华师大版九上第24章《图形的相似》word教案
- 格式:doc
- 大小:1.88 MB
- 文档页数:30
24.2相似三角形的识别教学目标:1.会说出识别两个三角形相似的方法,有两个角分别相等的两个三角形相似。
2.会用这种方法判断两个三角形是否相似。
教学过程:一、复习1.两个矩形一定会相似吗?为什么?2.如何判断两个三角形是否相似?根据定义:对应角相等,对应边成比例。
3.如图△ABC与△′B′C′会相似吗?为什么?是否存在识别两个三角形相似的简便方法?本节就是探索这方面的识别两个三角形相似的方法。
二、新课讲解同学们观察你与你的同伴所用的三角尺,以及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样。
这些三角形是相似的,我们就从平常所用的三角尺入手探索。
(1)是45°角的三角尺,是等腰直角三角形会相似。
(2)是30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢?这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好像就会“相似”。
是这样吗?请同学们动手试一试:1.画两个三角形,使它们的三个角分别相等。
画△ABC与△DEF,使∠A=∠D、∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么?实际画图中,只画∠A=∠D,∠B=∠E,则第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的。
2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果。
3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似。
4.两个矩形的四个角也都分别相等,它们为什么不会相似呢?这是由于三角形具有它特殊的性质。
三角形有稳定性,而四边形有不稳定性。
于是我们得到识别两个三角形相似的一个较为简便的方法:如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说:两角对应相等,两三角形相似。
第24章图形的相似单元要点分析教学内容本单元主要学习相似图形,了解相似图形的特征以及如何判定两个图形相似.前面所学习的全等图形实际上是相似图形的一个特例.学习本单元后,将在合情推理与逻辑推理以及解决几何问题方面得到提升.相似图形在实际中是常见的,对相似图形的研究,能够起到让学生更好地认识、描述物体的形状、体会图形相似在刻画现实世界中的重要作用,也可以通过解决现实世界中的具体问题,增强学生数学意识和分析、交流的能力.本单元较系统地研究线段的比、成比例线段、形状相同的图形、图形与坐标、中位线定理等,通过学生熟悉的生活经历和已有的数学知识,以大量存在的成比例线段、黄金分割、形状相同的图形为切入点,直观地认识形状相同的图形,并且逐步探索和了解相似多边形的本质特征,领会相似三角形的判定条件,以事件引入相似性质,感受图形相似的应用价值和丰富内涵.通过一个图形的放缩,了解位似图形和它的性质,并将图形的相似,位似与已学过的图形结合起来,最后学习图形与坐标,感受数形结合的实际应用.知识结构三维目标1.知识与技能.在丰富的实际情境中,经历对图形相似问题的观察、操作、思考、交流、类比、归纳等过程,进一步发展学生的探究精神、合作意识以及从图形相似的角度提出问题、分析问题、解决问题的能力.2.过程与方法.结合实际的情境了解线段的比、成比例线段;经历建筑、艺术等方面的实例了解黄金分割,并通过对图形的具体应用,进一步体会数学与自然及人类社会的密切联系,在实例中了解实际生活中的相似图形;了解相似多边形,相似三角形性质的过程,知道相似的性质,并探索掌握判定两个相似三角形的条件,学会位似图形的画法和应用.3.情感、态度与价值观.关注学生识图能力,语言表达能力,提高学生创新意识和实践能力以及对数学文化价值的认识.教学重点探索相似三角形的条件和相似三角形有关性质.教学难点从图形中找出相似三角形,解决这一难点是图形相似的前提.教学关键引导学生积极参与学习.从观察、分析、画图入手调动学生的积极性,解决难点的关键是熟悉比例性质和判断相似三角形的条件,掌握基本图形的常见对应关系.课时划分§24.1 相似的图形 1课时§24.2 相似图形的性质 3课时§24.3 相似三角形 8课时§24.4 中位线 2课时§24.5 画相似图形 1课时§24.6 图形与坐标 2课时复习与小结 1课时24.1 相似的图形教学内容本节课主要学习图形的相似,掌握形状相同的图形有关概念.教学目标1.知识与技能.感知相似图形在现实中的应用,认识形状相同的图形,了解相似图形的基本内涵.2.过程与方法.通过观察、操作,了解相似图形的过程,进一步了解相似形在实际生活中的应用,掌握简单的画图方法,在动手操作中认识相似图形.3.情感、态度与价值观.关注学生能否从图形相似的角度识别现实生活中大量存在的观察和规律,培养合作交流意识.重难点、关键1.重点:认识形状相同的图形.2.难点:对相似图形概念的理解.3.关键:抓住形状相同的图形的特征,认识其内涵.教学准备1.教师准备:制作多媒体课件,收集各类图形,•并通过技术处理满足本节课对图形的放大与缩小的要求.2.学生准备:图画纸、橡皮筋、放大镜.教学过程一、创设情境,激发兴趣1.播放课件:展示丰富的有关相似图形的图案、相片等.教师活动:操作课件,提出问题.问题:同学们通过观察上述实物、图片等生活中的图形,它们有怎样的共性呢?观察联想:通过大量的不同类型的图案、实物图片等,可以非常直观地感受到它们的特征.它们共同的特征是:形状相同,但是大小不一定相等.学生回答:像形状相同、大小不等的图形在生活中随处可见.教师活动:继续操作课件,提出问题.学生活动:观看课件,观察联想、寻找特征.2.回归课本:阅读课本P42~43.观察课本图24.1.3和图24.1.4.点评:本节课包括三维图形的相似,也包括平面图形的相似,但有明确“相似图形”的概念,只渗透相似图形的基本含义,其原因:(1)•本章研究重点是相似三角形;(2)为了不出现过渡上的困惑.学生活动:解决课本P45“试一试”.活动形式:四人小组,合作交流.二、动手操作,感悟新知1.做一做:利用下面方法放大图形,请同学们试一试.操作步骤:(1)将2个长短相同的橡皮筋系在一起.(2)选取一个图形,在图形外取一个定点.(3)将系在一起的橡皮筋的一端固定在定点,•把一枝铅笔固定在橡皮筋的另一端.(4)拉动铅笔,使2个橡皮筋的结点沿所选图形的边缘运动,当结点在已知图形上运动一圈时,铅笔就画出了一个新图形,这个新图形与已知图形形状相同.2.教师活动:引导、巡视、关注学生操作.学生活动:动手制图,样图可自己先画,也可以自带.学生形式:四人小组合作交流.三、课堂总结,评价他人与自我1.你对学习本节课内容有什么收获?2.在动手能力上你与同伴谁制图最好?3.在学习中,能联想到什么知识?四、布置作业,专题突破1.课本P44习题24.1第1、2题.2.选用课时作业设计.五、课后反思(略)课时作业设计1.将一个五边形各边放大3倍,这个五边形的形状________.(填写“不变”或“改变”) 2.请你想出2种放大(缩小)图形的方法:______________.3.下列说法正确的是()A.用同一张底片洗出的不同尺寸的照片,改变了人物的形状B.两个长方体的形状一定相同C.复印一个几何图形,如正方形、长方形等不会改变所复印图形的形状和大小D.所有的五边形形状都相同4.将如图24.1-1所示图形放大2倍.5.四边形OABC为边长为1的正方形,在直角坐标系中的位置如图24.1-2(甲),•请你解决下面的两个问题.(1)求出点O、A、B、C的坐标.(2)将点O、A、B、C的两个点的横坐标都乘以2,而后所得到的四个点O′、A•′、B′、C′的坐标分别标在图24.1-2(乙)的直角坐标系中,连续OA′、A′B′、B′C′得到的是怎样的图形?它和原图形OABC具有怎样的关系?答案:1.不变 2.用牛筋,用位图 3.C 4.用位似法画图 5.略。
课题 相似图形【学习目标】1.从生活中形状相同的图形的实例中认识图形的相似,理解相似图形的性质和概念; 2.会利用相似图形的性质和概念进行计算和证明. 【学习重点】相似图形的性质和概念. 【学习难点】相似图形的性质的运用.情景导入 生成问题两个相似的平面图形之间有什么关系呢?为什么有些图形是相似的,而有些不是呢?相似图形有什么主要性质呢?自学互研 生成能力 知识模块一 相似图形的性质 阅读教材P 57~P 59的内容.如图是大小不同的两张地图,当然,它们是相似的图形,设在大地图中有A 、B 、C 三地,在小地图中相应的三地记为A′、B′、C′,试用刻度尺量一量两张地图中A(A′)与B(B′)两地之间的图上距离和B(B′)与C(C′)两地之间的图上距离.AB =______cm ,BC =______cm ;A′B′=______cm ,B ′C ′=______cm . 然后计算:AB A ′B ′和BCB ′C ′的值,你发现了什么?结论:ABA′B′=BCB′C′,继续测量和计算,会发现所有的对应线段的比都相等.如图1中两个四边形是相似图形,仔细观察这两个图形,它们的对应边之间是否有以上关系呢?对应角之间又有什么关系?图1图2再看如图2中两个相似的五边形,是否与你观察图1所得到的结果一样?结论:相似多边形的性质:相似多边形的对应边成比例,对应角相等.知识模块二相似图形的性质的应用范例:在下图所示的相似四边形中,求边x的长度和角α的大小.解:∵两个四边形相似,∴1812=x18,∴x=27,根据对应角相等,可得α=360°-(77°+83°+116°)=84°.仿例1:如图,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x.解:∵四边形ABCD与EFGH相似.∴α=∠C=83°,∠A=∠E=118°,在四边形ABCD中,β=360°-(78°+83°+118°)=81°.∵四边形ABCD与EFGH相似,∴EHAD=EFAB即x21=2418,∴x=28仿例2:如图,△ABC与△DEF相似,∠B、∠E为钝角,求未知边x,y的长度.解:(1)∵△ABC∽△DEF,∴ABDE=ACDF=BCEF即14y=24x=168,∴x=12,y=7.(2)∵△ABC∽△FED,∴ABEF=AC DF=BCDE即148=24x=16y,∴x=967,y=647.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一相似图形的性质知识模块二相似图形的性质的应用检测反馈达成目标1.下面给出了一些关于相似的命题,其中真命题有(C)①菱形都相似;②等腰直角三角形都相似;③正方形都相似;④矩形都相似;⑤正六边形都相似.A.1个B.2个C.3个D.4个2.在比例尺为1∶0000000的地图上,甲乙两地相距30cm,则甲乙两地的实际距离为__3000__km.3.如图所示的两个五边形相似,求a、b、c、d的值.解:a=3,b=4.5,c=4,d=6课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
华师大版九年级上册《图形的相似》教学设计《华师大版九年级上册《图形的相似》教学设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教材分析1、主要内容:相似图形的概念和性质、相似三角形的判定和应用、相似多边形、位似变换。
在本章学习之前,已经研究了图形的全等以及图形的一些变换,如平移、轴对称、旋转等,本章将在这些内容的基础上研究相似三角形和相似多边形的性质与判定,并进一步研究一种特殊的变换--位似变换,结合一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力。
2、教材特点(1)突出图形性质的探索过程,重视实验操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质,以及相似三角形的判定方法。
(2)注意联系实际,通过生活中大量的实例引入相似图形、位似图形的概念,例题、习题中也有许多应用相似图形知识的实例。
教材还给出了一些利用相似三角形的性质和判定方法来解决生活中不能直接测量物体长度的问题等。
(3)重视数学思想方法的渗透。
本章主要涉及的数学思想方法是转化。
二、教学设计思路1、让学生经历数学知识的形成与应用过程本章的教学可采用“问题情境--立模解释--与拓展"的模式展开,让学生经历知识的形成与应用过程。
相似概念的教学,要关注概念的实际背景与形成过程,帮助学生克服机械记忆概念的学习方式。
分两个阶段教学。
第一阶段要求学生对相似图形有一个整体的、直观的认识,使学生对这种变换的特点有一个初步的感受,即各边同时放大或缩小相同的倍数,各个角不变。
第二阶段是在学习了线段的比,进一步明确了相似多边形的概念之后,要求学生能通过测量或说理的方法判断两个图形是否相似。
第一阶段的教学可以这样设计:(1)先提供一些相似图形的图片--实物的照片、几何图案、简单的几何图形让学生观察,用自己的语言描述,给出相似图形的直观概念;(2)观察图形,思考几何图形各条边、各个角是怎样变化的(3)思考矩形、正方形、菱形是相似图形吗?然后引导学生动手操作:画相似矩形、相似菱形,进一步感受相似变换的特点。
第24章图形的相似24.1 相似的图形教学目标:1、理解相似形的概念,了解相似形是两个图形之间的关系。
2、根据不同需要,能作出大小不一定相同的图形,培养学生的观察能力。
教学重点:让学生理解相似图形概念,会判断两个图形是否相似。
教学难点:正确理解“形状相同”的含义并画出相似图形。
教学过程:一、导入新课挂上大小不一样的中国地图两张及两张大小不同的长城图片,供同学观察,并看课本第42页的图,提出问题:这几组图片有什么相同的地方呢?这些图片大小虽然不一样,但形状是相同。
二、讲解新课由于不同的需要,我们用同一底片冲洗、放大得到的相片有1寸的,也有2寸的,也有更大的,这些大小不一样的相片,其形状是相同。
同学们想一想,在毕业证书贴的相片与学籍卡片上的相片、学习证的相片大小不一定一样,但形状相同,如果不相同会有什么后果呢?大小不相同的中国地图或世界地图,其形状也是相同的,只是由于需要的不同,印制成大小不一的图片。
对于某一地区,也经常会绘制成各种大小不同的建筑物、山岗等所处的位置都是相同,同学们想一想,如果两张地图(同一地区)的形状不一样,那就会给我们许多错觉,就会产生许多麻烦的事情。
在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图形。
在数学上,我们把具有相同形状的图形称为相似形。
同学们你还能说出哪些相似的图形吗?(同学们思考、讨论、交换意见)国旗、国旗上的五角星。
画一个图形放在投影机上映射到屏幕上的图形与原图、平面镜上看到你自己的像等。
如图所示的是一些相似的图形。
想一想:放大镜下的图形和原图形相似吗?你看过哈哈镜吗?哈哈镜中的形像与你本人相似吗?还有一些图形,看起来有点相像,但它们不是相似的图形。
为什么有一部分图形看起来相像,但不相似呢?这就是数学上说的相似图形还有其特征,就是这章要探索的内容。
三、课堂练习:课本第43页试一试,你能画出两个或更多的相似形吗?四、小结:形状相同而大小不一定相同的图形称为相似形,相似形在生活中经常碰到。
《九年级上第二十四章第五节画相似图形》教案【教学课型】:新课◆课程目标导航:【教学目标】:了解位似图形及其有关概念,能利用位似的方法将一个图形放大或缩小.【教学重点】:能够利用作位似图形等方法将一个图形放大或缩小.【教学难点】:怎样利用位似方法画相似图形.【教学工具】:投影仪◆教学情景导入展示课件:教师展示预先制作好的课件,课件内容可以用现实生活中的图片、实物.经过电脑制作展示出丰富多彩的形状相同的图形,而后定格在一组有代表性的图片上.师问:银幕上一组图片是形状相同的图形,在图片上任取一点A,•它与另一个图片相应的位置上取一点B,连线必经过中心P.在图片上换其他的点试一试,还有类似的规律吗?学生活动:观看课件,观察、讨论、探索规律.发现有上述类似的规律.引入新知:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.◆教学过程一、新授:探索:课本P71介绍画相似多边形的方法.思路点拨:先在两个多边形左侧(或右侧、上侧、下侧)任取一点O.然后以此点(位似中心)向外作射线OA、OB、OC、…….由于它们的相似比是1:1.5,•而放大原图,使各边都是原图的1.5倍,根据相似三角形相似比的概念可得,分别在射线OA•、•OB、OC、……上取A′、B′、C′、……,使OA′:OA=OB′:OB=OC′:OC=…=1.5,最后连接A′B′、B′C′、……,得到放大以后的图形A′B′C′D′E•′.•(•见课本P71图24.5.1)(教师活动:将作图方法提示给学生,然后再由学生跟随教师一起来画,教师边画边讲.)例如:将多边形ABCDE放大到1.5倍.(如图)( 教师在学生画图其间,巡视,帮助中等以下的学生.在学生完成此题后,提出:请同学们用刻度尺和量角器量一量,观察一下,所画的图形是否和原图形相似,并证明.)师:想一想,此图还有别的画法吗?生:有,看位似中心取在哪里.二、巩固练习P72练习三、小结本节课学习的是相似变换,位似图形是有特殊位置关系的相似图形,位似图形的变换是特殊的相似变换,◆课堂板书设计标题探索概念例题课堂练习课堂总结◆练习作业设计(课堂作业设计、课下作业设计)课堂作业:下面的说法正确吗?为什么?(1)分别在△ABC的边AB、AC上取点D、E,使DE∥BC,那么△ADE是△ABC缩小后的图形.(2)分别在△ABC的边AB、AC的延长线上取两点D、E,使DE∥BC,那么△ADE•是△ABC放大以后的图形.(3)分别在△ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,那么△ADE•是△ABC放大以后的图形.答案:(1)、(2)两种说法是正确的.(3)的说法不正确,此时有△ADE∽△ABC,•但无法确定是放大还是缩小.课下作业:1.如图,已知:A′B′∥AB,B′C′∥BC,请问△A′B•′C•′是否是由△ABC缩小而成的图形,如果不是,请说明原因,如果是,要说明理由.2.如图,已知:BC∥B′C′,AC∥A′C′,请问AB和A′B•′平行吗?•如果BC=2B′C′,那么AB是A′B′的多少倍?△ABC与△A′B′C′是否构成位似关系?•为什么?答案:1.是2.AB=2A′B′,能构成位似关系。
《九年级上第二十四章第一节相似的图形的性质》教案课时1 成比例线段【教学课型】:新课◆课程目标导航:【教学目标】:经历问题情境的引入过程,借助代数推理的方法理解比例线段和比例的基本性质,通过引入比值的这种方法,贯通比例的性质.【教学重点】:理解成比例线段、学会应用比例的基本性质.【教学难点】:理解和应用比例的基本性质.【教学工具】:投影仪◆教学情景导入师:什么是相似图形?定义怎么叙述的?生:只有形状相同的图形叫相似图形.师:在小学学过数的比,比的前项、后项,数所成的比例,比例的项、外项、内项,及比例的基本性质等知识的基础上,本节课主要介绍了线段的比、成比例线段等概念,比例的性质以及有关运算.◆教学过程一、新授:课本P45试一试,请同学们完成,并从中思考它们的关系.(如课本图24.2.•1)学生活动:完成课本P45试一试,并讨论.教师活动:我们知道,选定一个长度单位,如米、厘米等,可以量出一条线段的长度,如果选用同一长度单位量得两条线段a、b的长度分别是m、n,那么就说这两条线段的比是a:b=m:n,或写成ab=mn.注意:和数的比一样,两条线段的比a:b中,a叫做比的前项,b•叫做比的后项.学生活动:回顾小学学过的知识,把数比迁移到式比.概括:四条线段a、b、c、d中,如果a与b的比等于c与d的比,那ab=cd,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.例1 判断下列线段a、b、c、d是否成比例线段? (1)a=4,b=6,c=5,d=10(2)a=2,b=c==师生共同分析,师板书如下:解:(1)a42c51 ==,==, b63d102a cb d∴≠所以a、b、c、d不成比例线段.(2)a cb5d5a cb d∴=所以a、b、c、d成比例线段.师提问:如果四条线段a、b、c、d是成比例线段,即ab=cd,那么ad=bc吗?思路点拨:可以通过引入比值k的方法,借助代数推理得到证明:设ab=cd=k,•那么a=kb,c=kd,ad=kb·d=b·kd=bc.学生活动:与教师共同探究.评析:书中比例性质,突出了:若ab=cd,则ad=bc;若ad=bc,则ab=cd,•这是比例的基本性质.该基本性质表明,“比例式”(ab=cd)和“等积式(ad=bc•)是可以互相转化的,由ad=bc还可以得到7个比例式:(1)db=ca;(2)ac=bd;(3)dc=ba;(4)ba=dc;(5)cd=ab;(6)ca=db;(7)bd=ac.例2证明:(1)如果a c=b d,那么a+b c+db d=.(2)如果a c=b d,那么a ca-b c-d=.证明:(1)由a c =b d,在等式的两边都加上1所以a c+1=+1 b d所以a+b c+d b d=(2)由a c =b d,得ad=bc在等式两边都加上ac 得ad+ac=bc+ac所以ac-ad=ac-bc所以a(c-d)=(a-b)c 两边同除(c-d)(a-b)所以a c a-b c-d=二、巩固练习P47练习三、小结1.怎样的四条线段才能构成成比例线段?2.成比例线段的基本性质有哪些?3.怎样检查所做的比例变形是否正确?◆课堂板书设计标题成比例线段定义例1性质例2课堂练习课堂总结◆练习作业设计(课堂作业设计、课下作业设计)课堂作业:1.如果2:3=(5-x):x,那么x=________.2.如果5xx+=ab(a、b均为正数,且a≠b),那么x=_______.3.如果x yy+=73,那么x:y=_________.答案: 1.32.5b a b --3.4:3课下作业:1.线段a=10cm,b=100cm,则ab=()A.10 B.110C.100 D.以上结论都不对2.若4x-5y=0,则x yx-的值为()A.5 B.110C.15D.5答案: 1.B 2.C。
华师大版数学九上24.3《相似三角形》w o r d教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN24.3 相似三角形24.3.1.相似三角形教学目标:1.知道相似三角形的概念;会根据概念判断两个三角形相似。
2.能说出相似三角形的相似比,由相似比求出未知的边长。
教学过程:一、复习什么是相似形识别两个多边形是否相似的标准是什么二、新课1.相似三角形的有关概念:由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似。
三角形是最简单的多边形。
由此可以说什么样的两个三角形相似?如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC与△A′B′C′中,∠A=A′,∠B=∠B′,∠C=∠C′ABA′B′=BCB′C′=ACA′C′那么△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′;“∽”是表示相似的符号,读作“相似于”,这样两三角形相似就读作:“△ABC相似于△A′B′C′”。
由于∠A=∠A′,∠B=∠B′,∠C=∠C′,所以点A的对应顶点是A′,B与B′是对应顶点,C与C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记ABA′B′=BCB′C′=ACA′C′=K,那么这个K就表示这两个相似三角形的相似比.相似比就是它们的对应边的比,它有顺序关系.如△ABC∽△A′B′C′,它的相似比为K,即指ABA′B′=K,那么△A′B′C′与△ABC的相似比应是A′B′AB,就不是K了,应为多少呢同学们想一想2.△ABC中,D,E是AB、AC的中点,连结DE,那么△ADE与△ABC相似吗为什么如果相似,它们的相似比为多少如果点D不是AB中点,是AB上任意一点,过D作DE∥BC,交AC边于E,那么△ADE与ABC是否也会相似呢?判断它们是否相似,由①对应角是否相等,②对应边是否成比例去考虑。
相似的图形说课稿相似的图形说课稿范文作为一无名无私奉献的教育工作者,就难以避免地要准备说课稿,借助说课稿可以更好地组织教学活动。
那要怎么写好说课稿呢?下面是小编帮大家整理的相似的图形说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
我说课的内容是“相似的图形”(华师大版九年级上第24章第一节课),下面,我从教材分析、教学方法、教材处理、教学手段、教学程序及三点说明等几个方面对本课的设计进行说明。
一、教材分析:1、教材的地位及作用《相似的图形》是华师大版九年级(上)第24章的第一节的内容,本章是继“轴对称、平移、旋转”之后集中研究图形形状的内容,本节从实际问题引入,通过对生活中的实例认识图形的相似,让学生理解图形相似的概念,让学生体验图形与现实世界的密切联系,体会图形相似与图形全等等内容之间的内在联系,通过学习本节课,使学生认识图形除轴对称、平移和旋转之外的另一种变换——相似.这节课为全章后续学习相似三角形打下了坚实的基础.2、教学目标根据学生已有的认知基础及本课教材的地位、作用依据教学大纲确定本课的教学目标为:知识与技能目标通过生活中的实例认识图形的相似,理解相似图形的概念。
过程与方法目标通过观察、思考、实践、交流等数学活动,让学生自己去体会生活中的相似,进一步发展学生的几何直觉。
情感与态度目标通过观察、欣赏、创作,进一步体验生活中处处有数学,生活离不开数学,同时感受数学之美。
3、教学重难点重点:通过实例感受、理解相似图形。
难点:对形状相同的理解。
二、教学方法:鉴于教材特点及初三学生模仿能力强,思维信赖于具体直观形象的特点,我选用的是引导发现教学法,充分运用课件的演示、操作、观察、练习等师生的共同活动中引导学生,让每个学生都动手、动口、动脑积极思维,进行“创造性”的学习,另外,在教学中我还注意利用图片的不同颜色的对比来启发学生,运用课件提高教学效率,动态演出直观生动的教学图片,激发学生的学习兴趣,培养应用意识。
九年级上数学学案14【课题】§ 24.1相似的图形【学习目标】1、通过实例理解相似图形的概念;2、会识别相似图形,通过图形识别提高自己的观察能力;3、能按照要求画出相似的图形,会根据条件制作出相似的图形。
【学习重点】:相似图形的概念【学习难点】:相似图形的识别与作图【课前准备】1、什么是全等图形:1、观察上述图形,写出你的发现:______________________________________________2、小组内交流你的发现:____________________________________________________________3、阅读课本第42页,然后快速写出你的答案:(1 )、什么是相似图形。
(2)、生活中还有那些相似图形,请举例并与同学交流补充:4、相似图形与全等图形的区别与联系是什么?【学习过程】一、主要知识点1、在数学上,______________________________________________ 称为相似图形。
2、相似图形只与形状有关,与它们的大小、位置无关。
【课堂练习】1、下列说法错误的是()A.等腰三角形的两腰之比是1;B•直角三角形斜边上的中线与斜边之比是1:2C.所有的等边三角形都相似;D. 矩形和长与宽之比一定是2:12、观察下面的图形(a )〜(g ),其中哪些是与(1)、(2)、(3)相似的?3. 下列图形是不是相似图形:所有的圆形; 所有的正方形; 所有的直角三角形 ; 平面镜中的图形与实际图形; 哈哈镜中的图形与实际图形; 放大镜下的图形与原来的图形4. 请在课本上画一画“试一试”中的四边形。
画完后请借助于测量工具,通过测量计算, 请写出有前后两个图形的边长与内角度数的变化,并与同学交流。
/ 、O7 •O0 □□□ 0□32、请把相似的图形连线:C2)(1)归td](e)to【作业】1、下列说法正确的是()A •所有的菱形都相似B •所有的矩形都相似、C.所有的正方形都相似D.所有的梯形都相似2、下列图形一定是相似图形的是()A .两个矩形B .两个正方形C .两个直角三角形D .两个等腰三角形3、小明的文具袋里有一个塑料的小等腰直角三角形,教室的讲台上有一木制的大等腰直角三角板,那么这两个三角板()A .形状相同B .形状不同C.边长不成比例D .无法比较4、放大镜中的三角形与原三角形的关系是()A .形状不同,大小不同B .形状相同,大小相同C.形状相同,大小不同D .形状不同,大小相同5、下列生活现象中,属于相似变换的是()A.抽屉的拉开B.汽车刮雨器的运动C.荡秋千D .投影片的文字经投影变换到屏幕6、在上科学课时,老师让同学利用手中的放大镜对蜗牛进行观察,同学们在放大镜中看到蜗牛与实际的蜗牛属于什么变换()A.相似变换B .平移变换C .旋转变换D .对称变换7、将直角三角形的三条边的长度都扩大同样的倍数后,得到的三角形()A.可能是锐角三角形B .仍是直角三角形C.可能是钝角三角形D .不能确定是什么三角形8、我们已经学习了相似三角形,也知道,如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形. 比如两个正方形,它们的边长、对角线等所有元素都对应成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形,是相似图形的有()A.①③B .①②C.①④D .②③9、如图所示,将下列图形分别分成四小块,使它们的形状、大小完全相同,并且与原图形相似,应怎样分?(画出大致图形即可)10、如图,试将一个等边三角形分割为6个相似的三角形.11、如图所示的两个矩形是否相似?九年级上数学学案15【课题】§ 24.2相似图形的性质 (1)成比例线段【学习目标】1、通过计算作图掌握概念:线段的比、成比例线段。
第24章图形的相似回顾与思考、教学目标:1.能理清本章的知识及其联系,画出知识结构图。
2.会运用相似三角形的识别方法、性质进行有关问题的简单的说理或计算,提高解决实际问题的能力,培养应用数学知识的意识。
3.能用坐标来表示物体的位置,感受点的坐标由于图形的变化而相应地也发生变化,让学生体会到数与形之间的关系。
教学过程:一、知识结构二、讲解例题巩固知识1、如图所示的两个矩形会相似吗?请说明理由。
目的:复习多边形相似的定义,理解平常说的相像与数学中的相似还是有一点区别的,必须是对应的角相等,对应的边成比例的两个多边形才是相似的。
2.判断下列各组中的两个三角形是否相似,并简单说明理由:(1)△ABC中,∠A=28°,∠C是直角,△A′B′C′中,∠B′=62°,∠C是直角。
(2)△ABC中,AB=5,BC=7,AC=8,△A′B′C′中,A′B′=16。
B′C′=14,A′C′=10。
(3)△ABC中,AB=4.5,AC=6,∠B=50°,△A′B′C′中,A′B′=6,A′C′=9,∠B′=50°。
(4)如图DB,EC交于A,AB=3,AC=4.5,AD=2,AE=3。
目的:复习识别三角形相似的三种方法,特别是方法(2):两边对应成比例,相等的角要看看是否它们的夹角。
3.小黄同学在公路上测得一条高为6米的电线杆的影子长为8米,此时路旁有一棵树的影子长为12米,那么这棵树有多高?4.在△ABC中,如果DE∥BC,AD=3,AE=2,BD=4,求DEBC的值及EC的长。
5.如图,已知∠ACB=∠CBD=90°,AC=b,CB=a,当BD与a、b之间满足怎样的关系式时,△ACB∽△CBD。
目的:这三题都是复习相似三角形的识别方法及其性质应用,用对应边成比例计算某一边长时,要注意对应边的位置。
(4)中所求的是EC,并不是三角形的边,因此由比例式先求出AC的长,再计算AC-AE。
相似图形的性质一、相似图形的性质的数学本质与教学目标相似这图形的性质一节包括成比例线段和相似图形的性质两个内容,本课时只学习相似图形的性质,其中包括两个内容即相似多边形的性质以及运用性质判定两个图形是否相似。
本节内容的数学本质是是图形间几何关系的研究。
教学目标的制定是教学计划中的重要环节、目标的制定首先要依据的是课程标准的要求,即知识与能力、数学思考、问题解决、情感态度几个方面.同时对于不同的学生来说,目标的制定也应存在一定的差异。
从学生的可接受度和最近发展区进行如下目标的设计:认知目标:探索相似图形的性质,理解相似多边形的对应角相等,对应边成比例。
知道相似图形的判别方法,会根据相似图形的性质识别两个多边形是否相似。
能力目标:进一步发展学生观察、概括,实践等能力,培养学生分析理解数学问题的能力及运用所学知识解决简单数学实际问题的能力;情感目标:学生通过将地图问题转化为多边形的问题的过程中,体会化归思想。
学生在主动参与观察、操作活动中,进一步发展学生的合情推理意识,主动探究的习惯。
在独立思考的基础上,积极参与对数学问题的讨论,培养学生的合作习惯。
根据学生的学情和本节内容特点,确定以下教学重难点。
重点:相似多边形的性质。
难点:理解和应用相似多边形的性质二、本内容的地位与作用人们生活的空间存在着大量的图形,图形是人们理解自然界和社会现象的重要工具,而相似图形是现实生活中广泛存在的现象之一。
在本套教材中相似是继学习了图形的对称,平移,旋转之后的另一种图形变换,充分体现了对图形变换这一数学知识学习的螺旋上升。
《图形的相似》这一章立足学生已有的生活经验、初步的数学活动经历以及有关数学内容,从观察和分析生活中大量存在的形状相同的图形入手,直观地认识形状相同的图形,在此基础上,逐步探索和了解相似多边形的性质,探索和理解相似三角形的判定条件。
本节内容作为整章内容的重点,正是学生对这章所学内容从直观发现到自觉说理的重要过渡阶段,承接前面学生已有的初步说理基础,逐步加强逻辑推理的力度,为后面学习画相似图形和图形与坐标做好铺垫。
《九年级上第二十四章第一节 相似的图形的性质》教案课时2 相似的图形的性质【教学课型】:新课◆课程目标导航:【教学目标】:掌握两个相似图形之间的性质,学会应用相似图形性质解决问题.【教学重点】:相似图形的性质.【教学难点】:理解和应用相似图形的性质.【教学工具】:投影仪◆ 教学情景导入师:(1)用厘米作为长度单位,量一下你的课本的长与宽,求出长与宽的比,改用毫米作长度单位,要求出长与宽的比,所得的两个比相等吗?生完成.师:本节课要继续学习相似图形的性质,弄清两个相似平面图形之间有什么关系,巩固相似图形的性质. ◆教学过程一、新授:教师活动:投影显示课本P47做一做,引导学生思考.学生活动:用刻度尺动手量一量有关线段,从中得到AB ,A ′B ′,BC 与B ′C ′的长度,然后进行比的比较,从中得到````AB AC A B A C =,再拓展到两张相似地图中的对应线段都成比例. 验证所得,形成概念教师活动:引导学生完成课本P48问题,然后再概括出相似多边形性质:•对应边成比例,对应角相等.学生活动:阅读理解课本P48问题,从中领悟出相似多边形性质.例1:投影显示课本P49例分析:由于两个四边形是相似的,依据相似多边形对应边成比例性质可得181218x =, ∴x=27,∴x=360°-(77°+83°+117°)=83°.评析:利用相似多边形的性质时,应分清对应边和对应角.探索:相似多边形的性质实质上也是判定四个多边形是否相似的方法.由性质可得出判定:如果两个相似多边形对应边成比例,对应角相等,那么这两个多边形相似.思考:两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?如图所示的两个矩形是否相似?二、巩固练习三、小结1.请同学们归纳本节课所学习的知识.2.你还有什么疑问吗?.◆课堂板书设计标题相似图形的性质例1判定思考课堂练习课堂总结◆练习作业设计(课堂作业设计、课下作业设计)课堂作业:1.两个相似菱形,边长分别为4cm,7cm,那么它们对应边比是_______,•对应角相等吗?_________.2.两个相似多边形对应边的比是2:3,那么对应对角线比是______.3.在四边形ABCD和四边形A′B′C′D′中,如果∠A=∠A′,∠B=∠B′,AB:A•′B′=BC:B′C′=AD:A′D′(不为1),那么四边形ABCD和A′B′C′D′()A.一定不相似 B.相似 C.不一定相似 D.全等答案:1.47相等2.2:33.B课下作业:1.如图,在矩形ABCD中,E、F分别为AB、CD•中点,•如果矩形ABCD•∽矩形EFCB,那么它们的相似比是()A.2:1 B.2:2 C.2:1 D.1:22.在一张比例尺为1:15000的平面图上,一块多边形地区的其中一边长为5cm,那么这块地区实际上和这一边相对应的长度应为()A.750cm B.75000cm C.3000cm D.300cm3.下列说法正确的是()A.如果ab=cd成立,那么ac=bdB.形状相同的图形一定是相似图形,也是全等的图形 C.等腰三角形必定是形状相同的图形D.等边三角形一定是相似图形,对应角一定是60°1.A 2.B 3.D。
27.2.1 相似三角形的判定(二)一、教学目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.2.能够运用三角形相似的条件解决简单的问题.二、重点、难点1. 重点:掌握两种判定方法,会运用两种判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.三、课堂引入1.复习提问:(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 全等三角形与相似三角形有怎样的关系?(4) 如图,如果要判定△ABC 与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系? 2.(1)提出问题:首先,由三角形全等的SSS 判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?(2)带领学生画图探究;(3)【归纳】三角形相似的判定方法 1 如果两个三角形的三组对应边的比相等, 那么这两个三角形相似.3.(1)提出问题:怎样证明这个命题是正确的呢?(2)教师带领学生探求证明方法.4.用上面同样的方法进一步探究三角形相似的条件:(1)提出问题:由三角形全等的SAS 判定方法,我们也会想如果一个三角形的两条边与另一个三角形的两条边对应成比例,那么能否判定这两个三角形相似呢?(2)让学生画图,自主展开探究活动.(3)【归纳】三角形相似的判定方法2 两个三角形的两组对应边的比相等,且它们的夹角相等,那么这两个三角形相似.四、例题讲解例1(教材P46例1)分析:判定两个三角形是否相似,可以根据已知条件,看是不是符合相似三角形的定义或三角形相似的判定方法,对于(1)由于是已知一对对应角相等及四条边长,因此看是否符合三角形相似的判定方法2“两组对应边的比相等且它们的夹角相等的两个三角形相似”,对于(2)给的几个条件全是边,因此看是否符合三角形相似的判定方法1“三组对应边的比相等的两个三角形相似”即可,其方法是通过计算成比例的线段得到对应边.解:略 ※例2 (补充)已知:如图,在四边形ABCD 中,∠B=∠ACD ,AB=6,BC=4,AC=5,CD=217,求AD 的长. 分析:由已知一对对应角相等及四条边长,猜想应用“两组对应边的比相等且它们的夹角相等”来证明.计算得出ACCD CD AB =,结合∠B=∠ACD ,证明△ABC ∽△DCA ,再利用相似三角形的定义得出关于AD 的比例式AD ACAC CD =,从而求出AD 的长.解:略(AD=425).五、课堂练习1.教材P47.2.2.如果在△ABC 中∠B=30°,AB=5㎝,AC=4㎝,在△A’B’C’中,∠B’=30°A’B’=10㎝,A’C’=8㎝,这两个三角形一定相似吗?试着画一画、看一看?3.如图,△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 的中点,求证:△ABC ∽△DEF .六、作业1.教材P47.1、3.2.如图,AB•AC=AD•AE,且∠1=∠2,求证:△ABC ∽△AED .※3.已知:如图,P 为△ABC 中线AD 上的一点,且BD 2=PD •AD ,求证:△ADC ∽△CDP .。
相似的图形一、教学目标:知识目标:认识日常生活中相似的图形,了解相似图形的概念,能正确识别相似的图形;理解把一个图形放大或缩小所得到的图形与原图形是相似的。
能力目标:经历观察、操作、探究相似图形的过程,进一步体会相似图形的本质特征和相似图形在现实生活中的应用。
情感目标:培养学生独立思考,合作交流的个性品质。
通过观察,欣赏培养学生学习数学的兴趣,感受数学美。
二、教学重点、难点重点:认识生活中相似的图形,学会画简单相似图形的方法。
难点:相似图形的画法及从具体图形中找出相似图形。
三、教学方法:本课的教学编排,体现了以直观几何,操作几何为主体的风格。
1、通过多媒体展示生活中的相似图形,加强教学的直观性,丰富学生的想象力,提高学生主动参与的意识和学习数学的热情。
2、九年级的学生已经具备了探索学习与合作交流的习惯。
因此,在教学过程中,注重教师的“引导”和学生的“自主探究”,立足让学生自己去实践观察、猜想,操作验证,分析归纳,避免用教师的思维代替学生的思维,从而激发学生潜能。
四、教学过程:我将本节课设定为以下四个环节:(一)创设情景,发现新知(相似图形的概念)试试你的眼力。
同一底片洗出的不同尺寸的照片,大小不同的足球、中国结,鸟巢和它的模型等。
在学生有充分的感性认识后我适时的提出问题:每组图片有什么有趣的特征吗?学生们很容易就能答出它们形状相同,师生共同总结,得出相似图形的描述性定义,并提醒学生相似图形不仅包括平面图形,还包括立体图形。
设计意图:此环节从生活走进数学,引导学生认识数学丰富的人文价值,调动学生学习数学的兴趣,促进学生养成观察生活的习惯。
让学生阅读教材内容,说出相似图形的定义——直观上,把一个图形放大或者缩小得到的图形是相似的。
相似图形的本质——形状相同,但大小不一定相同。
(二)合作交流,深入探究1、动画演示(引导学生发现变化过程中的变与不变,从而使学生体会到:相似与平移,旋转,轴对称一样,也是一种图形变换,利用这种变换可以把一个图形放大或缩小。
第24章图形的相似24.1 相似的图形教学目标:1、理解相似形的概念,了解相似形是两个图形之间的关系。
2、根据不同需要,能作出大小不一定相同的图形,培养学生的观察能力。
教学重点:让学生理解相似图形概念,会判断两个图形是否相似。
教学难点:正确理解“形状相同”的含义并画出相似图形。
教学过程:一、导入新课挂上大小不一样的中国地图两张及两张大小不同的长城图片,供同学观察,并看课本第42页的图,提出问题:这几组图片有什么相同的地方呢?这些图片大小虽然不一样,但形状是相同。
二、讲解新课由于不同的需要,我们用同一底片冲洗、放大得到的相片有1寸的,也有2寸的,也有更大的,这些大小不一样的相片,其形状是相同。
同学们想一想,在毕业证书贴的相片与学籍卡片上的相片、学习证的相片大小不一定一样,但形状相同,如果不相同会有什么后果呢?大小不相同的中国地图或世界地图,其形状也是相同的,只是由于需要的不同,印制成大小不一的图片。
对于某一地区,也经常会绘制成各种大小不同的建筑物、山岗等所处的位置都是相同,同学们想一想,如果两张地图(同一地区)的形状不一样,那就会给我们许多错觉,就会产生许多麻烦的事情。
在日常生活中我们会看到许多这样形状相同,而大小不一定相同的图形。
在数学上,我们把具有相同形状的图形称为相似形。
同学们你还能说出哪些相似的图形吗?(同学们思考、讨论、交换意见)国旗、国旗上的五角星。
画一个图形放在投影机上映射到屏幕上的图形与原图、平面镜上看到你自己的像等。
如图所示的是一些相似的图形。
想一想:放大镜下的图形和原图形相似吗?你看过哈哈镜吗?哈哈镜中的形像与你本人相似吗?还有一些图形,看起来有点相像,但它们不是相似的图形。
为什么有一部分图形看起来相像,但不相似呢?这就是数学上说的相似图形还有其特征,就是这章要探索的内容。
三、课堂练习:课本第43页试一试,你能画出两个或更多的相似形吗?四、小结:形状相同而大小不一定相同的图形称为相似形,相似形在生活中经常碰到。
五、作业:P44 : 1、2。
六、反思及感想:24.2相似图形的特征第一课时成比例线段教学目标:1、了解成比例线段的意义,会判断四条线段是否成比例。
2、利用比例的性质,会求出未知线段的长。
教学重点:成比例线段的定义;比例的基本性质及直接运用教学难点:比例的基本性质的灵活运用,探索比例的其它性质教学过程:一、复习引入:挂上两张中国地图,问:1.这两个图形有什么联系?它们都是平面图形,它们的形状相同,大小不相同,是相似形。
2.这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。
二、新课讲解1.两条线段的比(1)回忆什么叫两个数的比?怎样度量线段的长度?怎样比较两线段的大小?如果选用同一个长度单位量得两条线段AB 、CD 的长度分别是m 、n ,那么就说这两条线段的比 AB ∶CD =m ∶n ,或写成CD AB =nm ,其中,线段AB 、CD 分别叫做这两个线段比的前项和后项. 如果把n m 表示成比值k ,则CD AB =k 或AB =k ·CD . 注意:在量线段时要选用同一个长度单位.(2).做一做量出数学书的长和宽(精确到0.1cm ),并求出长和宽的比.改用m 作单位,则长为0.211m ,宽为0.148m ,长与宽的比为0.211∶0.148=211∶148只要是选用同一单位测量线段,不管采用什么单位,它们的比值不变.(3).求两条线段的比时要注意的问题①两条线段的长度必须用同一长度单位表示,如果单位长度不同,应先化成同一单位,再求它们的比;②两条线段的比,没有长度单位,它与所采用的长度单位无关;③两条线段的长度都是正数,所以两条线段的比值总是正数.问:两条线段长度的比与所采用的长度单位有没有关系?(学生讨论)(答:线段的长度比与所采用的长度单位无关)2.成比例线段的定义你还记得八年级上册中“变化的鱼”吗?如果将点的横坐标和纵坐标都乘以(或除以)同一个非零数,那么用线段连接这些点所围成的图形的边长如何变化?四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即dc b a =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段.3.比例的基本性质两条线段的比实际上就是两个数的比.如果a ,b ,c ,d 四个数满足d c b a =,那么ad =bc 吗?反过来,如果ad =bc ,那么d c b a =吗?与同伴交流. 如果d c b a =,那么ad =bc 。
若ad =bc (a ,b ,c ,d 都不等于0),那么d c b a =.4.线段的比和比例线段的区别和联系线段的比有顺序性,四条线段成比例也有顺序性.如d c b a =是线段a 、b 、c 、d 成比例,而不是线段a 、c 、b 、d 成比例.三、例题讲解例题1:在某市城区地图(比例尺1∶9000)上,新安大街的图上长度与光华大街的图上长度分别是16cm 、10cm .(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?例题2:如图,已知d c ba ==3,求b b a +和dd c +; 例题:3:如果d c b a ==k (k 为常数),那么d d c b b a +=+成立吗? 为什么?四.探究延伸,拓展思维(想一想再回答)(1)如果dc b a =,那么d d c b b a -=-成立吗?为什么? (2)如果fe d c b a ==,那么b af d b e c a =++++成立吗?为什么? (3)如果dc b a =,那么d d c b b a ±=±成立吗?为什么. (4)如果d c b a ==…=n m (b +d +…+n ≠0),那么b a n d b m c a =++++++ 成立吗?为什么.(小组讨论完成上面的问题)五、课堂练习1.已知d c b a ==3,求b b a -和d d c -,b b a -=dd c -成立吗? 2.已知d c b a ==fe =2 (b +d +f ≠0),求:(1)f d b e c a ++++;(2)f d b e c a +-+-; (3)f d b e c a 3232+-+-;(4)fb e a 55--.(小组讨论并上黑板) 六、课时小结:1、注意点:(1)两线段的比值总是正数;(2)讨论线段的比时,不指明长度单位;(3)对两条线段的长度一定要用同一长度单位表示.2、比例尺:图上长度与实际长度的比3、熟记成比例线段的定义;2.掌握比例的基本性质,并能灵活运用.七、作业 :P 47 :1、2、3;P 51:2、3.八、反思及感想:24.2相似图形的特征第二课时相似图形的特征教学目标:1、知道相似图形的两个特征:对应边成比例,对应角相等。
2、识别两个多边形是否相似的方法。
3、在推出相似多边形性质时,让学生用量角器、刻度尺来测量,锻炼动手能力,让学生感受数学知识源于生活、用于生活。
教学重点:相似多边形的性质教学难点:理解和应用相似多边形的性质教学过程:一、复习:1.若线段a=6cm,b=4cm,c=3.6cm,d=2.4cm,那么线段a、b,c、d会成比例吗?2.两张相似的地图中的对应线段有什么关系?(都成比例)二、新课相似的两张地图中的对应线段都会成比例,对于一般的相似多边形,这个结论是否成立呢?同学们动手量一量,算一算,用刻度尺和量角器量一量课本第48页两个相似四边形的边长,量一量它们的内角,由一位同学把量得的结果写在黑板上,其他同学把量得的结果与同伴交流。
同学们会发现有什么关系呢?经过观察、计算得出这两个相似四边形的对应边会成比例,对应角会相等,再观察课本中两个相似的五边形,是否也具有一样的结果?反映它们的边之间、角之间的关系是什么关系?同学用格点图画相似的两个三角形,也观察、度量,它们是否也具有这种关?对应边成比例,对应角相等。
由此可以得到两个相似多边形的特征:(由同学回答,教师板书)对应边成比例,对应角相等。
实际上这两个特征,也是我们识别两个多边形是否相似的方法。
即如果两个多边形的对应边都成比例,对应角都分别相等,那么这两个多边形相似。
识别两个多边形是否相似的标准有:(边数相同),对应边要(成比例),对应角要(都相等)。
(填号内要求同学填)想一想:(1)两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢?(2)所有的菱形都相似吗?所有矩形呢?正方形呢?例1:矩形ABCD与矩形A′B′C′D′中,AB=1.5cm,BC=4.5cm,A′B′=0. 8cm,B′C′=2.4cm,这两个矩形相似吗?为什么?例2:(课本第49页例题)三、练习:1.课本第50页练习。
2. (1)矩形ABCD与矩形A′B′C′D′中,已知AB=16cm,AD=10cm,A′D′=6cm,矩形A′B′ C′D′的面积为57cm2,这两个矩形相似吗?为什么?3.如图四边形ABCD与四边形A′B′C′D′是相似的,且C′D′⊥B′C′,根据图中的条件,求出未知的边x,y及角a。
四、小结:1.两个多边形是否相似的两个标准是什么?2.相似多边形具有什么特征?五、作业:P51:4,6,7。
六、反思及感想:24.3相似三角形1.相似三角形教学目标:1、知道相似三角形的概念;能够熟练地找出相似三角形的对应边和对应角;会根据概念判断两个三角形相似。
2、能说出相似三角形的相似比,由相似比求出未知的边长。
3、在探索活动中,发展发现问题、解决问题的意识和合作交流的习惯。
教学重点:掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似教学重点:熟练找出对应元素,在此基础上根据定义求线段长或角的度数教学过程:一、复习:什么是相似形?识别两个多边形是否相似的标准是什么?二、新课:1.相似三角形的有关概念:由复习中引入,如果两个多边形的对应边成比例,对应角都相等,那么这两个多边形相似。
三角形是最简单的多边形。
由此可以说什么样的两个三角形相似?如果两个三角形的三条边都成比例,三个角对应相等,那么这两个三角形相似,如在△ABC与△A′B′C′中,∠A=A′,∠B=∠B′,∠C=∠C′ABA′B′=BCB′C′=ACA′C′那么△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′;“∽”是表示相似的符号,读作“相似于”,这样两三角形相似就读作:“△ABC 相似于△A′B′C′”。
由于∠A=∠A′,∠B=∠B′,∠C=∠C′,所以点A的对应顶点是A′,B与B′是对应顶点,C与C′是对应顶点,书写相似时,通常把对应顶点写在对应位置上,以便比较容易找到相似三角形中的对应角、对应边.如果记ABA′B′=BC B′C′=ACA′C′=K,那么这个K就表示这两个相似三角形的相似比.相似比就是它们的对应边的比,它有顺序关系.如△ABC∽△A′B′C′,它的相似比为K,即指ABA′B′=K,那么△A′B′C′与△ABC的相似比应是A′B′AB,就不是K了,应为多少呢?同学们想一想?2.△ABC中,D,E是AB、AC的中点,连结DE,那么△ADE与△ABC相似吗?为什么?如果相似,它们的相似比为多少?如果点D不是AB中点,是AB上任意一点,过D作DE∥BC,交AC边于E,那么△ADE与ABC是否也会相似呢?判断它们是否相似,由①对应角是否相等,②对应边是否成比例去考虑。