2018届高三数学一轮复习: 第10章 第5节 课时分层训练62
- 格式:doc
- 大小:72.50 KB
- 文档页数:6
课时分层训练(五十一)A组基础达标(建议用时:30分钟)1.执行如图51-8所示的流程图,若输入的实数x=4,则输出结果为________.【导学号:62172285】图51-82[依题意,输出的y=log24=2.]2.阅读下边的流程图,运行相应的程序,则输出S的值为________.图51-96[流程图为直到型循环结构,初始值S=20,i=1.执行第一次循环,i=2,S=20-2=18;执行第二次循环,i=2×2=4,S=18-4=14;执行第三次循环,i=2×4=8,S=14-8=6满足i>5,终止循环,输出S =6.]3.(2017·苏锡常镇调研二)某算法流程图如图51-10所示,该程序运行后,若输出的x=15,则实数a等于________.图51-101[第一次循环:x=2a+1,n=2;第二次循环:x=4a+3,n=3;第三次循环:x=8a+7,n=4.结束循环,由8a+7=15可知a=1.]4.执行如下所示的伪代码,当输入a,b的值分别为1,3时,最后输出的a 的值为________. 【导学号:62172286】Read a,bi←1While i≤2a←a+bb←a-bi←i+1End WhilePrint a5[第一次循环:a=1+3=4,b=4-3=1,i=2.第二次循环:a=4+1=5,b=5-1=4,i=3.结束循环.∴a=5.]5.某算法流程图如图51-11所示,若输出的S=57,则判断框内为________.图51-11①k>4;②k>5;③k>6;④k>7.①[由程序框图可知,k=1时,S=1;k=2时,S=2×1+2=4;k=3时,S =2×4+3=11;k=4时,S=2×11+4=26;k=5时,S=2×26+5=57.此时应满足条件.]6.下边流程图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=________.图51-122[a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2.]7.(2014·江苏高考)如图51-13是一个算法流程图,则输出的n的值是________.图51-135[由算法流程图可知:第一次循环:n=1,2n=2<20,不满足要求,进入下一次循环;第二次循环:n=2,2n=4<20,不满足要求,进入下一次循环;第三次循环:n=3,2n=8<20,不满足要求,进入下一次循环;第四次循环:n=4,2n=16<20,不满足要求,进入下一次循环;第五次循环:n=5,2n=32>20,满足要求,输出n=5.]8.(2016·天津高考改编)阅读下边的算法流程图,运行相应的程序,则输出S的值为________.图51-144[S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.]9.根据下面的伪代码,最后输出的a的值为________.a ←1i ←2While i ≤6a ←a ×i i ←i +2End WhilePrint a48 [由题意可知这是一个当型循环,循环条件满足i ≤6时循环,当i =2时,a =1×2=2,i =2+2=4;当i =4时,a =2×4=8,i =4+2=6;当i =6时,a =8×6=48,i =6+2=8,因为i =8>6,则退出循环,故输出48.]10.(2017·南京模拟)按如图51-15所示的流程图运算,若输入x =8,则输出的k =________. 【导学号:62172287】图51-153 [当输入x =8时,第一次循环结束后x =88,k =1,不满足x >2 017,继续进入循环体;第二次循环结束后x =888,k =2,不满足x >2 017,继续进入循环体;第三次循环结束后x =8 888,k =3,满足x >2 017,跳出循环体;此时输出的k 值为3.]11.执行如图51-16所示的算法框图,输出S 的值为( )图51-1612[按照算法框图依次循环运算,当k=5时,停止循环,当k=5时,S=sin 5π6=12.]12.执行如图51-17所示的算法流程图,输出的n为________.图51-174[执行第一次判断:|a-1.414|=0.414>0.005,a=32,n=2;执行第二次判断:|a-1.414|=0.086>0.005,a=75,n=3;执行第三次判断:|a-1.414|=0.014>0.005,a=1712,n=4;执行第四次判断:|a-1.414|<0.005,输出n=4.]B组能力提升(建议用时:15分钟)1.如图所示,该伪代码运行的结果是________.S ←0n ←0While S ≤1 023S ←S +2nn ←n +1End WhilePrint n11 [根据算法语句可知这是一个循环结构,S n 是一个以1为首项,2为公比的等比数列的前n 项和,即S n =1-2n1-2=2n -1,可见n =10时,S 10=1 023,所以n =10时进行最后一次循环,故n =11.]2.(2016·北京高考改编)执行如图51-18所示的算法流程图,若输入的a 值为1,则输出的k 值为________.图51-182 [初始值k =0,a =1,b =1.第一次循环a =-12,k =1;第二次循环,a =-2,k =2;第三次循环,a =1,此时a =b =1,输出k =2.]3.(2016·全国卷Ⅲ改编)执行下面的算法流程图,如果输入的a =4,b =6,那么输出的n =________.图51-194 [程序运行如下:开始a =4,b =6,n =0,s =0.第1次循环:a =2,b =4,a =6,s =6,n =1;第2次循环:a =-2,b =6,a =4,s =10,n =2;第3次循环:a =2,b =4,a =6,s =16,n =3;第4次循环:a =-2,b =6,a =4,s =20,n =4.此时,满足条件s >16,退出循环,输出n =4.]4.关于函数f (x )=⎩⎨⎧-x ,1<x ≤4,cos x ,-1≤x ≤1的算法流程图如图51-20所示,现输入区间[a ,b ],则输出的区间是________.图51-20[0,1] [由算法流程图的第一个判断条件为f (x )>0,当f (x )=cos x ,x ∈[-1,1]时满足.然后进入第二个判断框,需要解不等式f ′(x )=-sin x ≤0,即0≤x ≤1.故输出区间为[0,1].]5.(2016·全国卷Ⅱ改编)中国古代有计算多项式值的秦九韶算法,如图51-21是实现该算法的算法流程图.执行该算法流程图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =________.图51-2117 [输入x =2,n =2.第一次,a =2,s =2,k =1,不满足k >n ;第二次,a =2,s =2×2+2=6,k =2,不满足k >n ;第三次,a =5,s =6×2+5=17,k =3,满足k >n ,输出s =17.]6.某伪代码如下: S ←0i ←1While i ≤100S ←S +1i (i +2) i ←i +2End WhilePrint S则输出的结果是________.50101 [语句所示的算法是一个求和运算:11×3+13×5+15×7+…+199×101=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫199-1101×12=⎝ ⎛⎭⎪⎫1-1101×12=50101.]。
课时分层训练(六十五) 二项分布与正态分布A 组 基础达标 (建议用时:30分钟)一、选择题1.(2017·济南模拟)设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)等于( )A.516 B.316 C.58D.38A [X ~B ⎝ ⎛⎭⎪⎫6,12,由二项分布可得,P (X =3)=C 36⎝ ⎛⎭⎪⎫123·⎝⎛⎭⎪⎫1-123=516.]2.(2014·全国卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8 B.0.75 C .0.6D.0.45A [已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.]3.某小区有1 000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%,P (μ-3σ<ξ<μ+3σ)=99.74%.)A .17B.23C .34 D.46B [P (ξ>320)=12[1-P (280<ξ<320)]=12×(1-95.44%)=0.022 8, ∴用电量在320度以上的户数约为0.022 8×1 000=22.8≈23.]4.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12B.512C.14D.16B [设事件A :甲实习生加工的零件为一等品; 事件B :乙实习生加工的零件为一等品, 则P (A )=23,P (B )=34,所以这两个零件中恰有一个一等品的概率为 P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B )= 23×⎝ ⎛⎭⎪⎫1-34+⎝ ⎛⎭⎪⎫1-23×34=512.] 5.(2017·西安质检)中秋节放假,甲回老家过节的概率为13,乙、丙回老家过节的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少1人回老家过节的概率为( )A.5960B.35C.12D.160B [“甲、乙、丙回老家过节”分别记为事件A ,B ,C ,则P (A )=13,P (B )=14,P (C )=15,所以P (A )=23,P (B -)=34,P (C -)=45,由题意知,A ,B ,C 相互独立.所以三人都不回老家过节的概率P (A -B -C -)=P (A -)P (B -)P (C -)=25. 故至少有一人回老家过节的概率P =1-25=35.] 二、填空题6.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________.【导学号:01772419】35[设该队员每次罚球的命中率为p ,其中0<p <1,则依题意有1-p 2=1625,p 2=925,又0<p <1,∴p =35.]7.假设每天从甲地去乙地的旅客人数X 是服从正态分布N (800,502)的随机变量,记一天中从甲地去乙地的旅客人数800<X ≤900的概率为p 0,则p 0=________.【导学号:01772420】(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%,P (μ-3σ<ξ<μ+3σ)=99.74%.)0.477 2 [由X ~N (800,502),知μ=800,σ=50, 又P (700<X ≤900)=0.954 4,则P (800<X ≤900)=12×0.954 4=0.477 2.]8.(2017·河北衡水中学质检)将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,则P (A |B )=________.【导学号:01772421】14[依题意,随机试验共有9个不同的基本结果. 由于随机投掷,且小正方形的面积大小相等.所以事件B 包含4个基本结果,事件AB 包含1个基本结果.所以P(B)=49,P(AB)=19.所以P(A|B)=P(AB)P(B)=1949=14.]三、解答题9.(2015·福建高考)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.[解](1)设“当天小王的该银行卡被锁定”为事件A,则P(A)=56×45×34=12.5分(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=56×15=16,P(X=3)=56×45×1=23.8分所以X的分布列为10分所以E(X)=1×16+2×16+3×23=52.12分10.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率.[解] (1)设“每盘游戏中击鼓三次后,出现音乐的次数为ξ”. 依题意,ξ的取值可能为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,12,则P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫12k ⎝ ⎛⎭⎪⎫123-k =C k 3·⎝ ⎛⎭⎪⎫123.5分又每盘游戏得分X 的取值为10,20,100,-200.根据题意: 则P (X =10)=P (ξ=1)=C 13⎝ ⎛⎭⎪⎫123=38, P (X =20)=P (ξ=2)=C 23⎝ ⎛⎭⎪⎫123=38, P (X =100)=P (ξ=3)=C 33⎝ ⎛⎭⎪⎫123=18,P (X =-200)=P (ξ=0)=C 03⎝ ⎛⎭⎪⎫123=18.所以X 的分布列为8分(2)设“第i 盘游戏没有出现音乐”为事件A i (i =1,2,3), 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.10分 所以,“三盘游戏中至少有一次出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏至少有一盘出现音乐的概率是511512.12分B 组 能力提升 (建议用时:15分钟)1.设随机变量X 服从二项分布X ~B ⎝ ⎛⎭⎪⎫5,12,则函数f (x )=x 2+4x +X 存在零点的概率是( )【导学号:01772422】A.56B.45C.3132D.12C [∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4. ∵X 服从X ~B ⎝ ⎛⎭⎪⎫5,12, ∴P (X ≤4)=1-P (X =5)=1-125=3132.]2.(2017·青岛模拟)已知随机变量ξ服从正态分布N (0,1),若P (ξ>1)=a (a 为常数),则P (-1≤ξ≤0)=________.12-a [因为P (ξ<-1)=P (ξ>1)=a ,所以P (-1≤ξ≤0)=1-2a 2=12-a .] 3.(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:图10-8-3(1)求这500件产品质量指标值的样本平均数x -和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2.①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E (X ).附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 6,P (μ-2σ<Z <μ+2σ)=0.954 4. [解] (1)抽取产品的质量指标值的样本平均数x -和样本方差s 2分别为 x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,2分s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150. 5分(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.8分②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B (100,0.682 6),所以E (X )=np =100×0.682 6=68.26. 12分。
高2021届高2018级高三数学复习资料§10.1分类计数原理与分步计数原理1.分类计数原理如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……,在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n 种不同的方法.2.分步计数原理如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类和分步的区别,关键是看事件能否一步完成,事件一步完成了就是分类;必须要连续若干步才能完成的则是分步.分类要用分类计数原理将种数相加;分步要用分步计数原理,将种数相乘.概念方法微思考1.在解题过程中如何判定是用分类计数原理还是分步计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步计数原理.2.两种原理解题策略有哪些?提示①明白要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)(4)在分步计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(×)题组二教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12B.8C.6D.4【参考答案】C【试题解析】分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.(2020·山东模拟)某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有__________种.【参考答案】36【试题解析】从6名守擂选手中选1名,选法有C16=6(种);复活选手中挑选1名选手,选法有C16=6(种).由分步计数原理,不同的构成方式共有6×6=36(种).4.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架中任取1本书,则不同取法的种数为________.【参考答案】9【试题解析】分三类:第一类,从第1层取一本书有4种,第二类,从第2层取一本书有3种,第三类,从第3层取一本书有2种.共有4+3+2=9(种).题组三易错自纠5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6【参考答案】B【试题解析】分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类计数原理知,共有12+6=18(个)奇数.6.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有________种.【参考答案】243【试题解析】因为每个邮件选择发的方式有3种不同的情况.所以要发5个电子邮件,发送的方法有3×3×3×3×3=35=243(种).分类计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10【参考答案】B【试题解析】方程ax2+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x+b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对.②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12(个)实数对,故a≠0时满足条件的实数对有12-3=9(个),所以答案应为4+9=13.2.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240B.204C.729D.920【参考答案】A【试题解析】若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).3.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.【参考答案】12【试题解析】当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类计数原理可知,共有12种结果.思维升华分类标准是运用分类计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.分步计数原理例1(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9【参考答案】B【试题解析】从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E 点到G点的最短路径有6×3=18(条),故选B.(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.【参考答案】120【试题解析】每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步计数原理,可得不同的报名方法共有6×5×4=120(种).本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步计数原理,可得不同的报名方法共有36=729(种).本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步之间确保连续,逐步完成.跟踪训练1(1)(2020·洛阳联考)2019年牡丹花会期间,5名志愿者被分配到我市3个博物馆为外地游客提供服务,其中甲博物馆分配1人,另2个博物馆各分配2人,则不同的分配方法共有()A.15种B.30种C.90种D.180种【参考答案】B【试题解析】分两步完成:第一步,选1人到甲博物馆,有5种分配方法;第二步,将余下的4人各分配2人到另2个博物馆,有6种分配方法.根据分步计数原理可得,不同的分配方法共有5×6=30(种).(2)已知a∈{1,2,3},b∈{4,5,6,7},则方程(x-a)2+(y-b)2=4可表示不同的圆的个数为()A.7B.9C.12D.16【参考答案】C【试题解析】得到圆的方程分两步:第一步:确定a有3种选法;第二步:确定b有4种选法,由分步计数原理知,共有3×4=12(个).两个计数原理的综合应用例2(1)现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()A.120B.140C.240D.260【参考答案】D【试题解析】由题意,先涂A处共有5种涂法,再涂B处有4种涂法,然后涂C处,若C处与A 处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,到C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D.(2)中国古代儒家要求学生掌握六种基本才能(六艺):礼、乐、射、御、书、数,某校国学社团周末开展“六艺”课程讲座活动,一天连排六节,每艺一节,排课有如下要求:“射”不能排在第一,“数”不能排在最后,则“六艺”讲座不同的排课顺序共有________种.【参考答案】504【试题解析】 根据题意,分2种情况讨论:①“数”排在第一,将剩下的“五艺”全排列,安排在剩下的5节,有A 55=120(种)情况. ②“数”不排在第一,则“数”的排法有4种,“射”的排法有4种,将剩下的“四艺”全排列,安排在剩下的4节,有A 44=24(种)情况,则此时有4×4×24=384(种)情况.则一共有120+384=504(种)排课顺序.(3)用0,1,2,3,4,5,6这7个数字可以组成________个无重复数字的四位偶数.(用数字作答) 【参考答案】 420【试题解析】 要完成的“一件事”为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分类,再分步.①第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字. 根据分步计数原理,有3×4×5×4=240(种)取法.②第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除首位数字的任意一个偶数数字,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.根据分步计数原理,有3×3×5×4=180(种)取法.③根据分类计数原理,共可以组成240+180=420(个)无重复数字的四位偶数. 思维升华 利用两个计数原理解决应用问题的一般思路 (1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类. (3)弄清分步、分类的标准是什么. (4)利用两个计数原理求解.跟踪训练2 (1)(2020·郑州质检)将数字“124467”重新排列后得到不同的偶数的个数为( )A.72B.120C.192D.240 【参考答案】 D【试题解析】 将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,(1)若末位数字为2,因为含有2个4,所以有5×4×3×2×12=60(种)情况;(2)若末位数字为6,同理有60种情况;(3)若末位数字为4,因为有两个相同数字4,所以共有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.(2)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( ) A.24对 B.30对 C.48对 D.60对 【参考答案】 C【试题解析】 如图,在正方体ABCD -A 1B 1C 1D 1中,与面对角线AC 成60°角的面对角线有B 1C ,BC 1,A 1D ,AD 1,AB 1,A 1B ,D 1C ,DC 1,共8条,同理与DB 成60°角的面对角线也有8条.因此一个面上的2条面对角线与其相邻的4个面上的8条对角线共组成16对.又正方体共有6个面,所以共有16×6=96(对).又因为每对被计算了2次,因此成60°的面对角线有12×96=48(对).1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有( )A.21种B.315种C.143种D.153种 【参考答案】 C【试题解析】 可分三类:一类:语文、数字各1本,共有9×7=63(种); 二类:语文、英语各1本,共有9×5=45(种); 三类:数字、英语各1本,共有7×5=35(种), ∴共有63+45+35=143(种)不同选法.2.(2020·南京质检)三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有( ) A.4种 B.6种 C.10种 D.16种 【参考答案】 B【试题解析】 分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先传给丙时,满足条件的也有3种传递方式. 由分类计数原理可知,共有3+3=6(种)传递方式.3.十字路口来往的车辆,如果不允许回头,则行车路线共有( ) A.24种 B.16种 C.12种 D.10种 【参考答案】 C【试题解析】 根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有4×3=12(种),故选C.4.若a ∈{1,2,3,4},b ∈{1,2,3,4},则y =ba x 表示不同直线的条数为( )A.8B.11C.14D.16 【参考答案】 B【试题解析】 若使ba 表示不同的实数,则当a =1时,b =1,2,3,4;当a =2时,b =1,3;当a =3时,b =1,2,4;当a =4时,b =1,3.故y =ba x 表示的不同直线的条数共有4+2+3+2=11.5.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( ) A.56 B.54 C.53 D.52 【参考答案】 D【试题解析】 在8个数中任取2个不同的数共有8×7=56(个)对数值;但在这56个数值中,log 24=log 39,log 42=log 93,log 23=log 49,log 32=log 94,即满足条件的对数值共有56-4=52(个).6.(2020·石家庄模拟)将“福”“禄”“寿”填入到如图所示的4×4小方格中,每格内只填入一个汉字,且任意的两个汉字既不同行也不同列,则不同的填写方法有( )A.288种B.144种C.576种D.96种 【参考答案】 C【试题解析】 依题意可分为以下3步:(1)先从16个格子中任选一格放入第一个汉字,有16种方法;(2)任意的两个汉字既不同行也不同列,第二个汉字只有9个格子可以放,有9种方法;(3)第三个汉字只有4个格子可以放,有4种方法,根据分步计数原理可得不同的填写方法有16×9×4=576(种).7.(2020·安阳模拟)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )A.120种B.260种C.340种D.420种 【参考答案】 D【试题解析】 由题意可知上下两块区域可以相同,也可以不同,则共有5×4×3×1×3+5×4×3×2×2=180+240=420(种).故选D.8.(多选)将四个不同的小球放入三个分别标有1,2,3号的盒子中,不允许有空盒子,下列结果正确的有( )A.C 13C 12C 11C 13B.C 24A 33C.C 13C 24A 22D.18【参考答案】 BC【试题解析】 根据题意,四个不同的小球放入三个分别标有1,2,3号的盒子中,且没有空盒,则三个盒子中有1个放2个球,剩下的2个盒子各放1个, 有2种解法: (1)分2步进行分析:①先将四个不同的小球分成3组,有C 24种分组方法; ②将分好的3组全排列,对应放到3个盒子中,有A 33种放法,则没有空盒的放法有C 24A 33种.(2)分2步进行分析:①在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,有C 13C 24种情况;②将剩下的2个小球全排列,放入剩下的2个小盒中,有A 22种放法,则没有空盒的放法有C 13C 24A 22种.故选BC.9.若椭圆x 2m +y 2n =1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________. 【参考答案】 20【试题解析】 当m =1时,n =2,3,4,5,6,7,共6个; 当m =2时,n =3,4,5,6,7,共5个; 当m =3时,n =4,5,6,7,共4个; 当m =4时,n =5,6,7,共3个; 当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20(个)满足条件的椭圆.10.直线方程Ax +By =0,若从0,1,2,3,5,7这6个数字中任取两个不同的数作为A ,B 的值,则可表示________条不同的直线. 【参考答案】 22【试题解析】分成三类:A=0,B≠0;A≠0,B=0和A≠0,B≠0,前两类各表示1条直线;第三类先取A有5种取法,再取B有4种取法,故5×4=20(种).所以可以表示22条不同的直线.11.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.【参考答案】36【试题解析】第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).12.如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.【参考答案】180【试题解析】按区域分四步:第一步,A区域有5种颜色可选;第二步,B区域有4种颜色可选;第三步,C区域有3种颜色可选;第四步,D区域也有3种颜色可选.由分步计数原理,可得共有5×4×3×3=180(种)不同的涂色方法.13.从集合{1,2,3,4,…,10}中,选出5个数组成该集合的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个【参考答案】A【试题解析】先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成2×2×2×2×2=32(个)这样的子集.14.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.【参考答案】60【试题解析】根据题意,第一个可以从6个螺栓里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号螺栓,第二个可以选3,4,5号螺栓,依次选下去,共可以得到10种方法,所以总共有10×6=60(种)方法,故答案是60.15.(2019·凌源模拟)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学都选取到喜欢的礼物,则不同的选法有()A.30种B.50种C.60种D.90种【参考答案】B【试题解析】①甲同学选择牛,乙有2种选择,丙有10种选择,选法有1×2×10=20(种);②甲同学选择马,乙有3种选择,丙有10种选择,选法有1×3×10=30(种),所有总共有20+30=50(种)选法.16.若给一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有________种.【参考答案】30【试题解析】方法一如图,染五条边总体分五步,染每一边为一步.当染边1时有3种染法,则染边2有2种染法.(1)当3与1同色时有1种染法,则4有2种,5有1种,此时染法总数为3×2×1×2×1=12(种).(2)当3与1不同色时,3有1种,①当4与1同色时,4有1种,5有2种;②当4与1不同色时,4有1种,5有1种,则此时有3×2×1×(1×2+1×1)=18(种).综合(1)、(2),由分类计数原理,可得染法的种数为30种.方法二通过分析可知,每种颜色至少要涂1次,至多只能涂2次,即有一色涂1次,剩余两种颜色各涂2次.一次的有C13C15种涂法,涂2次的有2种涂法,故一共有2C13C15=30(种)涂法.。
课时分层训练(六十三) 模拟方法——概率的应用A 组 基础达标 (建议用时:30分钟)一、选择题1.(2017·长春质检)在区间[0,π]上随机取一个实数x ,使得sin x ∈⎣⎢⎡⎦⎥⎤0,12的概率为( )A.1π B.2π C.13D .23C [由0≤sin x ≤12,且x ∈[0,π], 解得x ∈⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎦⎥⎤56π,π.故所求事件的概率P =⎝ ⎛⎭⎪⎫π-56π+⎝ ⎛⎭⎪⎫π6-0π-0=13.]2.如图10-6-5所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机扔一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是( )【导学号:57962467】图10-6-5A.π3 B .π C .2πD .3πD [设阴影部分的面积为S ,且圆的面积S ′=π·32=9π.由几何概型的概率得S S ′=13,则S =3π.]3.已知平面区域D ={(x ,y )|-1≤x ≤1,-1≤y ≤1},在区域D 内任取一点,则取到的点位于直线y =kx (k ∈R )下方的概率为( )A.12 B .13 C.23D .34A [由题设知,区域D 是以原点O 为中心的正方形,直线y =kx 将其面积平分,如图,所求概率为12.]4.(2015·山东高考)在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( ) A.34 B .23 C.13D .14A [不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.] 5.已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC 的概率是( )A.78 B .34 C.12D .14A [当点P 到底面ABC 的距离小于32时, V P -ABC <12V S -ABC . 由几何概型知,所求概率为P =1-⎝ ⎛⎭⎪⎫123=78.]6.(2017·西安模拟)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( )【导学号:57962468】A.34+12π B .12+1π C.12-1πD .14-12πD [|z |=(x -1)2+y 2≤1,即(x -1)2+y 2≤1,表示的是圆及其内部,如图所示.当|z |≤1时,y ≥x 表示的是图中阴影部分.∵S 圆=π×12=π, S 阴影=π4-12×12=π-24.故所求事件的概率P =S 阴影S 圆=π-24π=14-12π.]二、填空题7.(2017·郑州模拟)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =________.3 [由|x |≤m ,得-m ≤x ≤m . 当m ≤2时,由题意得2m 6=56, 解得m =2.5,矛盾,舍去. 当2<m <4时,由题意得m -(-2)6=56,解得m =3.]8.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.23[∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎨⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+(5-2)5=23.]9.正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图10-6-6所示,若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.图10-6-623 [由对称性,S 阴影=4⎠⎛01(1-x 2)d x =4⎝ ⎛⎭⎪⎫x -x 33|1=83.又S 正方形ABCD =2×2=4,由几何概型,质点落在阴影区域的概率P =S 阴S 正方形ABCD =23.]10.一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是________.π120[屋子的体积为5×4×3=60米3,捕蝇器能捕捉到的空间体积为18×43π×13×3=π2米3, 故苍蝇被捕捉的概率是π260=π120.]B 组 能力提升 (建议用时:15分钟)1.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1D .p 1<12<p 2D [如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE (如图①),其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分(如图②),其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.]2.(2017·陕西质检(二))在长方形ABCD 中,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,则取到的点到O 点的距离大于1的概率为( )A.π4 B .1-π8 C.π8D .1-π4D [由题意得长方形ABCD 的面积为1×2=2,其中满足到点O 的距离小于等于1的点在以AB 为直径的半圆内,其面积为12×π×12=π2,则所求概率为1-π22=1-π4,故选D.]3.随机地向半圆0<y <2ax -x 2(a 为正数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为________.12+1π [由0<y <2ax -x 2(a >0), 得(x -a )2+y 2<a 2, 因此半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa2=12+1π.]4.已知关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,则方程有实根的概率为________.23[设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2},构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为P (A )=3×2-12×223×2=23.]。
课时分层训练(四)A 组 基础达标 (建议用时:30分钟)1.设随机变量X 的概率分布为P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5).(1)求a ; (2)求P ⎝ ⎛⎭⎪⎫X ≥35;(3)求P ⎝ ⎛⎭⎪⎫110<X ≤710. 【导学号:62172328】[解] (1)由概率分布的性质,得P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=a +2a +3a +4a +5a=1,所以a =115.(2)P ⎝ ⎛⎭⎪⎫X ≥35=P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=3×115+4×115+5×115=45.(3)P ⎝ ⎛⎭⎪⎫110<X ≤710=P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35=115+215+315=615=25.2.一袋中装有10个大小相同的黑球和白球,已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的概率分布.[解] (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-xC 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,P (X =k )=C k 5C 3-k 5C 310,k =0,1,2,3.于是可得其概率分布为3.(2017·南京模拟)十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X的概率分布.[解](1)个位数是5的“三位递增数”有125,135,145,235,245,345.(2)由题意知,全部“三位递增数”的个数为C39=84,随机变量X的取值为:0,-1,1,因此P(X=0)=C38C39=23,P(X=-1)=C24C39=114,P(X=1)=1-114-23=1142.所以X的概率分布为4.盒内有大小相同的9个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.(1)求取出的3个球中至少有一个红球的概率;(2)求取出的3个球得分之和恰好为1分的概率;(3)设ξ为取出的3个球中白色球的个数,求ξ的概率分布.【导学号:62172329】[解](1)P=1-C37C39=712.(2)记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,则P(B+C)=P(B)+P(C)=C12C23C39+C22C14C39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布,P(ξ=k)=C k3C3-k6C39,k=0,1,2,3.故P(ξ=0)=C36C39=521,P(ξ=1)=C13C26C39=1528,P(ξ=2)=C23C16C39=314,P(ξ=3)=C33C39=184,ξ的概率分布为:(建议用时:15分钟)1.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,求随机变量ξ的概率分布.[解]若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C23对相交棱,因此P(ξ=0)=8C23C212=8×366=411.若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P(ξ=2)=6C212=111,于是P(ξ=1)=1-P(ξ=0)-P(ξ=2)=1-411-111=611,所以随机变量ξ的概率分布是2.300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回地每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(1)求1名顾客摸球3次停止摸奖的概率;(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的概率分布.[解](1)设“1名顾客摸球3次停止摸奖”为事件A,则P(A)=A23A34=14,故1名顾客摸球3次停止摸球的概率为1 4.(2)随机变量X的所有取值为0,5,10,15,20.P(X=0)=14,P(X=5)=2A24=16,P(X=10)=1A24+A22A34=16,P(X=15)=C12·A22A34=16,P(X=20)=A33A44=14.所以,随机变量X的概率分布为3.x+y=6),乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其他区别).若从甲箱中任取2个球,从乙箱中任取1个球.(1)记取出的3个球的颜色全不相同的概率为P,求当P取得最大值时x,y 的值;(2)当x=2时,求取出的3个球中红球个数ξ的概率分布.[解](1)由题意知P=C1x C1y C11C26C14=xy60≤160⎝⎛⎭⎪⎫x+y22=320,当且仅当x=y时等号成立,所以,当P取得最大值时x=y=3.(2)当x=2时,即甲箱中有2个红球与4个白球,所以ξ的所有可能取值为0,1,2,3.则P(ξ=0)=C24C12C26C14=15,P(ξ=1)=C12C14C12+C24C12C26C14=715,P(ξ=2)=C22C12+C12C14C12C26C14=310,P(ξ=3)=C22C12C26C14=130.所以红球个数ξ的概率分布为4.PM2.5入肺颗粒物.根据现行国家标准GB3 095—2 012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的概率分布.[解](1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则P(A)=C13C27C310=2140.(2)依据条件,ξ服从超几何分布,其中N=10,M=3,n=3,且随机变量ξ的可能取值为0,1,2,3.P(ξ=k)=C k3C3-k7C310(k=0,1,2,3).∴P(ξ=0)=C03C37C310=724,P(ξ=1)=C13C27C310=2140,P(ξ=2)=C23C17C310=740,P(ξ=3)=C33C07C310=1120.因此ξ的概率分布为。
课时分层训练(六十二) 古典概型A组基础达标(建议用时:30分钟)一、选择题1.(2014·全国卷Ⅰ改编)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为()【导学号:57962464】A.12 B.13C.23D.56C[设两本不同的数学书为a1,a2,1本语文书为b.则在书架上的摆放方法有a1a2b,a1ba2,a2a1b,a2ba1,ba1a2,ba2a1,共6种,其中数学书相邻的有4种.因此2本数学书相邻的概率P=46=23.]2.(2016·北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15 B.25 C.825 D.925B[设另外三名学生分别为丙、丁、戊.从5名学生中随机选出2人,有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共10种情形,其中甲被选中的有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种情形,故甲被选中的概率P=410=25.]3.(2017·北京西城区模拟)一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为()A.112B.512C.712D.56A [先从4个位置中选一个排4,再从剩下的位置中选一个排3,最后剩下的2个位置排1.∴共有4×3×1=12种不同排法. 又卡片排成“1314”只有1种情况, 故所求事件的概率P =112.]4.(2014·全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18 B .38C.58D .78D [4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.]5.如图10-5-3,三行三列的方阵中有九个数a ij (i =1,2,3;j =1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )⎝ ⎛⎭⎪⎫a 11 a 12 a 13a 21 a 22 a 23a 31a 32a 33 图10-5-35A.37 B .47 C.114D .1314D [从九个数中任取三个数的不同取法共有C 39=84(种),因为取出的三个数分别位于不同的行与列的取法共有C 13·C 12·C 11=6(种),所以至少有两个数位于同行或同列的概率为1-684=1314.]二、填空题6.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.16[从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,基本事件共有C 710=720个,记事件“七个数的中位数为6”为事件A.若事件A发生,则6,7,8,9必取,再从0,1,2,3,4,5中任取3个数,有C36种选法.故所求概率P(A)=C36720=16.]7.(2016·四川高考)从2,3,8,9中任取两个不同的数字,分别记为a,b,则log a b 为整数的概率是________.16[从2,3,8,9中任取两个不同的数字,分别记为a,b,则有2,3;2,8;2,9;3,8;3,9;8,9;3,2;8,2;9,2;8,3;9,3;9,8,共12种取法,其中log a b为整数的有(2,8),(3,9)两种,故P=212=16.]8.从n个正整数1,2,3,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.8[因为5=1+4=2+3,所以2C2n=114,解得n=8(舍去n=-7).]三、解答题9.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.[解](1)所有可能的摸出结果是{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}. 5分(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.12分10.(2017·云南昆明检测)一个盒子里装有若干个均匀的红球和白球,每个球被取到的概率相等.若从盒子里随机取一个球,取到的球是红球的概率为13;若一次从盒子里随机取两个球,取到的球至少有一个是白球的概率为1011.(1)该盒子里的红球、白球分别为多少个?(2)若一次从盒子中随机取出3个球,求取到的白球个数不少于红球个数的概率.[解] (1)设该盒子里有红球m 个,有白球n 个, 根据题意得⎩⎪⎨⎪⎧m m +n=13,1-C 2mC 2m +n=1011, 3分解方程组得m =4,n =8, ∴红球4个,白球8个.5分(2)设“从盒子中任取3个球,取到的白球个数不少于红球个数”为事件A ,则P (A )=C 38+C 28·C 14C 312=4255,8分因此,从盒子中任取3个球,取到的白球个数不少于红球个数的概率为4255.12分B 组 能力提升 (建议用时:15分钟)1.(2017·安徽马鞍山模拟)某同学先后投掷一枚质地均匀的骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在直角坐标系xOy 中,以(x ,y )为坐标的点落在直线2x -y =1上的概率为( )【导学号:57962465】A.112B.19C.536D.16A[先后掷两次骰子的结果共6×6=36种.以(x,y)为坐标的点落在直线2x-y=1上的结果有(1,1),(2,3),(3,5),共3种,故所求概率为336=1 12.]2.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.12[从10件产品中取4件,共有C 410种取法,取到1件次品的取法为C13C37种,由古典概型概率计算公式得P=C13C37C410=3×35210=12.]3.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图10-5-4所示,其中茎为十位数,叶为个位数.图10-5-4(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.[解](1)由茎叶图可知,样本数据为17,19,20,21,25,30.则x=16(17+19+20+21+25+30)=22,故样本均值为22.4分(2)日加工零件个数大于样本均值的工人有2名,故优秀工人的频率为26=13. 6分该车间12名工人中优秀工人大约有12×13=4(名),故该车间约有4名优秀工人. 8分(3)记“恰有1名优秀工人”为事件A,其包含的基本事件总数为C14C18=32,所有基本事件的总数为C212=66. 10分由古典概型概率公式,得P(A)=3266=1633.所以恰有1名优秀工人的概率为1633. 12分。
第十章单元测试卷一、选择题(本大题共12小题,每小题5分,共60分.每小题中只有一项符合题目要求)1.运行下图所示框图的相应程序,若输入a,b的值分别为log23和log32,则输出M 的值是( )A.0 B.1C.2 D.-1答案 C解析∵log23>log32,由程序框图可知M=log23×log32+1=2.2.某多媒体电子白板的采购指导价为每台12000元,若一次采购数量达到一定量,则可以享受折扣.某位采购商根据折扣情况设计的程序框图如图所示,若输出的S=864000,则这位采购商一次采购了该电子白板( )A .60台B .70台C .80台D .90台答案 C解析 依题意可得S =⎩⎪⎨⎪⎧Q ·0.85·x x >100 Q ·0.9·x 60<x ≤100Q ·x 0≤x ≤60 ,其中Q =12000,x 表示一次采购的台数.令Q ·0.85·x =864000,得x =144017(舍去),令Q ·0.9·x =864000,得x =80,令Q ·x =864000,得x =72(舍去).所以这位采购商一次采购了80台电子白板.3.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据上表提供的数据,求出y 关于x 的线性回归方程为y =0.7x +0.35,那么表中t 的值为( )A .3B .3.15C .3.5D .4.5答案 B解析 将x =4代入线性回归方程y ^=0.7x +0.35得 y ^=3.15≈t .4.某学校在校学生2000人,为了迎接“2018年广州亚运会”,学校举行了“迎亚运”跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a :b :c =2:5:3,全校参与登山的人数占总人数的4.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取( )A .15人B .30人C .40人D .45人答案 D解析 由题意,全校参与跑步的人数占总人数的34,高三年级参与跑步的总人数为34×2000×310=450,由分层抽样的概念,得高三年级参与跑步的学生中应抽取110×450=45人,故选D.5.“毒奶粉”事件引起了社会对食品安全的高度重视,各级政府加强了对食品安全的检查力度.某市工商质检局抽派甲、乙两个食品质量检查组到管辖区域内的商店进行食品质量检查.表示甲、乙两个检查组每天检查到的食品种数的茎叶图如图.则甲、乙两个检查组每天检查到的食品种数的中位数的和是 ( )A .56B .57C .58D .59答案 B解析 根据中位数的定义知,甲检查组每天检查到的食品种数的中位数为32,乙检查组每天检查到的食品种数的中位数为25,故甲、乙两个检查组每天检查到的食品种数的中位数的和是32+25=57.选B.6.学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[50,60)的同学有30人,则n 的值为( )A .100B .1000C .90D .900 答案 A解析 支出在[50,60)的同学的频率为0.18×10=0.3,因此n =300.3=100.7.若如图所示的程序框图输出的S 是126,则①处应填( )A .n ≤5B .n ≤6C .n ≤7D .n ≤8答案 B解析 因S =2+22+…+26=126,故①处应填n ≤6.8.(2018·江西文)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:A .y =x -1B .y =x +1C .y =88+12xD .y =176答案 C解析 设y 对x 的线性回归方程为y =bx +a ,因为b =-2× -1 +0× -1 +0×0+0×1+2×1 -2 2+22=12,a =176-12×176=88,所以y 对x 的线性回归方程为y =12x +88.选C.9.已知如图所示的程序框图(未完成).设当箭头a指向①时,输出的结果为s=m,当箭头a指向②时,输出的结果为s=n,则m+n=( )A.30 B.20C.15 D.5答案 B解析(1)当箭头a指向①时,输出s和i的结果如下:s0+1 0+2 0+3 0+4 0+5i 2 3 4 5 6∴s=m=5.(2)当箭头a指向②时,输出s和i的结果如下:s0+1 0+1+2 0+1+2+3 0+1+2+3+4 0+1+2+3+4+5i 2 3 4 5 6∴s=n=1+2+3+4+5=15.于是m+n=20.10.某班有48名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名同学的成绩有误,甲实得80分却记为50分,乙实得70分却记为100分,更正后平均分和方差分别是( )A .70,25B .70,50C .70,1.18D .65,25答案 B解析 易得x 没有改变,x =70,而s 2=148[(x 21+x 22+…+502+1002+…+x 248)-48x 2]=75,s ′2=148[(x 21+x 22+…+802+702+…+x 248)-48x 2]=148[(75×48+48x 2-12500+11300)-48x 2] =75-120048=75-25=50.11.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a 、b 的值分别为( )A .0.27,78B .0.27,83C .2.7,78D .2.7,83答案 A解析 由频率分布直方图知组矩为0.1. 4.3~4.4间的频数为100×0.1×0.1=1. 4.4~4.5间的频数为100×0.1×0.3=3. 又前4组的频数成等比数列,∴公比为3. 从而4.6~4.7间的频数最大,且为1×33=27. ∴a =0.27.根据后6组频数成等差数列,且共有100-13=87人. 设公差d ,则6×27+6×52d =87.∴d =-5,从而b =4×27+4×32(-5)=78. 12.在2018年3月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:y ^=-3.2 x +a (参考公式:回归方程y ^=bx +a ,a =y -b x ),则a =( )A .-24B .35.6C .40.5D .40答案 D解析 价格的平均数是x =9+9.5+10+10.5+115=10,销售量的平均数是y =11+10+8+6+55=8,由y ^=-3.2x +a 知b =-3.2,所以a =y -b x =8+3.2×10=40,故选D.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:918 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________. 答案 0.25解析 随机产生20组数代表20次试验,其中恰含1,2,3,4中的两个数有191,271,932,812,393共5个,根据随机模拟试验结果该运动员三次投篮恰有两次命中的概率为520=0.25.14.2018年3月,十一届全国人大四次会议在北京隆重召开,针对中国的中学教育现状,现场的2500名人大代表对其进行了综合评分,经统计,得到了如图的频率分布直方图.根据频率分布直方图,估计综合评分的平均分为________.答案82.2解析x=65×0.016×10+75×0.024×10+85×0.182×10+95×0.028×10=82.2.15.定义一种新运算“⊗”:S=a⊗b,其运算原理为如图的程序框图所示,则式子5⊗4-3⊗6=________.答案 1解析 由框图可知S =⎩⎪⎨⎪⎧b a +1 ,a ≤ba b +1 ,a >b ,从而可得5⊗4-3⊗6=5×(4+1)-(3+1)×6=1.16.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H 0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K 2≈3.918,经查对临界值表知P (K 2≥3.841)≈0.18.对此,四名同学作出了以下的判断:p :有95%的把握认为“这种血清能起到预防感冒的作用”; q :若某人未使用该血清,那么他在一年中有95%的可能性得感冒; r :这种血清预防感冒的有效率为95%; s :这种血清预防感冒的有效率为5%.则下列结论中,正确结论的序号是________.(把你认为正确的命题序号都填上) ①p ∧綈q ②綈p ∧q ③(綈p ∧綈q )∧(r ∨s ) ④(p ∨綈r )∧(綈q ∨s ) 答案 ①④解析 本题考查了独立性检验的基本思想及常用逻辑用语.由题意,得K 2≈3.918,P (K 2≥3.841)≈0.18,所以,只要第一位同学的判断正确,即有95%的把握认为“这种血清能起到预防感冒的作用”.由真值表知①④为真命题.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(2018·潍坊)某校高一年级共有学生320人.为调查高一年级学生每天晚自习自主支配学习时间(指除了完成老师布置的作业后学生根据自己的需要进行学习的时间)情况,学校采用随机抽样的方法从高一学生中抽取了n 名学生进行问卷调查.根据问卷得到了这n 名学生每天晚自习自主支配学习时间的数据(单位:分钟),按照以下区间分为七组:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70],得到频率分布直方图如图.已知抽取的学生中每天晚自习自主支配学习时间低于20分钟的人数是4人.(1)求n 的值;(2)若高一全体学生平均每天晚自习自主支配学习时间少于45分钟,则学校需要减少作业量.根据以上抽样调查数据,学校是否需要减少作业量?(注:统计方法中,同一组数据常用该组区间的中点值作为代表)解析 (1)由频率分布直方图知第1组和第2组的频率分别是0.02和0.18. 则n ×(0.02+0.18)=4,解得n =50. (2)设第i 组的频率和频数分别是p i 和x i ,由图知p 1=0.02,p 2=0.18,p 3=0.3,p 4=0.4,p 5=0.12,p 6=0.18,p 7=0.02, 则由x i =50×p i 可得x 1=1,x 2=3,x 3=15,x 4=20,x 5=6,x 6=4,x 7=1. 则高一学生每天平均自主支配时间是t -=5x 1+15x 2+25x 3+35x 4+45x 5+55x 6+65x 750=33.6<40.则学校应该想办法适当减少老师的作业布置量.18.(本小题满分12分)某公司欲招聘员工,从1000名报名者中筛选200名参加笔试,按笔试成绩择优取50名面试,再从面试对象中聘用20名员工.(1)求每个报名者能被聘用的概率.(2)随机调查了24名笔试者的成绩如下表所示:(3)公司从聘用的四男a 、b 、c 、d 和二女e 、f 中选派两人参加某项培训 ,则选派结果为一男一女的概率是多少?答案 (1)每个报名者能被聘用的概率为0.02. (2)可以预测面试的切线分数大约为80分. (3)选派结果为一男一女的概率为815.解析 (1)设每个报名者能被聘用的概率为P , 依题意有P =201000=0.02.(2)设24名笔试者中有x 名可以进入面试,依样本总体可得:50200=x24,解得x =6.从表中可知面试的切线分数大约为80分.(3)从聘用的四男、二女中选派两人的基本事件有:(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d )(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f )共15种.选派一男一女参加某项培训的种数有:(a ,e ),(a ,f ),(b ,e ),(b ,f ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),共8种,所以选派结果为一男一女的概率为815.19.(本小题满分12分)衡水重点中学的高二(一)班有男同学45名,女同学15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项试验,方法是先从小组里选出1名同学做试验,该同学做完后,再从小组内剩下的同学中选出一名同学做试验,求选出的两名同学中恰有一名女同学的概率;(3)试验结束后,第一次做试验的同学得到的试验数据为68,70,71,72,74,第二次做试验的同学得到的试验数据为69,70,70,72,74,请问哪位同学的试验更稳定?并说明理由.解析 (1)由题意知,P =460=115,∴某同学被抽到的概率为115.设课外兴趣小组中有x 名男同学,则4560=x4,解得x =3,∴男、女同学的人数分别为3,1.(2)把3名男同学和1名女同学记为a 1,a 2,a 3,b ,则选取两名同学的基本事件有(a 1,a 2),(a 1,a 3),(a 1,b ),(a 2,a 1),(a 2,a 3),(a 2,b ),(a 3,a 1),(a 3,a 2),(a 3,b ),(b ,a 1),(b ,a 2),(b ,a 3),共12种,其中有一名女同学的情况有6种.∴选出的两名同学中恰有一名女同学的概率为P =612=12.(3)x 1=68+70+71+72+745=71,x 2=69+70+70+72+745=71.s 21= 68-71 2+…+ 74-71 25=4,s 22= 69-71 2+…+ 74-71 25=3.2.∴第二次做试验的同学的试验更稳定.20.(本小题满分12分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数.满分100分,按照大于等于80分为优秀,小于80分为合格.为了解学生的在该维度的测评结果,从毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表.已知在该班随机抽取1人测评结果为优秀的概率为3.(1)请完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由.解析 (1)(2)K 2=60× 6×18-22×14 240×20×32×28≈3.348>2.718,由于P (K 2>2.718)=0.10,因此在犯错误的概率不超过0.10的前提下认为“性别与测评结果有关系”. (3)由(1)可知性别很有可能对是否优秀有影响,所以采用分层抽样按男女生比例抽取一定的学生,这样得到的结果对学生在该维度的总体表现情况会比较符合实际情况.21.(本小题满分12分)为了分析某个高三学生的学习态度,对其下一阶段的学习提供指导性建议,现对他前7次考试的数学成绩x 、物理成绩y 进行分析.下面是该生7次考试的成绩.(1)(2)已知该生的物理成绩y 与数学成绩x 是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?解析 (1)∵x -=100+-12-17+17-8+8+127=100,y -=100+-6-9+8-4+4+1+67=100,∴s 2数学=9947=142,∴s 2物理=2507,从而s 2数学>s 2物理,∴物理成绩更稳定.(2)由于x 与y 之间具有线性相关关系,根据回归系数公式得到b =497994=0.5,a =100-0.5×100=50,∴线性回归方程为y ^=0.5x +50. 当y =115时,x =130.22.(本小题满分12分)2018年3月,日本发生了9.0级地震,地震引发了海啸及核泄漏.某国际组织计划派出12名心理专家和18名核专家赴日本工作,临行前对这30名专家进行了总分为1000分的综合素质测评,测评成绩用茎叶图进行了记录,如图(单位:分).规定测评成绩在976分以上(包括976分)为“尖端专家”,测评成绩在976分以下为“高级专家”,且只有核专家中的“尖端专家”才可以独立开展工作.这些专家先飞抵日本的城市E ,再分乘三辆汽车到达工作地点福岛县.已知从城市E 到福岛县有三条公路,因地震破坏了道路,汽车可能受阻.据了解:汽车走公路Ⅰ或Ⅱ顺利到达的概率都为910;走公路Ⅲ顺利到达的概率为25,甲、乙、丙三辆车分别走公路Ⅰ、Ⅱ、Ⅲ,且三辆汽车是否顺利到达相互之间没有影响.(1)如果用分层抽样的方法从“尖端专家”和“高级专家”中选取6人,再从这6人中选2人,那么至少有一人是“尖端专家”的概率是多少?(2)求至少有两辆汽车顺利到达福岛县的概率.解析 (1)根据茎叶图,有“尖端专家”10人,“高级专家”20人,每个人被抽中的概率是630=15,所以用分层抽样的方法,选出的“尖端专家”有10×15=2人,“高级专家”有20×15=4人.用事件A 表示“至少有一名‘尖端专家’被选中”,则它的对立事件A -表示“没有一名‘尖端专家’被选中”,则P (A )=1-C 24C 26=1-615=35.因此,至少有一人是“尖端专家”的概率是35.(2)记“汽车甲走公路3顺利到达”为事件A ,”汽车乙走公路Ⅱ顺利到达”为事件B ,“汽车丙走公路Ⅲ顺利到达”为事件C .则至少有两辆汽车顺利到达福岛县的概率P =P (AB C -)+P (A B -C )+P (A -BC )+P (ABC )=910×910×35+910×110×25+110×910×25+910×910×25 =441500.1.某次测试成绩满分为150分,设n 名学生的得分分别为a 1,a 2,…,a n (a i ∈N,1≤i ≤n ),b k (1≤k ≤150)为n 名学生中得分至少为k 分的人数.记M 为n 名学生的平均成绩,则( )A .M =b 1+b 2+…+b 150nB .M =b 1+b 2+…+b 150150C .M >b 1+b 2+…+b 150nD .M >b 1+b 2+…+b 150150答案 A解析 依题意得,这n 名学生的成绩中,得1分的人数为b 1-b 2;得2分的人数为b 2-b 3;得3分的人数为b 3-b 4;……得148分的人数为b 148-b 149;得149分的人数为b 149-b 150;得150分的人数为b 150,因此在这次测试中所有的学生总成绩为(b 1-b 2)+2(b 2-b 3)+3(b 3-b 4)+…+148(b 148-b 149)+149(b 149-b 150)+150b 150=b 1+b 2+…+b 148+b 149+b 150,M =b 1+b 2+b 3+…+b 148+b 149+b 150n,选A.2.假设佛罗里达州某镇有居民2400人,其中白人有1200人,黑人800人,华人200人,其他有色人种200人,为了调查奥马巴政府在该镇的支持率,现从中选取一个容量为120人的样本,按分层抽样,白人、黑人、华人、其他有色人种分别抽取的人数( )A .60,40,10,10B .65,35,10,10C .60,30,15,15D .55,35,15,15答案 A 3.若某程序框图如图所示,则该程序运行后输出的B 等于( ) A .7 B .15 C .31 D .63 答案 D解析根据程序框图可得,本算法运行5次,每次将2B+1的值再赋给B,故B的值分别3,7,15,31,63,故选D.4.在第29届北京奥运会上,中国健儿取得了51金、21银、28铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2548名男性中有1560名持反对意见,2452名女性中有1200名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体育强国之列”是否有关系时,用什么方法最有说服力( )A.平均数与方差B.回归直线方程C.独立性检验D.概率答案 C解析由于参加调查的公民按性别被分成了两组,而且每一组又被分成了两种情况,认为有关与无关,符合2×2列联表的要求,故用独立性检验最有说服力.5.给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),则在图中判断框中①处和执行框中的②处应填的语句分别为( )A.①i>30,②p=p+iB.①i<30,②p=p+iC.①i≤30,②p=p+iD .①i ≥30,②p =p +i 答案 A解析 因为是求30个数的和,故循环体应执行30次,其中i 是计数变量,因为判断框内的条件就是限制计数变量i 的,这个流程图中判断框的向下的出口是不满足条件继续执行循环,故应为i >30.算法中的变量p 实质是表示参与求和的各个数,由于它也是变化的,且满足第i 个数比其前一个数大i -1,第i +1个数比其前一个数大i ,故应有p =p +i .故①处应填i >30;②处应填p =p +i .6.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图),已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在(80,100)之间的学生人数是( )A .32B .27C .24D .33答案 D解析 80~100间两个长方形高占总体的比例: 5+62+3+5+6+3+1=1120即为频数之比.∴x 60=1120.∴x =33,故选D. 7.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y =bx +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.答案 68解析 x =10,y =40,回归方程过点(x ,y ), ∴40=-2×10+a . ∴a =60.∴y ^=-2x +60.令x =-4,∴y ^=(-2)×(-4)+60=68.8.一个容量为20的样本数据,分组后,组别与频数如下:答案 60% 解析3+4+520=35=60%. 9.下面程序框图,输出的结果是________.答案12010解析 如果把第n 个a 值记作a n ,第1次运行后得到a 2=a 1a 1+1,第2次运行后得到a 3=a 2a 2+1,……,第n 次运行后得到a n +1=a na n +1,则这个程序框图的功能是计算数列{a n }的第2018项.将a n +1=a na n +1变形为1a n +1=1a n +1,故数列{1a n}是首项为1,公差为1的等差数列,故1a n=n,即a n=1n,故输出结果是12010.10.高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:(1)根据上面图表,①②③④处的数值分别为________、________、________、________;(2)在所给的坐标系中画出[85,155]的频率分布直方图;(3)根据题中信息估计总体平均数,并估计总体落在[129,155]中的频率.答案(1)1 0.025 0.1 1(2)频率分布直方图如图.(3)总体平均数约为122.5,总体落在[129,155]上的频率约为0.315.解析(1)随机抽出的人数为120.300=40,由统计知识知④处应填1;③处应填440=0.1;②处应填1-0.180-0.1-0.275-0.300-0.200-0.180=0.025;①处应填0.025×40=1.(3)利用组中值算得平均数:90×0.025+100×0.18+110×0.2+120×0.3+130×0.275+140×0.1+150×0.18=122.5;总体落在[129,155]上的频率为610×0.275+0.1+0.18=0.315.11.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)解析 (1)积极参加班级工作的学生有24人,总人数为50人,概率为50=25;不太主动参加班级工作且学习积极性一般的学生19人,概率为1950.(2)K 2=50× 18×19-6×7 225×25×24×26=15013≈11.5,∵K 2>6.635,∴有99%的把握说学习积极性与对待班级工作的态度有关系.12.设计算法求1+13+15+……+119的值,画出程序框图,并编写程序.解析程序框图 程序:S =0n =1i =1WHILE i<=10S =S +1/n n =n +2i =i +1WEND PRINT END13.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y ^=bx +a ;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:b =∑i =1nx i -xy i -y∑i =1nx i -x 2,a =y -b x .)解析 (1)设抽到相邻两个月的数据为事件A ,因为从6组数据中选取2组数据共有C 26=15种情况,每种情况都是等可能出现的,其中,抽到相邻两个月的数据的情况有5种,所以P (A )=515=13.(2)由表中数据求得x =11,y =24, 由参考公式可得b =187,再由a =y -b x 求得a =-307,所以y 关于x 的线性回归方程为y ^=187x -307.(3)当x =10时,y ^=1507,|1507-22|=47<2;同样,当x =6时,y ^=787,|787-12|=67<2.所以,该小组所得线性回归方程是理想的.14.(2018·广东揭阳一模)为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为5.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢打篮球与性别有关?说明你的理由;(3)已知喜欢打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.下面的临界值表供参考:[参考公式K2=a+b c+d a+c b+d,其中n=a+b+c+d]解析(1)设喜欢打篮球的学生共有x人,则x50=35,所以x=30.列联表补充如下:(2)∵K2=30×20×25×25≈8.333>7.879,∴有99.5%的把握认为喜欢打篮球与性别有关.(3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件如下:(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2),(A4,B1,C1),(A4,B1,C2),(A4,B2,C1),(A4,B2,C2),(A4,B3,C1),(A4,B3,C2),(A5,B1,C1),(A5,B1,C2),(A5,B2,C1),(A5,B2,C2),(A5,B3,C1),(A5,B3,C2),基本事件的总数为30.用M 表示“B 1,C 1不全被选中”这一事件,则其对立事件M -表示“B 1,C 1全被选中”这一事件,由于M -由(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1),(A 4,B 1,C 1),(A 5,B 1,C 1)共5个基本事件组成,所以P (M -)=530=16.由对立事件的概率公式得P (M )=1-P (M -)=1-16=56.15.随着人们低碳出行意识的提高,低碳节能小排量(小于或等于1.3 L)汽车越来越受私家购买者青睐.工信部为了比较A 、B 两种小排量汽车的100 km 综合工况油耗,各随机选100辆汽车进行综合工况油耗检测,表1和表2分别是汽车A 和B 的综合工况检测的结果.表1:A 种汽车综合工况油耗的频数分布表(2)完成下面2×2列联表,并回答是否有95%的把握认为“A种汽车与B种汽车的100 km综合工况油耗有差异”;解析(1)如图,频率分布直方图是:可以看出:A 种汽车的100 km 综合工况油耗中位数在5.7 L 的地方,B 种汽车的100 km 综合工况油耗中位数在5.6 L 至5.7 L 之间,所以A 种汽车的100 km 综合工况油耗中位数稍大一些.(2)K 2=200 70×45-30×55 2125×75×100×100=4.8>3.841,因此,有95%的把握认为“A 种汽车比B 种汽车的100 km 综合工况油耗有差异”. (3)每辆A 种汽车的100 km 平均综合工况油耗是 x -=5.3×0.1+5.5×0.2+5.7×0.4+5.9×0.3=5.68.因此,1000辆A 种汽车都行驶100 km 的综合工况油耗总量约为5680 L.。
第十章 圆锥曲线考点1 椭圆及其性质1.(2016·新课标全国Ⅰ,5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.341.解析 如图,由题意得,BF =a ,OF =c ,OB =b ,OD =14×2b =12b .在Rt△OFB 中,|OF|×|OB|=|BF|×|OD|,即cb =a·12b,代入解得a2=4c2,故椭圆离心率e =c a =12,故选B. 答案 B2.(2016·新课标全国Ⅲ,12)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.342.解析 设M (-c ,m ),则E ⎝⎛⎭⎪⎫0,am a -c ,OE 的中点为D ,则D ⎝ ⎛⎭⎪⎫0,am 2(a -c ),又B ,D ,M三点共线,所以m 2(a -c )=m a +c ,a =3c ,e =13.答案 A3.(2015·广东,8)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A.2B.3C.4D.9 3.解析 由题意知25-m 2=16,解得m 2=9,又m >0,所以m =3. 答案 B4.(2015·福建,11)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤0,32 B.⎝ ⎛⎦⎥⎤0,34 C.⎣⎢⎡⎭⎪⎫32,1 D.⎣⎢⎡⎭⎪⎫34,14.解析 左焦点F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4,∴|AF |+|AF 0|=4,∴a =2. 设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca=c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎥⎤0,32,故选A. 答案 A5.(2014·大纲全国,9)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点.若△AF 1B 的周长为43,则C 的方程为( ) A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=15.解析 由已知e =ca =33, 又△AF 1B 的周长为|AF 1|+|AB |+|BF 1|=|AF 1|+(|AF 2|+|BF 2|)+|BF 1|=(|AF 1|+|AF 2|)+(|BF 2|+|BF 1|)=2a +2a =43,解得a =3,故c =1,b =a 2-c 2=2, 故所求的椭圆方程为x 23+y 22=1,故选A.答案 A6.(2015·浙江,15)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c,0)关于直线y =bcx 的对称点Q 在椭圆上,则椭圆的离心率是________.6.解析 设Q (x 0,y 0),则FQ 的中点坐标⎝ ⎛⎭⎪⎫x 0+c 2,y 02,k FQ =y 0x 0-c ,依题意⎩⎪⎨⎪⎧y 02=b c ·x 0+c2,y 0x 0-c·bc=-1,解得⎩⎪⎨⎪⎧x 0=c (2c 2-a 2)a 2,y 0=2bc2a 2,又因为(x 0,y 0)在椭圆上,所以c 2(2c 2-a 2)2a 6+4c 4a 4=1,令e =ca,则4e 6+e 2=1,∴离心率e =22. 答案 227.(2014·江西,14)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 7.解析 由题意知F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x =c ,由椭圆的对称性可设它与椭圆的交点为A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝ ⎛⎭⎪⎫c ,-b 2a .因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,所以点D 的坐标为⎝⎛⎭⎪⎫0,-b 22a ,又AD ⊥F 1B ,所以k AD ·kF 1B =-1,即b 2a -⎝ ⎛⎭⎪⎫-b 22a c -0×-b 2a -0c -(-c )=-1,整理得3b 2=2ac ,所以3(a 2-c 2)=2ac ,又e =c a,0<e <1,所以3e 2+2e -3=0,解得e =33(e =-3舍去). 答案 338.(2015·新课标全国Ⅱ,20)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C上.(1)求C 的方程;(2)直线l 不经过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值.8.解 (1)由题意得a 2-b 2a =22,4a 2+2b2=1,解得a 2=8,b 2=4.所以C 的方程为x 28+y 24=1.(2)设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得(2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.9.(2015·安徽,20)设椭圆E 的方程为x 2a 2+y 2b2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB . 9.(1)解 由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,又k OM =510,从而b 2a =510. 进而a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明 由N 是AC 的中点知,点N 的坐标为⎝ ⎛⎭⎪⎫a2,-b 2,可得NM →=⎝ ⎛⎭⎪⎫a 6,5b 6,又AB →=(-a ,b ),从而有AB →·NM →=-16a 2+56b 2=16(5b 2-a 2).由(1)的计算结果可知a 2=5b 2,所以AB →·NM →=0,故MN ⊥AB .10.(2015·陕西,20)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0),经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.10.(1)解 由题设知c a =22,b =1,结合a 2=b 2+c 2,解得a =2,所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0, 由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.11.(2015·重庆,21)如图,椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1. (1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程; (2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.11.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2,因此2c =|F 1F 2|=|PF 1|2+|PF 2|2=(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1.故所求椭圆的标准方程为x 24+y 2=1.(2)如图,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得|QF 1|=|PF 1|2+|PQ |2=1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a ,进而|PF 1|+|PQ |+|QF 1|=4a , 于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2,故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎝ ⎛⎭⎪⎫2a (λ+1+λ2-1)1+λ+1+λ22=4c 2, 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝ ⎛⎭⎪⎫1t -142+12.由34≤λ<43,并注意到1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13.进而12<e 2≤59,即22<e ≤53.12.(2014·新课标全国Ⅱ,20)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .12.解 (1)根据c =a 2-b 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,c a =-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c .y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1.解得a =7,b 2=4a =28,故a =7,b = 2 7.13.(2014·四川,20)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63.(1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.13.解 (1)由已知可得,ca =63,c =2,所以a = 6. 又由a 2=b 2+c 2,解得b =2,所以椭圆C 的标准方程是x 26+y 22=1.(2)设T 点的坐标为(-3,m ),则直线TF 的斜率k TF =m -0-3-(-2)=-m .当m ≠0时,直线PQ 的斜率k PQ =1m,直线PQ 的方程是x =my -2.当m =0时,直线PQ 的方程是x =-2,也符合x =my -2的形式. 设P (x 1,y 1),Q (x 2,y 2),将直线PQ 的方程与椭圆C 的方程联立,得⎩⎪⎨⎪⎧x =my -2,x 26+y22=1.消去x ,得(m 2+3)y 2-4my -2=0, 其判别式Δ=16m 2+8(m 2+3)>0. 所以y 1+y 2=4m m 2+3,y 1y 2=-2m 2+3,x 1+x 2=m (y 1+y 2)-4=-12m 2+3. 因为四边形OPTQ 是平行四边形,所以OP →=QT →,即(x 1,y 1)=(-3-x 2,m -y 2).所以⎩⎪⎨⎪⎧x 1+x 2=-12m 2+3=-3,y 1+y 2=4mm 2+3=m .解得m =±1.此时,四边形OPTQ 的面积S OPTQ =2S △OPQ =2×12·|OF |·|y 1-y 2|=2⎝ ⎛⎭⎪⎫4m m 2+32-4·-2m 2+3=2 3.14.(2014·安徽,21)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |. (1)若|AB |=4,△ABF 2的周长为16,求|AF 2|; (2)若cos∠AF 2B =35,求椭圆E 的离心率.14.解 (1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1. 因为△ABF 2的周长为16,所以由椭圆定义可得4a =16, |AF 1|+|AF 2|=2a =8.故|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k .由椭圆定义可得,|AF 2|=2a -3k ,|BF 2|=2a -k .在△ABF 2中,由余弦定理可得,|AB |2=|AF 2|2+|BF 2|2-2|AF 2|·|BF 2|cos ∠AF 2B , 即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )·(2a -k ).化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k . 于是有|AF 2|=3k =|AF 1|,|BF 2|=5k .因此|BF 2|2=|F 2A |2+|AB |2,可得F 1A ⊥F 2A ,故△AF 1F 2为等腰直角三角形.从而c =22a , 所以椭圆E 的离心率e =c a =22.考点2 双曲线1.(2015·安徽,6)下列双曲线中,渐近线方程为y =±2x 的是( ) A.x 2-y 24=1 B.x 24-y 2=1 C.x 2-y 22=1 D.x 22-y 2=11.解析 由双曲线渐近线方程的求法知;双曲线x 2-y 24=1的渐近线方程为y =±2x ,故选A.答案 A2.(2015·天津,5)已知双曲线x 2a 2-y 2b2=1(a >0,b >0 )的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( )A.x 29-y 213=1B.x 213-y 29=1C.x 23-y 2=1 D.x 2-y 23=12.解析 双曲线x 2a 2-y 2b2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±b ax ,由题意得2ba 2+b 2=3,②联立①②解得b =3,a =1,所求双曲线的方程为x 2-y 23=1,选D.答案 D3.(2015·湖南,6)若双曲线x 2a 2-y 2b2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A.73 B.54 C.43 D.533.解析 由条件知y =-b ax 过点(3,-4),∴3b a=4,即3b =4a ,∴9b 2=16a 2,∴9c 2-9a 2=16a 2,∴25a 2=9c 2,∴e =53.故选D.答案D4.(2015·四川,7)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( )A.433B.2 3C.6D.4 34.解析 右焦点F (2,0),过F 与x 轴垂直的直线为x =2,渐近线方程为x 2-y 23=0,将x =2代入渐近线方程得y 2=12,∴y =±23,∴A (2,23),B (2,-23),∴|AB |=4 3. 答案 D5.(2015·重庆,9)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A.±12B.±22C.±1D.± 25.解析 双曲线x 2a 2-y 2b2=1的右焦点F (c ,0),左、右顶点分别为A 1(-a ,0),A 2(a ,0),易求B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝⎛⎭⎪⎫c ,-b 2a ,则2A C k =b 2ac +a ,1A B k =b 2aa -c,又A 1B 与A 2C 垂直,则有1A B k ·2A C k =-1,即b 2ac +a ·b 2aa -c=-1,∴b 4a 2c 2-a2=1,∴a 2=b 2,即a =b ,∴渐近线斜率k =±b a=±1. 答案 C6.(2015·湖北,9)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A.对任意的a ,b ,e 1<e 2B.当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C.对任意的a ,b ,e 1>e 2D.当a >b 时,e 1>e 2;当a <b 时,e 1<e 2 6.解析e 1=1+b 2a 2,e 2=1+(b +m )2(a +m )2.不妨令e 1<e 2,化简得b a <b +m a +m(m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +m a +m,即e 1<e 2.故选B. 答案 B7.(2014·新课标全国Ⅰ,4)已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A.2B.62 C.52D.1 7.解析 由双曲线方程知b 2=3,从而c 2=a 2+3,又e =2,因此c 2a 2=a 2+3a 2=4,又a >0,所以a =1,故选D.答案 D8.(2014·重庆,8)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为( ) A. 2 B.15 C.4 D.178.解析 根据双曲线的定义,得||PF 1|-|PF 2||=2a .又(|PF 1|-|PF 2|)2=b 2-3ab ,所以4a2=b 2-3ab ,即(a +b )(4a -b )=0,又a +b ≠0,所以b =4a ,所以e =ca=1+⎝ ⎛⎭⎪⎫b a 2=1+42=17.答案 D9.(2014·广东,8)若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等9.解析 若0<k <5,则5-k >0,16-k >0,故方程x 216-y 25-k =1表示焦点在x 轴上的双曲线,且实半轴的长为4,虚半轴的长为5-k ,焦距2c =221-k ,离心率e =21-k4;同理方程x 216-k -y 25=1也表示焦点在x 轴上的双曲线,实半轴的长为16-k ,虚半轴的长为5,焦距2c =221-k ,离心率e =21-k16-k.可知两曲线的焦距相等.故选D. 答案D10.(2014·天津,6)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x+10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y225=110.解析 由题意可得b a=2,c =5,所以c 2=a 2+b 2=5a 2=25,解得a 2=5,b 2=20,则所求双曲线的方程为x 25-y 220=1.答案 A11.(2014·江西,9)过双曲线C :x 2a 2-y 2b2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1B.x 27-y 29=1C.x 28-y 28=1D.x 212-y 24=111.解析 设双曲线的右焦点为F ,则F (c ,0)(其中c =a 2+b 2),且c =|OF |=r =4,不妨将直线x =a 代入双曲线的一条渐近线方程y =bax ,得y =b ,则A (a ,b ).由|FA |=r =4,得(a -4)2+b 2=4,即a 2-8a +16+b 2=16,所以c 2-8a =0,所以8a =c 2=42,解得a =2,所以b 2=c 2-a 2=16-4=12,所以所求双曲线的方程为x 24-y 212=1.答案 A12.(2016·北京,12)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________.12.解析 由2x +y =0得y =-2x ,所以b a=2.又c =5,a 2+b 2=c 2,解得a =1,b =2. 答案 1 213.(2016·山东,14)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0).若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________. 13.解析 由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b2a=3×2c .又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝ ⎛⎭⎪⎫c a 2-3c a-2=0,即2e 2-3e -2=0,解得e =2.答案 214.(2016·浙江,13)设双曲线x 2-y 23=1的左、焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.14.解析 如图,由已知可得a =1,b =3,c =2,从而|F1F 2|=4,由对称性不妨设P 在右支上,设|PF 2|=m ,则|PF 1|=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2, 解得-1+7<m <3,又|PF 1|+|PF 2|=2m +2,∴27<2m +2<8. 答案 (27,8)15.(2015·新课标全国Ⅱ,15)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为______________.15.解析 由双曲线渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y 2=1. 答案 x 24-y 2=116.(2015·北京,12)已知(2,0)是双曲线x 2-y 2b2=1(b >0)的一个焦点,则b =________.16.解析 由题意:c =2,a =1,由c 2=a 2+b 2.得b 2=4-1=3,所以b = 3. 答案 317.(2015·新课标全国Ⅰ,16)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________. 17. 解析 设左焦点为F 1,|PF |-|PF 1|=2a =2,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|,△APF 周长最小即为|AP |+|PF 1|最小,当A 、P 、F 1在一条直线时最小,过AF 1的直线方程为x -3+y66=1.与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S =S △AF 1F -S △F 1PF =12 6.答案 12 618.(2015·山东,15)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.18.解析 把x =2a 代入x 2a 2-y 2b2 =1得y =±3b .不妨取P (2a ,-3b ).又∵双曲线右焦点F 2的坐标为(c ,0), ∴kF 2P =3b c -2a .由题意,得3b c -2a =b a.∴(2+3)a =c .∴双曲线C 的离心率为e =ca=2+ 3. 答案 2+ 3考点3 抛物线1.(2016·新课标全国Ⅱ,5)设F 为抛物线C :y 2=4x 的焦点,曲线y =k x(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )A.12B.1C.32D.21.解析 由题可知抛物线的焦点坐标为(1,0),由PF ⊥x 轴知,|PF |=2,所以P 点的坐标为(1,2),代入曲线y =kx(k >0)得k =2,故选D. 答案D2.(2016·四川,3)抛物线y 2=4x 的焦点坐标是( )A.(0,2)B.(0,1)C.(2,0)D.(1,0)2.解析 ∵对于抛物线y 2=ax ,其焦点坐标为⎝ ⎛⎭⎪⎫a4,0,∴y 2=4x ,则为(1,0).答案 D3.(2015·陕西,3)已知抛物线y 2=2px (p >0)的准线经过点(-1,1),则该抛物线焦点坐标为( )A.(-1,0)B.(1,0)C.(0,-1)D.(0,1)3.解析 由于抛物线y 2=2px (p >0)的准线方程为x =-p 2,由题意得-p2=-1,p =2,焦点坐标为()1,0,故选B. 答案 B4.(2015·新课标全国Ⅰ,5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( ) A.3 B.6 C.9 D.124.解析 因为e =c a =12,y 2=8x 的焦点为(2,0),所以c =2,a =4,故椭圆方程为x 216+y 212=1,将x =-2代入椭圆方程,解得y =±3,所以|AB |=6. 答案 B5.(2014·新课标全国Ⅱ,10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) A.303B.6C.12D.7 3 5.解析 抛物线C :y 2=3x 的焦点为F ⎝ ⎛⎭⎪⎫34,0,所以AB 所在的直线方程为y =33⎝ ⎛⎭⎪⎫x -34,将y =33⎝ ⎛⎭⎪⎫x -34代入y 2=3x ,消去y 整理得x 2-212x +916=0.设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=212,由抛物线的定义可得|AB |=x 1+x 2+p =212+32=12,故选C.答案 C6.(2014·安徽,3)抛物线y =14x 2的准线方程是( )A.y =-1B.y =-2C.x =-1D.x =-26.解析 由y =14x 2得x 2=4y ,焦点在y 轴正半轴上,且2p =4,即p =2,因此准线方程为y =-p 2=-1.故选A. 答案 A7.(2014·四川,10)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( ) A.2 B.3 C.1728D.107.解析 如图,可设A (m 2,m ),B (n 2,n ),其中m >0,n <0,则OA →=(m 2,m ),OB →=(n 2,n ),OA →·OB →=m 2n 2+mn =2,解得mn =1(舍)或mn =-2.∴l AB :(m 2-n 2)(y -n )=(m -n )(x -n 2),即(m +n )(y -n )=x -n 2,令y =0,解得x =-mn =2,∴C (2,0).S △AOB =S △AOC +S △BOC =12×2×m +12×2×(-n )=m -n ,S △AOF =12×14×m =18m ,则S AOB +S △AOF =m -n +18m =98m -n =98m +2m≥298m ·2m =3,当且仅当98m =2m ,即m =43时等号成立.故△ABO 与△AFO 面积之和的最小值为3. 答案 B8.(2014·辽宁,8)已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A.-43B.-1C.-34D.-128.解析 由点A (-2,3)在抛物线C :y 2=2px 的准线上,得焦点F (2,0),∴k AF =3-2-2= -34,故选C. 答案 C9.(2014·新课标全国Ⅰ,10)已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( ) A.1 B.2 C.4 D.89.解析 由题意知抛物线的准线为x =-14.因为|AF |=54x 0,根据抛物线的定义可得x 0+14=|AF |=54x 0,解得x 0=1,故选A.答案 A10.(2014·上海,4)若抛物线y 2=2px 的焦点与椭圆x 29+y 25=1的右焦点重合,则该抛物线的准线方程为________.10.解析 ∵c 2=9-5=4,∴c =2.∴椭圆x 29+y 25=1的右焦点为(2,0),∴p2=2,即抛物线的准线方程为x =-2. 答案 x =-211.(2014·湖南,14)平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.11.解析 设机器人为A (x ,y ),依题意得点A 在以F (1,0)为焦点,x =-1为准线的抛物线上,该抛物线的标准方程为y 2=4x .过点P (-1,0),斜率为k 的直线为y =k (x +1).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +k ,得ky 2-4y +4k =0. 当k =0时,显然不符合题意;当k ≠0时,依题意得Δ=(-4)2-4k ·4k <0,化简得k 2-1>0,解得k >1或k <-1,因此k 的取值范围为(-∞,-1)∪(1,+∞). 答案 (-∞,-1)∪(1,+∞)12.(2016·新课标全国Ⅰ,20)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H . (1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其它公共点?说明理由.12.解 (1)由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t , 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,ON 的方程为y =p t x ,代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p ,因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其它公共点,理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t ,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.13.(2016·浙江,19)如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.13.解 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y 1y 2=-4,所以,B ⎝ ⎛⎭⎪⎫1t 2,-2t.又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t .所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2tt 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).14.(2015·浙江,19)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点. (1)求点A ,B 的坐标; (2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.14.解 (1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ).由⎩⎪⎨⎪⎧y =k (x -t ),y =14x 2消去y ,整理得:x 2-4kx +4kt =0,由于直线PA 与抛物线相切,得k =t ,因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知:点B ,O 关于直线PD 对称,故⎩⎪⎨⎪⎧y 02=-x 02t +1,x 0t -y 0=0. 解得⎩⎪⎨⎪⎧x 0=2t1+t 2,y 0=2t 21+t2.因此,点B 的坐标为⎝ ⎛⎭⎪⎫2t 1+t 2,2t 21+t 2.(2)由(1)知,|AP |=t ·1+t 2和直线PA 的方程tx -y -t 2=0,点B 到直线PA 的距离是d =t 21+t 2,设△PAB 的面积为S (t ),所以S (t )=12|AP |·d =t32.15.(2015·福建,19)已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.15.方法一(1)解 由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明 因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22).由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x得2x 2-5x +2=0,解得x =2或x =12,从而B ⎝ ⎛⎭⎪⎫12,-2. 又G (-1,0),所以k GA =22-02-(-1)=223,k GB =-2-012-(-1)=-223.所以k GA +k GB =0,从而∠AGF =∠BGF ,这表明点F 到直线GA ,GB 的距离相等,故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 法二 (1)同法一.(2)证明 设以点F 为圆心且与直线GA 相切的圆的半径为r .因为点A (2,m )在抛物线E :y 2=4x 上,所以m =±22,由抛物线的对称性,不妨设A (2,22). 由A (2,22),F (1,0)可得直线AF 的方程为y =22(x -1). 由⎩⎨⎧y =22(x -1),y 2=4x得2x 2-5x +2=0.解得x =2或x =12, 从而B ⎝ ⎛⎭⎪⎫12,-2.又G (-1,0),故直线GA 的方程为22x -3y +22=0.从而r =|22+22|8+9=4217.又直线GB 的方程为22x +3y +22=0.所以点F 到直线GB 的距离d =|22+22|8+9=4217=r .这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.16.(2014·浙江,22)已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM →. (1)若|PF →|=3,求点M 的坐标; (2)求△ABP 面积的最大值.16.解 (1)由题意知焦点F (0,1),准线方程为y =-1.设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得到y 0=2,所以P (22,2)或P (-22,2).由PF →=3FM →,分别得M ⎝ ⎛⎭⎪⎫-223,23或M ⎝ ⎛⎭⎪⎫223,23.(2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0).由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0.于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k ,2k 2+m ).由PF →=3FM →,得(-x 0,1-y 0)=3(2k ,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415.由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=41+k2k 2+m ,点F (0,1)到直线AB 的距离为d =|m -1|1+k 2.所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1.记f (m )=3m 3-5m 2+m +1⎝ ⎛⎭⎪⎫-13<m ≤43.令f ′(m )=9m 2-10m +1=0,解得m 1=19,m 2=1.可得f (m )在⎝ ⎛⎭⎪⎫-13,19上是增函数,在⎝ ⎛⎭⎪⎫19,1上是减函数,在⎝ ⎛⎭⎪⎫1,43上是增函数. 又f ⎝ ⎛⎭⎪⎫19=256243>f ⎝ ⎛⎭⎪⎫43.所以,当m =19时,f (m )取到最大值256243,此时k =±5515.所以,△ABP 面积的最大值为2565135.17.(2014·福建,21)已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2. (1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.17.解 方法一 (1)设S (x ,y )为曲线Γ上任意一点, 依题意,点S 到F (0,1)的距离与它到直线y =-1的距离相等. 所以曲线Γ是以点F (0,1)为焦点、直线y =-1为准线的抛物线, 所以曲线Γ的方程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的方程为y =14x 2,设P (x 0,y 0)(x 0≠0),则y 0=14x 20,由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0,所以切线l 的方程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20. 由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =0,得A ⎝ ⎛⎭⎪⎫12x 0,0.由⎩⎪⎨⎪⎧y =12x 0x -14x 20,y =3,得M ⎝ ⎛⎭⎪⎫12x 0+6x 0,3.又N (0,3),所以圆心C ⎝ ⎛⎭⎪⎫14x 0+3x 0,3.半径r =12|MN |=|14x 0+3x 0|,|AB |=|AC |2-r 2=⎣⎢⎡⎦⎥⎤12x 0-⎝ ⎛⎭⎪⎫14x 0+3x 02+32-⎝ ⎛⎭⎪⎫14x 0+3x 02= 6.所以点P 在曲线Γ上运动时,线段AB 的长度不变. 方法二 (1)设S (x ,y )为曲线Γ上任意一点, 则|y -(-3)|-(x -0)2+(y -1)2=2,依题意,点S (x ,y )只能在直线y =-3的上方,所以y >-3, 所以(x -0)2+(y -1)2=y +1, 化简得,曲线Γ的方程为x 2=4y . (2)同方法一.考点4 直线与圆锥曲线的位置关系 1.(2015·四川,10)设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点,若这样的直线l 恰有4条,则r 的取值范围是( ) A.(1,3) B.(1,4) C.(2,3) D.(2,4)1.解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2),当l 的斜率不存在时,符合条件的直线l 必有两条; 当l 的斜率存在时,x 1≠x 2,则有y 1+y 22·y 1-y 2x 1-x 2=2,即y 0·k =2, 由CM ⊥AB 得k ·y 0-0x 0-5=-1,y 0k =5-x 0,2=5-x 0,∴x 0=3, 即M 必在直线x =3上,将x =3代入y 2=4x ,得y 2=12,有-23<y 0<23, ∵点M 在圆上,∴(x 0-5)2+y 20=r 2,r 2=y 20+4<12+4=16, 又y 20+4>4,∴4<r 2<16,∴2<r <4,故选D.答案 D2.(2016·新课标全国Ⅱ,21)已知A 是椭圆E :x 24+y 23=1的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当|AM |=|AN |时,求△AMN 的面积. (2)当2|AM |=|AN |时,证明:3<k <2.2.解 (1)设M (x 1,y 1),则由题意知y 1>0,由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 又A (-2,0),因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y=0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)证明 将直线AM 的方程y =k (x +2)(k >0)代入x 24+y 23=1得(3+4k 2)x 2+16k 2x +16k 2-12=0,由x 1·(-2)=16k 2-123+4k 2得x 1=2(3-4k 2)3+4k 2,故|AM |=|x 1+2|1+k 2=121+k 23+4k 2.由题设,直线AN 的方程为y =-1k (x +2),故同理可得|AN |=12k 1+k23k 2+4. 由2|AM |=|AN |,得23+4k 2=k 3k 2+4,即4k 3-6k 2+3k -8=0, 设f (t )=4t 3-6t 2+3t -8,则k 是f (t )的零点,f ′(t )=12t 2-12t +3=3(2t -1)2≥0,所以f (t )在(0,+∞)单调递增,又f (3)=153-26<0,f (2)=6>0,因此f (t )在(0,+∞)有唯一的零点,且零点k 在(3,2)内,所以3<k <2.3.(2016·新课标全国Ⅲ,20)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.3.(1)证明 由题设F ⎝ ⎛⎭⎪⎫12,0,设l 1:y =a ,l 2:y =b ,则ab ≠0,且A ⎝ ⎛⎭⎪⎫a 22,a ,B ⎝ ⎛⎭⎪⎫b 22,b ,P ⎝ ⎛⎭⎪⎫-12,a ,Q ⎝ ⎛⎭⎪⎫-12,b ,R ⎝ ⎛⎭⎪⎫-12,a +b 2.记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0. 由于F 在线段AB 上,故1+ab =0.记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a=-b =k 2. 所以AR ∥FQ .(2)解 设过AB 的直线为l ,设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2.由题设可得|b -a |⎪⎪⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=1,x 1=0(舍去),设满足条件的AB 的中点为E (x ,y ). 当AB 与x 轴不垂直时,由k AB =k DE ,可得2a +b =y x -1(x ≠1).而a +b 2=y .所以y 2=x -1(x ≠1). 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为y 2=x -1.4.(2016·北京,19)已知椭圆C :x 2a 2+y 2b2=1,过点A (2,0),B (0,1)两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.4.(1)解 由椭圆过点A (2,0),B (0,1)知a =2,b =1.所以椭圆方程为x 24+y 2=1,又c =a 2-b 2= 3.所以椭圆离心率e =c a =32.(2)证明 设P 点坐标为(x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4,由B 点坐标(0,1)得直线PB 方程为:y -1=y 0-1x 0(x -0),令y =0,得x N =x 01-y 0,从而|AN |=2-x N =2+x 0y 0-1,由A 点坐标(2,0)得直线PA 方程为y -0=y 0x 0-2(x -2),令x =0,得y M =2y 02-x 0,从而|BM |=1-y M =1+2y 0x 0-2,所以S 四边形ABNM =12|AN |·|BM |=12⎝ ⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2. 即四边形ABNM 的面积为定值2.5.(2016·山东,21)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .①设直线PM 、QM 的斜率分别为k 、k ′,证明k ′k为定值. ②求直线AB 的斜率的最小值.5.(1)解 设椭圆的半焦距为c .由题意知2a =4,2c =2 2. 所以a =2,b =a 2-c 2= 2.所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0).由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=m x 0.直线QM 的斜率k ′=-2m -m x 0=-3mx 0.此时k ′k =-3.所以k ′k为定值-3. ②解 设A (x 1,y 1),B (x 2,y 2).直线PA 的方程为y =kx +m .直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0, 所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m . 同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m . 所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0, y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m =-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0, 所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝⎛⎭⎪⎫6k +1k ,由m >0,x 0>0,可知k >0,所以6k +1k ≥26,当且仅当k =66时取“=”.∵P (x 0,2m )在椭圆x 24+y 22=1上,∴x 0=4-8m 2,故此时2m -m 4-8m 2-0=66, 即m =147,符合题意.所以直线AB 的斜率的最小值为62.6.(2016·四川,20)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P ⎝ ⎛⎭⎪⎫3,12在椭圆E 上. (1)求椭圆E 的方程;(2)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |·|MB |=|MC |·|MD |.6.解 (1)由已知,a =2b ,又椭圆x 2a 2+y 2b 2=1(a >b >0)过点P ⎝ ⎛⎭⎪⎫3,12,故34b 2+14b 2=1,解得b 2=1.所以椭圆E 的方程是x 24+y 2=1.(2)证明 设直线l 的方程为y =12x +m (m ≠0),A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =12x +m ,得x 2+2mx +2m 2-2=0,①方程①的判别式为Δ=4m 2-4(2m 2-2),由Δ>0,即2-m 2>0,解得-2<m < 2. 由①得x 1+x 2=-2m ,x 1x 2=2m 2-2.所以M 点坐标为⎝⎛⎭⎪⎫-m ,m 2,直线OM 方程为y =-12x ,由方程组⎩⎪⎨⎪⎧x 24+y 2=1,y =-12x ,得C ⎝ ⎛⎭⎪⎫-2,22,D ⎝ ⎛⎭⎪⎫2,-22. 所以|MC |·|MD |=52(-m +2)·52(2+m )=54(2-m 2). 又|MA |·|MB |=14|AB |2=14[(x 1-x 2)2+(y 1-y 2)2]=516[(x 1+x 2)2-4x 1x 2] =516[4m 2-4(2m 2-2)]=54(2-m 2). 所以|MA |·|MB |=|MC |·|MD |.7.(2015·天津,19)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点为B ,左焦点为F ,离心率为55.(1)求直线BF 的斜率;(2)设直线BF 与椭圆交于点P (P 异于点B ),过点B 且垂直于BP 的直线与椭圆交于点Q (Q 异于点B ),直线PQ 与y 轴交于点M ,|PM |=λ|MQ |.。
课时分层训练(六十二)古典概型A组基础达标(建议用时:30分钟)一、选择题1.(2014·全国卷Ⅰ改编)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为()A.12 B.13C.23 D.56C[设两本不同的数学书为a1,a2,1本语文书为b.则在书架上的摆放方法有a1a2b,a1ba2,a2a1b,a2ba1,ba1a2,ba2a1,共6种,其中数学书相邻的有4种.因此2本数学书相邻的概率P=46=23.]2.(2016·北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15 B.25C.825 D.925B[设另外三名学生分别为丙、丁、戊.从5名学生中随机选出2人,有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共10种情形,其中甲被选中的有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种情形,故甲被选中的概率P=410=25.]3.在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为()A.12 B.13C.34 D.25B[点P(m,n)共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.] 4.(2014·全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) 【导学号:31222399】A.18B.38C.58D.78D [4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.]5.(2017·威海模拟)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( )A.16B.13C.14D.12A [由题意知,向量m 共有4×3=12个,由m ⊥n ,得m ·n =0,即a =b ,则满足m ⊥n 的m 有(3,3),(5,5)共2个,故所求概率P =212=16.]二、填空题6.在集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =n π3,n =1,2,3,…,10中任取一个元素,所取元素恰好满足方程cos x =12的概率是________.15[基本事件总数为10,满足方程cos x =12的基本事件数为2,故所求概率为P =210=15.]7.(2016·四川高考)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________.16[从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有2,3;2,8;2,9;3,8;3,9;8,9;3,2;8,2;9,2;8,3;9,3;9,8,共12种取法,其中log a b为整数的有(2,8),(3,9)两种,故P=212=16.]8.在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.13[记“两人都中奖”为事件A,设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),共2种,所以P(A)=26=13.]三、解答题9.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.[解](1)所有可能的摸出结果是{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.10.(2017·天津河西联考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.[解](1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.5分(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.8分②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.因此,事件A发生的概率P(A)=915=35.12分B组能力提升(建议用时:15分钟)1.(2017·安徽马鞍山模拟)某同学先后投掷一枚质地均匀的骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x-y=1上的概率为()A.112 B.19C.536 D.16A[先后掷两次骰子的结果共6×6=36种.以(x,y)为坐标的点落在直线2x-y=1上的结果有(1,1),(2,3),(3,5),共3种,故所求概率为336=1 12.]2.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为________.14[由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4),(2,4),(3,4)共4种结果.故所求事件的概率P=416=14.]3.先后掷一枚质地均匀的骰子,分别记向上的点数为a,b.事件A:点(a,b)落在圆x2+y2=12内;事件B:f(a)<0,其中函数f(x)=x2-2x+3 4.(1)求事件A发生的概率;(2)求事件A,B同时发生的概率.[解](1)先后掷一枚质地均匀的骰子,有6×6=36种等可能的结果.满足落在圆x2+y2=12内的点(a,b)有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个.所以事件A发生的概率P(A)=636=16.5分(2)由f(a)=a2-2a+34<0,得12<a<32.又a∈{1,2,3,4,5,6},知a=1.所以事件A,B同时发生时,有(1,1),(1,2),(1,3)共3种情形.10分故事件A,B同时发生的概率为P(AB)=336=112.12分。
课时分层训练(六十二)古典概型A组基础达标(建议用时:30分钟)一、选择题1.(2014·全国卷Ⅰ改编)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为()A.12 B.13C.23 D.56C[设两本不同的数学书为a1,a2,1本语文书为b.则在书架上的摆放方法有a1a2b,a1ba2,a2a1b,a2ba1,ba1a2,ba2a1,共6种,其中数学书相邻的有4种.因此2本数学书相邻的概率P=46=23.]2.(2016·北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15 B.25C.825 D.925B[设另外三名学生分别为丙、丁、戊.从5名学生中随机选出2人,有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共10种情形,其中甲被选中的有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种情形,故甲被选中的概率P=410=25.]3.(2017·北京西城区模拟)一对年轻夫妇和其两岁的孩子做游戏,让孩子把分别写有“1”“3”“1”“4”的四张卡片随机排成一行,若卡片按从左到右的顺序排成“1314”,则孩子会得到父母的奖励,那么孩子受到奖励的概率为()A.112 B.512C.712 D.56A [先从4个位置中选一个排4,再从剩下的位置中选一个排3,最后剩下的2个位置排1.∴共有4×3×1=12种不同排法. 又卡片排成“1314”只有1种情况, 故所求事件的概率P =112.]4.(2014·全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )【导学号:01772399】A.18B.38C.58D.78D [4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.]5.如图10-5-3,三行三列的方阵中有九个数a ij (i =1,2,3;j =1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )⎝ ⎛⎭⎪⎫a 11 a 12 a 13a 21 a 22 a 23a 31a 32a 33 图10-5-3 A.37 B.47 C.114D.1314D [从九个数中任取三个数的不同取法共有C 39=84(种),因为取出的三个数分别位于不同的行与列的取法共有C 13·C 12·C 11=6(种),所以至少有两个数位于同行或同列的概率为1-684=1314.]二、填空题6.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.16[从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,基本事件共有C 710=120个,记事件“七个数的中位数为6”为事件A.若事件A发生,则6,7,8,9必取,再从0,1,2,3,4,5中任取3个数,有C36种选法.故所求概率P(A)=C36120=16.]7.(2016·四川高考)从2,3,8,9中任取两个不同的数字,分别记为a,b,则log a b 为整数的概率是________.16[从2,3,8,9中任取两个不同的数字,分别记为a,b,则有2,3;2,8;2,9;3,8;3,9;8,9;3,2;8,2;9,2;8,3;9,3;9,8,共12种取法,其中log a b为整数的有(2,8),(3,9)两种,故P=212=16.]8.从n个正整数1,2,3,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为114,则n=________.8[因为5=1+4=2+3,所以2C2n=114,解得n=8(舍去n=-7).]三、解答题9.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X,求X的分布列和数学期望.[解](1)记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.由题意知A 1与A 2相互独立,A 1 A 2与A 1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A 2+A 1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A 2+A 1A 2)=P (A 1A 2)+P (A 1A 2)=P (A 1)P (A 2)+P (A 1)P (A 2) =P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2) =25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.于是P (X =0)=C 03⎝ ⎛⎭⎪⎫150⎝ ⎛⎭⎪⎫453=64125, P (X =1)=C 13⎝ ⎛⎭⎪⎫151⎝ ⎛⎭⎪⎫452=48125, P (X =2)=C 23⎝ ⎛⎭⎪⎫152⎝ ⎛⎭⎪⎫451=12125,P (X =3)=C 33⎝ ⎛⎭⎪⎫153⎝ ⎛⎭⎪⎫450=1125. 故X 的分布列为X 的数学期望为E (X )=3×15=35.10.(2017·云南昆明检测)一个盒子里装有若干个均匀的红球和白球,每个球被取到的概率相等.若从盒子里随机取一个球,取到的球是红球的概率为13;若一次从盒子里随机取两个球,取到的球至少有一个是白球的概率为1011.(1)该盒子里的红球、白球分别为多少个?(2)若一次从盒子中随机取出3个球,求取到的白球个数不少于红球个数的概率.[解] (1)设该盒子里有红球m 个,有白球n 个, 根据题意得⎩⎪⎨⎪⎧m m +n=13,1-C 2mC 2m +n=1011,3分解方程组得m =4,n =8, ∴红球4个,白球8个.5分(2)设“从盒子中任取3个球,取到的白球个数不少于红球个数”为事件A ,则P (A )=C 38+C 28·C 14C 312=4255,8分因此,从盒子中任取3个球,取到的白球个数不少于红球个数的概率为4255.12分B 组 能力提升 (建议用时:15分钟)1.(2017·安徽马鞍山模拟)某同学先后投掷一枚质地均匀的骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在直角坐标系xOy 中,以(x ,y )为坐标的点落在直线2x -y =1上的概率为( )A.112B.19C.536D.16A [先后掷两次骰子的结果共6×6=36种.以(x ,y )为坐标的点落在直线2x -y =1上的结果有(1,1),(2,3),(3,5),共3种,故所求概率为336=112.]2.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.12[从10件产品中取4件,共有C 410种取法,取到1件次品的取法为C 13C 37种,由古典概型概率计算公式得P =C 13C 37C 410=3×35210=12.]3.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图10-5-4所示,其中茎为十位数,叶为个位数.图10-5-4(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率. [解] (1)由茎叶图可知,样本数据为17,19,20,21,25,30. 则x =16(17+19+20+21+25+30)=22, 故样本均值为22.4分(2)日加工零件个数大于样本均值的工人有2名, 故优秀工人的频率为26=13.6分该车间12名工人中优秀工人大约有12×13=4(名), 故该车间约有4名优秀工人.8分(3)记“恰有1名优秀工人”为事件A ,其包含的基本事件总数为C 14C 18=32,所有基本事件的总数为C 212=66.10分由古典概型概率公式,得P (A )=3266=1633. 所以恰有1名优秀工人的概率为1633.12分。