双筋矩形梁正截面承载力计算讲解
- 格式:doc
- 大小:181.00 KB
- 文档页数:4
双筋矩形梁正截承载力计算————————————————————————————————作者:————————————————————————————————日期:双筋矩形梁正截面承载力计算一、双筋矩形梁正截面承载力计算图式二、基本计算公式和适用条件1.根据双筋矩形梁正截面受弯承载力的计算图式,由平衡条件可写出以下两个基本计算公式:由∑=0X 得:s y s y c A f A f bx f =''+1α由∑=0M 得:)(2001a h A f x h bx f M M sy c u '-''+⎪⎭⎫ ⎝⎛-=≤α 式中'y f —— 钢筋的抗压强度设计值; 's A —— 受压钢筋截面面积;'a —— 受压钢筋合力点到截面受压边缘的距离。
A s2(c )A s 'xA s1h 0-a 'M u2b a 'ah 0M u1(b )xA s (a )A s 'a 'h ba h 0M u a 'h 0-f y A s2h 0-x 2f y A s1f y 'A s 'f y A sf y 'A s 'a 1f c a 1f c bx a 1f ca 1f c bx题1图 双筋矩形梁正截面承载力计算图式其它符号意义同前。
2.适用条件 应用式以上公式时必须满足下列适用条件:(1)0h x b ξ≤ (2)'2a x ≥如果不能满足(2)的要求,即'2a x <时,可近似取'2a x =,这时受压钢筋的合力将与受压区混凝土压应力的合力相重合,如对受压钢筋合力点取矩,即可得到正截面受弯承载力的计算公式为:)(0a h A f M M s y u '-=≤当b ξξ≤的条件未能满足时,原则上仍以增大截面尺寸或提高混凝土强度等级为好。
4.3.3 双筋矩形截面承载力计算如前所述,不但在截面的受拉区,而且在截面的受压区同时配有纵向受力钢筋的矩形截面,称为双筋矩形截面。
双筋矩形截面适用于下面几种情况:※结构或构件承受某种交变的作用(如地震),使截面上的弯矩改变方向;※截面承受的弯矩设计值大于单筋截面所能承受的最大弯矩,而截面尺寸和材料品种等由于某些原因又不能改变;※结构或构件的截面由于某种原因,在截面的受压区预先已经布置了一定数量的受力钢筋(如连续梁的某些支座截面)。
应该说明,双筋截面的用钢量比单筋截面的多,因此,为了节约钢材,应尽可能地不要将截面设计成双筋截面。
◆计算公式及适用条件双筋矩形截面受弯构件正截面承载力计算中,除了引入单筋矩形截面受弯构件承载力计算中的各项假定以外,还假定当x≤2a's时受压钢筋的应力等于其抗压强度设计值f'y(图4-18)。
图4-18 双筋矩形截面计算简图对于图4-18的受力情况,可以像单筋矩形截面一样列出下面两个静力平衡方程式:(4-28)(4-29)式中:A's——受压区纵向受力钢筋的截面面积;a's——从受压区边缘到受拉区纵向受力钢筋合力作用之间的距离。
对于梁,当受压钢筋按一排布置时,可取a's=35mm;当受拉钢筋按两排布置时,可取a's=60mm。
对于板,可取a's=20mm。
式(4-28)和式(4-29)是双筋矩形截面受弯构件的计算公式。
它们的适用条件是:(4-30)(4-31)满足条件式(4-30),可防止受压区混凝土在受拉区纵向受力钢筋屈服前压碎。
满足条件式(4-31),可防止受压区纵向受力钢筋在构件破坏时达不到抗压强度设计值。
因为当x<2a's时,由图4-18可知,受压钢筋的应变ε'y很小,受压钢筋不可能屈服。
当不满足条件式(4-31)时,受压钢筋的应力达不到f'y而成为未知数,这时可近似地取x=2a's,并将各力对受压钢筋的合力作用点取矩得(4-32)用式(4-32)可以直接确定纵向受拉钢筋的截面面积A s。
双筋矩形截面梁正截面承载力计算基本公式1.混凝土的承载力:混凝土的抗压强度是计算承载力的重要参数,通常使用标准试验方法得到的混凝土抗压强度值作为设计参数。
2.受拉钢筋的承载能力:由于混凝土的抗拉强度很低,需要通过加设受拉钢筋来增强混凝土的抗拉能力,受拉钢筋的承载能力是计算承载力中的一个关键要素。
3.受压钢筋的承载能力:混凝土承受受压力时,会发生徐变效应,这会导致混凝土的体积增大,从而引起应力的降低。
加设受压钢筋可以减小徐变效应,提高混凝土承载能力。
根据以上几个因素,可以得到双筋矩形截面梁的正截面承载力计算基本公式:1.计算受拉区域的承载能力:$N_{uT}=A_{sc}f_{yd}+A_{st}f_{yd}$2.计算受压区域的承载能力:$N_{uC}=A_{cc}f_{cd}+A_{ct}f_{ct}$3.计算混凝土的承载能力:$N_{uC}=0.85f_{cd}A_{c}$其中,$A_{sc}$表示受拉钢筋的截面积,$f_{yd}$表示受拉钢筋的屈服强度;$A_{st}$表示受拉钢筋的截面积,$f_{yd}$表示受拉钢筋的屈服强度;$A_{cc}$表示受压混凝土的截面积,$f_{cd}$表示受压混凝土的抗压强度;$A_{ct}$表示受压钢筋的截面积,$f_{ct}$表示受压钢筋的屈服强度;$A_{c}$表示混凝土的截面积。
公式中的0.85是修正系数,用于考虑混凝土的不均匀应力分布。
通过计算上述公式,可以得到双筋矩形截面梁的正截面承载能力$N_{u}$,然后与设计荷载进行比较,以确定结构的安全性。
需要注意的是,以上公式仅适用于正截面的双筋矩形截面梁,对于倒置截面和非双筋截面梁,需要进行修正和适当的调整。
总结一下,双筋矩形截面梁的承载力计算基本公式包括计算受拉区域的承载能力、计算受压区域的承载能力和计算混凝土的承载能力。
通过比较计算得到的承载能力和设计荷载,可以判断结构的安全性和可靠性。
双筋矩形截面受弯构件正截面承载力计算首先,计算受力面积。
受力面积包括混凝土的受力面积和钢筋的受力
面积。
混凝土的受力面积等于矩形截面的宽度乘以混凝土的有效高度。
有
效高度通常为总高度减去两个钢筋的直径。
钢筋的受力面积等于两根钢筋
的直径乘以钢筋的长度。
其次,计算混凝土的极限应力。
混凝土的极限应力取决于混凝土的强
度等级以及截面的受拉区和受压区。
根据设计规范中给出的公式,可以计
算出混凝土的极限应力。
然后,计算钢筋的极限应力。
钢筋的极限应力取决于钢筋的强度等级
以及钢筋的屈服强度。
根据设计规范中给出的公式,可以计算出钢筋的极
限应力。
最后,根据混凝土和钢筋的极限应力以及受力面积,可以计算出正截
面的承载力。
承载力等于混凝土的受力面积乘以混凝土的极限应力加上钢
筋的受力面积乘以钢筋的极限应力。
需要注意的是,双筋矩形截面的计算还需要考虑截面的受拉区和受压
区的应力分布情况。
在截面的受拉区,混凝土和钢筋共同承担受力,应力
分布为三角形。
在截面的受压区,混凝土承担主要受力,应力分布为矩形。
总结起来,双筋矩形截面受弯构件的正截面承载力的计算方法包括确
定受力面积、计算混凝土和钢筋的极限应力,以及根据受力面积和极限应
力计算承载力。
通过这些计算,可以评估双筋矩形截面的正截面承载力,
从而进行结构设计和安全评估。
双筋矩形截面梁计算流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!双筋矩形截面梁的计算流程详解在结构工程中,双筋矩形截面梁是一种常见的设计类型,其承载能力强,适用范围广泛。
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
双筋矩形梁正截面承载力计算
一、双筋矩形梁正截面承载力计算图式
二、基本计算公式和适用条件
1.根据双筋矩形梁正截面受弯承载力的计算图式,由平衡条件可写出以下两个基本计算公式:
由
∑=0X 得:
s y s
y c A f A f bx f =''+1α 由
∑=0M 得:
)(2001a h A f x h bx f M M s
y c u '-''+⎪⎭⎫ ⎝
⎛
-=≤α 式中'
y f —— 钢筋的抗压强度设计值; 's A —— 受压钢筋截面面积;
'a —— 受压钢筋合力点到截面受压边缘的距离。
其它符号意义同前。
2.适用条件 应用式以上公式时必须满足下列适用条件:
(1)0h x b ξ≤ (2)'
2a x ≥
如果不能满足(2)的要求,即'
2a x <时,可近似取'
2a x =,这时受压钢筋的合力将与受压区混凝土压应力的合力相重合,如对受压钢筋合力点取矩,即可得到正截面受弯承载力的计算公式为:
)(0a h A f M M s y u '-=≤
当b ξξ≤的条件未能满足时,原则上仍以增大截面尺寸或提高混凝土强度等级为好。
只有在这两种措施都受到限制时,才可考虑用增大受压钢筋用量的办法来减小ξ。
三、计算步骤
(一)截面选择(设计题)
设计双筋矩形梁截面时,s A 总是未知量,而's A 则可能有未知或已知这两种不同情况。
1.已知M 、b 、h 和材料强度等级,计算所需s A 和's A (1)基本数据:c f ,y f 及'y f ,1α, 1β,b ξ
(2)验算是否需用双筋截面
由于梁承担的弯矩相对较大,截面相对较小,估计受拉钢筋较多,需布置两排,故取mm a 60=,a h h -=0。
单筋矩形截面所能承担的最大弯矩为:
M bh f M b b c u <-=)5.01(2
01max 1ξξα,说明需用双筋截面。
(3)取0h x b ξ=,则
)5.01(2
01max 1b b c u bh f M ξξα-=
(4)计算受压钢筋
12u u M M M -=
)
(02
a h f M A y u s
'-'=' 从构造角度来说,'s A 的最小用量一般不宜小于2φ12,即2'
min 226
mm A s =。
(5)求受拉钢筋总面积为
y
s y b c s f A f h b f A '
'+=
01ξα
(6)实际选用钢筋,画截面配筋图
2.已知M 、b 、h 和材料强度以及's A ,计算所需s A (1)基本数据:c f ,y f 及'
y f ,1α, 1β,b ξ
(2)利用's A 求2s A 和2u M
y
y s
s f f A A ''=2
)(02s s y u a h A f M '-''=
(3)求1u M ,并由1u M 按单筋矩形截面求1s A
2
011s 2
1bh f M M M M c u u u αα=
-=
(4)根据s α求基本系数
)211(5.0s s αγ-+=,
s αξ211--=
(5)求x 并验算适用条件
'02a h x ≥=ξ 0
1
1h f M A s y u s γ=
(6)求受拉钢筋总面积为
21s s s A A A +=
(7)实际选用钢筋,画截面配筋图 (二)承载力复核
已知截面尺寸b 、h 和材料强度等级以及s A 和's A ,需复核构件正截面的受弯承载力,即求截面所能承担的弯矩。
(1)基本数据:c f ,y f 及'
y f ,1α, 1β,b ξ (2)求x
s y s
y c A f A f bx f =''+1α
(3)当0'2h x a b ξ≤≤时
)(2001a h A f x h bx f M M s
y c u '-''+⎪⎭⎫ ⎝
⎛
-=≤α
(4)当'
2a x <时
)(0a h A f M M s y u '-=≤
(5)当0h x b ξ>时,则说明已为超筋截面。
对于已建成的结构构件,其承载力只能按
0h x b ξ=计算,此时,将0h x b ξ=代入下式
)(2001a h A f x h bx f M M s
y c u '-''+⎪⎭⎫ ⎝
⎛
-=≤α 所得u M 即为此梁的极限承载力。
如果所复核的梁尚处于设计阶段,则应重新设计使之不成为超筋梁。