2018-2019沧州市初中分班数学模拟试卷(共10套)附详细答案附答案
- 格式:doc
- 大小:1.74 MB
- 文档页数:69
小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。
小升初数学试卷50一、用心思考,认真填写1、我国香港特别行政区的面积是十一亿零四百万平方米,写作________平方米,改写成用“亿”作单位的数是________亿平方米.2、________:20=0.6=________=________%=________折.3、m=n+1(m、n为非零0自然数),m和n的最大公因数是________,m和n的最小公倍数是________.4、如果小明向南走80米,记作+80米,那么小华从同一地点向北走50米,记作________米,这时他们两人相距________米.5、在一个比例中,两个外项的积是8,一个内项是,另一个内项是________.6、把线段比例改写成数值比例尺是________,从图上量得A、B两地的距离是5.5厘米,A、B两地的实际距离是________千米.7、一根圆柱形的木料长4米,把它锯成3段,表面积增加了12平方分米,这根木料的体积是________立方分米.如果锯成3段用了3分钟,那么把它锯成6段要用________分钟.8、一个长方形的周长是72厘米,长和宽的比是2:1,这个长方形的面积是________平方厘米.9、仔细观察如表中两种量x和y的变化情况.用一个含x、y的式子表示它们之间的关系是________,x和y是成________比例关系的量.10、图中,平行四边形的面积是分成3个三角形,图中甲、乙、丙三个三角形的面积比是________.二、仔细推敲,认真辨析11、某车间今年比去年产量增加了25%,则去年就比今年产量减少了20%________(判断对错).12、2100年全年有365天________.13、要反映某厂今年前五个月产值增减变化情况,适合选择条形统计图________(判断对错).14、把3块饼平均分给4个小朋友,每人分得块________.(判断对错)15、某种奖券的中奖率为1%,买100张不一定能中奖________(判断对错).三、反复比较,慎重选择16、圆的直径一定,圆的周长和圆周率()A、成正比例B、成反比例C、不成比例17、一个角是60°,画在1:3的图上,应画()A、20°B、60°C、180°D、无法确定18、爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,下面()图表示了小雅的情况.A、B、C、D、19、下面各比,能与0.4:组成比例的是()A、3:4B、4:3C、:D、0.2:0.320、同时掷2枚硬币,2枚硬币都是正面朝上的可能性是()A、B、C、D、四、认真审题,细心计算21、直接写出计算结果.﹣=________22、计算下面各题,能简便的用简便方法计算.560÷16÷56 ﹣÷611×()×7[ ﹣()]× .23、求下面未知数x的值50%x﹣0.2x=15;x =12;6:30=x:0.5.24、如图的直角三角形中的空白部分是正方形,正方形的一个顶点将这个直角三角形的斜边分成二部分,求阴影部分的面积.(单位:厘米)五、观察思考,动手操作25、根据要求答题:(1)如图中长方形的A点在(________ ,________ )处(2)①将原来的长方形绕C点顺时针旋转90°,画出旋转后的图形.②将原来的长方形按1:2缩小,并将缩小后的图形画在方格内.26、探索规律.六、灵活运用,解决问题27、果园里有桃树500棵,杏树比桃树的2倍少250棵,杏树有多少棵?28、修路队修一条长600米的路,第一天修了全长的20%,第二天再修多少米就正好修完全长的一半?29、甲乙两车同时从相距120千米的A、B两地相对开出,小时相遇,甲车每小时行100千米,乙车每小时行多少千米?30、一个圆锥形小麦堆,把这堆小麦装进圆柱形粮屯正好装满,粮屯的底面直径是4米,高3米,这个圆锥形小麦堆的体积是多少立方米?31、某校六年级有甲、乙两个班,甲班学生人数是乙班的.如果从乙班调3人到甲班,甲班人数是乙班的.甲、乙两班原来各有学生多少人?答案解析部分一、用心思考,认真填写1、【答案】1104000000;11.04【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:(1)十一亿零四百万:在十亿位上写1,在亿位数上写1,在百万位数上写4,剩下的数位上都写0,故写作:1104000000;(2)1104000000=11.04亿.故答案为:1104000000,11.04.【分析】(1)整数的写法:整数的写法是从高位写起,一级一级地往下写,哪个数位上有几个单位就在那个数位上写几,一个单位也没有时用“0”来占位;(2)把一个数改写成用“亿”作单位的数,从个位数到亿位,在亿位的右下角点上小数点,末尾的零去掉,再添上一个“亿”字.2、【答案】12;25;60;六【考点】比与分数、除法的关系【解析】【解答】解:12:20=0.6==60%=六折.故答案为:12,25,60,六.【分析】把0.6化成分数并化简是,根据分数的基本性质分子、分母都乘5就是;根据比与分数的关系=3:5,再根据比的基本性质比的前、后项都乘4就是12:20;把0.6的小数点向右移动两位添上百分号就是60%;根据折扣的意义60%就是六折.3、【答案】1;mn【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:如果m=n+1(m、n为非零0自然数),m和n互质,所以m和n的最大公因数是1,最小公倍数是mn.故答案为:1,mn.【分析】如果a+1=b(a和b都是不为0的自然数),则说明这两个数是相邻的自然数,如5、6,那么这两个数互质,那么a和b的最大公因数是1,最小公倍数是它们的积;据此解答.4、【答案】﹣50;130【考点】负数的意义及其应用【解析】【解答】解:如果小明向南走80米,记作+80米,那么小华从同一地点向北走50米,记作﹣50米,这时他们两人相距80+50=130米;故答案为:﹣50,130.【分析】此题主要用正负数来表示具有意义相反的两种量:向南走记为正,则向北走就记为负,直接得出结论即可.5、【答案】18【考点】比例的意义和基本性质【解析】【解答】解:8÷=18;答:另一个内项是18.故答案为:18.【分析】由“在一个比例里,两个外项的积是8”,根据比例的性质“两外项的积等于两内项的积”,可知两个内项的积也是8;再根据“其中一个内项是”,进而用两内项的积8除以一个内项即得另一个内项的数值.6、【答案】1:5000000;275【考点】比例尺,图上距离与实际距离的换算(比例尺的应用)【解析】【解答】解:(1)由线段比例尺知道图上的1厘米表示的实际距离是50千米,数值比例尺是:1厘米:50千米,=1厘米:5000000厘米,=1:5000000,(2)因为,图上的1厘米表示的实际距离是50千米,所以,A、B两地的实际距离是:5.5×50=275(千米).故答案为:1:5000000,275.【分析】(1)根据数值比例尺的意义作答,即图上距离与实际距离的比;(2)从线段比例尺知道图上的1厘米表示的实际距离是50千米,由此得出A、B两地的实际距离.7、【答案】12;7.5【考点】简单的立方体切拼问题,圆柱的侧面积、表面积和体积【解析】【解答】解:(1)12÷(2×2)×4,=12÷4×4,=12(立方分米);(2)3÷(3﹣1)×(6﹣1),=3÷2×5,=1.5×5,=7.5(分钟);答:这根木料的体积是12立方分米.如果锯成3段用了3分钟,那么把它锯成6段要用7.5分钟.故答案为:12;7.5.【分析】(1)锯成3段,就增加了12平方分米,也就是增加了2×2=4个圆柱的底面积,由此可以求得这个圆柱的底面积解决问题;(2)锯成3段,实际锯了3﹣1=2次,由此可以求得锯一次用时:3÷2=1.5分钟,则锯成6段需要锯6﹣1=5次,由此即可解决问题.8、【答案】288【考点】长方形的周长,长方形、正方形的面积【解析】【解答】解:2+1=3(份)长是:72÷2×=36×=24(厘米)宽是:72÷2×=36×=12(厘米)面积:24×12=288(平方厘米)答:这个长方形的面积是288平方厘米.故答案为:288.【分析】首先根据长方形的周长公式:c=(a+b)×2,求出长与宽的和,已知长与宽的比是2:1,根据按比例分配的方法分别求出长、宽,然后根据长方形的面积公式:s=ab,把数据代入公式进行解答.9、【答案】xy=180;反【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:因为:6×30=12×15=18×10=24×7.5=180,是乘积一定,用含x、y的式子表示它们之间的关系是xy=180,x和y是成反比例;故答案为:xy=180,反.【分析】判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.10、【答案】5:2:3【考点】三角形面积与底的正比关系【解析】【解答】解:因为甲、乙、丙三个三角形的高相等,即平行四边形的高,设为h,又因为甲的底是平行四边形的边,即乙和丙的底的和:2+3=5,所以甲的面积=5h÷2=h,乙的面积=2h÷2=h,丙的面积=3h÷2=h,所以:甲:乙:丙=h:h:h=5:2:3.答;甲、乙、丙三个三角形的面积比是5:2:3.故答案填5:2:3.【分析】由图知:平行四边形的面积是分成3个三角形,图中三个三角形的高都相等,都是平行四边形的高,设为h,甲的底是平行四边形的边,即乙和丙的底的和,根据三角形的面积公式是:底×高÷2,能分别表示出甲、乙、丙3个三角形的面积,从而算出它们面积的比.二、仔细推敲,认真辨析11、【答案】正确【考点】百分数的实际应用【解析】【解答】解:25%÷(1+25%)=25%÷125%=20%,答:去年就比今年产量减少了20%.故答案为:正确.【分析】根据“今年比去年产量增加了25%”把去年的产量看作单位“1”,即今年是去年的(1+25%);要求去年产量比今年减少百分之几,用去年产量比今年少的产量除以今年的产量即可.12、【答案】正确【考点】年、月、日及其关系、单位换算与计算,平年、闰年的判断方法【解析】【解答】解:2100÷400=5…2,不能整除,所以2100年不是闫年是平年,全年有365天.故答案为:正确.【分析】闫年的判断方法是:一般年份的除以4,整百年份、整千整百年份除以400,如果能整除,这一年是闫年.2100是整百年份,要除以400来判断.平年全年有365天,闫年全年有366天.13、【答案】错误【考点】统计图的选择【解析】【解答】解:根据统计图的特点可知:要反映某厂今年前五个月产值增减变化情况,适合选择折线统计图.故答案为:错误.【分析】条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.14、【答案】错误【考点】分数的意义、读写及分类【解析】【解答】解:3÷4=(块),答:把3块饼平均分给4个小朋友,每人分得块;故答案为:错误.【分析】把3块饼平均分给4个小朋友,求每人分得的块数,平均分的是具体的数量3块,求的是具体的数量;用除法计算.15、【答案】正确【考点】简单事件发生的可能性求解【解析】【解答】解:由分析知:某种奖券的中奖率为1%,买100张不一定能中奖;√故答案为:正确.【分析】一种彩票的中奖率是1%,属于不确定事件,可能中奖,也可能不中奖,买了100张彩票只能说明比买1张的中奖的可能性大.三、反复比较,慎重选择16、【答案】C【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:因为圆的周长C=πd,在此题中圆的直径一定,圆周率也是一定的,所以周长也是一定的,即三个量都是一定的,不存在变量问题,所以圆的周长和圆周率不成比例;故选:C.【分析】判断圆的周长和圆周率之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.17、【答案】B【考点】角的概念及其分类,图形的放大与缩小【解析】【解答】解:根据分析可得:一个角是60°,画在1:3的图上,还应当画60°.故选:B.【分析】根据角的大小与两边张口的大小有关,张口越大,角越大;张口越小,角越小,和两边的长短无关,更和图形的放大与缩小无关,据此即可作出选择.18、【答案】C【考点】从统计图表中获取信息【解析】【解答】解:爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家,图C表示了小雅的情况;故选:C.【分析】根据“爸爸骑摩托车送小雅去看电影,看完电影后,小雅步行回家”,可知骑摩托车的速度快,坡度大,位置有变化;步行回家的速度慢,坡度小,位置也有变化;看电影的位置不变.据此进行选择.19、【答案】D【考点】比例的意义和基本性质【解析】【解答】解:0.4:=0.4:0.6,=2:3,0.2:0.3=2:3;故应选:D.【分析】求出0.4:的比再进行选择即可.20、【答案】C【考点】简单事件发生的可能性求解【解析】【解答】解:任意抛掷两枚硬币,出现的结果有:正正,正反,反正,反反,所以任意抛掷两枚硬币,两枚都是正面朝上的可能性:1÷4=故选:C.【分析】任意抛掷两枚硬币,出现的结果有:正正,正反,反正,反反,然后根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可.四、认真审题,细心计算21、【答案】11①0.09②18③0.0015④400⑤⑥⑦12a2【考点】分数的四则混合运算,小数四则混合运算【解析】【分析】根据小数、分数四则运算的法则及混合运算的运算顺序计算即可.22、【答案】解:①560÷16÷5=560÷(16×5)=560÷80=7;②6 ÷﹣÷6=7﹣=;③11×()×7=11××7+×7×11=14+11=25;④[﹣()]×=[ ﹣]×=×=.【考点】运算定律与简便运算【解析】【分析】根据除法的性质简算;23、【答案】解:①50%x﹣0.2x=150.3x=150.3x÷0.3=15÷0.3x=50;② x÷=12x=12×x=8x=32;③6:30=x:0.530x=6×0.530x÷30=3÷30x=0.1.【考点】方程的解和解方程【解析】【分析】(1)先化简方程,再根据等式的性质,两边同时除以0.3求解;(2)根据等式的性质,两边同时乘以,再两边同时除以求解;(3)根据比例的性质,化成30x=6×0.5,再根据等式的性质,方程两边同时除以30求解.24、【答案】解:如图:三角形AFE绕点E逆时针旋转90°,与三角形EDC组成一个直角三角形,两直角边分别是6厘米、8厘米,其面积是:×6×8=24(平方厘米);答:阴影部分的面积是24平方厘米.【考点】组合图形的面积【解析】【分析】如图,由于BDEF是正方形,因此EF=ED,∠DEF=90°,三角形AFE绕点E逆时针旋转90°,与三角形EDC组成一个直角三角形,直角边分别是6厘米、8厘米,由此即可求出阴影部分的面积.五、观察思考,动手操作25、【答案】(1)2;5(2)①下图红色部分:②下图绿色部分:【考点】作旋转一定角度后的图形,图形的放大与缩小,数对与位置【解析】【解答】解:(1)如图中长方形的A点在(2,5)处.【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示出点A的位置.(2)根据旋转的特征,长方形绕点C顺时针旋转90°后,点C的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形.(3)根据图形放大与缩小的意义,把这个长方形的各边缩小到原来的,即可得到按1:2缩小后的图形.26、【答案】解:根据分析:第五个正方体:6+(5﹣1)×4=22第六个正方体:6+(6﹣1)×4=26有62个正方形时:6+(N﹣1)×4=624N=62﹣2N=15第N个正方体:6+(N﹣1)×4如图:探索规律.【考点】数与形结合的规律【解析】【分析】通过分析可知:每增加一个正方体,正方形的个数增加4个,10=6+4,14=6+2×4,18=6+3×4,所以N个正方体的正方形的个数是6+(N﹣1)×4,据此解答即可.六、灵活运用,解决问题27、【答案】解:500×2﹣250=1000﹣250=750(棵)答:杏树有750棵【考点】整数的乘法及应用【解析】【分析】首先根据求一个数的几倍是多少,用乘法求出桃树棵数的2倍,再根据求比一个数少几用减法解答.28、【答案】解:600×(50%﹣20%)=600×30%=180(米)答:第二天再修180米就正好修完全长的一半【考点】百分数的实际应用【解析】【分析】把全长看作单位“1”,则第二天再修50%﹣20%时正好修完全长的一半,已知全长600米,运用乘法即可求出第二天再修多少米.29、【答案】解:(120﹣100× )÷=(120﹣)÷= ×=80(千米)答:乙车每小时行80千米【考点】简单的行程问题【解析】【分析】先根据路程=速度×时间,求出甲车小时行驶的路程,再求出乙车行驶的路程,最后根据速度=路程÷时间即可解答.30、【答案】解:3.14×(4÷2)2×3=3.14×12=37.68(立方米),答:这个圆锥形小麦堆的体积是137.68立方米【考点】关于圆锥的应用题【解析】【分析】根据题干,此题就是求底面直径为4米,高为3米的圆柱的体积,利用圆柱的体积=底面积×高,代入数据计算即可.31、【答案】解:﹣= = ;3 =108(人),108× =45(人),108﹣45=63(人);答:甲班原有人数45人,乙班原有人数63人.【考点】分数除法应用题【解析】【分析】设甲、乙两班学生数的和为单位“1”,原来:甲班人数就是全部人数的,调整后:甲班就是就是全部人数,从乙班调到甲班3人就是甲班增加的人数,它对应的分数就是,用除法求出单位“1”.再求单位“1”的就是甲班的人数,进而求出乙班的人数.。
小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。
小升初数学试卷51一、填空题1、________ =________:24=0.75=3÷________=________%=________折.2、一次数学测验全班平均95分,小明考了98分,张老师记作+3分.小亮考了91分,那么张老师记作________分.3、在一个比例中,两个外项的积是,一个内项是3,另一个内项是________.4、比24米少是________米;100千克比________千克多25%.5、根据图求剩下的吨数列式________.6、一个长方体的棱长之和是48分米,长是5分米,宽是3分米,这个长方体的表面积是________平方分米,体积是________立方分米.7、用一张长12.56分米,宽6.28分米的长方形铁皮圈成一个圆柱铁皮桶侧面,若另用铁皮给这个铁皮桶配上底面,至少需要________或________平方分米的铁皮.(接头处忽略不计)8、如图,瓶底的面积和锥形杯口的面积相等,将瓶子中的液体倒入锥形杯子中,能倒满________杯.9、在一个书包里放3只黄乒乓球和5只白乒乓球,让你每次任意摸出1只球,这样摸120次,摸出黄乒乓球的次数大约占总次数的________,摸出的黄球大约会有________次,如果想摸出黄球的次数达总次数的80%左右,你认为需要再放________只黄球.二、判断题10、中国获得了2008年奥运会的主办权,这一年的上半年共有181天.________(判断对错)11、圆的周长与半径成正比例.________(判断对错)12、如果数a能够被2整除,则a+1必定是奇数.________13、1:20000的比例尺,就是说图上距离1厘米表示实际距离200米.________(判断对错)14、以直角三角形任意一条直角边为轴旋转一周,可以形成一个圆柱.________(判断对错)三、选择题15、下列图形中,()不是轴对称图形.A、B、C、D、16、小明把8×(□+4)错写成8×□+4,他得到的结果要比正确答案小了()A、8B、28C、3217、下列三句话中,正确的是()A、一种商品打八折出售,也就是说是低于原价的80%出售B、任意一个三角形中至少有两个角是锐角C、分母能被2和5整除的分数一定能化为有限小数18、下面的比,能与:组成比例的是()A、0.6:0.7B、0.7:C、:19、某班的男生人数比全班学生人数的少4人,女生人数比全班学生人数的40%多6人.那么这个班的男生人数比女生人数少()A、5人B、3人C、9人D、10人四、计算题20、直接写出得数.×1.5=________ ×16=________ ×24÷ =________21、正确、合理、灵活的计算下面各题.8﹣× ﹣×[ ﹣(﹣)]9.5× ×9.5.22、求未知数x(1)(2)23、求阴影部分的面积.五、动手画画.在方格纸上按要求画图.24、在方格纸上按要求画图.①按2:1的比画出正方形放大后的图形;②按1:2的比画出三角形缩小后的图形.六、应用题25、图书室有科技书1200本,科技书比文艺书的2倍少150本,文艺书有多少本?26、修路队修一条公路,第一个月修了全长的,第二个月修了全长的,第二个月比第一个月多修240米,这条公路全长多少米?27、一个圆柱体容器,高10分米,底面积16平方分米,装的水高6分米.现放入一个体积是24立方分米的铁块(完全浸没),这时水面的高度是多少?28、小红、小华和小明都是集邮爱好者.小红的邮票是三人总数的,若小华送12张奥运纪念邮票给小红,则他们三人的邮票一样多.他们一共集了多少张邮票?29、如图①表示的是某综合商场1﹣5月份的月销售额的情况,图②表示的是商场服装部1﹣5月月销售额占商场当月销售总额的百分比情况.观察图①、图②,解答下面的问题.(1)来自商场财务部的数据报告表明,1﹣5月份商场销售总额一共是410万元,请求出4月份的销售额.(2)商场服装部2月份的销售额是多少万元?(3)小刚观察图②后认为,商场服装部5月份的销售额比4月份减少了.你同意他的看法吗?请你说明理由.答案解析部分一、填空题1、【答案】12;18;4;75;七五【考点】比与分数、除法的关系【解析】【解答】解:=18:24=0.75=3÷4=75%=七五折.故答案为:12,18,4,75,七五.【分析】把0.75分成分数并化简是,根据分数的基本性质分子、分母都乘4就是;根据比与分数的关系=3:4,再根据比的基本性质比的前、后项都乘6就是18:24;根据分数与除法的关系=3÷4;把0.75的小数点向右移动两位添上百分号就是75%;根据折扣的意义75%就是七五折.2、【答案】-4【考点】负数的意义及其应用【解析】【解答】解:95﹣91=4(分)所以一次数学测验全班平均95分,小明考了98分,张老师记作+3分.小亮考了91分,那么张老师记作﹣4分;故答案为:﹣4.【分析】此题主要用正负数来表示具有意义相反的两种量:选平均95分为标准记为0,超过部分为正,不足的部分为负,直接得出结论即可.3、【答案】【考点】比例的意义和基本性质【解析】【解答】解:在一个比例中,两个外项的积是根据比例的性质,可知两个内项的积也是,其中一个内项是3,则另一个内项为÷3=.故答案为:.【分析】根据比例的性质“在比例里,两内项的积等于两外项的积”,先确定出两个內项的积也是,进而根据一个内项是3,用除法计算即可求得另一个內项的数值.4、【答案】16;80【考点】分数乘法,分数除法【解析】【解答】解:(1)24×(1﹣)=24×=16(米)答:比24米少是16米.(2)100÷(1+25%)=100÷125%=80(千克);答:100千克比80千克多25%.故答案为:16,80.【分析】(1)根据分数乘法的意义,比24米少是24×(1﹣)米.(2)把要求的数量看成单位“1”,它的1+25%对应的数量是100千克,由此用除法求出要求的数量.5、【答案】250×【考点】分数乘法应用题【解析】【解答】解:250×=100(吨)答:剩下100吨.故答案为:250×.【分析】根据图,可得总的吨数是250吨,剩下了,求剩下的吨数,即求250吨的是多少,根据分数乘法的意义,用分数乘法解答即可.6、【答案】94;60【考点】长方体和正方体的表面积,长方体和正方体的体积【解析】【解答】解:这个长方体的高是:48÷4﹣(5+3),=12﹣8,=4(分米),表面积是:2×(5×3+5×4+3×4),=2×(15+20+12),=2×47,=94(平方分米).长方体的体积是:5×3×4=60(立方分米);答:这个长方体的表面积是94平方分米,体积是60立方分米.故答案为:94;60.【分析】根据长方体的棱长总和=(长+宽+高)×4,可知,长方体的高=棱长总和÷4﹣(长+宽),然后利用表面积=2×(长×宽+长×高+宽×高),长方体的体积=长×宽×高,代入数值计算即可.7、【答案】12.56;3.14【考点】圆柱的侧面积、表面积和体积【解析】【解答】解:12.56÷3.14÷2=2(分米)3.14×22=12.56(平方分米)6.28÷3.14÷2=1(分米)3.14×12=3.14(平方分米)答:这个铁皮桶的底面积是12.56或3.14平方分米.故答案为:12.56,3.14.【分析】根据题干分析可得,此题有两种不同的方法:(1)以长12.56分米为底面周长,(2)以6.28分米为圆柱的底面周长,由此求出圆柱的底面半径,再根据圆的面积公式即可解决问题.8、【答案】6【考点】圆柱的侧面积、表面积和体积,圆锥的体积【解析】【解答】解:圆柱形瓶内水的体积:S×2h=2Sh,圆锥形杯子的体积:×S×h=Sh,倒满杯子的个数:2Sh÷ Sh=6(杯);答:能倒满6杯.故答案为:6.【分析】根据题意知道瓶底的面积和锥形杯口的面积相等,设瓶底的面积为S,瓶子内水的高度为2h,则锥形杯子的高度为h,先根据圆柱的体积公式求出圆柱形瓶内水的体积,再算出圆锥形杯子的体积,进而得出答案.9、【答案】;45;17【考点】分数除法应用题【解析】【解答】解:3÷(3+5)=3÷8=120×=45(次)5÷(1﹣80%)﹣8=5÷20%﹣8=25﹣8=17(只)答:摸出黄乒乓球的次数大约占总次数的,摸出的黄球大约会有45次,如果想摸出黄球的次数达总次数的80%左右,需要再放入17只黄球.故答案为:、45、17.【分析】在一个书包里放3只黄乒乓球和5只白乒乓球,则共有3+5=8只球,根据分数的意义,黄球占总个数的3÷8=,这样摸120次,则摸出黄球与白球的次数应与它们占总个数的分率相对应,摸出黄乒乓球的次数大约占总次数的,根据分数乘法的意义,摸出黄球的次数大约有120×次.如果想摸出黄球的次数达总次数的80%左右,则应使黄球个数占总个数的80%,根据分数减法的意义,白球个数占总数的1﹣80%,根据分数除法的意义,总个数应是5÷(1﹣80%)=25个,则需要再放入25﹣8=17只黄球.二、判断题10、【答案】错误【考点】年、月、日及其关系、单位换算与计算,平年、闰年的判断方法【解析】【解答】解:29+31×3+30×2=182(天);所以2008年第29届奥运会在北京举行,这一年的上半年共有182天;故答案为:错误.【分析】2008÷4=502能整除,所以2008年2月29天,1月、3月、5月是大月,各有31天,4月、6月是小月,各有30天,加在一起即可得解.11、【答案】正确【考点】辨识成正比例的量与成反比例的量【解析】【解答】解:圆的周长÷半径=2π,2π一定,也就是这两种量的比值一定,所以成正比例;故答案为:正确.【分析】圆的周长与半径是两种相关联的量,圆的周长÷半径=2π,2π一定,也就是这两种量的比值一定,所以成正比例,12、【答案】正确【考点】奇数与偶数的初步认识,整除的性质及应用【解析】【解答】解:由于a可表示为2n(n为整数),则a+1=2n+1,2n+1不能被2整除,根据奇数的定义可知,所以a+1必为奇数.故答案为:正确.【分析】如果数a能够被2整除,则a可表示为2n(n为整数),则a+1=2n+1,2n+1不能被2整除,自然数中不能被2整除的数为奇数,所以a+1必为奇数.13、【答案】正确【考点】比例尺【解析】【解答】解:一幅图的比例尺是1:20000,由比例尺的意义可知,1:20000表示图上的1厘米代表实际距离20000厘米,即图上的1厘米表示实际距离200米.故答案为:正确.【分析】根据比例尺=图上距离:实际距离,据此进行判断即可.14、【答案】错误【考点】圆柱的特征,将简单图形平移或旋转一定的度数【解析】【解答】解:以直角三角形任意一条直角边为轴旋转一周,可以形成一个圆锥.故答案为:错误.【分析】根据直角三角形及圆锥的特征,直角三角形绕一直角边旋转一周形成一个以旋转直角边为高,另一直角边为底面半径的圆锥.三、选择题15、【答案】A【考点】轴对称图形的辨识【解析】【解答】解:平行四边形不是轴对称图形;故选:A.【分析】根据轴对称图形的特点和性质,沿对称轴把图形对折两边的图形完全重合,每组对应点到对称轴的距离相等;由此解答.16、【答案】B【考点】整数四则混合运算【解析】【解答】解:令□=1,则:8×(□+4)=8×(1+4)=8×5=40;8×□+4=8×1+4=1240﹣12=28答:他得到的结果要比正确答案小了28.故选:B.【分析】运用赋值法,令□=1,分别代入8×(□+4)和8×□+4,求出结果,再作差即可求解.17、【答案】B【考点】小数与分数的互化,百分数的意义、读写及应用,三角形的内角和【解析】【解答】解:A、一种商品打八折出售,也就是说是低于原价的80%出售,错误,应是原价的80%出售;B、任意一个三角形中至少有两个角是锐角,说法正确;C、分母能被2和5整除的分数一定能化为有限小数,错误,应是最简分数的分母能被2和5整除的分数一定能化为有限小数;故选:B.【分析】根据相关知识点逐项分析判断即可.18、【答案】B【考点】比例的意义和基本性质【解析】【解答】解::=÷=;A、0.6:0.7=0.6÷0.7=,因为≠,所以不能组成比例;B、0.7:=0.7÷0.6=,因为=,所以能组成比例;C、:=÷=,因为≠ ,所以不能组成比例.故选:B.【分析】表示两个比相等的式子叫做比例,据此可先求出:的比值,再逐项求出每个比的比值,进而根据两个比的比值相等,就能组成比例,比值不相等,就不能组成比例.19、【答案】B【考点】分数、百分数复合应用题【解析】【解答】解:全班:(6﹣4)÷(1﹣﹣40%)=2÷=45(人),男生有:45×﹣4=25﹣4=21(人);男生比女生少:45﹣21﹣21=3(人);答:该班男生比女生少3人.故选:B.【分析】男生人数比全班学生人数的少4人,即女生人数为全班的1﹣=多4人,又女生比全班人数的40%多6人,则6﹣2人占全班人数的﹣40%,则全班人数为(6﹣4)÷(-40%)人,进而求得该班男生比女生少多少人.四、计算题20、【答案】1001①490②4③10④0.6⑤2⑥24⑦13【考点】整数的加法和减法,分数的四则混合运算,小数乘法【解析】【分析】根据整数小数分数加减乘除法的计算方法解答.21、【答案】解:①8﹣× ﹣=8﹣﹣=8﹣(+ )=8﹣1=7② ×[ ﹣(﹣)]= ×[ ﹣+ ]= ×[(+ )﹣]= ×=③9.5× ×9.5=9.5×()=9.5×1=9.5【考点】分数的简便计算【解析】【分析】(1)先算乘法,再利用减法性质计算;(2)先去掉小括号,再利用加法结合律计算,最后算中括号外的乘法;(3)利用乘法分配律计算.22、【答案】(1)解:,,,x= ;(2)解:,,,x=【考点】方程的解和解方程,解比例【解析】【分析】(1)先化简方程,再依据等式的性质,方程两边同时除以求解,(2)先依据比例基本性质,两内项之积等于两外项之积,化简方程,再依据等式的性质,方程两边同时除以求解.23、【答案】解:① ×5×6×2=30(dm2);② ×(4+6)×4= ×10×4=20(dm2);故答案为:30dm2,20dm2.【考点】组合图形的面积【解析】【分析】(1)阴影部分是两个相同的三角形,三角形的底与高均已知,根据三角形的面积公式S=ah即可求得.(2)阴影部分是一个下底为大正方形边长,上底和高为小正方形边长的一个梯形,根据梯形的面积公式S=(a+b)h即可求得.五、动手画画.在方格纸上按要求画图.24、【答案】解:【考点】图形的放大与缩小【解析】【分析】按2:1的比画出正方形放大后的图形,原正方形的边长是2格,放大后的正方形的边长是4格;按1:2的比画出三角形缩小后的图形,原三角形的底是8格,高是4格,缩小后的三角形的底是4格,底是2格.据此画图.六、应用题25、【答案】解:设文艺书有x本,根据题意可得方程:2x﹣150=12002x=1350x=675答:文艺书有675本.【考点】整数的除法及应用【解析】【分析】根据题干,设文艺书有x本,根据等量关系:文艺书的本数×2﹣150本=科技书的本数,据此列出方程即可解决问题.26、【答案】解:240÷(﹣)=240÷=1600(米)答:这条公路全长1600米【考点】分数四则复合应用题【解析】【分析】把这条路的全长看作单位“1”,已知第一个月完成全长的,第二个月完成全长的,第二个月比第一个月多修240米,由此可知:240米相当于这条路全长的(),根据已知一个数的几分之几或百分之几是多少,求这个数,用除法解答.27、【答案】解:24÷16+6=1.5+6=7.5(分米)答:这时的水面高7.5分米【考点】圆柱的侧面积、表面积和体积【解析】解:24÷16+6=1.5+6=7.5(分米)答:这时的水面高7.5分米.【分析】先求出体积是24立方分米的铁块使长方体的容器升高的高度,再加上原来装的水高,即可求解.28、【答案】解:12÷()==12×8=96(张)答:他们一共集了96张邮票【考点】分数除法应用题,分数四则复合应用题【解析】【分析】把它们三个人邮票的总张数看作单位“1”,已知小红的邮票是三人总数的,若小华送12张奥运纪念邮票给小红,则他们三人的邮票一样多,也就是小红加上12张占总数的,因此可以求出12张占总数的(),根据已知一个数的几分之几是多少,求这个数,用除法解答.29、【答案】(1)解:410﹣(100+90+65+80)=410﹣335=75(万元);答:4月份的销售额是75万元。
沧州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)将不等式组的解集在数轴上表示,下列表示中正确的是()A.B.C.D.【答案】A【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解不等式组可得-1≤x<1,A符合题意。
【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上,即可.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2、(2分)如图是某同学家拥有DVD碟的碟数统计图,则扇形图中的各部分分别表示哪一类碟片()A. ①影视,②歌曲,③相声小品B. ①相声小品,②影视,③歌曲C. ①歌曲,②相声小品,③影视D. ①歌曲,②影视,③相声小品【答案】A【考点】扇形统计图,条形统计图【解析】【解答】解:由条形统计图可知,影视最少,歌曲最多,相声小品其次,所以,①影视,②歌曲,③相声小品.故答案为:A【分析】根据条形统计图看到影视、歌曲、相声人数的大小关系,从而确定扇形统计图中所占的百分比的大小.3、(2分)利用数轴确定不等式组的解集,正确的是()A.B.C.D.【答案】A【考点】在数轴上表示不等式(组)的解集,解一元一次不等式组【解析】【解答】解:先解不等式2x+1≤3得到x≤1则可得到不等式组的解集为-3<x≤1,再根据不等式解集的数轴表示法,“>”、“<”用虚点,“≥”、“≤”用实心点,可在数轴上表示为:.故答案为:A.【分析】先求出每一个不等式的解集,确定不等式组的解集,在数轴上表示出来.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4、(2分)在下列所给出的坐标中,在第二象限的是()A. (2,3)B. (2,-3)C. (-2,-3)D. (-2,3)【答案】D【考点】点的坐标,点的坐标与象限的关系【解析】【解答】解:∵第二象限内点的横坐标是负数,纵坐标是正数,∴(2,3)、(2,﹣3)、(﹣2,﹣3)、(﹣2,3)中只有(﹣2,3)在第二象限.故答案为:D.【分析】第二象限内的点的坐标特征是:横坐标为负数,纵坐标为正数. 由此即可得出.5、(2分)在3.14,﹣,π,,﹣0.23,1.131331333133331…(每两个1之间依次多一个3)中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】无理数的认识【解析】【解答】解:无理数有:、π、1.131331333133331…(每两个1之间依次多一个3),一共有3个。
小升初数学综合模拟试卷47一、填空题:1.102+104+108+116+132-101-103-109-127=______.3.如图,阴影部分的面积是_______.数是______.5.小明有一堆核桃,第一天他卖了这堆核桃的七分之一;第二天他卖了余下核桃的六分之一;第三天他卖了余下核桃的五分之一;第四天他卖了余下核桃的四分之一;第五天他卖了余下核桃的三分之一;第六天他卖了余下核桃的二分之一.这时还剩下30个核桃,那么,第一天和第二天小明卖的核桃总数是_______个.6.六个空瓶可以换一瓶汽水,某班同学喝了213瓶汽水,其中一些是用喝后的空瓶换来的,那么,他们至少要买汽水______瓶.7.如图是6×6的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选8个格点,要求其中任意3个格点都不在一条直线上,并且使这8个点用直线连接后所围成的图形面积尽可能大.那么,所围图形的面积是_______平方厘米.8.甲、乙、丙都在读同一本故事书,书中有100个故事,每人都从某一个故事开始,按顺序往后读,已知甲读了50个故事,乙读了61个故事,丙读了78个故事,那么甲、乙、丙三人共同读过的故事至少有______个.9.甲、乙两厂共同完成了一批机床的生产任务,已知甲厂比乙厂少生______台.10.某次演讲比赛,原定一等奖10人,二等奖20人,现将一等奖中的最后4人调整为二等奖,这样得二等奖的学生的平均分提高了一分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多______分.二、解答题:1.减数、被减数与差三者之和除以被减数,商是多少?2.把40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等.3.将1,1,2,2,3,3,4,4这八个数字排成一个八位数,使两个1之间有一个数字,两个2之间有两个数字,两个3之间有三个数字,两个4之间有四个数字,请找出二个这样的八位数.4.如图,从A至B,步行走粗线道ADB需要35分,坐车走细线道A→C→D→E→B需要22.5分,D →E→B车行驶的距离是D至B步行距离的3倍,A→C→D车行驶的距离是A至D步行距离的5倍,已知车速是步行速度的6倍,那么先从A至D步行,再从D→E→F坐车所需要的总时间是多少分?答案,仅供参考。
2018-2019学年河北省沧州市七年级(上)期末模拟数学试卷一、选择题(30分)1.(3分)一个数的相反数是它本身,则该数为( )A.0B.1C.﹣1D.不存在2.(3分)有下列四个算式:①(﹣5)+(+3)=﹣8 ②﹣(﹣2)3=6③(+)+(﹣)=④﹣3÷(﹣)=9其中,错误的有( )A.0个B.1个C.2个D.3个3.(3分)下列说法正确的是( )A.有理数a的相反数是﹣aB.有理数a的倒数是C.2.0197≈2.010(精确到千分位)D.|﹣a|=a4.(3分)a,b是有理数,它们在数轴上的对应点的位置如所示:把a,﹣a,b,﹣b按照由小到大的顺序排列是( )A.﹣b<﹣a<b<a B.﹣a<b<﹣b<a C.﹣a<﹣b<b<a D.﹣b<﹣a<b<a5.(3分)下列说法正确的是( )A.一点确定一条直线B.两条射线组成的图形叫角C.两点之间线段最短D.若AB=BC,则B为AC的中点6.(3分)下列计算正确的是( )A.5a+2b=7ab B.5a3﹣3a2=2aC.4a2b﹣3ba2=a2b D.﹣y2﹣y2=﹣y47.(3分)下面四个图形中,经过折叠能围成如图所示的几何图形的是( )A.B.C.D.8.(3分)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是( )A.2B.3C.4D.59.(3分)由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是( )A.B.C.D.10.(3分)已知某商店有两个进价不同的计算器都卖了60元,其中一个盈利25%,另一个亏损20%,在这次买卖中,这家商店( )A.不赢不亏B.盈利3元C.亏损12元D.亏损3元二、填空题(20分每题2分)11.(2分)若a,b互为倒数,则3ab+2= .12.(2分)若单项式若3x m+6y2和x3y n是同类项,则(m+n)2019= .13.(2分)沧州市图书馆共藏书558000册,数558000用科学记数法表示为 册.14.(2分)设关于x的方程x m+2﹣m+2=0是一元一次方程,则这个方程的解是 .15.(2分)已知|a|=1,|b|=2,如果a>b,那么a+b= .16.(2分)若方程=2(x﹣1)的解为x=3,则a的值是 .17.(2分)已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC= .18.(2分)如图,某海域有三个小岛A,B,O,在小岛O处观测小岛A在它北偏东62°52′38″的方向上,观测小岛B在南偏东38°12′36″的方向上,则∠AOB的度数是 .19.(2分)如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC= .20.(2分)边长相同的小正方体如图摆放,最上面是第一层,第一层有一个小正方体,第二层有三个小正方体,第三层有六个小正方体,按此规律摆放下去,第六层有 个小正方体,第n层有 个小正方体.三、解答题(共70分)21.(18分)有理数的运算或解方程(1)4+(﹣2)2×5﹣(﹣0.28)÷4(2)﹣12019﹣18×(﹣+)(3)2(x﹣3)﹣5(x+4)=4(4)﹣=2﹣22.(5分)作图题:如图,平面内有四个点A、B、C、D,请你利用直尺和圆规,根据下列语句画出符合要求的图,请保留作图痕迹.(1)画直线AB,射线AC,线段BC;(2)在直线AB上找一点M,使线段MD与线段MC之和最小;(3)在线段AD的延长线上截AE=3AD,连线段CE交直线AB于点F.23.(6分)如图,已知线段AB,延长AB到C,使得BC=AB,D为AC中点且AC=30,求线段BD 的长.24.(12分)整式的运算(1)化简求值: x﹣2(x﹣y2)+(﹣x+y2),其中x=,y=﹣2;(2)化简求值:3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b﹣|=0.25.(7分)如图,图①所示是一个长为2m,宽为2n的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于 ,图②中的小正方形的边长等于 ;(2)图②中的大正方形的面积等于 ,图②中的小正方形的面积等于 ;图①中每个小长方形的面积是 ;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系吗? .26.(10分)苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?27.(12分)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=112°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC 之间的数量关系,并说明理由.参考答案与试题解析一、选择题(30分)沧州市2018---2019学年第一学期期末教学质量检测七年级数学1.(3分)一个数的相反数是它本身,则该数为( )A.0B.1C.﹣1D.不存在【分析】根据0的相反数是0解答.【解答】解:∵0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A.【点评】本题考查了相反数的定义,是基础题,要注意0的特殊性.2.(3分)有下列四个算式:①(﹣5)+(+3)=﹣8 ②﹣(﹣2)3=6③(+)+(﹣)=④﹣3÷(﹣)=9其中,错误的有( )A.0个B.1个C.2个D.3个【分析】根据题目中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣5)+(+3)=﹣8,故①正确,∵﹣(﹣2)3=﹣(﹣8)=8,故②错误,∵(+)+(﹣)==,故③正确,∵﹣3÷(﹣)=3×3=9,故④正确,故选:B.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3.(3分)下列说法正确的是( )A.有理数a的相反数是﹣aB.有理数a的倒数是C.2.0197≈2.010(精确到千分位)D.|﹣a|=a【分析】直接利用相反数的定义以及互为倒数的定义和近似数和绝对值的性质分别分析得出答案.【解答】解:A、有理数a的相反数是﹣a,正确;B、有理数a的倒数是(a≠0),故此选项错误;C、2.0197≈2.020(精确到千分位),故此选项错误;D、|﹣a|=a(a≥0),故此选项错误;故选:A.【点评】此题主要考查了相反数的定义以及互为倒数的定义和近似数和绝对值的性质,正确把握相关定义是解题关键.4.(3分)a,b是有理数,它们在数轴上的对应点的位置如所示:把a,﹣a,b,﹣b按照由小到大的顺序排列是( )A.﹣b<﹣a<b<a B.﹣a<b<﹣b<a C.﹣a<﹣b<b<a D.﹣b<﹣a<b<a【分析】先根据a,b两点在数轴上的位置判断出a、b的符号及其绝对值的大小,再比较出其大小即可.【解答】解:∵由图可知,b<0<a,|b|<a,∴0<﹣b<a,﹣a<b<0,∴a>﹣b>b>﹣a.故选:B.【点评】本题考查的是有理数的大小比较,熟知数轴上各点所表示的数的特点是解答此题的关键.5.(3分)下列说法正确的是( )A.一点确定一条直线B.两条射线组成的图形叫角C.两点之间线段最短D.若AB=BC,则B为AC的中点【分析】根据两点确定一条直线,角的定义,线段中点的定义对各选项分析判断后利用排除法求解.【解答】解:A、两点确定一条直线,故本选项错误;B、应为有公共端点的两条射线组成的图形叫做角,故本选项错误;C、两点之间线段最短,故本选项正确;D、若AB=BC,则点B为AC的中点错误,因为A、B、C三点不一定共线,故本选项错误.故选:C.【点评】本题考查了线段的性质,直线的性质,以及角的定义,是基础题,熟记概念与各性质是解题的关键.6.(3分)下列计算正确的是( )A.5a+2b=7ab B.5a3﹣3a2=2aC.4a2b﹣3ba2=a2b D.﹣y2﹣y2=﹣y4【分析】利用合并同类项法则判断即可.【解答】解:A、原式不能合并,错误;B、原式不能合并,错误;C、原式=a2b,正确;D、原式=﹣y2,错误,故选:C.【点评】此题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.7.(3分)下面四个图形中,经过折叠能围成如图所示的几何图形的是( )A.B.C.D.【分析】根据图中三角形,圆,正方形所处的位置关系即可直接选出答案.【解答】解:根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A,D与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C与此也不符,正确的是B.故选:B.【点评】此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养.8.(3分)父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是( )A.2B.3C.4D.5【分析】设小强胜了x盘,则父亲胜了(10﹣x)盘,根据3×小强胜的盘数=2×父亲胜的盘数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设小强胜了x盘,则父亲胜了(10﹣x)盘,根据题意得:3x=2(10﹣x),解得:x=4.答:小强胜了4盘.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是( )A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层两个小正方形,第二层右边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.10.(3分)已知某商店有两个进价不同的计算器都卖了60元,其中一个盈利25%,另一个亏损20%,在这次买卖中,这家商店( )A.不赢不亏B.盈利3元C.亏损12元D.亏损3元【分析】设盈利25%的进价为x元,亏本20%的进价是y元,由销售问题的数量关系建立方程求出其解即可.【解答】解:设盈利25%的进价为x元,亏本20%的进价是y元,由题意,得:x(1+25%)=60,y(1﹣20%)=60,解得:x=48,y=75,∴这次买卖的利润为:60×2﹣48﹣75=﹣3元.故选:D.【点评】本题考查了销售问题在实际生活中的运用,一元一次方程的解法的运用,有理数大小比较的运用,解答时哟由销售问题的数量关系建立方程是关键.二、填空题(20分每题2分)11.(2分)若a,b互为倒数,则3ab+2= 5 .【分析】直接利用互为倒数的定义计算得出答案.【解答】解:∵a,b互为倒数,∴ab=1,∴3ab+2=3+2=5.故答案为:5.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.12.(2分)若单项式若3x m+6y2和x3y n是同类项,则(m+n)2019= ﹣1 .【分析】直接利用同类项的定义得出m,n的值,进而得出答案.【解答】解:∵单项式若3x m+6y2和x3y n是同类项,∴m+6=3,n=2,解得:m=﹣3,故(m+n)2019=﹣1.故答案为:﹣1.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.13.(2分)沧州市图书馆共藏书558000册,数558000用科学记数法表示为 5.58×105 册.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:数558000用科学记数法表示为5.58×105册.故答案为:5.58×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)设关于x的方程x m+2﹣m+2=0是一元一次方程,则这个方程的解是 ﹣3 .【分析】根据一元一次方程的定义即可求出答案.【解答】解:由题意可知:m+2=1,∴m=﹣1,∴该方程为:x+1+2=0,∴x=﹣3,故答案为:﹣3【点评】本题考查一元一次方程的定义,解题的关键是熟练运用一元一次方程的定义,本题属于基础题型.15.(2分)已知|a|=1,|b|=2,如果a>b,那么a+b= ﹣1或﹣3 .【分析】根据绝对值的性质可得a=±1,b=±2,再根据a>b,可得①a=1,b=﹣2②a=﹣1,b=﹣2,然后计算出a+b即可.【解答】解:∵|a|=1,|b|=2,∴a=±1,b=±2,∵a>b,∴①a=1,b=﹣2,则:a+b=1﹣2=﹣1;②a=﹣1,b=﹣2,则a+b=﹣1﹣2=﹣3,故答案是:﹣1或﹣3.【点评】此题主要考查了绝对值得性质,以及有理数的加法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.16.(2分)若方程=2(x﹣1)的解为x=3,则a的值是 2 .【分析】方程的解就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.就得到关于a的一个方程,解方程就可求出a.【解答】解:把x=3代入=2(x﹣1),可得:,解得:a=2,故答案为:2【点评】本题主要考查了方程解的定义,已知x=3是方程的解实际就是得到了一个关于字母a的方程.17.(2分)已知线段AB=5cm,点C在直线AB上,且BC=3cm,则线段AC= 2cm或8cm .【分析】讨论:当点C在线段AB上时,则AC+BC=AB;当点C在线段AB的延长线上时,则AC﹣BC=AB,然后把AB=5cm,BC=3cm分别代入计算即可.【解答】解:当点C在线段AB上时,则AC+BC=AB,所以AC=5cm﹣3cm=2cm;当点C在线段AB的延长线上时,则AC﹣BC=AB,所以AC=5cm+3cm=8cm.故答案为2cm或8cm.【点评】本题考查了两点间的距离:连接两点间的线段的长度叫两点间的距离.18.(2分)如图,某海域有三个小岛A,B,O,在小岛O处观测小岛A在它北偏东62°52′38″的方向上,观测小岛B在南偏东38°12′36″的方向上,则∠AOB的度数是 78°54′46″ .【分析】先根据题意列出算式,再求出即可.【解答】解:∠AOB=180°﹣62°52′38″﹣38°12′36″=78°54′46″,故答案为:78°54′46″.【点评】本题考查了度、分、秒的换算,能根据题意列出算式是解此题的关键.19.(2分)如图将两块三角板的直角顶点重叠在一起,∠DOB与∠DOA的比是2:11,则∠BOC= 70° .【分析】设出适当未知数∠DOB为2x,∠DOA为11x,得出∠AOB=9x,由∠AOB=90°,求出x=10°,得出∠DOB=20°,即可求出∠BOC=∠COD﹣∠DOB=70°.【解答】解:设∠DOB为2x,∠DOA为11x;∴∠AOB=∠DOA﹣∠DOB=9x,∵∠AOB=90°,∴9x=90°,∴x=10°,∴∠DOB=20°,∴∠BOC=∠COD﹣∠DOB=90°﹣20°=70°;故答案为:70°【点评】本题考查看余角的定义;设出适当未知数,弄清各个角之间的关系得出方程,解方程即可得出结果.20.(2分)边长相同的小正方体如图摆放,最上面是第一层,第一层有一个小正方体,第二层有三个小正方体,第三层有六个小正方体,按此规律摆放下去,第六层有 21 个小正方体,第n层有 个小正方体.【分析】由第1层有1个小正方体,第2层有1+2=3个小正方体,第3层有1+2+3=6个小正方体,知第n层小正方体是连续n个正整数的和,据此求解可得.【解答】解:∵第1层有1个小正方体,第2层有1+2=3个小正方体,第3层有1+2+3=6个小正方体,……∴第6层有1+2+3+4+5+6=21个小正方体,第n层有1+2+3+…+n=个小正方体,故答案为:21,.【点评】本题主要考查认识立体图形和图形的变化规律,解题的关键是根据已知图形得出第n层小正方体是连续n个正整数的和.三、解答题(共70分)21.(18分)有理数的运算或解方程(1)4+(﹣2)2×5﹣(﹣0.28)÷4(2)﹣12019﹣18×(﹣+)(3)2(x﹣3)﹣5(x+4)=4(4)﹣=2﹣【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律的运用;(3)去括号、移项、合并同类项、系数化为1,依此即可求解;(4)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)4+(﹣2)2×5﹣(﹣0.28)÷4=4+4×5+0.07=4+20+0.07=24.07;(2)﹣12019﹣18×(﹣+)=﹣1﹣18×+18×﹣18×=﹣1﹣9+15﹣12=﹣7;(3)2(x﹣3)﹣5(x+4)=4,2x﹣6﹣5x﹣20=4,2x﹣5x=4+6+20,﹣3x=30,x=﹣10;(4)﹣=2﹣,4(5y+4)﹣3(y﹣1)=24﹣(5y﹣5),20y+16﹣3y+3=24﹣5y+5,20y﹣3y+5y=24+5﹣16﹣3,22y=10,y=.【点评】考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.同时考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.22.(5分)作图题:如图,平面内有四个点A、B、C、D,请你利用直尺和圆规,根据下列语句画出符合要求的图,请保留作图痕迹.(1)画直线AB,射线AC,线段BC;(2)在直线AB上找一点M,使线段MD与线段MC之和最小;(3)在线段AD的延长线上截AE=3AD,连线段CE交直线AB于点F.【分析】(1)根据几何语言画出对应几何图形;(2)连接CD交AB于M,利用两点之间线段最短可得到此时M点使线段MD与线段MC之和最小;(3)在AD的延长线截取DE=2AD,然后连接CE交AB于F.【解答】解:(1)如图,直线AB,射线AC,线段BC为所作;(2)如图,点M为所作;(3)如图,点E、F为所作.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).23.(6分)如图,已知线段AB,延长AB到C,使得BC=AB,D为AC中点且AC=30,求线段BD 的长.【分析】根据D是AC的中点求出CD的长,根据BD=CD﹣CB即可得出结论.【解答】解:∵BC=AB,∴AC=3BC,∵AC=30,∴BC=AC=×30=10,∵D为AC中点且AC=30,∴CD=AC=15,∴BD=CD﹣BC=5.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.24.(12分)整式的运算(1)化简求值: x﹣2(x﹣y2)+(﹣x+y2),其中x=,y=﹣2;(2)化简求值:3a2b﹣[2ab2﹣2(ab﹣a2b)+ab]+3ab2,其中a,b满足(a+4)2+|b﹣|=0.【分析】(1)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:(1)原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=,y=﹣2时,原式=﹣3×+(﹣2)2=﹣2+4=2;(2)原式=3a2b﹣2ab2+2(ab﹣a2b)﹣ab+3ab2=3a2b﹣2ab2+2ab﹣3a2b﹣ab+3ab2=ab+ab2,∵(a+4)2+|b﹣|=0,∴a=﹣4,b=,则原式=﹣4×+(﹣4)×()2=﹣2﹣4×=﹣2﹣1=﹣3.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.25.(7分)如图,图①所示是一个长为2m,宽为2n的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于 m+n ,图②中的小正方形的边长等于 m﹣n ;(2)图②中的大正方形的面积等于 (m+n)2 ,图②中的小正方形的面积等于 (m﹣n)2 ;图①中每个小长方形的面积是 mn ;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系吗? (m+n)2﹣(m﹣n)2=4mn .【分析】(1)依据小长方形的边长,即可得到大正方形的边长以及小正方形的边长;(2)依据正方形的边长即可得到正方形的面积,依据小长方形的边长,即可得到小长方形的面积;(3)依据大正方形的面积减去小正方形的面积等于四个小长方形的面积之和,即可得到三个代数式间的等量关系.【解答】解:(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m﹣n;故答案为:m+n,m﹣n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m﹣n)2;图①中每个小长方形的面积是mn;故答案为:(m+n)2,(m﹣n)2,mn;(3)由图②可得,(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系为:(m+n)2﹣(m﹣n)2=4mn.故答案为:(m+n)2﹣(m﹣n)2=4mn.【点评】本题考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.26.(10分)苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?【分析】(1)本题的等量关系是:两种电视的台数和=50台,买两种电视花去的费用=9万元.然后分进的两种电视是A、B,A、C,B、C三种情况进行讨论.求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方案.【解答】解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x 台,则B种电视机y台.①当选购A,B两种电视机时,B种电视机购(50﹣x)台,可得方程:1500x+2100(50﹣x)=90000,即5x+7(50﹣x)=300,解得:x=25,则B种电视机购50﹣25=25(台);②当选购A,C两种电视机时,C种电视机购(50﹣x)台,可得方程:1500x+2500(50﹣x)=90000,解得:x=35,则C种电视机购50﹣35=15(台);③当购B,C两种电视机时,C种电视机为(50﹣y)台,可得方程:2100y+2500(50﹣y)=90000,解得:y=,(不合题意,舍去)由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)中的方案①,可获利150×25+200×25=8750(元),若选择(1)中的方案②,可获利150×35+250×15=9000(元),因为9000>8750,所以为了获利最多,选择第二种方案.【点评】此题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:两种电视的台数和=50台,买两种电视花去的费用=9万元.列出方程,再求解.27.(12分)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=112°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒4°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC 之间的数量关系,并说明理由.【分析】(1)延长NO到D,根据余角的性质得到∠MOB=∠MOC,等量代换得到∠COD=∠AOD,于是得到结论;(2)分两种情况:ON的反向延长线平分∠AOC或射线ON平分∠AOC,分别根据角平分线的定义以及角的和差关系进行计算即可;(3)根据∠MON=90°,∠AOC=68°,分别求得∠AOM=90°﹣∠AON,∠NOC=68°﹣∠AON,再根据∠AOM﹣∠NOC=(90°﹣∠AON)﹣(68°﹣∠AON)进行计算,即可得出∠AOM与∠NOC 的数量关系.【解答】解:(1)平分,理由:延长NO到D,∵∠MON=90°∴∠MOD=90°∴∠MOB+∠NOB=90°,∠MOC+∠COD=90°,∵∠MOB=∠MOC,∴∠NOB=∠COD,∵∠NOB=∠AOD,∴∠COD=∠AOD,∴直线NO平分∠AOC;(2)分两种情况:①如图2,∵∠BOC=112°∴∠AOC=68°,当直线ON恰好平分锐角∠AOC时,∠AOD=∠COD=34°,∴∠BON=34°,∠BOM=56°,即逆时针旋转的角度为56°,由题意得,4t=56°解得t=14(s);②如图3,当NO平分∠AOC时,∠NOA=34°,∴∠AOM=56°,即逆时针旋转的角度为:180°+56°=236°,由题意得,4t=236°,解得t=59(s),综上所述,t=14s或59s时,直线ON恰好平分锐角∠AOC;(3)∠AOM﹣∠NOC=22°,理由:∵∠AOM=90°﹣∠AON∠NOC=68°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(68°﹣∠AON)=22°.【点评】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.。
小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。
小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。