规范解答题6(理)
- 格式:doc
- 大小:140.50 KB
- 文档页数:6
宁波市七年级数学试卷有理数解答题专题练习(附答案)一、解答题1.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请真接与出a=________,b=________;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值: (3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.2.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5 (1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.3.在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a-b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5-2|=3:回答下列问题:(1)数轴上表示1和-3的两点之间的距离是________:(2)若AB=8,|b|=3|a|,求a,b的值.(3)若数轴上的任意一点P表示的数是x,且|x−a|+|x−b|的最小值为4,若a=3,求b的值4.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。
(1)PA=________,PC=________(用含t的代数式表示)(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇.5.在数轴上有A、B、C、D四个点,分别对应的数为a,b,c,d,且满足a,b到点-7的距离为1 (a<b),且(c﹣12)2与|d﹣16|互为相反数.(1)填空:a=________、b=________、c=________、d=________;(2)若线段AB以3个单位/秒的速度向右匀速运动,同时线段CD以1单位长度/秒向左匀速运动,并设运动时间为t秒,A、B两点都运动在CD上(不与C,D两个端点重合),若BD=2AC,求t得值;(3)在(2)的条件下,线段AB,线段CD继续运动,当点B运动到点D的右侧时,问是否存在时间t,使BC=3AD?若存在,求t得值;若不存在,说明理由.6.如图,已知数轴上点A表示的数为﹣3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P返回到达A点时,P、Q 停止运动.设运动时间为t秒.①当点P返回到达A点时,求t的值,并求出此时点Q表示的数.②当点P是线段AQ的三等分点时,求t的值.7.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1)若b=-4,则a的值为________.(2)若OA=3OB,求a的值.(3)点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.8.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.9.如图,在数轴上点A表示的有理数为,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度由运动,同时,点Q从点B出发以每秒1个单位长度的速度由运动,当点Q到达点A时P、Q两点停止运动,设运动时间为单位:秒.(1)求时,求点P和点Q表示的有理数;(2)求点P与点Q第一次重合时的t值;(3)当t的值为多少时,点P表示的有理数与点Q表示的有理数距离是3个单位长度?10.已知:是最大的负整数,且、b、c满足(c﹣5)2+| +b|=0,请回答问题.(1)请直接写出、b、c的值: =________,b=________,c=________.(2)、b、c所对应的点分别为A、B、C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1时),请化简式子:|x+1|﹣|x﹣1|+2|x-5|(请写出化简过程). (3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.11.已知,如图A、B分别为数轴上的两点,点A对应的数为-20,点B对应的数为120.(1)请写出线段AB的中点C对应的数.(2)点P从点B出发,以3个单位/秒的速度向左运动,同时点Q从点A出发,以2个单位/秒的速度向右运动,当点P、Q重合时对应的数是多少?(3)在(2)的条件下,P、Q两点运动多长时间相距50个单位长度?12.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”;数形结合是解决数学问题的重要思想方法.例如,代数式的几何意义是数轴上x所对应的点与2所对应的点之间的距离;因为,所以的几何意义就是数轴上x所对应的点与-1所对应的点之间的距离.⑴发现问题:代数式的最小值是多少?⑵探究问题:如图,点分别表示的是,.∵的几何意义是线段与的长度之和∴当点在线段上时, ;当点点在点的左侧或点的右侧时∴的最小值是3.⑶解决问题:①. 的最小值是 ________ ;②.利用上述思想方法解不等式:________③.当为何值时,代数式的最小值是2________.13.如图所示(1)A在数轴上所对应的数为﹣2.点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在A、B两点位于第(1)题所在的位置开始,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)当A、B两点位于第(2)题结束所在的位置,如果A点静止不动,B点以每秒2个单位长度沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.14.操作探究:小聪在一张长条形的纸面上画了一条数轴(如图所示),(1)操作一:折叠纸面,使1表示的点与−1的点重合,则−3的点与________表示的点重合;(2)操作二:折叠纸面,使−2表示的点与6表示的点重合,请你回答以下问题:① −5表示的点与数()表示的点重合;②若数轴上A、B两点之间距离为20,其中A在B的左侧,且A、B两点经折叠后重合,求A、B两点表示的数各是多少③ 已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为30,求m的值。
课后作业基础巩固强化一、选择题={x |x -2x -1<1},则M ∩N 等于( )A .{x |1<x <32} B .{x |12<x <1}C .{x |-12<x <32} D .{x |-12<x <32,且x ≠1}[答案] A[解析] 由|2x -1|<2得-2<2x -1<2,则-12<x <32;由x -2x -1<1得(x -2)-(x -1)x -1<0,即-1x -1<0,则x >1.所以M ∩N ={x |1<x <32},选A.2.不等式|x -2|-|x -1|>0的解集为( ) A .(-∞,32) B .(-∞,-32) C .(32,+∞) D .(-32,+∞) [答案] A[解析] 原不等式等价于|x -2|>|x -1|,则(x -2)2>(x -1)2,解得x <32.3.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R }.若A ⊆B ,则实数a 、b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3[答案] D[解析] 由题意可得集合A ={x |a -1<x <a +1},集合B ={x |x <b -2或x >b +2},又因为A ⊆B ,所以有a +1≤b -2或b +2≤a -1,即a -b ≤-3或a -b ≥3.所以选D.4.(文)若不等式|ax +2|<4的解集为(-1,3),则实数a 等于( ) A .8 B .2 C .-4 D .-2[答案] D[解析] 由-4<ax +2<4,得-6<ax <2. ∴(ax -2)(ax +6)<0,其解集为(-1,3),∴a =-2. [点评] 可用方程的根与不等式解集的关系求解.(理)对于实数x 、y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为( )A .5B .4C .8D .7 [答案] A[解析] 由题易得,|x -2y +1|=|(x -1)-2(y -2)-2|≤|x -1|+|2(y -2)|+2≤5,即|x -2y +1|的最大值为5.二、填空题5.(2013·天津)设a +b =2,b >0,则12|a |+|a |b 的最小值为________. [答案] 34[解析] 因为12|a |+|a |b =a +b 4|a |+|a |b ≥a4|a |+2b 4|a |·|a |b =a 4|a |+1≥-14+1=34,当且仅当b 4|a |=|a |b ,a <0,即a =-2,b =4时取等号,故12|a |+|a |b 的最小值是34.6.(文)不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________.[答案] (-∞,2)[解析] 由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2,所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.(理)(2013·昆明重点中学检测)已知不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立,则实数a 的取值范围是________.[答案] [-1,2][解析] 设y =2x -1,x ∈[2,6],则y ′=-2(x -1)2<0,则y =2x -1在区间[2,6]上单调递减,则y min =26-1=25,故不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立等价于15|a 2-a |≤25成立,等价于⎩⎨⎧a 2-a -2≤0,a 2-a +2≥0.解得-1≤a ≤2,故a 的取值范围是[-1,2].7.(2013·陕西)设a ,b ∈R ,|a -b |>2,则关于实数x 的不等式|x -a |+|x -b |>2的解集是________.[答案] (-∞,+∞)[解析] ∵|x -a |+|x -b |≥|a -b |>2, ∴|x -a |+|x -b |>2恒成立,则解集为R .8.(2012·陕西)若存有实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________.[答案] -2≤a ≤4[解析] |x -a |+|x -1|≥|a -1|,则只需要|a -1|≤3,解得-2≤a ≤4.9.若a >0,b >0,则p =(ab )a +b 2,q =a b ·b a 的大小关系是________. [答案] p ≥q[解析] ∵a >0,b >0,∴p =(ab )a +b2>0,q =a b ·b a >0, p q =(ab )a +b 2a b b a=a a -b 2·b b -a 2=⎝ ⎛⎭⎪⎫a b a -b 2.若a >b ,则ab >1,a -b 2>0,∴⎝ ⎛⎭⎪⎫a b a -b 2>1;若a <b ,则0<ab <1,a -b 2<0,∴⎝ ⎛⎭⎪⎫a b a -b 2>1;若a =b ,则ab =1,a -b 2=0,∴⎝ ⎛⎭⎪⎫a b a -b 2=1.∴⎝ ⎛⎭⎪⎫a b a -b 2≥1,即pq ≥1.∵q >0,∴p ≥q . [点评] 可使用特值法,令a =1,b =1,则p =1,q =1,有p=q ;令a =2,b =4,有p =83=512,q =24×42=256,∴p >q ,故填p ≥q . 三、解答题10.(文)已知函数f (x )=|x -7|-|x -3|. (1)作出函数f (x )的图象;(2)当x <5时,不等式|x -8|-|x -a |>2恒成立,求a 的取值范围. [解析] (1)∵f (x )=⎩⎪⎨⎪⎧4,(x ≤3),10-2x ,(3<x <7),-4(x ≥7),图象如图所示:(2)∵x <5,∴|x -8|-|x -a |>2,即8-x -|x -a |>2, 即|x -a |<6-x ,对x <5恒成立. 即x -6<x -a <6-x 对x <5恒成立,∴⎩⎨⎧a <6,a >2x -6.对x <5恒成立.又∵x <5时,2x -6<4,∴4≤a <6. ∴a 的取值范围为[4,6).(理)已知函数f (x )=|x +1|+|x -3|. (1)作出函数y =f (x )的图象;(2)若对任意x ∈R ,f (x )≥a 2-3a 恒成立,求实数a 的取值范围. [解析] (1)①当x ≤-1时,f (x )=-x -1-x +3=-2x +2; ②当-1<x <3时,f (x )=x +1+3-x =4; ③当x ≥3时,f (x )=x +1+x -3=2x -2. ∴f (x )=⎩⎪⎨⎪⎧-2x +2,x ≤-1,4,-1<x <3,2x -2,x ≥3.∴y =f (x )的图象如图所示.(2)由(1)知f (x )的最小值为4,由题意可知a 2-3a ≤4,即a 2-3a -4≤0,解得-1≤a ≤4.故实数a 的取值范围为[-1,4].水平拓展提升一、填空题11.(文)(2013·石家庄模拟)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________.[答案] (5,7)[解析] ∵|3x -b |<4,∴b -43<x <b +43. 由题意得⎩⎪⎨⎪⎧0≤b -43<1,3<b +43≤4,解得5<b <7,∴b 的取值范围是(5,7).(理)若a 、b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥(a +b )2x +y ,当且仅当a x =b y 时上式取等号.利用以上结论,能够得到函数f (x )=2x +91-2x(x ∈(0,12))的最小值为________. [答案] 25[解析] 依据给出的结论可知f (x )=42x +91-2x ≥(2+3)22x +(1-2x )=25等号在22x =31-2x,即x =15时成立.12.(文)(2013·山东师大附中三模)不等式|2x +1|+|x -1|<2的解集为________.[答案] (-23,0)[解析] 当x ≤-12时,原不等式等价为-(2x +1)-(x -1)<2,即-3x <2,x >-23,此时-23<x ≤-12.当-12<x <1时,原不等式等价为(2x +1)-(x -1)<2,即x <0,此时-12<x <0.当x ≥1时,原不等式等价为(2x +1)+(x -1)<2,即3x <2,x <23,此时不等式无解.综上,不等式的解集为-23<x <0.(理)不等式|x +log 3x |<|x |+|log 3x |的解集为________. [答案] {x |0<x <1}[解析] 由对数函数定义得x >0,又由绝对值不等式的性质知,|x +log 3x |≤|x |+|log 3x |,当且仅当x 与log 3x 同号时等号成立,∵x >0,∴log 3x >0,∴x >1,故原不等式的解集为{x |0<x <1}.二、解答题13.(文)(2013·福建理,21)设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.[解析] (1)因为32∈A ,且12∉A ,所以|32-2|<a ,且|12-2|≥a , 解得12<a ≤32.又因为a ∈N *,所以a =1.(2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号.所以f (x )的最小值为3.(理)(2013·福建龙岩模拟)已知函数f (x )=|x -3|,g (x )=-|x +4|+m .(1)已知常数a <2,解关于x 的不等式f (x )+a -2>0;(2)若函数f (x )的图象恒在函数g (x )图象的上方,求实数m 的取值范围.[解析] (1)由f (x )+a -2>0得|x -3|>2-a , ∴x -3>2-a 或x -3<a -2,∴x >5-a 或x <a +1. 故不等式的解集为(-∞,a +1)∪(5-a ,+∞) (2)∵函数f (x )的图象恒在函数g (x )图象的上方, ∴f (x )>g (x )恒成立,即m <|x -3|+|x +4|恒成立. ∵|x -3|+|x +4|≥|(x -3)-(x -4)|=7, ∴m 的取值范围为m <7.14.(2013·新课标Ⅱ理,24)设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a ≥1.[解析] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得,a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1, 即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a ≥1. 15.(文)设不等式|2x -1|<1的解集是M ,a 、b ∈M . (1)试比较ab +1与a +b 的大小;(2)设max 表示数集A 中的最大数.h =max{2a ,a 2+b 2ab ,2b },求证:h ≥2.[解析] 由|2x -1|<1得-1<2x -1<1,解得0<x <1. 所以M ={x |0<x <1}.(1)由a 、b ∈M ,得0<a <1,0<b <1, 所以(ab +1)-(a +b )=(a -1)(b -1)>0. 故ab +1>a +b .(2)由h =max{2a ,a 2+b 2ab ,2b},得h ≥2a ,h ≥a 2+b 2ab ,h ≥2b, 所以h 3≥2a ·a 2+b 2ab ·2b=4(a 2+b 2)ab ≥8,故h ≥2. (理)已知a 、b 为正实数.(1)求证:a 2b +b 2a ≥a +b ;(2)利用(1)的结论求函数y =(1-x )2x +x 21-x(0<x <1)的最小值. [解析] (1)证法一:∵a >0,b >0, ∴(a +b )(a 2b +b 2a )=a 2+b 2+a 3b +b 3a≥a 2+b 2+2ab =(a +b )2. ∴a 2b +b 2a ≥a +b ,当且仅当a =b 时等号成立. 证法二:∵a 2b +b 2a -(a +b )=a 3+b 3-a 2b -ab 2ab=a 3-a 2b -(ab 2-b 3)ab =a 2(a -b )-b 2(a -b )ab=(a -b )2(a +b )ab. 又∵a >0,b >0,∴(a -b )2(a +b )ab≥0, 当且仅当a =b 时等号成立.∴a 2b +b 2a ≥a +b .(2)解:∵0<x <1,∴1-x >0,由(1)的结论,函数y =(1-x )2x +x 21-x≥(1-x )+x =1. 当且仅当1-x =x 即x =12时等号成立.∴函数y =(1-x )2x +x 21-x(0<x <1)的最小值为1.考纲要求1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b |≤|a |+|b |(a ,b ∈R ).(2)|a -b |≤|a -c |+|c -b |(a ,b ∈R ).2.会利用绝对值的几何意义求解以下类型的不等式:|ax +b |≤c ,|ax +b |≥c ,|x -c |+|x -b |≥a .3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法.补充说明1.证明不等式常用的方法(1)比较法:依据a >b ⇔a -b >0,a <b ⇔a -b <0来证明不等式的方法称作比较法.其基本步骤:作差→配方或因式分解→判断符号→得出结论.(2)综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理论证得出命题成立的方法.它是由因导果法.(3)分析法:从要证明结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明过的定理、性质等),从而得出要证明的命题成立的方法,它是执果索因的方法.分析法与综合法常常结合起来运用,看由已知条件能产生什么结果,待证命题需要什么条件,两边凑一凑找出证明途径.常常是分析找思路,综合写过程.(4)反证法:证明不等式时,首先假设要证明的命题不成立,把它作为条件和其它条件结合在一起,利用已知定义、定理、公理、性质等基本原理进行正确推理,逐步推证出一个与命题的条件或已证明过的定理、性质,或公认的简单事实相矛盾的结论,以此说明原假设不正确,从而肯定原命题成立的方法称为反证法.(5)放缩法:证明不等式时,根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明目的,这种方法称为放缩法.2.柯西不等式(1)一般形式:设a1、a2、…、a n、b1、b2、…、b n为实数,则(a21+a22+…+a2n)(b21+b22+…+b2n)≥(a1b1+a2b2+…+a n b n)2.当且仅当b i=0,或存在一个实数k,使得a i=kb i(i=1、2、…、n)时,等号成立.(2)二维形式的柯西不等式:①代数形式:设a、b、c、d均为实数,则(a2+b2)(c2+d2)≥(ac+bd)2.上式等号成立⇔ad =bc .②向量形式:设α、β为平面上的两个向量,则|α||β|≥|α·β|.当且仅当β是零向量或存在实数k ,使α=k β时,等号成立.③三角形式:设x 1、x 2、y 1、y 2∈R ,则x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2,其几何意义是三角形两边之和大于第三边.3.排序不等式设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1、c 2、…、c n 为b 1、b 2、…、b n 的任一排列,则有a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,且反序和等于顺序和⇔a 1=a 2=…=a n 或b 1=b 2=…=b n .即反序和≤乱序和≤顺序和.4.贝努利不等式设x >-1,且x ≠0,n 为大于1的自然数,则(1+x )n >1+nx . 备选习题1.设a 、b 、c 为正数,且a +2b +3c =13,则3a +2b +c 的最大值为( )A.1693B.133C.1333D.13[答案] C[解析] (a +2b +3c )[(3)2+12+(13)2] ≥(3a +2b +c )2,∵a +2b +2c =13,∴(3a +2b +c )2≤1693, ∴3a +2b +c ≤1333, 当且仅当a 3=2b 1=3c 13取等号, 又∵a +2b +3c =13,∴a =9,b =32,c =13时,3a +2b +c 取最大值1333.2.(2013·陕西检测)若不等式|x +1|+|x -m |<6的解集为∅,则实数m 的取值范围为________.[答案] [5,+∞)∪(-∞,-7][解析] ∵不等式的解集为空集,|x +1|+|x -m |≥|m +1|,∴只需|m +1|≥6,∴m 的取值范围为[5,+∞)∪(-∞,-7].3.(2013·云南玉溪一中月考)已知函数f (x )=|x +1|+|x -2|-m .(1)当m =5时,求f (x )>0的解集;(2)若关于x 的不等式f (x )≥2的解集是R ,求m 的取值范围.[解析] (1)由题设知|x +1|+|x -2|>5,⎩⎨⎧ x ≥2,x +1+x -2>5,或⎩⎨⎧ -1≤x <2,x +1-x +2>5,或⎩⎨⎧ x <-1,-x -1-x +2>5.解得原不等式的解集为(-∞,-2)∪(3,+∞).(2)不等式f (x )≥2即|x +1|+|x -2|≥m +2,∵x ∈R 时,恒有|x +1|+|x -2|≥|(x +1)-(x -2)|=3,不等式|x +1|+|x -2|≥m +2的解集是R ,∴m +2≤3,m 的取值范围是(-∞,1].4.(1)解关于x 的不等式x +|x -1|≤3;(2)若关于x 的不等式x +|x -1|≤a 有解,求实数a 的取值范围.[解析] 设f (x )=x +|x -1|,则f (x )=⎩⎪⎨⎪⎧2x -1(x ≥1),1 (x <1). (1)当x ≥1时,2x -1≤3,∴1≤x ≤2,又x <1时,不等式显然成立,∴原不等式的解集为{x |x ≤2}.(2)由于x ≥1时,函数y =2x -1是增函数,其最小值为f (1)=1; 当x <1时,f (x )=1,∴f (x )的最小值为1.因为x +|x -1|≤a 有解,即f (x )≤a 有解,所以a ≥1.5.(2013·辽宁理,24)已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.[解析] (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧ -2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1; 当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5; 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧ -2a ,x ≤0,4x -2a ,0<x <a .2a ,x ≥a .∵a >1,∴x ≤0时,h (x )=-2a <-2,x ≥a 时,h (x )=2a >2,而已知不等式|h (x )|≤2的解集为{x |1≤x ≤2}, ∴不等式|h (x )|≤2化为⎩⎨⎧ -2≤4x -2a ≤2,0<x <a ,即⎩⎪⎨⎪⎧ a -12≤x ≤a +12,0<x <a ,∵a >1,∴a -12>0,a +12<a ,∴由|h (x )|≤2,解得a -12≤x ≤a +12.又∵|h (x )|≤2的解集为{x |1≤x ≤2},∴⎩⎪⎨⎪⎧ a -12=1,a +12=2,于是a =3.[点评] 第(2)问是求解的难点,可借助图象帮助理解.作出h (x )的图象如图.∵a >1,|h (x )|≤2的解集为{x |1≤x ≤2},∴|h (x )|≤2,即|4x -2a |≤2.此不等式的解集为{x |1≤x ≤2}.。
小学二年级数学答题规范与考试技巧,孩子平时要注意!解题格式与卷面规范,是数学中锦上添花的东西。
一份书写工整、规范的答卷会给任何一位阅卷老师留下美好的印象,也能避免一些不必要的扣分。
现在将一些应当注意的卷面规范写给即将考试的孩子与家长们:关于题型1、答卷不能用铅笔,红笔。
一般要求为黑色签字笔。
作图用铅笔,图形辅助线需用铅笔、虚线。
2、【选择题】、【填空题】只写最后结果,无需写出计算过程在试卷上。
3、【计算题(非方程)】开头写上“解:原式=”【计算题(解方程)】开头写上“解:”,等号上下对齐计算题不能直接写出结果,至少需写三步再给出答案。
4、【解答题】开头写“解:”,最后写“答”:,每步有“小标题”。
解答题中的计算,可以写出算式后直接写出算式结果,不用写出算式的计算过程。
列方程做的应用题可以列出方程后,直接写出方程的解。
解答题务必分步去写过程。
并且要保证过程详尽,该体现在卷面上的要点,不要轻易跳过。
对于那些没有把握的题目,分步去写可以得到分步的分数。
解答题的评分标准都是分步给的。
9个细节1、一道数学题结果要不要带单位,题目要不要进行单位换算,是数学审题的“头等大事”。
2、只需要字体工整,不需要字写的多么好看,就可以让一份答卷看起来赏心悦目。
而整齐的卷面,是可以通过“刻意练习”短期习得的。
根据我个人的教学实践,只要愿意,每个学生都可以把卷面写的很整洁。
3、一道解答题不是完全做对才能得到分数。
把自己想到的思路都写上,只要正确,就可以得到分步的分数。
不要把解答题完全空下来。
每一分都很宝贵。
4、计算的结果若是一个大于1的分数,写成带分数与假分数都可(若分子相较分母过大,可考虑化成带分数,让人一眼能看出分数的大小)。
5、π如果没有明确说明,一定要取3.14代入计算。
6、一道题的最后一步若出现除不尽的情况,比如2÷3:若题目对结果没有明确要求,就写成2/3;若要求结果是小数(但并没有明确说明写成几位小数),则保留小数点后两位,写成0.67;若要求结果是百分数,则百分号前面的数保留小数点后一位,写作66.7%。
规范化解题的基本要求物理规范化解题主要体现在三个方面:思想、方法的规范化,解题过程的规范化,物理语言和书写的规范化。
高考对考生解答物理解答题有明确的要求:“解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。
”具体来说,物理解答题的解答过程和书写表达的规范化要求,主要体现在以下几个方面。
1.根据题意作出示意图、图像物理中的图形、图像是分析和解决物理问题的有力工具,它能使抽象的物理过程、物理状态形象化、具体化。
示意图(如受力图、运动过程图、状态图、电路图、光路图等)要能大致反映有关量的关系,并且要使图文对应。
与解题中所列方程有关的示意图,要画在卷面上,若只是分析题意的用图,与所列方程无直接关系,就不要画在卷面上。
有时根据题意要画函数图像,必须建好坐标系并画上原点、箭头,标好物理量的符号、单位及坐标轴上的数据。
2.字母、符号的规范化书写解题中运用的物理量要设定字母来表示,并用文字交代或在图中标明其意义。
题中给定的字母意义不能自行改变,比如题目中明确表示支持力为,摩擦力为,电动势为,那么在作图或运算过程中,就不能随意另用、、等来表示。
所用来表示物理量的字母要尽可能是常规通用的,通常是取自该物理量英语单词的第一个字母,一般要与课本中的形式一致,不要随意设定。
在同一题中,一个字母只能表示一个物理量,如果在同一题中出现多个同类物理量,可用不同的角标来加以区别,如电阻、,力正交分解时的两个分力、,初末速度、等等。
解物理题时遇到的物理量,不能都像解数学题一样,用、等字母来表示,一般要用约定的符号来表示。
另外,在解题时用到的物理量单位符号,要采用课本规定的符号来表示,如、%R、等等。
用到的其他符号如化学元素符号、数学符号等一般采用它们在化学、数学等学科中原有的通用形式,如氦元素He、正弦sin、对数log、开平方等等。
不要书写不规范的物理公式及表达式,如将牛顿第二定律写为“”。
物理解答题步骤的标准格式物理解答题步骤的标准格式物理解答题步骤的标准格式在紧张的高考考场上,们务必要解题步骤简明扼要,切中要点。
高考的每一分都非常关键,不应因步骤丢分,而且还应尽量节省解题时间,提高解题速度。
高中物理答题步骤书写案例(力学题为参考)解:对物体A分析,从t1到t2时间内,根据动能定理可得:这是一个动能定理的方程 (1)对物体B分析,从t1到t2时间内,根据匀变速直线运动方程有:这是一个直线运动的方程 (2)这是一个直线运动的方程 (3)对物体A+B,在t2到t3时间内,根据功能关系有:这是一个功能关系的方程 (4)根据动量守恒定律有:这是一个动量守恒定律的方程 (5)根据题意可知:这是一个根据题意条件列出的`方程 (6)有方程(1)-(6)代入数据可得:所求速度大小为V=0.3m/s;方向水平向右。
(解题完毕)物理解答题的步骤必须包括的内容:(1)你研究的研究对象是谁?(2)研究的是具体的哪个过程?(或者是哪个时间段?)(3)根据哪个定理定律得出的方程?(解题时要首先判定是否满足这个定律的前提条件)(4)结合题意,列出具体的方程。
注意,要在方程的后面对方程进行标号。
(笔者不建议所列的物理wuli.in方程中不能带题中的数,要用字母符号表示,需要设的物理量要提前设出来。
)(5)下面是循环,对第二个物体,或者第二个时间段分析,步骤与上面一样。
(6)联立方程,带入数据,求解最终的物理量结果。
(注意矢量要标记方向)注意事项1.需要的时候画出对应的受力分析图或位置图。
2.结合题意,有时候需要规定零势能面,或者正方向。
在原来王尚的文章中多次提到,解题步骤书写重在平时。
提高解题速度和解题的规范性,在平时要重视起来,做作业或小考的时候,严格自律,只有这样,才能在大考甚至是高考中灵活运用起来。
总结:其实物理并不难,做好受力分析、掌握好运动过程、记好相关公式,基本就可以把题目解出来的了(当然,解方程的能力不在考虑之列)。
中考数学有理数解答题专题练习(含答案)100一、解答题1.如图,在数轴上点A表示的数a、点B表示数b,a、b满足|a﹣40|+(b+8)2=0.点O是数轴原点.(1)点A表示的数为________,点B表示的数为________,线段AB的长为________.(2)若点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,请在数轴上找一点C,使AC=2BC,则点C在数轴上表示的数为________.(3)现有动点P、Q都从B点出发,点P以每秒1个单位长度的速度向终点A移动;当点P移动到O点时,点Q才从B点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A点时,点Q就停止移动,设点P移动的时间为t秒,问:当t为多少时,P、Q两点相距4个单位长度?2.已知表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离请试着探索:(1)找出所有符合条件的整数,使,这样的整数是________;(2)利用数轴找出,当时,的值是________;(3)利用数轴找出,当取最小值时,的范围是________.3.已知数轴上有A.B. C三点,分别表示有理数−26,−10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒。
(1)PA=________,PC=________(用含t的代数式表示)(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇.4.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,求a-b=________,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当a=﹣4,b=8,点M在A,B之间,且AM=3BM时,求m的值.②当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值.5.(1)阅读下面材料:点、在数轴上分别表示实数,,、两点之间的距高表示为当、两点中有一点在原点时,不妨设点在原点,如图1,;当、都不在原点时,①如图2,点、都在原点的右侧,;②如图3,点、都在原点的左侧,;③如图4,点、在原点的两侧,;(1)回答下列问题:①数轴上表示2和5的两点间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;②数轴上表示和-1的两点和之间的距离是________,如果,那么为________;③当代数式取最小值时,相应的的取值范围是________;④求的最小值,提示:.6.我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离。
规范——解答题的5个解题模板及得分说明1.阅卷速度以秒计,规范答题少丢分高考阅卷评分标准非常细,按步骤、得分点给分,评阅分步骤、采“点”给分.关键步骤,有则给分,无则没分.所以考场答题应尽量按得分点、步骤规范书写. 2.不求巧妙用通法,通性通法要强化高考评分细则只对主要解题方法,也是最基本的方法,给出详细得分标准,所以用常规方法往往与参考答案一致,比较容易抓住得分点. 3.干净整洁保得分,简明扼要是关键若书写整洁,表达清楚,一定会得到合理或偏高的分数,若不规范可能就会吃亏.若写错需改正,只需划去,不要乱涂乱划,否则易丢分. 4.狠抓基础保成绩,分步解决克难题(1)基础题争取得满分.涉及的定理、公式要准确,数学语言要规范,仔细计算,争取前3个解答题不丢分.(2)压轴题争取多得分.第(Ⅰ)问一般难度不大,要保证得分,第(Ⅱ)问若不会,也要根据条件或第(Ⅰ)问的结论推出一些结论,可能就是得分点.模板1 三角问题(满分14分)已知函数f (x )=sin 2x -sin 2⎝ ⎛⎭⎪⎫x -π6,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.满分解答得分说明解题模板【训练1】 已知函数f (x )=cos x sin (x +π3)-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值与最小值.解 (1)f (x )=cos x sin ⎝ ⎛⎭⎪⎫x +π3-3cos 2x +34=cos x ⎝ ⎛⎭⎪⎫12sin x +32cos x -3cos 2x +34=12sin x cos x -32cos 2x +34 =14sin 2x -34(1+cos 2x )+34 =14sin 2x -34cos 2x =12sin ⎝ ⎛⎭⎪⎫2x -π3. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上是减函数,在区间⎣⎢⎡⎦⎥⎤-π12,π4上是增函数,f ⎝ ⎛⎭⎪⎫-π4=-14,f ⎝ ⎛⎭⎪⎫-π12=-12,f ⎝ ⎛⎭⎪⎫π4=14, 所以函数f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为14,最小值为-12.。
规范答题(集合17篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!规范答题(集合17篇)规范答题(1)水在直流电的作用下分解:2H2O=2H2↑+O2↑ (通电条件下)加热高锰酸钾:2KMnO4?K2MnO4+MnO2+O2↑(紫色变为黑色、生成使带火星木条复燃的气体实验室制备氧气)加热氧化汞:2HgO?2Hg+O2↑碳酸不稳定分解:H2CO3==H2O+CO2↑实验室用双氧水制氧气(有少量的二氧化锰添加):2H2O2==2H2O+O2↑加热氯酸钾(有少量的二氧化锰):2KClO3?2KCl + 3O2↑(生成气体使带火星的木条复燃的气体实验室制备氧气)+O2↑ (红色变为银白色、生成使带火星木条复燃的气体拉瓦锡实验)高温煅烧石灰石(二氧化碳工业制法): CaCO3=CaO+CO2↑碳酸氢铵受热分解:NH4HCO3?NH3↑+H20+CO2↑(白色固体消失、管壁有液体、使石灰水变浑浊气体碳酸氢铵长期暴露空气中会消失) (HCO(3)2CaCO3↓+H2O+CO2↑ (产生使澄清石灰水变浑浊的气体,水垢形成.钟乳石的形成)+H2O+CO2↑ (产生使澄清石灰水变浑浊的气体)碱式碳酸铜受热分解:Cu2(OH)2(CO(3)?2CuO+H20+CO2(绿色变黑色、试管壁有液体、使石灰水变浑浊气体铜绿加热)硫酸铜晶体受热分解:CuSO4·5H2OCuSO4+5H2O中考化学怎样复习答题规范相关规范答题(2)高考语文失分大致表现在以下方面:未看清题目要求。
大学物理(华中科技版)第6章习题解答第6章机械波习题一习题六6-1平面谐波沿x轴负向传播,波长=1.0m,质点处质点的振动频率=2.0Hz,振幅a=0.1M,当t=0时,它只是沿Y轴负方向通过平衡位置移动,求出该平面波的波函数?0时,原点处粒子的振动状态为Y0?0,v0?0,因此已知原点处振动的初始相位为,取波动方程为2y?acos[2?(tx?)??0]则有t?x?y?0.1cos[2?(2t?)?]12? 0.1cos(4?t?2?x?6-2已知波源在原点的一列平面简谐波,波函数为y=acos(bt?cx),其中a,b,c为正值恒量.求:(1)波的振幅、速度、频率、周期和波长;(2)写出传播方向上距离波源为l处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d的两点的位相差.解:(1)已知平面简谐波的波动方程2) my?acos(bt?cx)(x?0)比较波动方程和标准方程的形式y?acos(2??t?2?比较,可知:波振幅为a,频率??波长??x?)b、 2号?2.b、波速u,cc12?波动周期Tb(2)将x?l代入波动方程即可得到该点的振动方程Y助理文书主任(bt?cl)(3)因任一时刻t同一波线上两点之间的位相差为将x2?x1?d,及??6-3沿绳索传播的平面谐波的波函数为y=0.05cos(10?T?4?X),其中X,y以米为单位,T以秒为单位。
发现:(1)波的速度、频率和波长;(2)绳子上各质元振动时的最大速度和最大加速度;2.(x2?x1)2?代入上式,即得ccd.第六章机械波练习2(3)当t=1s时,求素数元素在x=0.2m处的相位。
什么时候是起源阶段?此阶段表示的运动状态为t=1.25s时刻到达哪一点?解决方案:(1)给出方程和标准公式的问题1?1相比,得振幅a?0.05m,频率??5s,波长??0.5m,波速u2.5m?s.(2)绳索上每个点的最大振动速度和加速度为y?acos(2??t?2?x)vmax??A.10?? 0.05? 0.5? Ms一amax??2a?(10?)2?0.05?5?2m?s?2(3) x?0.2m处的振动滞后于原点的时间为x0.2??0.08su2.5故x?0.2m,t?1s时的位相就是原点(x?0),在t0?1?0.08?0.92s时的位相,即??9.2π.让这个相位代表的运动状态为t?如果它在1.25秒到达x点,那么x?x1?u(t?t1)?0.2?2.5(1.25?1.0)?0.825m6-4图6-4显示了在时间T沿x轴传播的平面余弦波的波形曲线。
一、解答题1.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.2.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.3.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来. |3|-,5-,12,0, 2.5-,22-,(1)--. 解析:见解析,|-3|>-(-1)>12>0>-2.5>-22>-5. 【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【详解】解:|3|=3-;224=--,(1)=1--如图所示,,由图可知,|-3|>-(-1)>12>0>-2.5>-22>-5. 【点睛】 本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键. 4.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯-(3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72.【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.5.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】 (1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 6.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦ =[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 7.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.8.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负)(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?解析:(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.9.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯- ⎪⎝⎭=1136623-⨯+⨯ =332-+=2; (2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.10.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.11.计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.12.计算:()22216232⎫⎛-⨯--⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯--=213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.13.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁). 【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.14.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.15.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.解析:(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可. 【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数, ∴点A 表示的数是-3,点B 表示的数是3; (2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3, ∴直尺此时左端点C 表示的数-3-0.5a . 【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键. 16.计算: (1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11. 【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可. 【详解】 解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-, =13-7, =6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++- =11. 【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序. 17.计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得. 【详解】(1)原式108412=-+÷-,10212=-+-, 20=-;(2)原式())(112976=--⨯-÷-,())(11776=--⨯-÷-,)(7176=-+÷-,116=--,116=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 18.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7- 【分析】(1)根据移动的方向和距离结合数轴即可回答; (2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解. 【详解】解:(1)点B 表示的数为-4+5=1, ∵-1<1<2,∴三个点所表示的数最小的数是-1; (2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点, AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上, 则点E 表示的数为-3. 【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键. 19.计算 (1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+. 解析:(1)14;(2)0 【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法. 【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.20.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一) 【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算; (2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可. 【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <, 所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※; (3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立. 【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可. 21.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 22.计算:(1)()()34287⨯-+-÷; (2)()223232-+---. 解析:(1)16-;(2)6. 【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值. 【详解】(1)原式12416=--=- (2)原式34926=-+-= 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米? (3)守门员全部练习结束后,他共跑了多少米? 解析:(1)回到了球门线的位置;(2)11米;(3)56米 【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求; (3)求出所有数的绝对值的和即可. 【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10) =(5+10+13)-(4+8+6+10) =28-28 =0.答:守门员最后回到了球门线的位置; (2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10| =5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.24.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.25.某路公交车从起点经过A,B,C,D站到达终点,一路上下乘客如下表所示.(用正数表示上车的人数,负数表示下车的人数)起点A B C D终点上车人数161512780下车人数0-3-4-10-11)到终点下车还有多少人;(2)车行驶在____站至___ 站之间时,车上的乘客最多;(3)若每人乘坐一站需买票0.5元,问该车出车一次能收入多少钱?列式计算. 解析:(1)30;(2)B ,C ;(3)71.5元. 【分析】(1)根据正负数的意义,上车为正数,下车为负数,求出A 、B 、C 、D 站以及终点站的人数,即可得解;(2)根据(1)的计算解答即可;(3)根据各站之间的人数,乘票价0.5元,然后计算即可得解. 【详解】解:(1)根据题意可得:到终点前,车上有16+15-3+12-4+7-10+8-11=30,即30人; 故到终点下车还有30人. 故答案为:30;(2)根据图表:A 站人数为:16+15-3=28(人) B 站人数为:28+12-4=36(人) C 站人数为:36+7-10=33(人) D 站人数为:33+8-11=30(人) 易知B 和C 之间人数最多. 故答案为:B ;C ;(3)根据题意:(16+28+36+33+30)×0.5=71.5(元). 答:该出车一次能收入71.5元. 【点睛】本题考查了正数和负数,有理数的混合运算,读懂图表信息,求出各站点上的人数是解题的关键.26.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a ba b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a ba b c+++++的值. 解析:(1)2或2-或0;(2)-1. 【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可. 【详解】 (1)0ab ≠∴①0,0a b >>,==1+1=2a b a ba b a b++; ②0,0a b <<,==11=2a b a b a b a b +-----; ③0ab <,=1+1=0a ba b+-, 综上所述,当0ab ≠时,a ba b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负,∴==()1b c a c a b a b c a b ca b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键. 27.计算 (1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 解析:(1)22;(2)2117-;(3)54-.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果; 【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷-- ()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭255104=-⨯+ 54=-.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.28.小明早晨跑步,他从自己家出发,向东跑了2km 到达小彬家,继续向东跑了1.5km 到达小红家,然后又向西跑了4.5km 到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km ,在图中的数轴上,分别用点A 表示出小彬家,用点B 表示出小红家,用点C 表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min ,那么小明跑步一共用了多长时间? 解析:(1)见解析;(2)4.5km ;(3)36分钟 【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可; (2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km ,再向西跑了4.5km ,再向东跑了1km ,用总路程除以跑步速度即可得出答案. 【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=, 故小红家与学校之间的距离是4.5km ; (3)小明一共跑了(2 1.51)29()km ++⨯=, 跑步用的时间是:900025036÷=(分钟). 答:小明跑步一共用了36分钟. 【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键.29.计算:2334[28(2)]--⨯-÷- 解析:21-. 【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得. 【详解】解:原式[]9428(8)=--⨯-÷-,[]942(1)=--⨯--,943=--⨯, 912=--, 21=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.30.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克 【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数. 【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克. (2)()5428001.56793+⨯=(克) 所以抽样检测的这些奶粉的总质量为9635克. 【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.。
福建省厦门第一中学2024—2025学年度第一学期10月学业调研评估初一年数学学科练习第Ⅰ卷说明:(1)考试时间60分钟.满分120分.(2)所有答案都必须写在答题卡指定方框内,答在框外一律不得分.(3)选择题用2B 铅笔填涂,其余一律用黑色水笔做答;不能使用涂改液/带.第Ⅰ卷(选择题)一、选择题(每题3分,共30分)1. 如果收入100元记作+100元.那么−80元表示( )A. 支出20元B. 支出80元C. 收入20元D. 收入80元2. –2017的相反数是( )A. -2017B. 2017C. 12017−D. 12017 3. 数轴上的点A 到原点的距离是5,则点A 表示的数为( )A. -5B. 5C. 5或-5D. 2.5或-2.5 4. 化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( )A. B. C. D. 5. 数轴上的点M 对应的数是2−,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A. 6−B. 2C. 6−或2D. 66. 3x =,4y =,则x y −的值是( )A. 7−B. 1C. 1−或7D. 1或7− 7. 魏晋时期数学家刘徽在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),图(1)表示的是()()235431++−=−的计算过程,则图(2)表示的计算过程是( )A. ()()22231−++=B. ()()223210−++=C. ()()223210++−=−D. ()()22231++−=−8. 有理数a 、b 在数轴上的位置如图所示,则下列各式运算结果符号为正的是( )A. a b −B. a bC. abD. a b +9. 体育课上全班女生进行百米测验,达标成绩为18秒,第一小组8名女生成绩如下:30.500.11 2.6 1.60.3−+−−−+−,,,,,,,其中“+”表示成绩小于18秒,“﹣”表示成绩大于18秒,则这个小组的达标率是( )A. 25%B. 37.5%C. 50%D. 62.5%10. 已知整数1234a a a a ……,,,,满足下列条件:12101a a a ==−+,,324323a a a a ++……-,=,=-依此类推,则2023a 的值为( )A. 1011−B. 1010−C. 2022−D. 2023−第Ⅱ卷(非选择题)二、填空题(第11题每空2分,其余每空3分,共25分)11. (1)化简:2−−=______;()2−−=______;2128−=______; (2)9−的倒数是______;(3)比较大小:32−______43−(填“>”或“<”). 12. 比3−小8的数是________.13. 如图,数轴上的两个点分别表示3−和m ,请写出一个符合条件的m 的整数值:______________.的14. 绝对值小于3的所有整数的和是______.15. 若320x y ++−=,则x y +=_________________ .16. 在一条可以折叠的数轴上,点A ,B 表示的数分别是10−,3,(如图1)以点C 为折点,将此数轴向右对折,折叠后若点A 落在点B 的右边(如图2),且A 、B 两点距离是1,则点C 表示的数是______.三、解答题(本大题共8题,共65分)17. 把下列各数的序号填在相应的集合里:①35−,②0.2,③47−,④0,⑤122−,⑥π,⑦ 2.3 ,⑧320+. 整数集合:{_________________________}⋅⋅⋅;负分数集合:{_________________________}⋅⋅⋅;正有理数集合:{_________________________}⋅⋅⋅.18. 将下列各数在数轴上表示出来,并用“<”把这些数连接起来.5+,0.5−,4−,0,112,123− 19 计算(1)()()4282924−−−−+−;(2)()11324864 −−+×−; (3)()()()2584−×+−÷−;(4)()1481227349−÷×−−−÷. 20. 出租车沿东西方向的道路上来回行驶,早上从A 地出发,中午到达B 地,约定向东为正方向,当天行驶路程记录如下:4+,6−,8+,5−,4,6+,10+,9−.(单位:千米) (1)B 地在A 地什么方向?距离A 地多远?(2)若汽车每千米耗油0.1升,出发前汽车油箱有油10升,求到达B 地后汽车油箱还剩多少升油? 21. 食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用.正、负来表示,记录如下表: 与标准质量的差值(单位:克)5− 2− 0 1 3 6 袋数1 4 3 4 5 3(1)这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?(2)若每袋标准质量为450克,求抽样检测的样品总质量是多少?22. 已知有理数x 、y 满足||9x =,||5y =.(1)若0x <,0y >,求+x y 的值;(2)若||x y x y +=+,求x y −值. 23. 定义新运算:11a b a b ∗=−,1a b ab⊗=(右边的运算为平常的加、减、乘、除). 例如:114373721∗=−=,11373721⊗==×. 若a b a b ⊗=∗,则称有理数,a b 为“隔一数对”.例如:1123236⊗==×,11123236∗=−=,2323⊗=∗,所以2,3就是一对“隔一数对”. (1)下列各组数是“隔一数对”的是 (请填序号) ①1,2a b ==; ②1,1a b =−=; ③41,33a b =−=−. (2)计算:(3)4(3)4(31415)(31415)−∗−−⊗+−∗−(3)已知两个连续的非零整数都是“隔一数对”.计算:1223344520202021⊗+⊗+⊗+⊗++⊗ .24. 数轴上有A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例:如图1所示,数轴上点A ,B ,C 所表示数分别为1,3,4,因为3124312AB BC AB BC =−==−==,,,所以称点B 是点A ,C 的“关联点”.图1(1)如图2所示,点A 表示数2−,点B 表示数1,下列各数2,4,6所对应的点分别是C 1,C 2,C 3其中是点A ,B 的“关联点”的是 ;的的图2(2)如图3所示,点A 表示数10−,点B 表示数15,P 为数轴上一个动点:①若点P 在点B 的左侧,且P 是点A ,B 的“关联点”,求此时点P 表示的数;②若点P 在点B 右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“关联点”, 请求出此时点P 表示的数.图3的福建省厦门第一中学2024—2025学年度第一学期10月学业调研评估初一年数学学科练习第Ⅰ卷说明:(1)考试时间60分钟.满分120分.(2)所有答案都必须写在答题卡指定方框内,答在框外一律不得分.(3)选择题用2B铅笔填涂,其余一律用黑色水笔做答;不能使用涂改液/带.第Ⅰ卷(选择题)一、选择题(每题3分,共30分)1. 如果收入100元记作+100元.那么−80元表示()A. 支出20元B. 支出80元C. 收入20元D. 收入80元【答案】B【解析】【分析】根据正负数的意义进一步求解即可.【详解】∵收入100元记作+100元,∴−80元表示支出80元,故选:B.【点睛】本题主要考查了正负数的意义,熟练掌握相关概念是解题关键.2. –2017的相反数是()A. -2017B. 2017C.12017− D.12017【答案】B【解析】【分析】一个数的相反数就是在这个数前面添上“-”号,据此可得.【详解】解:–2017的相反数是2017,故选B.【点睛】本题考查了相反数的概念.解题的关键是掌握相反数的概念.只有符号不同的两个数互为相反数.3. 数轴上的点A到原点的距离是5,则点A表示的数为()A. -5B. 5C. 5或-5D. 2.5或-2.5【答案】C【解析】【详解】根据题意知:到数轴原点的距离是5的点表示的数,即绝对值是5的数,应是±5.故选C .4. 化学老师在实验室中发现了四个因操作不规范沾染污垢或被腐蚀的砝码,经过测量,超出标准质量的部分记为正数、不足的部分记为负数,它们中质量最接近标准的是( )A. B. C. D.【答案】B【解析】【分析】求出超过标准的克数和低于标准的克数的绝对值,绝对值小的则是最接近标准的球.本题考查正数与负数以及绝对值,熟练掌握绝对值的意义是解题的关键.【详解】解:通过求4个排球的绝对值得:| 1.1| 1.1−=,|0.6|0.6−=,|0.9|0.9+=,|1|1+=.0.6−的绝对值最小,所以这个砝码是最接近标准的球.故选:B .5. 数轴上的点M 对应的数是2−,那么将点M 向右移动4个单位长度,此时点M 表示的数是( )A. 6−B. 2C. 6−或2D. 6 【答案】B【解析】【分析】本题考查了数轴上数的表示以及数轴上点的变化规律,熟练掌握点在数轴上移动的规律是解题的关键.根据点在数轴上移动的规律,左减右加;列出算式,计算即可;【详解】解:242−+=故选:B .6. 3x =,4y =,则x y −的值是( )A. 7−B. 1C. 1−或7D. 1或7−【答案】C【解析】【分析】本题考查绝对值的意义,有理数的减法;求出y 的值,然后代入x y −中即可求出答案.【详解】解:由题意可知:3x =,4y =±,当4y =时,341x y −=−=−,当4y =−时,347x y −=+=,故选:C .7. 魏晋时期数学家刘徽在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),图(1)表示的是()()235431++−=−的计算过程,则图(2)表示的计算过程是( )A. ()()22231−++=B. ()()223210−++=C. ()()223210++−=−D. ()()22231++−=−【答案】B【解析】 【分析】由白色算筹表示正数,灰色算筹表示负数,即可列式计算.详解】解:由题意可得:图(2)表示的计算过程是()()223210−++=,故选B .【点睛】本题考查正负数的表示,关键是明白白色算筹表示正数,灰色算筹表示负数.8. 有理数a 、b 在数轴上的位置如图所示,则下列各式运算结果符号为正的是( )A. a b −B. a bC. abD. a b +【答案】D【【解析】 【分析】本题考查了数轴,有理数的加减乘除运算法则,根据数轴可得0,a b a b <<<,进而逐项分析判断,即可求解. 【详解】解:根据数轴可得0,a b a b <<<,∴0a b −<,0a b<,0ab <,0a b +>, 故选:D .9. 体育课上全班女生进行百米测验,达标成绩为18秒,第一小组8名女生的成绩如下:30.500.11 2.6 1.60.3−+−−−+−,,,,,,,其中“+”表示成绩小于18秒,“﹣”表示成绩大于18秒,则这个小组的达标率是( )A. 25%B. 37.5%C. 50%D. 62.5% 【答案】B【解析】【分析】根据正负数的意义可得达标的有3人,然后计算即可.【详解】解:由题意得,达标的有3人,则这个小组达标率是3100%37.5%8×=,故选:B .【点睛】本题考查了正负数的意义,有理数的除法,根据正负数的意义得出达标的人数是解题的关键. 10. 已知整数1234a a a a ……,,,,满足下列条件:12101a a a ==−+,,324323a a a a ++……-,=,=-依此类推,则2023a 的值为( )A. 1011−B. 1010−C. 2022−D. 2023−【答案】A【解析】【分析】分别求出234567a a a a a a ,,,,,的值,观察其数值的变化规律,进而求出2023a 的值.【详解】解:根据题意可得, 10a =,2111a a +=-=-,3221a a +=−=-,的4332a a =−+=−,5442a a =−+=−,6553a a =−+=−,7663a a =−+=−,…观察其规律可得,202312022−=,202221011÷=,20231011a ∴=−,故选:A .【点睛】本题考查了数的变化规律,通过计算前面几个数的数值观察其规律是解本题的关键,综合性较强,难度适中.第Ⅱ卷(非选择题)二、填空题(第11题每空2分,其余每空3分,共25分)11. (1)化简:2−−=______;()2−−=______;2128−=______; (2)9−的倒数是______; (3)比较大小:32−______43−(填“>”或“<”). 【答案】 ①. 2− ②. 2 ③. 34−##0.75− ④. 19− ⑤. < 【解析】【分析】本题主要考查了求一个数的绝对值,化简多重符号,有理数大小的比较,求一个数的倒数,根据相关的定义进行计算即可.(1)根据绝对值的意义,相反数定义进行计算即可;(2)根据“乘积为1的两个数互为倒数”进行计算即可;(3)根据两个负数比较大小的方法:绝对值大的反而小,进行比较大小即可.【详解】解:(1)2=2−−−;()2=2−−;213284−=−; 故答案为:2−;2;34−;(2)9−的倒数是19−; 故答案为:19−;(3)3322−=,4433−=, ∵3423>, ∴3423−<−, 故答案为:<.12. 比3−小8的数是________.【答案】11−【解析】【分析】本题主要考查了有理数减法计算,只需要求出38−−的结果即可得到答案.【详解】解:3811−−=−,∴比3−小8的数是11−,故答案为:11−.13. 如图,数轴上的两个点分别表示3−和m ,请写出一个符合条件的m 的整数值:______________.【答案】4−(答案不唯一). 【解析】【分析】本题主要考查数轴,解题关键是熟知当数轴方向朝右时,右边的数总比左边的数大.由题图可知,3m <−,写出一个符合条件的m 值即可.【详解】解:由题图可知,3m <−,∴符合条件的m 的整数值可以为4−(答案不唯一).故答案为:4−(答案不唯一). 14. 绝对值小于3的所有整数的和是______.【答案】0【解析】【分析】根据绝对值的性质得出绝对值小于3的所有整数,再求和即可.【详解】解:绝对值小于3的所有整数有:21012−−,,,,,它们的和为:0,故答案为:0.【点睛】本题考查了绝对值的性质,解题的关键是熟知绝对值的概念及性质,并正确求一个数的绝对值. 15. 若320x y ++−=,则x y +=_________________ .【答案】1−【解析】【分析】本题主要考查绝对值的非负性,熟练掌握绝对值的非负性是解题的关键.根据绝对值的非负性求出x y 、的值即可得到答案.【详解】解: 320x y ++−=,30x ∴+=,20y −=,3,2x y ∴=−=,321x y ∴+=−+=−,故答案为:1−.16. 在一条可以折叠的数轴上,点A ,B 表示的数分别是10−,3,(如图1)以点C 为折点,将此数轴向右对折,折叠后若点A 落在点B 的右边(如图2),且A 、B 两点距离是1,则点C 表示的数是______.【答案】3−【解析】【分析】本题主要考查数轴,熟练掌握数轴上两点的距离与点表示的数的运算关系是解答的关键.先根据A B 、表示的数求得的长,再由折叠后AB 的长求得BC 的长,进而可确定点C 表示的数.【详解】解:A B ,表示的数分别是10−,3,()31013AB ∴=−−=,∵折叠后点A 在点B 的右边,且1AB =,131162BC +∴=−=, C ∴点表示的数是363−=−,故答案为:3−.三、解答题(本大题共8题,共65分)17. 把下列各数的序号填在相应的集合里:①35−,②0.2,③47−,④0,⑤122−,⑥π,⑦ 2.3 ,⑧320+. 整数集合:{_________________________}⋅⋅⋅;负分数集合:{_________________________}⋅⋅⋅;正有理数集合:{_________________________}⋅⋅⋅.【答案】①④⑧;③⑤⑦;②⑧【解析】【分析】本题考查了实数的分类,掌握有理数的概念和实数的分类方法是解题的关键.按照实数的分类填写,实数分为有理数和无理数,无理数是无限不循环小数,有理数分为整数和分数,整数分为正整数,0和负整数,分数分为正分数和负分数.【详解】解:整数集合{①35−,④0,⑧320+…}负分数集合{③47−,⑤122−,⑦ 2.3 …} 正有理数集合{②0.2,⑧320+…}., 故答案为:①④⑧;③⑤⑦;②⑧.18. 将下列各数在数轴上表示出来,并用“<”把这些数连接起来.5+,0.5−,4−,0,112,123− 【答案】11420.501532−<−<−<<<+,数轴见解析 【解析】【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【详解】解:如图所示,11420.501532−<−<−<<<+; 19. 计算(1)()()4282924−−−−+−;(2)()11324864 −−+×−;(3)()()()2584−×+−÷−;(4)()1481227349−÷×−−−÷.【答案】(1)27−(2)11−(3)8−(4)7−【解析】【分析】本题主要考查了有理数混合运算,解题的关键是熟练掌握有理数混合运算法则,“先算乘方,再算乘除,最后算加减,有小括号的先算小括号里面的”.(1)根据有理数加减混合运算法则进行计算即可;(2)根据乘法分配律进行计算即可;(3)根据有理数四则混合运算法则进行计算即可;(4)先计算绝对值,然后根据有理数四则混合运算法则进行计算即可.【小问1详解】解:()()4282924−−−−+−4282924=−−+−32292432427=−;【小问2详解】 解:()11324864−−+×−()()()113242424864=−×−−×−+×−3418=+−11=−;【小问3详解】解:()()()2584−×+−÷−102=−+8=−;【小问4详解】 解:()1481227349−÷×−−−÷ ()4481999=−××−− 169=−+7=−.20. 出租车沿东西方向的道路上来回行驶,早上从A 地出发,中午到达B 地,约定向东为正方向,当天行驶路程记录如下:4+,6−,8+,5−,4,6+,10+,9−.(单位:千米) (1)B 地在A 地什么方向?距离A 地多远?(2)若汽车每千米耗油0.1升,出发前汽车油箱有油10升,求到达B 地后汽车油箱还剩多少升油?【答案】(1)B 地在A 地的正东方向,距离A 地12千米(2)到达B 地后汽车还剩4.8升油【解析】【分析】本题考查有理数四则混合运算应用、正负数的应用,关键是理解题意,正确列出算式. (1)将记录数据相加,根据和的符号可作出判断;(2)求得记录数据绝对值的和,即为行驶的路程,进而列式计算即可.【小问1详解】解:∵()()()46854610912++−++−++++−=(千米), ∴B 地在A 地的正东方向,距离A 地12千米.小问2详解】 解:这一天走的总路程为:46854610952+−++−++++−=(千米), 应耗油520.1 5.2×=(升), 10 5.2 4.8−=(升), 答:到达B 地后汽车还剩4.8升油.21. 食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表: 与标准质量的差值(单位:克) 5− 2− 0 1 3 6的【袋数1 4 3 4 5 3(1)这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?(2)若每袋标准质量为450克,求抽样检测的样品总质量是多少?【答案】(1)这批样品的平均质量比标准质量多,平均每袋多1.2克(2)抽样检测的样品总质量是9024克【解析】【分析】本题主要考查了正负数的实际应用,有理数混合计算的实际应用,熟知相关计算法则是解题的关键.(1)根据有理数的加法,可得总质量比标准质量多,根据平均数的意义,可得答案;(2)根据标准质量加上比标准质量多的,可得答案.【小问1详解】解:根据题意,得:()()512403143563−×+−×+×+×+×+×()5841518=−+−+++24=(克), 平均质量为2420 1.2÷=(克), 答:这批样品的平均质量比标准质量多,平均每袋多1.2克;【小问2详解】45020249024×+=(克), 答:抽样检测的样品总质量是9024克.22. 已知有理数x 、y 满足||9x =,||5y =.(1)若0x <,0y >,求+x y 的值;(2)若||x y x y +=+,求x y −的值.【答案】(1)4−(2)4或14【解析】【分析】(1)先根据绝对值的定义和0x <,0y >求出x 和y 的值,再代入+x y 计算;(2)先根据绝对值的定义和||x y x y +=+求出x 和y 的值,再代入x y −计算【小问1详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵0x <,0y >∴x =−9,y =5,∴x +y =−9+5=−4.【小问2详解】解:∵||9x =,||5y =,∴x =±9,y =±5.∵||x y x y +=+,∴x +y ≥0,∴x =9,y =5或x =9,y =−5,∴x y −=9−5=4或x y −=9−(−5)=14.【点睛】本题考查了绝对值的定义和有理数的加减运算,正确求出x 和y 的值是解答本题的关键. 23. 定义新运算:11a b a b ∗=−,1a b ab⊗=(右边的运算为平常的加、减、乘、除). 例如:114373721∗=−=,11373721⊗==×. 若a b a b ⊗=∗,则称有理数,a b 为“隔一数对”.例如:1123236⊗==×,11123236∗=−=,2323⊗=∗,所以2,3就是一对“隔一数对”. (1)下列各组数是“隔一数对”的是 (请填序号) ①1,2a b ==; ②1,1a b =−=; ③41,33a b =−=−. (2)计算:(3)4(3)4(31415)(31415)−∗−−⊗+−∗−(3)已知两个连续的非零整数都是“隔一数对”.计算:1223344520202021⊗+⊗+⊗+⊗++⊗ .【答案】(1)①③;(2)12−;(3)20202021 【解析】【分析】(1)按照题干定义进行计算,判断是否满足条件即可;(2)直接根据题目定义分别计算各项,然后再合并求解即可;(3)根据定义进行变形和拆项,然后根据规律求解即可.【详解】解:(1)①1,2a b ==; ∵111122a b ∗=−=,11122a b ⊗==×, ∴a b a b ⊗=∗,则①是“隔一数对”;②1,1a b =−=; ∵11211a b ∗=−=−−,1111a b ⊗==−−×, ∴a b a b ⊗≠∗,则②不是“隔一数对”; ③41,33a b =−=−; ∵94131143a b −−∗=−=,1941433a b ⊗== −×−, ∴a b a b ⊗=∗,则③是“隔一数对”;故答案为:①③;(2)根据定义,原式()1111134343141531415=−−+−−−×−− 111034(3)4=−−+−−× 711212=−+ 12=−; (3)根据定义,原式1223344520202021=∗+∗+∗+∗++∗1111111111()()()()()1223344520202021=−+−+−+−++− 112021=− 20202021=. 【点睛】本题考查有理数的定义新运算,仔细审题,理解题干中的新定义,熟练掌握有理数的混合运算法则是解题关键.24. 数轴上有A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例:如图1所示,数轴上点A ,B ,C 所表示的数分别为1,3,4,因为3124312AB BC AB BC =−==−==,,,所以称点B 是点A ,C 的“关联点”.图1(1)如图2所示,点A 表示数2−,点B 表示数1,下列各数2,4,6所对应的点分别是C 1,C 2,C 3其中是点A ,B 的“关联点”的是 ;图2(2)如图3所示,点A 表示数10−,点B 表示数15,P 为数轴上一个动点:①若点P 在点B 的左侧,且P 是点A ,B 的“关联点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“关联点”, 请求出此时点P 表示的数.图3【答案】(1)C 2 (2)①点P 35−,520,33−;②点P 表示的数为5540652,, 【解析】【分析】(1)分别求出点C 1,C 2,C 3到,A B 两点间的距离,再进行验证即可;(2)①分类讨论点P 在AAAA 之间和点P 在A 点左侧时的情况即可;②分类讨论点P 为点,A B 的“关联点”、点B 为点,A P 的“关联点”、点A 为点,B P 的“关联点”即可求解.【小问1详解】解:∵()11224,211AC BC =−−==−=∴点C 1不是点A ,B 的“关联点”∵()22426,413AC BC =−−==−=∴222AC BC =即:点2C 是点A ,B 的“关联点”∵()33628,615AC BC =−−==−= ∴点3C 不是点A ,B 的“关联点” 故答案为:2C【小问2详解】解:解:设点P 在数轴上表示的数为p ①(i )当点P 在AAAA 之间时, 若2AP BP =,则()10215p p +=− 解得:203p =若2BP AP =,则()15210p p −=+ 解得:53p =−(ii )当点P 在A 点左侧时, 则2BP AP =,即:()15210p p −=−− 解得:35p =−故:点P 表示的数为35−,520,33−;②(i )当点P 为点,A B 的“关联点”时, 则2PA PB =,即:()10215p p +=− 解得:40p =(ii )当点B 为点,A P “关联点”时, 则2AB PB =,即:()1510215p +=− 解得:552p =或2BP AB =,即:()1521510p −=+ 解得:65p =(iii )当点A 为点,B P 的“关联点”时, 则2AP AB =,即:()1021510p +=+ 的解得:40p=故:点P表示的数为55 40652,,【点睛】本题以新定义题型为背景,考查了数轴上两点间的距离公式.掌握相关结论,进行分类讨论是解题关键.第16页/共16页。
2024年高考真题完全解读适用省份辽宁、吉林、黑龙江养成良好的答题习惯,是决定成败的决定性因素之一。
做题前,要认真阅读题目要求、题干和选项,并对答案内容作出合理预测;答题时,切忌跟着感觉走,最好按照题目序号来做,不会的或存在疑问的,要做好标记,要善于发现,找到题目的题眼所在,规范答题,书写工整;答题完毕时,要认真检查,查漏补缺,纠正错误。
辽宁省是第三批(即2021年)新高考省份,2024年吉林、黑龙江与辽宁共用同一套物理试题,本套试题依托高考评阅评价体系,突出基础性、综合性、应用和创新性、注重物理情境,命题思想从解题向解决物理问题转化。
很好落实了高考考评价体中的“一核”(为什么考)、“四层”(考什么)、“四翼”(怎么考)的要求。
试题特点:一是稳中有变,注重基础,非常平衡;选择题1-6题都较为基础,也是《高考评价体系》中“四层”中第一层“必备知识”的体现;二、联系实际、关注科技、从考查解题向考查解决问题转化;如第3题利用砚台将墨条麿成墨汁;三、试题新颖、注重经典模型,试题在注重经典物理模型和方法的前提下,呈现方式、命题背景新颖;如第5题利用不导电液体的介电常数与浓度的曲线关系考查平行板电容器的动态分析;四、重视物理过程分析和逻辑推理能力;如第9题需要学生分析双棒运动过程得出安培力沿轨道方向的分力与重力等大反向时导体棒做匀速直线运动等。
五、梯度适当、区分合理,根据试题的情况,合理设置问数,层层递进;如13题有两问、15题三问,且后一问比前一问难度逐渐增加。
试题评价:一、深化基础性,竖持正确的育人方向。
二、加强综合性,更加注重人考的选拔。
三、丰富问题情景化,引导学生利用所学解决问题。
四、重视典型物理模型经典物理模型的创新。
五、重视物理过程分析和逻辑推理能力的培养。
一、试卷结构:1、试卷题型:题型题量单选题7多选题3实验题2解答题33.考情分析:题号难度系数考查内容考查知识点一、单选题(每小题4分)10.85力学标量与矢量及其物理意义;20.85力学周期、角速度、转速、频率与线速度之间的关系式传动问题向心加速度与角速度、周期的关系;30.85力学滑动摩擦力的大小与方向利用平衡推论求力牛顿第三定律;40.65光学干涉条纹间距与波长的关系;50.85电磁学改变极板间距,正对面积、填充物等,判断电容的变化电容器两极间电势差一定时,Q、E随电容器的变化;60.65电磁学带电物体(计重力)在匀强电场中的一般运动;70.65力学其他星球表面的重力加速度简谐运动的回复力;二、多选题(每小题6分,全选对得6分,选对但不全得3分,有错选得0分)80.85原子物理光电效应现象及其解释影响光电流大小的因素光电子的最大初速度光子能量的公式;90.65电磁学作用的导体棒在导轨上运动的电动势、安培力、电流、路端电压双杆在等宽导轨上运动问题;100.40力学受恒定外力的板块问题三、实验题11 0.65 电学实验测量电源电动势和内阻的实验步骤和数据处理;12 0.65 力学实验力学创新实验;四、解答题13 0.85 热学理想变压器两端电压与匝数的关系应用查理定律解决实际问题判断系统吸放热、做功情况和内能变化情况14 0.65 力学平抛运动速度的计算用动能定理求解外力做功和初末速度弹簧类问题机械能转化的问题弹簧弹开两端物体的问题15 0.40 电磁学带电粒子在匀强电场中的直线运动粒子由磁场进入电场1.重视基础,回归教材。
第1篇一、引言法律案例题是法学教育中的一种重要题型,旨在考察学生对法律知识的掌握程度、分析问题和解决问题的能力。
为了确保答题质量,提高学生应对法律案例题的能力,特制定本答题规范要求。
二、答题基本要求1. 理解题目:在答题前,首先要仔细阅读题目,确保准确理解题目的要求、背景、条件、问题等。
2. 分析案例:结合题目中的案例,分析其中的法律关系、事实、证据、法律依据等,为解答问题做好准备。
3. 逻辑清晰:在解答过程中,要保持逻辑清晰,条理分明,避免出现跳跃性思维。
4. 突出重点:在解答问题时,要突出重点,抓住关键,避免泛泛而谈。
5. 规范用语:使用规范的法学术语,避免口语化表达。
6. 语言表达:语言表达要准确、简洁、流畅,避免出现错别字、语法错误。
三、答题步骤1. 仔细审题:在答题前,要仔细阅读题目,确保准确理解题目的要求。
2. 分析案例:结合题目中的案例,分析其中的法律关系、事实、证据、法律依据等。
3. 确定问题:明确题目要求解答的问题,分清主次。
4. 查找依据:根据题目要求,查找相关的法律法规、司法解释、案例等。
5. 解答问题:按照逻辑顺序,逐一解答问题。
6. 总结归纳:在解答完毕后,对整个案例进行总结归纳,提炼出关键点。
四、答题格式1. 标题:题目要求,例如“关于XX案件的案例分析”。
2. 引言:简要介绍案例背景,引出问题。
3. 分析案例:对案例中的法律关系、事实、证据、法律依据等进行详细分析。
4. 解答问题:按照题目要求,逐一解答问题。
5. 总结归纳:对整个案例进行总结归纳,提炼出关键点。
6. 结论:根据分析结果,得出结论。
五、注意事项1. 避免抄袭:在答题过程中,不得抄袭他人作品,要保持独立思考。
2. 注意时间:合理分配答题时间,确保在规定时间内完成。
3. 注意卷面整洁:书写规范,卷面整洁,避免出现错别字、涂改等现象。
4. 注意答题技巧:在答题过程中,要学会运用答题技巧,提高答题效率。
5. 注意调整心态:保持良好的心态,避免因紧张而影响答题质量。
高中数学答题规范要求一、答题规则与程序1、合理分配答题时间;2、做题顺序最好先易后难;3、会做的题一定要保证做对;4、碰到拿不准的题不要留尾巴,要把会的步骤写出;5、碰到难题既不能轻易放弃,也不要抓住不放;6、草稿纸的使用要得当。
二、解题过程及书写格式要求1、选择题的填涂标准化试题涂答案卡是一个很值得注意的问题。
许多同学都是把答案卡放在最后去涂,这样很危险。
万一由于最后一两道做不出来,冥思苦想之际忘记了时间,就会造成终身遗恨。
因此,做完选择题后,最好马上涂答案卡。
这样涂错的可能小,即使涂错,也会有充足的时间改正。
2、填空题的规范关于填空题,常见错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。
3、解答题的规范解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后结论,还要看其推理论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较大。
在解答过程中,关键语句和关键词是否答出是多得分的关键,答题过程要整洁美观、逻辑思路清晰、概念表达准确、答出关键语句和关键词。
要将解题过程转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些学生忽视,尽管学生心中有数却说不清楚,因此得分少。
只有重视解题过程的语言表述,会做的题才能得分。
对容易题要详写,过程复杂的题要简写,答题时要会把握得分点。
五、常见的规范性问题1、解与解集方程的解一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示,三角方程的通解中必须加k Z。
在写区间或集合时,要正确的书写圆括号、方括号或花括号,区间的两端点之间、集合的元素之间用逗号隔开。
2、带单位的计算题或应用题,最后结果必须带单位,特别是应用题解题结束后一定要写符合题意的“答”。
(已整理)中学英语答题规范与答题技巧一、答题规范1. 注意填写个人信息:在答题卷的指定位置填写准确的个人信息,如姓名、学号等。
2. 仔细阅读题目:在回答题目之前,确保认真阅读题目的每个部分,理解题意。
3. 注意答题方式:根据题目要求选择合适的答题方式,如填空、选择、解答等。
在填涂答题卷时,务必使用铅笔或黑色字迹的钢笔填写。
4. 按照顺序答题:在答题卷上按照题目的顺序答题,避免跳题或遗漏题目。
5. 正确标记答案:选择题中,用直线准确地划出答案所对应的选项;填空题或解答题中,写出准确的答案。
6. 注意书写规范:答题卷要求书写清晰,字迹工整,避免涂改和乱写。
7. 注意作答时间:掌握答题时间,合理分配每个题目的时间。
在时间结束前,可以将未完成的题目进行简要回答或标记。
二、答题技巧1. 阅读题技巧:仔细阅读题目中的关键词,结合上下文,理解题目意思。
对于含有否定词的句子,要特别注意。
2. 填空题技巧:在填空题中,先根据文意猜测,再根据语法规则来确定答案。
排除一些明显不合适的选项,并根据句子的逻辑关系进行推测。
3. 选择题技巧:先通读所有选项,再结合题目理解,逐个排除不合适的选项,最后确定答案。
注意选项之间的近义词和反义词。
4. 解答题技巧:在解答题中,通读全文,了解要求,并在回答中展现出对问题的深入思考和理解。
使用正确的语言和结构,简明扼要地回答问题。
5. 答题顺序技巧:可以根据自己的优势和时间安排答题顺序。
先做易题,提高答题的信心和效率,再解答较难的题目。
总结:通过遵守答题规范和运用答题技巧,可以提高中学英语答题的准确性和效率。
定期进行模拟练,加强对知识的理解和应用,掌握好答题的技巧和方法。
高考数学答题规范2023高考数学答题规范在高考中,失分情况还是屡见不鲜,为了便于考生在高考中更好地争取高分数学成绩,以下是我收集整理的2023高考数学答题规范作文,欢迎阅读,希望大家能够喜欢。
高考数学答题规范1.正确的答题心态很重要高考与平时的模拟考试其实并没有什么区别,只是其意义不同罢了。
从答题来说,平时如何,高考也就如何,不要因为太慎之又慎而竟不敢下笔。
如果每写一个字都想到这关系到自己的命运的话,是绝对考不出好成绩的。
进考场时的紧张是不可避免的,也是很正常的,关键是要让自己很快进入状态,也就是让所有的注意力都集中到答题上。
不要频频看表,这样只会更增加自己的紧张感。
在遇到难题时,尤其要保持冷静的头脑,即使做不出来,也切不可产生恐慌的情绪。
这里值得一提的是考场作弊的问题。
作弊可谓是最可鄙的行径了,即使不从道德上来说,作弊也是很难考出好成绩的。
高考若要发挥最好的水平是容不得半点分心的,一旦产生偷看别人答案的念头,也就产生会"惰性",且还不提剽窃来的答案是否正确。
总之是得不偿失。
做到自己心怀坦荡后,还要能做到对考场上的一切置若罔闻,见到别人作弊时,切不可心理不平衡,影响自己的情绪。
2.用好考前五分钟高考数学试卷发下来后不要立即就做,要检查试卷张数及印刷质量;填全试卷栏目;浏览全卷,了解题量、题型、难度;大体分配好答题时间,做到适度从紧,稍留空余。
有的考生一拿到试卷急忙就做,认为把这五分钟用起来就多“赚”了五分钟,然而他忽视了这五分钟的作用。
实际上这五分钟的时间要做的事情很多,除了上面所谈的事情以外,还有稳定自己的心态、适应考场的气氛等。
3.合理分配答题时间为了把握自己的解题速度,使自己不但能做完试题,还能赢得一个最后检查试卷的机会,应该在考试一开始就对考试时间进行合理的分配,以便在考试过程中对自己的解题速度进行适当的调整。
考试最好带块表,这样可能使你答题时间的分配更合理些。
考前五分钟已经对试卷进行的浏览,并对各题难度以及作答时间作大致估算,做到心中有数。
2021年全国卷Ⅰ高考理科数学模拟试题6学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)请点击修改第I卷的文字说明一、选择题(共12题,每题5分,共60分)1.已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=A.⌀B.SC.TD.Z2.复数z满足2-3i3+2i·z-3i=2,则|z|=A.2B.3C.√5D.√133.在平面直角坐标系xOy中,已知P是函数f(x)=lnx(x>1)的图象上的动点,该图像在点P处的切线l交x轴于点M.过点P作l的垂线交x轴于点N,设线段MN的中点的横坐标为t,则t的最大值是A.1e2B.e2+12eC.34√e4√eD.14.已知集合M={x|y=lg1−xx},N={y|y=x2+2x+3},则(C R M)∩NA.{x|0<x<1}B.{x|x>1}C.{x|x≥2}D.{x|1<x<2} 5.已知x=2是函数f(x)=x3−3ax+2的极小值点,那么函数f(x)的极大值为A.15B.16C.17D.186.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有A.60种 B.120种 C.240种 D.480种7.如图为某四棱锥的三视图,则其长为√6的侧棱与长为2的底边所成的角的正切值为A.2B.1C.√63D.√58.执行如图所示的程序框图,当输出的值为1时,输入的x值是A.±1B.1或√3C.-√3或1D.-1或√39.已知数列{a n}满足a n+1=a n-2,且S n是{a n}的前n项和.若S6=0,则a3=A.0B.-1C.1D.310.已知点P在圆(x-5)2+(y-5)2=16上,点A(4,0),B(0,2),则A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=3√2D.当∠PBA最大时,|PB|=3√211.将函数y=sin 2x的图象向左平移φ(φ>0)个单位长度,再向上平移1个单位长度,得到函数y=2cos2x的图象,那么φ可以取的值为A.π2B.π3C.π4D.π612.设△ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,则△ABC的形状为A.直角三角形B.锐角三角形C.钝角三角形D.不确定第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(共4题,每题5分,共20分)13.已知函数f (x )=sin(ωx -π6)(ω>0)在[0,π]上有且仅有3个零点,则函数f (x )在[0,π]上存在 个极小值点,实数ω的取值范围是 .(第一空2分,第二空3分) 14.对一个边长互不相等的三角形的边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色.所有不同的染色方法记为P(3),则 (1)P(3)= .(2)设a n =n ×2P(3)+n -6,则数列{a n }的前n 项和S n = .15.已知a ,b ,c 为三条不同的直线,且a ⊂平面M ,b ⊂平面N ,M ∩N =c ,给出下列四个命题: ①若a 与b 是异面直线,则c 至少与a ,b 中的一条相交; ②若a 不垂直于c ,则a 与b 一定不垂直; ③若a ∥b ,则必有a ∥c ;④若a ⊥b ,a ⊥c ,则必有M ⊥N .其中正确的命题的个数是 .16.已知双曲线x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A ,B ,过点A 且斜率为√33的直线与双曲线的渐近线在第一象限的交点为M ,且M⃗⃗ ·M ⃗⃗ =0,则该双曲线的离心率是 .三、解答题(共7题,共70分)17.(本题12分)已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,且满足(b -c )2=a 2-bc .(1)求角A 的大小;(2)若a =3,sin C =2sin B ,求△ABC 的面积.18.(本题12分)如图所示为一个半圆柱,E 为半圆弧CD 上一点,CD =√5.(1)若AD =2√5,求四棱锥E -ABCD 的体积的最大值.(2)有三个条件:①4DE ⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ =EC⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗ ;②异面直线AD 与BE 所成角的正弦值为23;③sin∠EAB sin∠EBA=√62. 请你从中选择两个作为条件,求直线AD 与平面EAB 所成角的余弦值. 注:如果选择多个条件分别解答,按第一个解答计分.19.(本题12分)随着运动APP 和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.小王某天统计了他朋友圈中所有好友(共500人)的走路步数,并整理成下表:(1)请估算这一天小王朋友圈中所有好友走路步数的平均数(同一组中数据以这组数据所在区间中点值作代表).(2)若用A 表示事件“走路步数少于平均步数”,试估计事件A 发生的概率.(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中年龄在40岁以上的中老年共有300人,其中“健步达人”恰有150人,请填写下面2×2列联表.根据列联表判断,有多大把握认为“健步达人”与年龄有关?附:K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d).20.(本题12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,且经过点(√2,√22).(1)求椭圆Γ的方程.(2)是否存在经过点(0,2)的直线l 与椭圆Γ相交于不同的两点M ,N ,使得M ,N 与y 轴上的一点P 连线后组成一个以P 为直角顶点的等腰直角三角形?若存在,求出直线l 的方程;若不存在,请说明理由.21.(本题12分)已知函数f(x)=2x 2-aln x.(1)若函数f(x)的图象恒过定点M,且f '(x)的图象也过点M,求a 的值; (2)判定函数f(x)极值点的个数;(3)试问:对某个实数m,方程f(x)=m-cos 2x 在(0,+∞)上是否存在三个不相等的实根?若存在,请求出实数a 的范围;若不存在,请说明理由.请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。
初中考试答题卡正确填写方法一、选择题类(1 - 10题)题1:- 题目:在答题卡上填写选择题答案时,使用什么笔比较合适?()A. 铅笔(2B铅笔最佳)B. 圆珠笔。
C. 钢笔。
- 答案:A。
- 解析:在答题卡上填写选择题答案时,一般使用2B铅笔最佳。
因为答题卡是通过机器扫描识别答案的,2B铅笔的石墨浓度适合机器准确读取,圆珠笔和钢笔可能会导致机器识别错误或者无法识别。
题2:- 题目:如果要修改选择题答案,应该怎么做?- 答案:使用橡皮擦轻轻擦除原来的答案痕迹,直至干净后再重新填涂正确答案。
- 解析:不能直接在原答案上涂改或者覆盖填涂。
因为机器可能会误判或者识别不清。
擦除干净后重新填涂能保证机器准确读取正确答案。
题3:- 题目:选择题答案填涂时,需要把选项对应的小方框涂满到什么程度?A. 涂满80%即可。
B. 随意涂一点就行。
C. 涂满,但以不超出小方框为限。
- 答案:C。
- 解析:要涂满小方框,这样机器才能准确识别,但如果超出小方框可能会与其他选项混淆,影响机器识别的准确性。
题4:- 题目:填涂选择题答题卡时,发现小方框有点小,难以涂满,能否用两条平行线代替涂满?- 答案:不能。
- 解析:必须按照要求涂满小方框,用两条平行线代替涂满不符合答题卡机器识别的规范,可能会导致机器无法识别答案。
题5:- 题目:选择题答题卡上,如果不小心把相邻的小方框弄脏了一点,会影响机器识别吗?- 答案:如果弄脏的程度较轻,不影响小方框内答案的清晰度,一般不会影响机器识别;如果弄脏程度严重,导致机器难以区分答案或者误判为其他答案,则会影响。
题6:- 题目:在答题卡上填写选择题答案,是先看题再填涂好,还是边看题边填涂好?- 答案:这两种方法都可行。
先看题再填涂可以在全部做完选择题后集中填涂,效率较高且不易出错;边看题边填涂可以防止最后忘记填涂答案,但可能会因频繁换笔等操作影响做题速度。
- 解析:先看题再填涂适合那些做题速度较快且不容易忘记填涂的同学,他们可以在完成所有选择题后一次性准确填涂。
规范解答题(六)“概率与统计(理)”类题目的审题技巧与解题规范●解题规范专练1.(2015·陕西)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:导学号25402602(1)求T(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.[解析](1)由统计结果可得T的频率分布为以频率估计概率得从而E(T)=25×0.2+(2)设T1、T2分别表示往、返所需时间,T1、T2的取值相互独立,且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.解法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.解法二:P(A)=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P(A)=1-P(A)=0.91.[点拨]离散型随机变量的期望与方差是概率与统计的重要内容,是高考的常考内容之一.求离散型随机变量的期望与方差的方法:(1)已知随机变量的概率分布求它的期望与方差,可直接利用定义进行求解;(2)已知随机变量的期望与方差,求ξ的线性函数η=aξ+b的期望与方差,可利用期望与方差的性质进行求解;(3)若能分析出所给随机变量服从常见的分布(如超几何分布、二项分布等),可直接利用它的期望与方差公式进行计算;(4)对于应用题,必须对实际问题进行分析,先求出随机变量的概率分布列,然后按定义计算出随机变量的期望与方差.2.(2015·河北质量监测)市一中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].导学号 25402603(1)求直方图中x 的值;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1 200名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)[解析] (1)由直方图可得20x +0.025×20+0.006 5×20+0.003×2×20=1, 所以x =0.012 5.(2)新生上学所需时间不少于1小时的频率为 0.003×2×20=0.12, 因为1 200×0.12=144,所以估计1 200名新生中有144名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P (X =0)=(34)4=81256,P (X=1)=C 14×14×(34)3=2764,P (X =2)=C 24×(14)2×(34)2=27128,P (X =3)=C 34×(14)3×34=364,P (X =4)=(14)4=1256.所以X 的分布列为E (X )=0×81256+1×2764+2×27128+3×364+4×1256=1(或E (X )=4×14=1).所以X 的数学期望为1.3.(2015·九江一模)心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答..选题情况如下表:(单位:人)导学号 25402604(1)能否据此判断有(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率;(3)现从选择做几何题的8名女同学中任意抽取2人对她们的答题情况进行全程探究,记丙、丁2名女同学被抽到的人数为X ,求X 的分布列及数学期望E (X ).下面临界值表仅供参考:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )[解析] (1)由表中数据得K 2=50×(22×12-8×8)230×20×30×20=509≈5.556>5.024,所以根据统计有97.5%的把握认为视觉和空间能力与性别有关.(2)设甲、乙解答一道几何题的时间分别为x 、y 分钟,则基本事件满足的区域为⎩⎪⎨⎪⎧5≤x ≤76≤y ≤8(如图所示),设事件A 为“乙比甲先解答完此道题”,则满足的区域为x >y ,所以由几何概型的概率计算公式得P (A )=12×1×12×2=18,即乙比甲先解答完的概率为18.(3)X 的可能取值为0,1,2,由题可知在选择做几何题的8名女同学中任意抽取2人,抽取方法有C 28=28(种),其中丙、丁2人没有一个人被抽到有C 26=15(种);恰有一人被抽到有C 12·C 16=12(种);2人都被抽到有C 22=1种,所以P (X =0)=1528,P (X =1)=1228=37,P (X =2)=128,X 的分布列为所以E (X )=0×1528+1×1228+2×128=12.4.(2015~2016学年河南省许昌市长葛一中高三月考题)口袋里装有7个大小相同的小球,其中三个标有数字1,两个标有数字2,一个标有数字3,一个标有数字4.导学号 25402605(1)第一次从口袋里任意取一球,放回口袋里后第二次再任意取一球,记第一次与第二次取到小球上的数字之和为ξ.当ξ为何值时,其发生的概率最大?说明理由;(2)第一次从口袋里任意取一球,不再放回口袋里,第二次再任意取一球,记第一次与第二次取到小球上的数字之和为η.求η的分布列和数学期望.[分析] (1)由题设知ξ可能的取值为2,3,4,5,6,7,8,由题设条件分别求出P (ξ=2),P (ξ=3),P (ξ=4),P (ξ=5),P (ξ=6),P (ξ=7),P (ξ=8),由此求出当ξ为3时,其发生的概率最大.(2)由题设知η可能的取值为2,3,4,5,6,7,分别求出P (η=2),P (η=3),P (η=4),P (η=5),P (η=6),P (η=7),由此能求出η的分布列和E (η).[解析] (1)由题设知ξ可能的取值为2,3,4,5,6,7,8,P (ξ=2)=C 13C 13C 17C 17=949,P (ξ=3)=C 13C 12×2C 17C 17=1249,P (ξ=4)=C 12C 12C 17C 17+C 13C 11×2C 17C 17=1049,P (ξ=5)=C 12C 11×2C 17C 17+C 13C 11×2C 17C 17=1049,P (ξ=6)=C 12C 11×2C 17C 17+C 11C 11C 17C 17=549,P (ξ=7)=2C 17C 17=149,P (ξ=8)=1C 17C 17=149,所以当ξ为3时,其发生的概率最大.(2)由题设知η可能的取值为2,3,4,5,6,7,… P (η=2)=C 23C 27=17,P (η=3)=C 13C 12C 27=27,P (η=4)=C 13+C 22C 27=421, P (η=5)=C 13+C 12C 27=521, P (η=6)=C 12C 27=221,P (η=7)=121,∴η的分布列为:E (η)=2×17+3×27+4×421+5×521+6×221+7×121=4.[点评] 本题考查离散型随机变量的分布列和数学期望,解题时要认真审题,仔细解答,注意排列组合和概率知识的合理运用.5.(2015~2016学年湖南省常德市津市一中月考题)某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座.(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:导学号 25402606根据上表:(1)求数学辅导讲座在周一、周三、周五都不满座的概率;(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望.[分析] (1)由题意设数学辅导讲座在周一,周三,周五都不满座为事件A ,则有独立事件同时发生的概率公式即可求得;(2)由于题意可以知道随机变量ξ的可能值为0,1,2,3,4,5,利用随见变量的定义及相应的事件的概率公式即可求得随机变量每一个值下的概率,并列出其分布列,再有期望定义求解.[解析] (1)设数学辅导讲座在周一,周三,周五都不满座为事件A , 则P (A )=(1-12)×(1-23)×(1-23)=12×13×13=118,(2)由题意随机变量ξ的可能值为0,1,2,3,4,5, P (ξ=0)=(1-12)4·(1-23)=148,P (ξ=1)=C 14·12·(1-12)3·(1-23)+(1-12)4·23=18, P (ξ=2)=C 24(12)2(12)2(1-23)+C 14·12·(1-12)3·23=724, P (ξ=3)=C 34(13)3(1-12)·(1-23)+C 24(12)2·(1-12)2·23=13, P (ξ=4)=(12)4·(1-23)+C 34(12)3·(1-12)·23=316,P (ξ=5)=(12)4·23=124,所以随机变量的分布列为:故Eξ=0×148+1×18+2×724+3×13+4×316+5×124=83.[点评] 此题属于中档题型,重在理解题意并分型事件的类型用准概率公式,考查了随机变量的定义及其分布列,还考查了随机变量的期望公式及计算能力.。