECD ∠=∠,ODC OCD ∠=∠,然后利用等量代换即可得出DE OD ⊥,从而证明结论;(2)首先根据勾股定理求出BC 的长度,然后证明BCD BAC ∽△△,最后利用CD BD AC BC=求解即可. 【详解】(1)证明:连接OD ,如图,∵BC 是O 的直径,∴90BDC ∠=︒,∴90ADC ∠=︒,∵E 为AC 的中点, ∴12DE EC AC ==, ∴EDC ECD ∠=∠,∵OD OC = , ∴ODC OCD ∠=∠,∵AC 切O 于点C ,∴AC OC ⊥,∴90EDC ODC ECD OCD ∠+∠=∠+∠=︒,∴DE OD ⊥,∴DE 是O 的切线;(2)解:在Rt BCD 中,∵8BD =,6CD =,∴10BC ==∵90BDC BCA ∠=∠=︒,B B ∠=∠,∴BCD BAC ∽△△, ∴CD BD AC BC=, 即6810AC =, ∴152AC =. 【点睛】 本题主要考查圆的综合问题,掌握切线的判定及性质,相似三角形的判定及性质是解题的关键.。