线性代数AAPS
- 格式:doc
- 大小:21.00 KB
- 文档页数:1
线性代数(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合n叫做n 维向量空间.()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量√ 行列式的计算:⑤范德蒙德行列式:()1222212111112n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵.记作:()ij m nA a ⨯=或m n A ⨯()1121112222*12n Tn ij nnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A中各个元素的代数余子式.√ 逆矩阵的求法:①1A A A *-=○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号②1()()A E E A -−−−−→初等行变换1111213a a a a a a -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭a a a ⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→初等行变换(I)的解法:构造()()T T T T A X B X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得1零向量是任何向量的线性组合,零向量与任何同维实向量正交. 2单个零向量线性相关;单个非零向量线性无关.3部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)⑧ 设√ ④,m n n A B ⨯⨯若 ⑤(r AB ⑥A B 若若⑦若()m n r A ⨯若()n s r B n ⨯=⑨()r A B ±⑩A O r OB ⎛⎫ ⎪⎝⎭√ 12,,,,n n αβααβα⇒线性相关可由有唯一组解表示法唯一线12),)()A r A ββααββ教材 讲义性无关 不可由 Ax Ax ββ==其导出组有非零解()r A *⎧⎪=⎨⎪⎩1,,,,k k Ax Ax Ax ηηλληβηβ==也是它的解是 的解是的两个解1111,,k Ax Ax βηληλη=的解是 √ 设A ()r A m =⇒)A β⇒√ 判断1,s ηη是Ax ο=的基础解系的条件: ① 12,,,s ηηη线性无关;② 12,,,s ηηη都是Ax 的解;③ ()sn r A =-=每个解向量中自由未知量的个数√ 一个齐次线性方程组的基础解系不唯一,s ξ是Ax 列向量个数相同)① 它们的极大无关组相对应② 它们对应的部分组有一样的线性相关性;③ 它们有相同的内在线性关系(A r A B βγ⎫=⎪⎭m n A ⨯与l n B ⨯B =(左乘可逆矩阵m n ⨯与l n B ⨯关于公共解的三中处理办法:① 把(I)142c c ηη+都是非齐次线性方程组时,设1c ξ+两方程组有公共解21233)(,r c ηηηξη=+-(II)中,找出(I)的通解中的任的关系式而求出公共解。
线性代数基础知识线性代数是一门运用数学工具和思维方式研究矢量、向量、线性方程组、矩阵、线性变换和空间几何性质的学科。
线性代数被广泛应用于工程、物理学、计算机科学、经济学、生物学、金融学、地理学等领域。
本文将介绍一些线性代数基础知识,帮助读者更好地理解线性代数的基本概念和应用。
1. 向量与矢量向量和矢量是线性代数中非常重要的概念。
它们是指有大小和方向的量,比如力、速度和加速度等。
在几何中,向量通常用箭头表示,矢量则用带箭头的线条表示。
向量和矢量有相同的性质,可以加减和相乘。
线性代数中通常用列向量表示,如:$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\\end{bmatrix}$其中$x_1$,$x_2$,$x_3$是向量的三个分量。
矢量也可以用类似的表示方法,如:$\vec{a} = a_x\hat{i} + a_y\hat{j} + a_z\hat{k}$其中$a_x$,$a_y$,$a_z$是矢量在$x$,$y$,$z$轴上的投影,$\hat{i}$,$\hat{j}$,$\hat{k}$是单位向量。
在计算机图形学和机器学习等领域中,向量和矢量的使用非常普遍,因此掌握它们的基本概念和运算法则是非常重要的。
2. 矩阵矩阵是线性代数中的另一个重要概念,它是由若干数排成的矩形数表。
矩阵可以用符号表示为:$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots &\vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\\end{bmatrix}$其中$a_{ij}$表示矩阵$A$的第$i$行第$j$列的元素。
线代重难点总结()0A r A n A Ax A A οο⎧⎪<⎪⎪=⇔=⎨⎪⎪⎪⎩不可逆 有非零解是的特征值 的列(行)向量线性相关12()0,,T s i nA r A n Ax A A A A A A A p p p p Ax οββ⎧⎪=⎪⎪=⎪⎪⎪≠⇔⎨⎪⎪⎪⎪=⋅⋅⋅⎪⎪∀∈=⎩可逆 只有零解 的特征值全不为零 的列(行)向量线性无关 是正定矩阵 与同阶单位阵等价 是初等阵总有唯一解R⎫⎪−−−→⎬⎪⎭具有向量组等价相似矩阵反身性、对称性、传递性矩阵合同 √ 关于12,,,n e e e ⋅⋅⋅:①称为n 的标准基,n 中的自然基,单位坐标向量; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr()=E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示. √ 行列式的计算:① 若A B 与都是方阵(不必同阶),则(1)mn A A A A B B B B A A BB οοοοο*===**=-②上三角、下三角行列式等于主对角线上元素的乘积.③关于副对角线:(1)211212112111(1)n n nnn n n n n n n a a a a a a a a a οοο---*==-√ 逆矩阵的求法:①1A A A*-=②1()()A E E A -−−−−→ 初等行变换③11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦ TT T TT A B A C C D BD ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦④12111121n aa n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦21111211na a n a a a a -⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⑤11111221n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11121211n n A A A A A A ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦√ 方阵的幂的性质:m n m n A A A += ()()m n mn A A =√ 设1110()m m m m f x a x a x a x a --=++++ ,对n 阶矩阵A 规定:1110()m m m m f A a A a A a A a E--=++++ 为A 的一个多项式.√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,AB 的列向量为12,,,sr r r ,1212121122,1,2,,,(,,,)(,,,),(,,,),,,.i i s s T n n n i i i i r A i s A A A A A B b b b A b b b AB i r A AB i r B βββββββββαααβα==⋅⋅⋅=⎫⎪==++⎪⎬⎪⎪⎭ 则:即 用中简 若则 单的一个提即:的第个列向量是的列向量的线性组合组合系数就是的各分量;高运算速度 的第个行向量是的行向量的线性组合组合系数就是的各分量 √ 用对角矩阵Λ左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的行向量;用对角矩阵Λ右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,与分块对角阵相乘类似,即:11112222,kk kk A B A B A B A B οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦11112222kk kk A B A B AB A B οο⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦√ 矩阵方程的解法:设法化成AX B XA B ==(I) 或 (II) 当0A ≠时,,B A B E X −−−−→ 初等行变换(当为一列时(I)的解法:构造()()即为克莱姆法则)T T T TA XB X X =(II)的解法:将等式两边转置化为,用(I)的方法求出,再转置得√ Ax ο=和Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 判断12,,,s ηηη 是0Ax =的基础解系的条件: ① 12,,,s ηηη 线性无关; ② 12,,,s ηηη 是0Ax =的解;③ ()s n r A =-=每个解向量中自由变量的个数.① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关. ③ 部分相关,整体必相关;整体无关,部分必无关.④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余1n -个向量线性表示.向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余1n -个向量线性表示. ⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<; m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=. ⑨ ()0r A A ο=⇔=.⑩ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法惟一.⑪ 矩阵的行向量组的秩等于列向量组的秩.阶梯形矩阵的秩等于它的非零行的个数.⑫ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系. 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:{}{}1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅A 经过有限次初等变换化为B . 记作:A B =⑬ 矩阵A 与B 等价⇔()(),r A r B A B =≠>作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅. ⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑯ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;⑰ 任一向量组和它的极大无关组等价.⑱ 向量组的任意两个极大无关组等价,且这两个组所含向量的个数相等. ⑲ 若两个线性无关的向量组等价,则它们包含的向量个数相等.⑳ 若A 是m n ⨯矩阵,则{}()min ,r A m n ≤,若()r A m =,A 的行向量线性无关; 若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关.Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 12,1,2,,j j jmj j n αααα⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦61212120,,,0,,,()(),,,A n A n n Ax Ax A nAx Ax A Ax r A r A n βοαααβοβαααββααα⇒⇔==−−−−−→=<<≠⇒⇒⇔==−−−−−→≠⇔=⇔=<≠=⇒ 当为方阵时当为方阵时有无穷多解有非零解线性相关 有唯一组解只有零解可由线性表示有解线性无关 12()(),,,()()()1()A n r A r A Ax r A r A r A r A ββαααβββ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪−−−−−→⎪⎩⇔≠⎧⎪⇔=⇔<⎨⎪⇔+=⎩当为方阵时 克莱姆法则 不可由线性表示无解线性方程组解的性质:1212121211221212(1),0,(2)0,,(3),,,0,,,,,(4),0,(5),,0(6)k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηηηηηηηηλλλληληληγβηγηβηηβηη=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212,0(7),,,,100k k k kk k k Ax Ax Ax Ax Ax ηβηηηηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =,则()()r A r A β= ,从而Ax β=一定有解. 当m n <时,一定不是唯一解.⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β 和的上限. √ 矩阵的秩的性质:① ()()()T T r A r A r A A == ② ()r A B ±≤()()r A r B + ③ ()r AB ≤{}min (),()r A r B④ ()0()00r A k r kA k ≠⎧=⎨=⎩若 若⑤ ()()A r r A r B B οο⎡⎤=+⎢⎥⎣⎦⑥0,()A r A ≠若则≥1⑦ ,,()0,()()m n n s A B r AB r A r B ⨯⨯=+若且则≤n ⑧ ,()()()P Q r PA r AQ r A ==若可逆,则 ⑨ ,()()A r AB r B =若可逆则,()()B r AB r A =若可逆则⑩ (),()(),r A n r AB r B ==若则且A 在矩阵乘法中有左消去律:0AB B AB AC B Cο=⇒==⇒=n 个n 维线性无关的向量,两两正交,每个向量长度为1.(,)0αβ=.1α==.√ 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 双线性:1212(,)(,)(,)αββαβαβ+=+ 1212(,)(,)(,)ααβαβαβ+=+ (,)(,)(,)cc c αβαβαβ==123,,ααα线性无关,112122111313233121122(,)()(,)(,)()()βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ= 222βηβ= 333βηβ= T AA E =.√ A 是正交矩阵的充要条件:A 的n 个行(列)向量构成n 的一组标准正交基. √ 正交矩阵的性质:① 1T A A -=;② T T AA A A E ==;③ A 是正交阵,则T A (或1A -)也是正交阵; ④ 两个正交阵之积仍是正交阵; ⑤ 正交阵的行列式等于1或-1.E A λ-.()E A f λλ-=.0E A λ-=. Ax x Ax x λ=→ 与线性相关√ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.√ 若0A =,则0λ=为A 的特征值,且0Ax =的基础解系即为属于0λ=的线性无关的特征向量. √ 12n A λλλ= 1ni A λ=∑tr√ 若()1r A =,则A 一定可分解为A =[]1212,,,n n a a b b b a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦、21122()n n A a b a b a b A =+++ ,从而A的特征值为:11122n n A a b a b a b λ==+++ tr , 230n λλλ==== . √ 若A 的全部特征值12,,,n λλλ ,()f x 是多项式,则:① ()f A 的全部特征值为12(),(),,()n f f f λλλ ;② 当A 可逆时,1A -的全部特征值为12111,,,nλλλ , A *的全部特征值为12,,,n A A A.√ 1122,.m m Ak kA a b aA bEAA AA A λλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是的特征值则:分别有特征值 √ 1122,m m Ak kAa b aA bEAx A x A A A λλλλλλ-*⎧⎪++⎪⎪⎪⎨⎪⎪⎪⎪⎩是关于的特征向量则也是关于的特征向量. 1B P AP -= (P 为可逆阵) 记为:A B√ A 相似于对角阵的充要条件:A 恰有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. √ A 可对角化的充要条件:()i i n r E A k λ--= i k 为i λ的重数. √ 若n 阶矩阵A 有n 个互异的特征值,则A 与对角阵相似.1B P AP -= (P 为正交矩阵)√ 相似矩阵的性质:① 11A B -- 若,A B 均可逆② T T A B③ k k A B (k 为整数)④ E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.即:x 是A 关于0λ的特征向量,1P x -是B 关于0λ的特征向量. ⑤ A B = 从而,A B 同时可逆或不可逆 ⑥ ()()r A r B = ⑦ ()()A B =tr tr√ 数量矩阵只与自己相似. √ 对称矩阵的性质:① 特征值全是实数,特征向量是实向量; ② 与对角矩阵合同;③ 不同特征值的特征向量必定正交;④ k 重特征值必定有k 个线性无关的特征向量;⑤ 必可用正交矩阵相似对角化(一定有n 个线性无关的特征向量,A 可能有重的特征值,重数=()n r E A λ--).A 与对角阵Λ相似. 记为:A Λ (称Λ是A√ 若A 为可对角化矩阵,则其非零特征值的个数(重数重复计算)()r A =. √ 设i α为对应于i λ的线性无关的特征向量,则有:[]121212112212(,,,)(,,,)(,,,),,,n n n n n n PA A A A λλααααααλαλαλααααλΛ⎡⎤⎢⎥⎢⎥===⎢⎥⎢⎥⎣⎦. √ 若A B , C D ,则:A B C D οοοο⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ . √ 若A B ,则()()f A f B ,()()f A f B =.12(,,,)T n f x x x X AX = A 为对称矩阵 12(,,,)T n X x x x =T B C AC =. 记作:A B (,,A B C 为对称阵为可逆阵)√ 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. √ 两个矩阵合同的充分条件是:A B √ 两个矩阵合同的必要条件是:()()r A r B =√ 12(,,,)Tn f x x x X AX = 经过正交变换合同变换可逆线性变换X CY =化为2121(,,,)nn i i f x x x dy =∑ 标准型.√ 二次型的标准型不是惟一的,与所作的正交变换有关,但系数不为零的个数是由()r A +正惯性指数负惯性指数惟一确定的.√ 当标准型中的系数i d 为1,-1或0时,√ 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数.√ 任一实对称矩阵A 与惟一对角阵111100⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦合同.√ 用正交变换法化二次型为标准形:① 求出A 的特征值、特征向量; ② 对n 个特征向量单位化、正交化; ③ 构造C (正交矩阵),1C AC -=Λ;④ 作变换X CY =,新的二次型为2121(,,,)nn i i f x x x d y =∑ ,Λ的主对角上的元素i d 即为A 的特征值.12,,,n x x x 不全为零,12(,,,)0n f x x x > . 正定二次型对应的矩阵. √ 合同变换不改变二次型的正定性. √ 成为正定矩阵的充要条件(之一成立):① 正惯性指数为n ; ② A 的特征值全大于0;③ A 的所有顺序主子式全大于0;④ A 合同于E ,即存在可逆矩阵Q 使T Q AQ E =; ⑤ 存在可逆矩阵P ,使T A P P = (从而0A >);⑥ 存在正交矩阵,使121T n C AC C AC λλλ-⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦ (i λ大于0). √ 成为正定矩阵的必要条件:0ii a > ; 0A >.。
线性代数全公式基本运算①A B B A +=+②()()C B A C B A ++=++③()cB cA B A c +=+ ()dA cA A d c +=+ ④()()A cd dA c =⑤00=⇔=c cA 或0=A 。
()A A TT=()T T TB A B A ±=±()()T TA c cA =。
()T T TA B AB =()()()212112-==-n n C n n n τ n n A a A a A a D 2222222121+++=转置值不变A A T = 逆值变AA11=- A c cA n =γβαγβαγββα,,,,,,2121+=+()321,,ααα=A ,3阶矩阵 ()321,,βββ=B B A B A +≠+()332211,,βαβαβα+++=+B A332211,,βαβαβα+++=+B A B A BA B A =*=*0()()1,=c j i E有关乘法的基本运算nj in j i j i ij b a b a b a C +++= 2211 线性性质 ()B A B A B A A 2121+=+, ()2121AB AB B B A +=+ ()()()cB A AB c B cA == 结合律 ()()BC A C AB = ()T T TA B AB =B A AB =l k l k A A A += ()kl lkA A =()k k kB A AB =不一定成立!A AE =,A EA =()kA kE A =,()kA A kE =E BA E AB =⇔=与数的乘法的不同之处()k k kB A AB =不一定成立!无交换律 因式分解障碍是交换性一个矩阵A 的每个多项式可以因式分解,例如 ()()E A E A E A A +-=--3322 无消去律(矩阵和矩阵相乘) 当0=AB 时0=⇒/A 或0=B 由0≠A 和00=⇒/=B AB由0≠A 时C B AC AB =⇒/=(无左消去律)特别的 设A 可逆,则A 有消去律。
线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
线性代数N阶行列式定理1:任意一个排列经过对换后,其奇偶性改变。
推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。
定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。
行列式的性质性质1:行列式与它的转置行列式相等。
性质2:交换行列式的两行(列),行列式变号。
注2:交换i,j两列,记为ri↔ri(ci↔cj)。
推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。
性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。
注3:第i行(列)乘以k,记为ri×k(ci×k)。
推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。
推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。
性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。
注4:上述结果可推广到有限个数和的情形。
性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。
注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。
行列式按行(列)展开余子式:Mij 代数余子式:Aij=(-1)i+j Mij引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即D=aijAij定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。
推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。
k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k²个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的(i1+i2+…+i k+j1+j2+…+j k)次方,称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。
1、行列式公式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C ABC B O B ==、(1)m n C A O AA B B O B C==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0;⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----=== ***111()()()T T TAB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A = ; Ⅱ、111121s A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=; 4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k -=,例如:1111(0)11k k k-⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑ ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- m n n n n n n n m n C C C m m n mⅢ、组合的性质:11112---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ; ③、利用特征值和相似对角化: 7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x a a a x β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭);④、1122n n a x a x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα 构成n m ⨯矩阵12(,,,)m A = ααα; m 个n 维行向量所组成的向量组B :12,,,T T Tm βββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4. ()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=;②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,s ααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3) 向量组A 能由向量组B 线性表示AX B ⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P = ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9.对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10.若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11.齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明; ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯ 可由向量组12:,,,n s s A a a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K = (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性) (必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P ) ②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s ααα 线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ- 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i ja a i j n i j=⎧==⎨≠⎩ ; ②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=---- ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆;⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)。
《线性代数》公式大全线性代数是数学中的一个分支,研究向量、矩阵和线性方程组等相关概念和性质。
它是现代数学和应用科学的基础,广泛应用于物理学、工程学、计算机科学等领域。
本文将介绍线性代数中的基本概念和相关公式。
1.向量的定义和运算:向量是有方向和大小的量,可以用有序数对或者列矩阵来表示。
设有向量a=(a1, a2, ..., an),b=(b1, b2, ..., bn),则向量的运算包括:- 向量的加法:a + b = (a1 + b1, a2 + b2, ..., an + bn)- 向量的减法:a - b = (a1 - b1, a2 - b2, ..., an - bn)- 数乘:k * a = (k * a1, k * a2, ..., k * an)2.向量的模和单位向量:向量的模表示向量的长度,记作,a,计算公式为:,a, =sqrt(a1² + a2² + ... + an²)。
单位向量表示模为1的向量,计算公式为:u=a/,a。
3.内积和外积:内积也叫点积或数量积,计算公式为:a·b = a1 * b1 + a2 * b2+ ... + an * bn。
外积也叫向量积或叉积,计算公式为:a×b=(a2*b3-a3*b2,a3*b1-a1*b3,a1*b2-a2*b1)。
4.矩阵的定义和运算:矩阵是按照行列排列的矩形阵列,可以用方括号表示。
设有矩阵A和B,则矩阵的运算包括:-矩阵的加法:A+B=[a11+b11,a12+b12,...,a1m+b1m;a21+b21,a22+b22,...,a2m+b2m;...] -矩阵的减法:A-B=[a11-b11,a12-b12,...,a1m-b1m;a21-b21,a22-b22,...,a2m-b2m;...]-数乘:k*A=[k*a11,k*a12,...,k*a1m;k*a21,k*a22,...,k*a2m;...] -矩阵的乘法:A*B=[c11,c12,...,c1n;c21,c22,...,c2n;...]其中,cij = a(i1) * b(1j) + a(i2) * b(2j) + ... + a(im) *b(mj),a(ij)为矩阵A的第i行第j列元素。
线性代数公式定理总结线性代数是一门研究向量空间及其线性映射与线性变换的数学学科,涉及了许多重要的公式和定理。
本文将对线性代数中的关键公式和定理进行总结,以帮助读者更深入地理解线性代数的基本概念和原理。
一、向量的基本性质和运算公式1. 向量空间的定义:向量空间是一个基于域上的向量集合,在满足一定性质(如封闭性、加法交换律等)的条件下进行线性组合和标量乘法运算。
2. 向量的加法和数乘:对于向量a和b,有加法公式a+b=b+a和数乘公式c(a+b) = ca + cb。
3. 零向量的性质:对于任意向量a,有a + 0 = a,其中0为零向量。
4. 向量的负向量:对于向量a,存在一个向量-b使得a + (-b) = 0。
5. 向量的数量积:向量a和b的数量积(内积)表示为a·b =||a|| ||b|| cosθ,其中||a||和||b||分别为向量a和b的模长,θ为a和b之间的夹角。
6. 内积的性质:内积满足加法性、齐次性、对称性和正定性等性质,如对于向量a,b和c,有a·(b + c) = a·b + a·c。
二、线性方程组和矩阵运算公式1. 线性方程组的标准形式:线性方程组可以表示为AX = B的形式,其中A为系数矩阵,X为未知变量向量,B为常数向量。
2. 线性方程组的解的存在性和唯一性:线性方程组的解存在并且唯一当且仅当系数矩阵A的秩等于常数向量B的秩。
3. 矩阵的乘法和转置:对于矩阵A和B,有乘法公式AB ≠ BA,矩阵转置的性质(A^T)^T = A和(AB)^T = B^T A^T。
4. 逆矩阵的性质:对于方阵A,若存在逆矩阵A^{-1}使得AA^{-1} = A^{-1}A = I,其中I为单位矩阵,则称A为可逆矩阵。
5. 逆矩阵的求解:对于方阵A,若A可逆,则可以使用伴随矩阵求解逆矩阵A^{-1} = (1/ det(A)) adj(A)。
6. 矩阵的行列式和性质:矩阵的行列式表示为det(A),满足交换行列式的值不变、对角矩阵的行列式等于对角线元素的乘积等性质。
《线性代数》的主要知识点第一部分 行列式概念:1. n 阶行列式展开式的特点:①共有n!项,正负各半;②每项有n 个元素相乘,且覆盖所有的行与列;③每一项的符号为(列)行)ττ+-()1(2. 元素的余子式以及代数余子式 ij ji ij M )1(A +-=3. 行列式的性质计算方法:1. 对角线法则2. 行列式的按行(列)展开 (另有异乘变零定理)第二部分 矩阵1. 矩阵的乘积注意:①不满足交换率(一般情况下B A A B ≠)②不满足消去率 (由AB=AC 不能得出B=C )③由AB=0不能得出A=0或B=0④若AB=BA ,则称A 与B 是可换矩阵2.矩阵的转置满足的法则:T T T B A )B A (+=+,T T T T T A B AB kA kA ==)(,)(3.矩阵的多项式 设nn x a x a a x +++= 10)(ϕ,A 为n 阶方阵,则n n A a A a E a A +++= 10)(ϕ称为A 的n 次多项式。
对与对角矩阵有关的多项式有结论如下:(1)如果 1-Λ=P P A ,则nn A a A a E a A +++= 10)(ϕ11110---Λ++Λ+=P Pa P Pa EP Pa nn = 1)(-ΛP P ϕ(2)若),,(21n a a a diag =Λ,则))(),(),(()(21n a a a diag ϕϕϕϕ =Λ4.逆矩阵:n 阶矩阵A,B ,若E BA AB ==,则A,B 互为逆矩阵。
n 阶矩阵A 可逆0A ≠⇔;n A r =⇔)( (或表示为n A R =)()即A 为满秩矩阵;⇔A 与E 等价;⇔A 可以表示成若干个初等矩阵的乘积;⇔A 的列(行)向量组线性无关;⇔A 的所有的特征值均不等于零求法:①伴随矩阵法:*11A AA ⋅=- ②初等变换法:()()1,,-−−−→−A E E A 初等行变换或⎪⎪⎭⎫⎝⎛−−−→−⎪⎪⎭⎫ ⎝⎛-1A E E A 初等列变换, E 是单位矩阵性质:(1)矩阵A 可逆,则A 的逆矩阵是唯一的(2)设A 是n 阶矩阵,则有下列结论 ①若A 可逆,则1-A 也可逆,且A A =--11)( ②若A 可逆,则T A 也可逆,且T T A A )()(11--=③若A 可逆,数0≠k ,则kA 可逆,且111)(--=A kkA ④若B A .为同阶矩阵且均可逆,则B A .也可逆,且111)(---=A B AB5.方阵A 的行列式:满足下述运算规律(设B A ,为n 阶方阵,λ为数) ①A A T = ②A A n λλ= ③B A AB =6.伴随矩阵:行列式A 的各个元素的代数余子式ij A 所构成的如下的矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=nn n n n n A A A A A A A A A A 212221212111*,称为矩阵A 的伴随矩阵(注意行与列的标记的不同) 伴随矩阵具有性质:E A A A AA ==** 常见的公式有:①1*-=n A A ②1*-⋅=A A A ③A AA 1)(1*=- ④=-1*)(A *1)(-A 等 7.初等矩阵:由单位矩阵E 经过一次初等变换后所得的矩阵称为初等矩阵。
线性代数重要公式定理大全在线性代数中,有许多重要的公式和定理。
以下是其中的一些:1.矩阵乘法的结合律:对于矩阵A,B和C,满足维度要求,有:(AB)C=A(BC)。
2.矩阵乘法的分配律:对于矩阵A,B和C,满足维度要求,有:A(B+C)=AB+AC。
3.矩阵乘法的转置:对于矩阵A和B,满足维度要求,有:(AB)ᵀ=BᵀAᵀ。
4.矩阵乘法的逆元:对于可逆矩阵A和B,有:(AB)⁻¹=B⁻¹A⁻¹。
5.矩阵的转置的转置:对于矩阵A,有:(Aᵀ)ᵀ=A。
6.矩阵的逆的逆:对于可逆矩阵A,有:(A⁻¹)⁻¹=A。
7.矩阵的逆与转置的乘积:对于可逆矩阵A,有:(Aᵀ)⁻¹=(A⁻¹)ᵀ。
8.矩阵的行列式乘积:对于矩阵A和B,满足维度要求,有:det(AB) = det(A)det(B)。
9.矩阵的行列式的转置:对于矩阵A,有:det(Aᵀ) = det(A)。
10.全排列的行列式和:对于n阶方阵A,有:det(A) = Σ(±1)ᵖ(对每个全排列的正负之和乘上元素的乘积)。
11.矩阵的伴随矩阵乘积:对于n阶方阵A,有:A·Adj(A) = det(A)·I (I为单位矩阵)。
12.矩阵的迹与特征值之和:对于n阶方阵A,有:tr(A) = Σλi (每个特征值的和)。
13.矩阵的迹与特征值之乘:对于n阶方阵A,有:det(A) = Πλi (每个特征值的乘积)。
14.矩阵的对角化:对于n阶方阵A,如果存在可逆矩阵P和对角阵D,满足A=PDP⁻¹,则A可对角化。
15.若两个n阶矩阵A和B相似,即存在可逆矩阵P,满足P⁻¹AP=B,则A和B有相同的特征值。
16.若矩阵A的特征值唯一,则A是对角矩阵。
17.若矩阵A的特征向量唯一,则A是数量矩阵。
18.若矩阵A的特征值都为正,则A是正定矩阵。
19.若矩阵A的特征值都为非负,则A是半正定矩阵。