钻井工程设计优化与应用
- 格式:pdf
- 大小:197.95 KB
- 文档页数:1
探讨钻井工程技术现状及发展趋势钻井工程技术是石油钻井的核心技术领域,主要涉及到的内容包括钻井工具和设备、钻井液、钻井作业、井筒完井等各个环节。
随着油气资源的不断开发和需求的增长,钻井工程技术也在不断发展和创新,以提高钻井效率和降低成本。
目前,钻井工程技术主要存在以下几个现状:一、钻井工具和设备的发展钻井工具和设备是钻井工程技术的基础,其发展直接决定了钻井效率和质量。
目前,随着科技的进步和材料技术的发展,钻井工具和设备已经更加先进和智能化。
采用了新型的高硬度合金材料来制造钻头,提高了钻进速度和寿命;应用了新技术和电子设备来实现井底测量和钻井监控,增强了工程师对钻井过程的控制和调整能力。
二、钻井液技术的改进钻井液在钻井作业中起到润滑、冷却、清洗井眼和稳定井壁的作用。
钻井液技术的改进可以降低钻井事故的发生率并提高钻井效率。
目前,钻井液技术已经从常规水基钻井液向油基钻井液、水泥渗漏控制剂、泥浆分离技术、高渗透率井眼防塌技术等方面发展,以适应复杂的地层环境和井眼形态,提高钻井质量和作业效率。
三、钻井作业技术的提升钻井作业技术主要包括钻井方案设计、钻井操作指导、井下作业协调等方面。
目前,随着数据采集和处理技术的进步,钻井工程师可以更加准确地分析地层情况和井下状态,进行钻井方案的优化设计,并实时监测和调整钻井过程。
利用互联网等信息技术手段,提高钻井团队之间的协作和沟通效率,优化钻井作业流程,提高钻井作业的效率和安全性。
一、自动化和智能化随着信息技术的发展,钻井工程技术将越来越智能化和自动化。
采用自动钻井系统可以实现钻井工程的全自动化操作,减少人工干预,提高作业效率和安全性。
采用人工智能、大数据和云计算等技术,可以对采集到的数据进行实时分析和处理,并根据模型进行预测和决策,提高钻井效率和质量。
二、环境友好型技术的应用随着环境保护意识的提升,钻井工程技术也在向环境友好型技术转变。
采用可降解的钻井液来替代传统的钻井液,在钻井作业结束后能够迅速降解和回收,减少对环境的污染。
塔里木油田钻井推荐做法(中原塔里木)1、优化中完施工工序。
提速是钻井工程永恒的主题,实现钻井提速不能仅仅聚焦于容易节余的钻进施工,还要着眼于工序繁多、劳动量大的中完作业。
中完作业周期约占钻井周期25%-30%,个别井比达到40%。
随着施工工序更加标准化,公司通过倒排中完施工计划,提前组合超前谋划,通井、下套管、固井、装井口、试压、扫塞等每个工序设定目标周期,时间精确到小时,每天对比分析,分析节超原因,为后续优化做好准备。
2、升级配套装备。
装备必须从工程出发,满足工程提速提效技术需求。
针对钻井参数强化需要,从机泵条件、顶驱功率及钻具方面对钻井装备进行了一体化升级配套。
一是大功率泥浆泵。
8000米以上的超深井配备52MPa高压泵,90118配备2台2200马力和1台1600马力泥浆泵泵,90115队配备3台1600马力的52MPa高压泵。
二是高转速大扭矩顶驱系统。
配置了90型顶驱,能够提供120r/m的转速,48kN.m的连续扭矩,满足了深部定向段高转速清砂技术需要。
三大水眼钻具。
上部地层使用φ149.7mm和φ139.7mm大水眼钻杆,压耗降低16%~30%。
3、推行“钻头优选+工具配套+参数强化”的集成应用技术。
一是二叠系以上地层应用预弯曲防斜打直技术,配合 1.25°等壁厚大扭矩螺杆+高抗冲异型齿PDC钻头,山前备用垂钻。
同时配套使用大排量、高泵压强化参数钻进。
二是二叠系火成岩含量少的区域,使用抗冲蚀的双排齿PDC钻头+7头高扭低速螺杆钻进。
个别区块玄武岩含量多,配合使用混合钻头+7头高扭低速螺杆,快速钻穿二叠系。
三是二叠系以下古生界地层,压实程度高,研磨性强,采用抗研磨个性化钻头+7头1.25°大扭矩螺杆,应用预弯曲防斜打直技术,备用垂钻,配套使用大排量、高钻压、高泵压等强化钻井参数措施,提高机械钻速。
4、推行混合钻头定向钻进技术。
混合钻头定向钻进一趟钻,造斜率高,工具面稳定,机械钻速高。
钻井工程技术中存在的问题及提高钻井效率的对策钻井工程技术在石油钻井中起着至关重要的作用,但在实际应用中也存在着许多问题,如遇到顶碎、钻杆卡钻、井眼坍塌等,都会对钻井效率造成影响。
本文将就钻井工程技术中存在的问题及提高钻井效率的对策进行探讨。
一、钻井工程技术中存在的问题1. 顶碎问题顶碎是指在地层岩石强度大或者孔隙度小的情况下,钻头在钻井过程中进入地层后无法顺利前进,导致地层岩石碎裂,影响钻井效率。
2. 钻杆卡钻问题在钻井过程中,由于油田地质情况复杂,容易造成钻杆卡钻,严重影响钻井进度和效率。
3. 井眼坍塌问题井眼坍塌是指钻井过程中,由于地层条件和钻井技术原因,导致井眼壁面发生塌陷的现象,给钻井作业带来极大的困难。
以上问题直接影响到钻井效率的提高,需要针对这些问题提出相应的对策。
二、提高钻井效率的对策1. 钻井技术水平的提升提高钻井技术水平,选择合适的钻井技术方案,选用合适的钻井设备和工具,是提高钻井效率的重要手段。
通过科学技术手段,优化钻井工艺流程,提高钻井效率和作业水平。
2. 加强勘探工作通过对油田地质勘探工作的深入研究和评价,准确了解井下地层情况,提前做好预警和应对措施,可有效避免在钻井中遇到的更多问题。
3. 优化井眼设计通过合理优化井眼设计,采用合适的钻井技术和工艺,预防井眼坍塌问题的发生。
钻井中使用深井钻头、合理的钻进液压力及注水量,保持井眼稳定,减少井眼塌方,提高钻井效率。
4. 提高油田开发水平采用先进的油田开发技术和设备,加强地层地质勘探,通过改进油田开发技术,提高开采效率,减少钻井作业中的问题和障碍。
5. 完善管理机制建立完善的管理机制,加强队伍管理和培训,确保钻井操作人员具备专业技能和安全意识,提高钻井队伍整体素质和管理水平,促进钻井效率提高。
随着油气勘探开发的深化,钻井技术的要求也在不断提高。
通过加强科技研发,提高钻井技术水平,优化井眼设计,完善管理机制等方面的努力,将进一步提高钻井效率,确保钻井工程技术能够更好地服务于油气勘探开发工作,为我国油气资源的开发利用做出更大的贡献。
钻井工程施工工艺的效率提升方法随着油气勘探和开发的深入,钻井工程对于提高产能和降低成本显得尤为重要。
本文将介绍几种钻井工程施工工艺的效率提升方法,帮助钻井工程师们在实际操作中更加高效地完成工作。
1. 优化钻井液配方钻井液是钻井过程中不可或缺的一部分,合理的钻井液配方可以大幅提升钻井效率。
通过综合考虑地层情况、工况要求和井下设备的特点,可以调整钻井液的密度、黏度以及环保性能等,以实现更好的冷却、润滑和清理作用,提高钻进速度和钻头寿命。
2. 优化钻具结构和性能钻具是钻井过程中的核心装备,其结构和性能直接关系到钻进效率。
钻井工程师可以通过优化钻具的结构设计、选用高强度和耐磨材料,以及合理配置钻具组合,提升钻具的承载能力、耐久性和钻进速度。
此外,合理的钻具维护和保养,也是提高钻井效率的重要因素。
3. 应用先进的钻井技术随着油气勘探技术的不断发展,各种先进的钻井技术也应用于实际施工中,以提高钻井效率。
例如,可应用振动电机钻井技术,通过振动钻杆使岩石破碎,提高钻进速度;还可以采用中空钻杆系统,实现钻井和钻头更换的同步进行,减少操作时间;此外,通过自动化控制系统和远程监控技术,可以提高施工的安全性和准确性。
4. 有效的施工计划和沟通一个高效的钻井工程需要有明确的施工计划和良好的团队协作。
钻井工程师应制定合理的施工方案,提前预估工程量和所需资源,并与相关部门和团队进行充分的沟通和协调。
合理的作业安排和流程控制,可以减少操作中的不必要等待和漏洞,提高工作效率。
5. 培训和技能提升钻井工程师的技能水平直接关系到施工中的效率和质量。
因此,提高工程师的培训和技能水平是提升钻井工艺效率的关键。
企业可以组织各种培训和技能提升活动,提升工程师的技术水平和操作能力。
通过合理的培训和实践,工程师们可以更加熟练地掌握各种钻井技术和设备的操作方法,从而提高施工的效率和质量。
总结起来,钻井工程施工工艺的效率提升方法包括优化钻井液配方、优化钻具结构和性能、应用先进的钻井技术、有效的施工计划和沟通,以及培训和技能提升。
预斜,同时为规避底水,预斜角度需尽量大,设计预斜狗腿至少4.5°/30 m。
此外,受到邻井表层套管偏斜的影响,防碰严重,通过对相关邻井表层轨迹复测,充分落实周边井表层连续轨迹,通过对桩管以下每5 m的轨迹投影,确定预斜过程中设计轨迹与老井套管相对关系。
在此基础上,优化定向井轨迹,作业过程中采用陀螺测斜,并应用国内先进的防碰监测系统,最大程度降低了防碰风险。
2.2 导眼钻进与新型扩眼一体化钻井技术考虑到常规大尺寸井眼不利于防碰及预斜,项目组确定先钻9-7/8″领眼防碰绕障并预斜,后使用17-1/2″扩眼器进行扩眼。
项目组自行设计三级固定翼扩眼器即:9-7/8″×13-3/4″×17-1/2″,具体如图1所示。
使扩眼器更易进入老井眼,增加扩眼器的稳定性。
通过合理的水眼布置,改善携岩,减少了对井壁的冲刷;合理的水力配置,减少了扩眼器泥包几率,使用球0 引言超浅层水平井(主要目的层顶海拔垂深550 m),在国内外可查文献中海洋钻井尚无先例,属技术空白,在这样的情况下进行钻完井作业会遇到较多以前未曾遇到的技术难题。
如:地层疏松,连续造斜率可行性(6°/30 m);连续大狗腿(6°/30 m)、高水垂比(2.7)及长稳斜段9-5/8″技术套管的下入及套管安全问题;疏松地层的井壁稳定与合理的低密度兼顾问题;储层保护问题;地层绝对压力低,如何安全顺利诱喷返排;两井长稳斜段,存在钻井液体系的抑制性、流变性及润滑性以及如何降低水力磨阻等难题,同样还存在易形成岩屑床等技术难题。
1 构建思路及创新性技术针对特殊超浅层地层开展的超浅地层井壁稳定性研究,得出了松软地层坍塌压力与破裂压力曲线,预测钻井安全密度窗口,推荐稳斜段及储层井段采用合适的钻井液密度。
通过这些有效的科研数据和实验结果,为作业实施奠定了理论基础。
解决了钻完井技术难题,同时也创造了海洋实施最浅大位移井记录,并摸索出一套超浅层大位移井钻完井理论与技术。
多相流体力学在石油工程中的应用与优化多相流体力学是研究多相流动行为的学科,其在石油工程中的应用和优化具有重要意义。
石油工程是利用多相流体力学的理论和方法来研究、开发和利用油气资源的工程学科。
本文将重点介绍多相流体力学在石油工程中的应用,并探讨其在石油开采过程中的优化方法。
一、多相流体力学在石油工程中的应用1. 油藏描述准确性提升:多相流体力学能够帮助工程师对油藏进行更准确的描述和建模,从而更好地了解油气分布情况和运移特性。
通过对多相流体力学模型的建立和模拟,可以预测油藏的产量、压力变化等,为石油工程的决策提供科学依据。
2. 油藏开发优化:多相流体力学在油藏开发中起到了关键作用。
通过分析多相流体的物理性质和流动行为,工程师可以合理设计井网、确定注油和采油方式,并进行生产参数的优化调整,以最大程度地提高采收率和产量,降低开发成本。
3. 油藏压裂技术改进:多相流体力学在油藏压裂技术方面的应用也非常重要。
利用多相流体力学的理论和模型,可以更好地理解井壁流经导井管过程中的多相流动行为、岩石破裂机理等,从而提高油藏的渗透率和储层流动性,增加采油效果。
4. 井眼液柱建模:在石油工程中,井眼液柱的建模对于提高钻井效率和安全是至关重要的。
多相流体力学可以用来描述井眼液柱中液体和气体的流动行为,预测井眼液柱的压力变化、气体分布等关键参数,为钻井操作提供指导。
二、多相流体力学在石油工程中的优化方法1. 模型优化:多相流体力学模型的选择和优化对于石油工程的精确建模起到决定性作用。
在模型选择时,应综合考虑油藏特点、流体性质和采油目标等因素,选择适合的模型。
在模型优化方面,可以通过对模型参数的调整和改进,提高模型的准确性和适用性。
2. 仿真计算:利用计算机仿真技术进行多相流体力学计算是石油工程中优化的重要手段之一。
通过建立合理的多相流体力学模型和边界条件,进行大规模的数值模拟计算,可以对油藏开采过程进行综合分析和评估,实现优化决策。
钻井工程设计报告范文一、引言钻井工程设计是石油和天然气开发过程中至关重要的一环。
其目的是开展钻探作业以获得地下油气资源。
本文将详细介绍钻井工程设计的内容,包括设计原则、工程方案、工作流程以及设计参数等。
二、设计原则1. 安全第一:钻井工程设计的首要原则是确保操作人员和设备的安全。
所有设计决策都应以安全为前提,遵循相关规范和标准,采取适当的安全措施,预防事故和灾难的发生。
2. 经济性:钻井工程设计应在安全的前提下追求经济效益。
设计师应通过选择适当的装备和工艺流程,优化钻探时间和成本,并确保提高钻井速度和效率。
3. 环境友好:钻井工程设计应注重保护环境,减少对自然资源的消耗和污染。
设计师应遵循环保法规和政策,采取相应措施减少废弃物的产生,妥善处理和回收利用可回收资源。
三、工程方案1. 钻井井型选择:根据地质勘探和地下构造的情况,选择合适的钻井井型,如水平井、垂直井或斜井等。
同时考虑目标层位、井壁稳定性等因素,确定最佳井型。
2. 钻井液选择:根据地质状况和钻探目标,选择合适的钻井液类型,如泥浆、泡沫液或气体钻井液等。
确保钻井液的性能符合要求,同时降低钻井液对地下水和环境的影响。
3. 钻具设计:根据井深、井径和钻井液性质等因素,选择合适的钻具,包括钻头、钻柱、钻杆等。
进行钻具强度校核,确保钻具能够承受地层压力和摩擦力的作用。
四、工作流程1. 钻探前期准备:包括设计井勘探方案、编制施工程序、准备设备和材料等。
2. 钻具组装:将各类钻具进行组装,包括钻头、钻柱、钻杆等。
3. 井下作业:进行井下操作,包括井探、起下钻井具、置换钻井液等。
4. 钻层评价:对钻探过程中碰到的地层进行评价,包括地层性质、含油气性能等。
5. 钻层完井:根据地质勘探结果,决定是否完成钻层作业,布套并进行封井作业。
五、设计参数1. 井深和井径:决定井筒的长度和直径,根据地质状况和勘探需求确定。
2. 钻井液参数:包括密度、粘度、流变性等,根据地质勘探需求和目标层位选择合适的参数。
是卡钻的风险。
在高速钻进时,易造成PDC 钻头的损坏和定向工具的磨损,主要为螺杆扶正器衬套或旋转导向推靠装置的磨损,PDC 钻头保径齿的破坏,因此,为保护PDC 钻头和定向工具,一般做法是通过降低钻进参数,但导致机械钻速低。
(3)油田不同区域储层压力差异大,油田中部该层位属于低压油藏,北部的Basal Tena 地层压力系数为1.366,属于高压油藏,储层类型为中低孔、中高渗类型,南部区域开发程度低,油藏压力保持良好,接近原始地层压力,在北部和南部钻井井控风险增大,有一定井喷风险。
如果与Napo 组的两套低压油藏同存,会存在高钻井液密度污染损害Napo 组储层的情况,并且容易诱发上喷下漏的问题,需要有针对性的调整井身结构。
(4)Napo 组下部有多套含油砂岩,该层段页岩、灰岩和砂岩交替发育,页岩具有裂缝发育,松散破碎,容易垮塌,产层砂岩孔隙度大,渗透性高,井壁容易堆积较厚泥饼,容易发生压差卡钻。
(5)Napo 、Hollin 地层含高岭石层段的岩石极易水化膨胀,造成井眼缩径失稳,因此,在下入尾管过程中,存在下入困难,甚至未下到预定位置的情况,造成井下风险增高、钻井周期增长等不利。
2 井身结构优化设计2.1 地层必封点确定根据P 油田地质工程特点,结合油田开发需求,参考目前相关工艺技术水平,加上对同区已钻直井、定向井的实钻情况进行研究,分析得出本区块纵向上存在三个必封点:(1)必封点1:井深10~50m 左右。
地表浅层疏松,易窜漏,若长时间浸泡,还可能出现垮塌,造成钻机底座不平稳等风险。
(2)必封点2:Tiyuyacu 组上部。
一方面,上部第三系地层新,欠压实,存在大段泥岩和页岩,易水化膨胀,井壁稳定性差;另一方面,虽然上部泥、页岩层和下部大段砾石层防塌需求高,但二者防塌机理不同,钻井液性能差异大。
因此,将必封点设在Tiyuyacu 组上部,以适时封隔晚第三系高水敏性垮塌层。
(3)必封点3:Napo 组上部。
当代化工研究Modem Chemical Research58技术应用与研究2021•12中国南海深水优快钻井技术探索与应用*刘保波陈彬李彬(中海石油深海开发有限公司广东518000)摘耍:南海深水钻井因面临许多与浅水钻井不同的困难和挑战,导致深水钻井作业周期更长.当前,随着国内加大对南海深水油气田的勘探,优快钻井技术成为了深水油气田大规模勘探开发取得突破的关键技术之一.本文将介绍南海东部在深水优快钻井技术和管理上的探索与突破,实现了从前期常规深■水探井2500m当量平均钻井周期27.59天缩短至11.82天,为加快南海深水油气田的勘探开发提供了技术支撑.关键词:南海深水;优快钻井;技术;钻井周期中国分类•号:T文献标识码:AExploration and Application of Deep-water Excellent and Fast Drilling Technology inSouth China SeaLiu Baobo,Chen Bin,Li Bin(CNOOC Deep-sea Development Co.,Ltd.,Guangdong,518000)Abstractz Deep-water drilling in the South China Sea f aces many difficulties and challenges different f rom shallo^-^ater drilling,resulting in a longer operation cycle.At p resent,with the increasing exploration of d eep-water oil and g as f ields in the South China Sea in China,excellent and fast drilling technology has become one of t he key technologies to achieve breakthroughs in large-scale exploration and development of d eep-water oil and gas f ields.This paper will introduce the exploration and breakthrough in deep-water excellent and f ast drilling technology and management in the eastern part of t he South China Sea.The average drilling cycle of2500-meter-equivalent conventional deep-water exploratory wells has been shortened f rom27.59days to11.82days,and p rovided technical support f or accelerating the exploration and development of d eep-^ater oil and gas fields in the South China Sea.Key words:deep water in South China Sea;excellent andfast drilling;technology^drilling cycle深水优快钻井技术是通过集成先进、适用的技术和装备,优化、创新作业流程,并结合应用新的管理模式而形成的一项系统优化配套技术,旨在大幅提高深水钻井作业效率,降低钻井作业周期和勘探成本。
石油钻井中预弯曲钻具的设计优化与应用研究摘要:本文针对石油钻井中的预弯曲钻具进行设计优化与应用研究。
首先介绍了预弯曲钻具的原理和作用机理,以及钻井参数对其性能的影响。
然后,建立了预弯曲钻具的力学模型,并采用优化方法对其设计进行了优化。
探讨了预弯曲钻具在石油钻井中的应用,包括在水平井和超深井钻进,水平井段的导向控制以及射孔作业中的应用。
研究结果表明,预弯曲钻具设计优化能够提高钻井效率和控制精度,为石油钻井领域的应用提供了重要的技术支持。
关键词:预弯曲钻具,设计优化,力学模型,石油钻井,应用研究一.引言石油钻井是石油工业中不可或缺的关键环节,钻井井眼的控制和定向是确保钻井操作顺利进行的重要因素之一。
在钻井过程中,井眼偏斜是一个常见的问题,它可能导致钻井偏离目标层位、增加工程风险和成本,甚至对环境造成损害。
因此,研究和优化防止井眼偏斜的技术变得至关重要。
预弯曲钻具在防止井眼偏斜和控制井眼方向中起到了重要作用。
预弯曲钻具具有一定的弯曲性和自稳定性,可以通过合理的设计和调整,使钻头在钻进地层时施加适当的力和扭矩,从而改变钻井井眼的方向。
这为实现井眼垂直或接近垂直提供了一种有效的技术手段。
二. 预弯曲钻具的原理与设计概述2.1 预弯曲钻具的概述和定义预弯曲钻具是一种具有弯曲能力的石油钻井工具,通过调整弯曲节段的弯曲程度和方向,实现对钻井井眼方向的控制和校正。
它在防止井眼偏斜和提高钻井效率方面具有重要作用,是石油钻井领域的重要技术之一。
2.2 预弯曲钻具原理及其作用机理预弯曲钻具的原理和作用机理主要涉及弯曲节段和弯曲力的作用。
以下是预弯曲钻具的原理和作用机理的说明:弯曲节段的形变:预弯曲钻具通常由多个弯曲节段组成,这些节段具有一定的弯曲能力。
在施加力和扭矩的作用下,弯曲节段会发生形变,产生弯曲力。
弯曲力的产生:当钻具在钻进地层时,由于地层的阻力和钻头的钻进力,钻具会受到一个方向的力和扭矩。
这些力和扭矩会通过钻具传递到弯曲节段,导致弯曲节段发生形变并产生弯曲力。
井下管柱力学分析及优化设计一、本文概述随着石油工业的发展,井下管柱作为石油开采过程中的关键组成部分,其力学性能及优化设计日益受到业界的广泛关注。
本文旨在全面探讨井下管柱的力学特性,以及针对其在实际工作环境中的受力情况进行详细分析,从而提出有效的优化设计策略。
通过对井下管柱的力学分析,可以深入理解其在石油开采过程中的行为规律,预测潜在的安全风险,并为提高管柱的承载能力和延长使用寿命提供理论支持。
优化设计的提出将有助于降低开采成本,提高石油开采效率,为石油工业的可持续发展做出贡献。
本文的研究不仅具有重要的理论价值,而且具有广泛的应用前景。
二、井下管柱力学基础在石油、天然气等地下资源开采过程中,井下管柱作为重要的设备之一,其力学特性对于确保开采过程的安全和效率具有决定性的影响。
因此,深入理解和掌握井下管柱的力学基础,是优化设计井下管柱结构、提高开采效果的前提。
井下管柱的力学行为主要受到轴向力、弯曲力、剪切力以及压力等多种力的影响。
这些力主要来源于地层应力、流体压力、温度变化、管柱自身的重量以及操作过程中的外力。
其中,轴向力主要由管柱自身的重量和地层应力引起,弯曲力则是由地层弯曲和管柱自身的挠曲造成,剪切力则可能由流体流动、温度变化等因素产生。
在力学分析中,我们通常采用弹性力学、塑性力学以及断裂力学等理论工具,对井下管柱在各种力作用下的行为进行深入的研究。
例如,通过弹性力学,我们可以分析管柱在弹性范围内的应力、应变分布,以及管柱的变形情况;而塑性力学则可以帮助我们理解管柱在塑性变形阶段的力学行为,以及管柱的承载能力;断裂力学则可以揭示管柱在断裂过程中的力学规律,为预防管柱断裂提供理论依据。
井下管柱的力学行为还受到流体压力的影响。
在开采过程中,地层流体(如石油、天然气、水等)的压力会对管柱产生压力作用,从而影响管柱的力学行为。
因此,在力学分析中,我们还需要考虑流体压力对管柱的影响,以及管柱与流体的相互作用。
溱页1平台水平井井身结构优化与应用摘要2020年,苏北盆地溱潼凹陷第一口页岩油水平探井在阜二段页岩中获高产油流,随着该区块勘探开发的不断深入,原有二开制井身结构显现出复杂事故多、钻井效率低等问题。
为了解决该区块上中部地层泥岩水敏性强,井壁垮塌、地层承压能力低的问题,结合地质工程必封点,优化为现有三开制井身结构,钻井中复杂事故明显减少,能顺利完成钻井作业,同一平台完井周期由前期的120 d缩短为到目前的50d。
这表明,该区块采用优化后的井身结构,成功降低了钻井复杂、提高了钻井效率。
关键词溱潼凹陷;溱页1平台;页岩油;井身结构优化;水平井苏北溱潼凹陷地层自上而下钻遇第四系东台组、新近系盐城组、新生界古近系三垛组二段、一段、戴南组二段、一段、阜宁组四段、三段、二段、一段。
自上而下地层非均质性强,具有特殊地层发育、压力系统复杂的特点,溱页1平台第一口评价井采用二开制井身结构,二开钻遇井段裸眼段长,漏、涌、塌地层在同一裸眼段,矛盾突出,易发生井下复杂情况。
针对上述问题,笔者提出了井身结构优化思路,进行了可行性分析,优化设计了溱页1平台水平井三开制井身结构,现场应用后效果显著,为后续苏北溱潼凹陷页岩油水平井钻井提供了技术支持。
1 二开制井身结构及钻井问题1.1 二开制井身结构苏北溱潼凹陷页岩油溱页1平台水平井前期采用二开制井身结构,一开采用346.0mm钻头,钻穿盐城组二段,下入273.1mm表层套管,封上部水层及高渗透性地层;二开采用215.9mm 钻头钻至完钻井深,下入139.7mm 生产套管。
井身结构示意图见表1。
表1 二开制井身结构设计数据序号井径(mm)井深(m)套管尺寸(mm)套管名称套管下深(m)1346.0900273.1表层套管9002215.96505139.7生产套管65001.2 钻井中存在的问题在不断追求低成本开发的形势下,实施了二开制井身结构,不能有效分隔不同压力体系和复杂地层,不满足现场安全钻进要求,该井身结构逐渐显现出不足。
钻井井身质量控制钻井是石油天然气工业中的核心过程之一,而钻井井身的质量控制直接影响到整个钻井工程的成功与否。
质量控制的目的在于确保井身的质量和稳定性,以防止在开采过程中出现各种问题。
本文将探讨钻井井身质量控制的重要性、关键因素以及应对策略。
一、钻井井身质量控制的重要性井身质量直接影响到开采过程的安全性和效率。
如果井身质量不佳,可能会导致井壁崩塌、地层流体泄漏等严重后果,不仅会威胁到工作人员的生命安全,也会对环境造成严重破坏。
因此,对钻井井身进行严格的质量控制是十分必要的。
二、钻井井身质量控制的关键因素1、地质因素:地质条件是影响钻井井身质量的关键因素之一。
地层的物理性质、地应力分布、地下水情况等都会对井身质量产生影响。
2、工程设计:钻井工程设计是保证井身质量的基础。
合理的设计能够确保在各种地质条件下,都能得到稳定的井身结构。
3、施工工艺:施工工艺的选择直接影响到井身的质量。
采用先进的钻井技术和高质量的钻具,能够提高钻井效率,减少对地层的损害,从而保证井身质量。
4、人员素质:钻井工作人员的技能和素质对井身质量也有重要影响。
操作人员的错误行为或技能不足可能会导致井身质量问题。
5、质量控制体系:建立完善的质量控制体系,对钻井过程中的各项参数进行实时监测和记录,能够及时发现并处理可能出现的质量问题。
三、钻井井身质量控制的应对策略1、建立完善的质量控制体系:企业应建立一套完整的井身质量控制体系,明确各项质量标准和检测方法,并严格按照体系要求进行操作。
2、提高人员素质:定期对工作人员进行技能培训和安全教育,提高他们的技能水平和安全意识,减少人为因素对井身质量的影响。
3、优化工程设计:在钻井工程设计阶段,应充分考虑地质因素和施工条件,选择合适的钻井技术和设备,确保在设计阶段就为高质量的井身打下基础。
4、加强施工现场管理:在施工过程中,应加强现场管理,确保各项工艺和技术参数得到有效执行。
同时,应对施工现场进行定期检查,及时发现并解决可能出现的质量问题。
定向井钻井工艺技术优化措施解析一、定向井钻井工艺技术概述定向井钻井是指在垂直井的基础上改变井眼轨迹,使井眼倾角超过45度或在井眼中引入弯头,在一定范围内改变井眼方向。
定向井钻井广泛应用于油气勘探开采中,可以克服垂直井的种种局限,提高地层的开采效率,减少地面占地面积,减少环境污染,是一种重要的井眼构造。
目前,定向井钻井工艺技术已经非常成熟,遵循一系列优化措施可以更好地实现勘探开采目标。
1. 合理确定井斜角和偏角合理确定井斜角和偏角是定向井钻井的基础,直接影响井眼轨迹的设计和施工效果。
一般情况下,井斜角和偏角的大小受到地层条件、钻井设备和钻井液性能等因素的影响。
通过充分了解地层情况,确定井斜角和偏角的合理范围,可以保证钻井效率和井眼质量。
合理确定井斜角和偏角还能最大程度地减小钻井工程所需的成本。
2. 优化井眼轨迹设计优化井眼轨迹设计是定向井钻井工艺技术优化的重要环节。
通过对地表地质构造、油气层分布情况和井眼施工技术等因素进行科学综合分析,可以制定最佳的井眼轨迹设计方案。
在实际施工中,根据设计的井眼轨迹方案,根据地层情况和实际施工情况及时调整井眼轨迹,以保证施工效果。
3. 选用合适的钻头和定向工具钻头和定向工具是定向井钻井的关键设备,选用合适的钻头和定向工具可以提高施工效率,降低施工难度。
在选择钻头和定向工具时,应综合考虑地层性质、井斜角和偏角、钻井设备等因素,选择适合具体施工条件的钻头和定向工具,并做好维护保养工作,以保证设备的正常使用寿命。
4. 优化钻井液性能钻井液是定向井钻井施工中不可或缺的一环,优化钻井液性能可以提高钻井效率,降低施工成本,并保障井眼质量。
通过合理选择钻井液的种类和性能指标,并在施工过程中及时调整钻井液性能,可以有效地防止地层漏失、保护环境、减小地面工程量、提高施工效率。
5. 加强监测和控制定向井钻井过程中,加强监测和控制是保障施工质量和安全的重要手段。
通过实时监测井斜角、偏角和钻进方向,及时调整钻井参数,以确保井眼轨迹设计的准确性和施工的安全性。
文章编号:1000 − 7393(2022)05 − 0561 − 04 DOI: 10.13639/j.odpt.2022.05.005ZS 区块提速提效钻完井技术优化与实践沈宝明1,2 常雷1,2 杨丽晶1,2 潘荣山1,2 刘美玲1,2 赵英楠1,21. 中国石油大庆油田有限责任公司采油工程研究院;2. 黑龙江省油气藏增产增注重点实验室引用格式:沈宝明,常雷,杨丽晶,潘荣山,刘美玲,赵英楠. ZS 区块提速提效钻完井技术优化与实践[J ]. 石油钻采工艺,2022,44(5):561-564,583.摘要:ZS 区块天然气储层岩性为流纹岩、凝灰岩、火山角砾岩,具有高硬度、高研磨性、强非均质性,裂缝发育,富含酸性流体等特性。
邻井平均机械钻速低至1.49 m/h ,平均钻井周期长达137.12 d ,易发生井漏、套管腐蚀等问题,并且后期增产作业及开采过程中,水泥环密封失效,导致井口带压。
通过“一趟钻”技术优化井身结构,优选与地层配伍性好的非平面齿钻头,优选油包水钻井液体系,根据储层特征优化完井方式,分析CO 2腐蚀影响因素选择套管,采用自修复水泥浆技术预防井口带压,实现平均钻井周期缩短至69.82 d ,三开平均机械钻速3.11 m/h ,较邻井提高108.5%,钻井过程中无井漏、井塌等复杂情况,固井后无环空带压问题。
关键词:天然气;水平井;非平面切削齿;油包水钻井液;自修复水泥浆;优快钻井中图分类号:TE242 文献标识码: AOptimization and practice of drilling and completion technology on increasing ofROP and efficiency in ZS blockSHEN Baoming 1,2, CHANG Lei 1,2, YANG Lijing 1,2, PAN Rongshan 1,2, LIU Meiling 1,2, ZHAO Ying’nan 1,21. Oil Production Engineering Research Institute , PetroChina Daqing Oilfield Co., Ltd., Daqing 163453, Heilongjiang , China ;2. Key Laboratory of Oil and Gas Reservoir Stimulation of Heilongjiang Province , Daqing 163453, Heilongjiang , ChinaCitation: SHEN Baoming, CHANG Lei, YANG Lijing, PAN Rongshan, LIU Meiling, ZHAO Ying’nan. Optimization and practice of drilling and completion technology on increasing of ROP and efficiency in ZS block [J ]. Oil Drilling & Production Technology, 2022, 44(5): 561-564, 583.Abstract: The gas reservoirs in ZS block is dominated by lithology of rhyolite, tuff and volcanic breccia and are characterized by high hardness and abrasiveness, strong heterogeneity, well- developed fractures and rich acidic fluids. In the offset well, the average ROP is 1.49 m/h, and the average drilling cycle is 137.12 d. Lost circulation and casing corrosion always occur. In addition, the cement ring seal fails during stimulation and production, resulting in wellhead pressure. The well structure was optimize through the technology of one-trip drilling. The non-planar tooth drill bits with good compatibility with the formation and the water-in-oil drilling fluid system were selected. The completion method was optimized according to the reservoir characteristics. The factors affecting CO 2corrosion were analyzed to optimize the casing types. The self-repairing cement was used to prevent wellhead pressure. The average drilling cycle is reduced to 69.82 d. The average ROP in the third spud is 3.11 m/h, which is 108.5% higher than that of the offset well.There are no lost circulation during the drilling process and no annular pressure after cementing operation.Key words: natural gas; horizontal well; non-planar tooth; water-in-oil drilling fluid; self-repairing cement slurry; excellent and fast drilling第一作者: 沈宝明(1965-),2011年毕业于中国地质大学(北京)油气田开发工程专业,获博士学位,现从事油田钻井、采油、地面技术理论研究、现场试验和新技术推广工作,教授级高级工程师。