2019荆州市中考数学模拟试卷(1)及答案解析
- 格式:docx
- 大小:144.16 KB
- 文档页数:14
2019年湖北省荆州市中考数学一模试卷一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.(3分)荆州某日夜晚最低温度比白天最高温度下降了10℃.若这一天白天最高温度为8℃,则夜晚最低温度为()A.2℃B.﹣2℃C.0℃D.18℃2.(3分)下列各式计算正确的是()A.(a2)3=a6B.+=C.2a2+4a2=6a4D.3.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=58°,则∠2的度数是()A.22°B.32°C.42°D.52°4.(3分)“直角”在初中几何学习中无处不在.问题:如图①,已知∠AOB,判断∠AOB是否为直角(仅限用直尺和圆规).方法:如图②,在OA,OB上分别取点C,D,以C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若OE=OD,则∠AOB=90°.其中判断∠AOB=90°的依据为()A.同圆的半径相等B.等腰三角形“三线合一”C.线段垂直平分线的性质D.角平分线的性质5.(3分)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.6.(3分)已知x2﹣mx+4是一个关于x的完全平方式,且反比例函数y=的图象在每个象限内y随x的增大而增大,那么m的值为()A.﹣4B.﹣3C.4D.57.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)某校有31名同学参加某比赛,预赛成绩各不同,要取前16名参加决赛,小红已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这31名同学成绩的()A.最高分B.平均数C.方差D.中位数9.(3分)当k取不同的值时,y关于x的函数y=kx+1(k≠0)的图象为总是经过点(0,1)的直线,我们把所有这样的直线合起来,称为经过点(0,1)的“直线束”.那么,下面经过点(﹣1,1)的直线束的函数式是()A.y=kx﹣1(k≠0)B.y=kx+k+1(k≠0)C.y=kx﹣k+1(k≠0)D.y=kx+k﹣1(k≠0)10.(3分)如图,正方形ABCD的边长为2,点E是AB边上的一点,将△BCE沿着CE折叠至△FCE.若CF、CE恰好与正方形ABCD的中心为圆心的⊙O相切,则折痕CE的长为()A.2B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)用配方法解方程x2+x﹣=0时,可配方为,其中k=.12.(3分)如图,正方体的棱长为3,点M,N分别在CD,HE上,CM=DM,HN=2NE,HC与NM的延长线交于点P,则tan∠NPH的值为.13.(3分)数学家们在研究15,12,10这三个数的倒数时发现:,就将具有这样性质的三个数称之为”调和数”,如6,3,2也是一组调和数.现有一组调和数:x﹣1,5,3(x>6),则x的值是.14.(3分)如图,一个钢结构支柱AB被钢缆CD固定于地面.已知AD=2米,DC=5米,sin∠DCB=,钢结构的顶端E距离A处2.6米,且∠EAB=120°,则钢结构的顶端E距离地面米.15.(3分)如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为.16.(3分)点A、C为半径是3的圆周上两点,点B为弧AC的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为.三、解答题(本大题共8小题,72分)17.(8分)解不等式组,并将解集在数轴上表示出来.18.(8分)先化简,再求值,其中a,b满足19.(8分)两个完全相同的三角形纸片ABC与DEC,如图放置,其中∠ACB=∠DCE=90°,连接BD,AE.小明猜想△BCD与△ACE的面积相等,并尝试分别作出了两个三角形中BC,CE边上的高,请你证明小明的猜想.20.(8分)为了贯彻“减负增效”精神,掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:(1)本次调查的学生人数是人;(2)图2中α是度,并将图1条形统计图补充完整;(3)请估算该校九年级学生自主学习时间不少于1.5小时有人;(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.21.(8分)使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)(1)当m=0时,求该函数的零点.(2)证明:无论m取何值,该函数总有两个零点.22.(10分)如图,以▱ABCD的对角线BD为直径作⊙O,分别于BC,AD相交于点E,F.(1)求证:四边形BEDF为矩形.(2)若BD2=BE•BC,①试判断直线CD与⊙O的位置关系,并说明理由;②当BD =,EC=3时,求tan∠C的值.23.(10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.24.(12分)如图,已知点A,B分别在x轴和y轴上,且,点C的坐标是,AB与OC相交于点G.点P从O出发以每秒1个单位的速度从O运动到C,过P作直线EF∥AB分别交线段OA,OB (或线段CA,CB)于E,F.解答下列问题:(1)直接写出点G的坐标和直线AB的解析式.(2)若点P运动的时间为t,直线EF在四边形OACB内扫过的面积为s,请求出s与t的函数关系式;并求出当t为何值时,直线EF平分四边形OACB的面积.(3)设线段OC的中点为Q,P运动的时间为t,求当t为何值时,△EFQ为直角三角形.2019年湖北省荆州市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题只有唯一正确答案,每小题3分,共30分)1.【解答】解:8℃﹣10℃=﹣2℃,夜晚最低温度为﹣2℃.故选:B.2.【解答】解:A、(a2)3=a6,正确;B、+无法计算,故此选项错误;C、2a2+4a2=6a2,故此选项错误;D、(﹣1)0﹣(﹣)﹣1=1+2=3,故此选项错误;故选:A.3.【解答】解:如图,∵∠1=58°,∴∠3=∠1=58°,∴∠2=90°﹣58°=32°.故选:B.4.【解答】解:由作图可知,CE=CD,∵OE=OD,∴CO⊥ED(等腰三角形“三线合一”),∴∠COD=90°.故选:B.5.【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选:C.6.【解答】解:∵x2﹣mx+4是一个关于x的完全平方式,∴m=±4,∵反比例函数y=的图象在每个象限内y随x的增大而增大,∴m+1<0,即m<﹣1,则m=﹣4.故选:A.7.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.8.【解答】解:31个不同的成绩按从小到大排序后,中位数及中位数之后的共有16个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:D.9.【解答】解:A、x=﹣1时,y=﹣k﹣1≠1,故不经过点(﹣1,1);B、x=﹣1时,y=﹣k+k+1=1,故经过点(﹣1,1);C、x=﹣1时,y=﹣k﹣k+1≠1,故不经过点(﹣1,1);D、x=﹣1时,y=﹣k+k﹣1≠1,故不经过点(﹣1,1);故选:B.10.【解答】解:连接OC,∵O为正方形ABCD的中心,∴∠DCO=∠BCO,∵CF与CE都为⊙O的切线,∴CO平分∠ECF,即∠FCO=∠ECO,∴∠DCO﹣∠FCO=∠BCO﹣∠ECO,即∠DCF=∠BCE,∵△BCE沿着CE折叠至△FCE,∴∠BCE=∠ECF,∴∠BCE=∠ECF=∠DCF=∠BCD=30°,在Rt△BEC中,cos∠ECB=,∴CE==,故选:D.二、填空题(本大题共6小题,每小题3分,共18分)11.【解答】解:∵x2+x﹣=0∴(x2+2x﹣5)=0,∴[(x+1)2﹣6]=0,∵可配方为,∴k=﹣6故答案为:﹣6.12.【解答】解:∵正方体的棱长为3,点M,N分别在CD,HE上,CM=DM,HN=2NE,∴MC=1,HN=2,∵DC∥EH,∴==,∵HC=3,∴PC=3,∴PH=6,∴tan∠NPH===,故答案为:.13.【解答】解:根据题中的新定义得:﹣=﹣,去分母得:3(x﹣1)﹣15=5(x﹣1)﹣3(x﹣1),解得:x=16,经检验x=16是分式方程的解,故对答案为:1614.【解答】解:在Rt△DCB中,∵sin∠DCB==,设DB=3x,则DC=5x,由勾股定理,得CB=4x,∵DC=5x=5,∴x=1.∴DB=3.如图,过点E作EF⊥AB于点F.∵∠EAB=120°,∴∠EAF=60°,∴AF=AE•cos∠EAF=2.6×=1.3(米),∴FB=AF+AD+DB=1.3+2+3=6.3(米),∴钢结构的顶端E距离地面6.3米.故答案为:6.3.15.【解答】解:过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(﹣6,0),∴平移后的抛物线对称轴为x=﹣3,得出二次函数解析式为:y=(x+3)2+h,将(﹣6,0)代入得出:0=(﹣6+3)2+h,解得:h=﹣,∴点P的坐标是(﹣3,﹣),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO的面积,∴S=|﹣3|×|﹣|=.故答案为:.16.【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OC,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OC,∵CE===2,∴边CD===2,故答案为或2.三、解答题(本大题共8小题,72分)17.【解答】解:,解不等式①,得x≥﹣3,解不等式②,得x<3,在数轴上表示如下:.故不等式的解集为﹣3≤x<3.18.【解答】解:原式=÷=•=﹣,解方程组得,则原式=﹣=﹣2.19.【解答】证明:设AC=b,BC=a,∵∠ACB=∠DCE=90°,∴∠BCD+∠ACE=180°,∵∠ACE+∠ACN=180°.∴∠ACN=∠BCD,设∠ACN=∠BCD=α,则△ACE的面积是:,△BCD的面积是:,∴想△BCD与△ACE的面积相等.20.【解答】解:(1)∵自主学习的时间是1小时的有12人,占30%,∴12÷30%=40,故答案为:40;…(2分)(2)×360°=54°,故答案为:54;40×35%=14;补充图形如图:故答案为:54;(3)600×=330;…(2分)故答案为:330;(4)画树状图得:∵共有12种等可能的结果,选中小亮A的有6种,∴P(A)=.…(2分)21.【解答】(1)解:当m=0时,令y=0,则x2﹣6=0,解得x=±,所以,m=0时,该函数的零点为±;(2)证明:令y=0,则x2﹣2mx﹣2(m+3)=0,△=b2﹣4ac=(﹣2m)2﹣4×1×2(m+3),=4m2+8m+24,=4(m+1)2+20,∵无论m为何值时,4(m+1)2≥0,∴△=4(m+1)2+20>0,∴关于x的方程总有不相等的两个实数根,即,无论m取何值,该函数总有两个零点.22.【解答】解:(1)∵BD为直径,∴DEB=∠DFB=90°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FBC=∠DFB=90°,∠EDA=∠BED=90°,∴∠FBC=∠DFB=∠EDA=∠BED=90°,∴四边形BEDF为矩形;(2)①直线CD与⊙O相切,理由是:∵BD2=BE⋅BC,∴∵∠DBC=∠CBD,∴△BED∽△BDC,∴∠BDC=∠BED=90°,即BD⊥CD,∴直线CD与⊙O相切;②∵BD2=BE•BC,BD=,EC=3,∴=(BC﹣3)•BC,BC=5,∴CD==∴tan∠C=.23.【解答】解:(1)选择二次函数,设y=ax2+bx+c(a≠0),∵x=﹣2时,y=49,x=0时,y=49,x=2时,y=41,∴,解得,所以,y关于x的函数关系式为y=﹣x2﹣2x+49;不选另外两个函数的理由:∵点(0,49)不可能在反比例函数图象上,∴y不是x的反比例函数;∵点(﹣4,41),(﹣2,49),(2,41)不在同一直线上,∴y不是x的一次函数;(2)由(1)得,y=﹣x2﹣2x+49=﹣(x+1)2+50,∵a=﹣1<0,∴当x=﹣1时,y有最大值为50,即当温度为﹣1℃时,这种作物每天高度增长量最大;(3)∵10天内要使该植物高度增长量的总和超过250mm,∴平均每天该植物高度增长量超过25mm,当y=25时,﹣x2﹣2x+49=25,整理得,x2+2x﹣24=0,解得x1=﹣6,x2=4,∴在10天内要使该植物高度增长量的总和超过250mm,实验室的温度应保持在﹣6℃<x<4℃.24.【解答】解:(1)G点的坐标是,∵,得出A,B两点坐标,分别为:(3,0),(0,3),代入y=kx+b,,解得:,即可得出直线AB的解析式为:y=﹣x+3;(2)∵C的坐标是,∴OC是∠AOB的角平分线.,又∵,∴AB==6,∴∠BAO=∠ABO=∠BOG=∠AOG=45°,∴∠AGO=90°,即AB⊥OC,∴OG=3,①当0<t≤3时,OP=t,∵EF∥AB,∴EF⊥OC,∴EF=2OP=2t,∴S=S△OEF=•EF•OP=•2t•t=t2,②当3<t<7时,OP=t,CP=7﹣t,CG=7﹣OG=7﹣3=4,∵EF∥AB,∴△CEF∽△CBA,∴,即,∴,∴S=S四边形OACB﹣S△CEF=•AB•CO﹣EF•CP,=×6×7﹣×(7﹣t)(7﹣t),=,∴s与t的函数关系式是:,当直线EF平分四边形OABC的面积时有:,整理得:t2﹣14t+35=0,解得:(不符合题意舍去);∴当时,直线EF平分四边形OABC的面积.(3)①如图1,当P在线段OQ上,且∠EQF=90°时,∵EF∥AB,∴∠OEF=∠OAB=∠OBA=∠OFE=45°,∴OE=OF,又∵∠FOG=∠EOG=45°,OQ=OQ,∴△OEQ≌△OFQ,∴∠FQO=∠EQO=45°,∴∠OFQ=∠FOE=∠FQE=90°,∴四边形OEQF是正方形,∴,即t=时,△EFQ为直角三角形,②如图2,当P在线段CQ上,且∠EQF=90°时,同理可证:△CQF≌△CQE,∴△QEF是等腰直角三角形,∴,∵EF∥AB,∴△CEF∽△CBA,∴,即,解得:t=5,∴当或t=5时,△EFQ为直角三角形.。
荆州市2019年中考数学模拟试卷及答案(试卷满分120分,考试时间120分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1. 下列各数比-3小的数是A. 0B. 1C.-4D.-1 2.下列运算结果为a 6的是A .a 2+a 3B .a 2•a3C .(-a 2)3D .a 8÷a 23. 如果一组数据2,4,x ,3,5的众数是4,那么该组数据的平均数是A. 5.2B. 4.6C. 4D. 3.64.九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是A .B .C .D .5.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是A .①B .②C .③D .④6.如图,圆O 通过五边形OABCD 的四个顶点.若ABD ︵=150°,∠A =65°,∠D =60°,则BC ︵的度数为何?A .25°B .40°C .50°D .55°7.钟面上的分针的长为1,从3点到3点30分,分针在钟面上扫过的面积是 A .12πB .14πC .18π D .π8.不等式组314213x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是A .B .C .D .9.如图,直线a ,b 被直线c 所截,b a ∥,32∠=∠,若︒=∠354,则∠1等于A .80°B .70°C .60°D .50°10.二次函数y =-x 2+bx +c 的图象如图所示,下列几个结论:①对称轴为直线x =2; ②当y ≤0时,x < 0或x > 4; ③函数解析式为y =-x 2+4x ; ④当x ≤0时,y 随x 的增大而增大. 其中正确的结论有DA .①②③④ B.①②③C.②③④D.①③④二、填空题(本大题共6小题,每小题3分,共18分) 11.分解因式:22ay ax -=________________ 。
湖北省荆州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.432.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1083.如图,反比例函数kyx=(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.44.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则»BC的长是( )A.πB.13πC.12πD.16π5.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:①连接OP ,作OP 的垂直平分线l ,交OP 于点A ;②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ;③作直线PM ,则直线PM 即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P ;②调整直角三角板的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图2).对于两人的作业,下列说法正确的是( )A .甲乙都对B .甲乙都不对C .甲对,乙不对D .甲不对,已对 6.在△ABC 中,∠C =90°,sinA =45,则tanB 等于( ) A .43 B .34C .35D .45 7.已知一组数据a ,b ,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( )A .3,2B .3,4C .5,2D .5,4 8.在解方程12x --1=313x +时,两边同时乘6,去分母后,正确的是( ) A .3x -1-6=2(3x +1) B .(x -1)-1=2(x +1)C .3(x -1)-1=2(3x +1)D .3(x -1)-6=2(3x +1) 9.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π10.4的平方根是( )A .2B .±2C .8D .±8 11.在函数y x 中,自变量x 的取值范围是( ) A .x≥1 B .x≤1且x≠0 C .x≥0且x≠1 D .x≠0且x≠112.如图,在Rt ABC ∆中,90,ABC BA BC ∠=︒=.点D 是AB 的中点,连结CD ,过点B 作BG CD ⊥,分别交CD CA 、于点E F 、,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①AG FG AB FB =;②点F 是GE 的中点;③23AF AB =;④6ABC BDF S S ∆∆=,其中正确的个数是( )A .4B .3C .2D .1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算20180(1)(32)---=_____.14.函数y =22x x -+中,自变量x 的取值范围是_________. 15.如图,在矩形ABCD 中,AB=5,BC=3,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是________.16.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2=_____°.17.函数3y x =+的定义域是________.18.若a ,b 互为相反数,则a 2﹣b 2=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)若两个不重合的二次函数图象关于y 轴对称,则称这两个二次函数为“关于y 轴对称的二次函数”.(1)请写出两个“关于y 轴对称的二次函数”;(2)已知两个二次函数21y ax bx c =++和22y mx nx p =++是“关于y 轴对称的二次函数”,求函数12y y +的顶点坐标(用含,,a b c 的式子表示).20.(6分)如图所示,小王在校园上的A 处正面观测一座教学楼墙上的大型标牌,测得标牌下端D 处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m).21.(6分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.22.(8分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?23.(8分)如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣2x相交于点A(m,2).(1)求直线y=kx+m的表达式;(2)直线y=kx+m与双曲线y=﹣2x的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.24.(10分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.(1)三辆汽车经过此收费站时,都选择A通道通过的概率是;(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.25.(10分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,3(1)求∠A的度数.(2)求图中阴影部分的面积.26.(12分)如图,在Rt△ABC中,∠C=90°,AC=12AB.求证:∠B=30°.请填空完成下列证明.证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD ().∵AC=12 AB,∴AC=CD=AD 即△ACD是等边三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.27.(12分)如图1,△ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN.(1)求证:△PMN是等腰三角形;(2)将△ADE绕点A逆时针旋转,①如图2,当点D、E分别在边AC两侧时,求证:△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】首先利用勾股定理计算出AC 的长,再根据折叠可得△DEC ≌△D′EC ,设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,再根据勾股定理可得方程22+x 2=(4﹣x )2,再解方程即可【详解】∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC ≌△D′EC ,∴D′C=DC=3,DE=D′E设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,在Rt △AED′中:(AD′)2+(ED′)2=AE 2,即22+x 2=(4﹣x )2,解得:x=32故选A.2.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.3.C【解析】【分析】本题可从反比例函数图象上的点E 、M 、D 入手,分别找出△OCE 、△OAD 、矩形OABC 的面积与|k|的关系,列出等式求出k 值.【详解】由题意得:E 、M 、D 位于反比例函数图象上,则OCE OAD k k S S 22∆∆==,,过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S □ONMG =|k|.又∵M 为矩形ABCO 对角线的交点,∴S 矩形ABCO =4S □ONMG =4|k|,∵函数图象在第一象限,k >0,∴k k 94k 22++=. 解得:k=1.故选C .【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.4.B【解析】【分析】连接OB ,OC .首先证明△OBC 是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB ,OC .∵∠BOC =2∠BAC =60°,∵OB =OC ,∴△OBC是等边三角形,∴OB=OC=BC=1,∴»BC的长=6011803ππ⋅⋅=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.5.A【解析】【分析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.【详解】证明:(1)如图1,连接OM,OA.∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.∵以点A为圆心、OA为半径画弧、交⊙O于点M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;(1)如图1.∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.故两位同学的作法都正确.故选A.【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.6.B【解析】法一,依题意△ABC 为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin 1B B +=,∴sinB=35,∵tanB=sin cos B B =34故选B 法2,依题意可设a=4,b=3,则c=5,∵tanb=34b a =故选B 7.B【解析】试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.8.D【解析】解:1316(1)623x x -+-=⨯ ,∴3(x ﹣1)﹣6=2(3x+1),故选D . 点睛:本题考查了等式的性质,解题的关键是正确理解等式的性质,本题属于基础题型.9.D【解析】【分析】如图,连接OD .根据折叠的性质、圆的性质推知△ODB 是等边三角形,则易求∠AOD=110°-∠DOB=50°;然后由弧长公式弧长的公式180n r l π=来求»AD 的长 【详解】解:如图,连接OD .解:如图,连接OD .根据折叠的性质知,OB=DB .又∵OD=OB ,∴OD=OB=DB ,即△ODB 是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB-∠DOB=50°,∴»AD的长为5018180π⨯=5π.故选D.【点睛】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB是等边三角形是解答此题的关键之处.10.B【解析】【分析】依据平方根的定义求解即可.【详解】∵(±1)1=4,∴4的平方根是±1.故选B.【点睛】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.11.C【解析】【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.12.C【解析】【分析】用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.【详解】解:由题意知,△ABC是等腰直角三角形,设AB=BC=2,则AC=,∵点D是AB的中点,∴AD=BD=1,在Rt△DBC中,DC(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,BD CD CBDE BD BE==,即12DE BE==∴DE=5,BE=5,在△GAB和△DBC中,DBE DCBAD BCGAB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GAB≌△DBC(ASA) ∴AG=DB=1,BG=CD∵∠GAB+∠ABC=180°,∴AG∥BC,∴△AGF∽△CBF,∴12AG AF GFCB CF BF===,且有AB=BC,故①正确,∵GBAC=∴AF=3=3AB,故③正确,GFFE=BG﹣GF﹣BE,故②错误,S△ABC=12AB•AC=2,S△BDF=12BF•DE=12×3×5=13,故④正确.故选B.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.0【解析】分析:先计算乘方、零指数幂,再计算加减可得结果.详解:())0201812--=1-1=0故答案为0.点睛:零指数幂成立的条件是底数不为0.14.x≤1且x≠﹣1【解析】【分析】由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:2020x x -≥⎧⎨+≠⎩,解得:x≤1且x≠﹣1. 故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.5【解析】【详解】解:连接AG ,由旋转变换的性质可知,∠ABG=∠CBE ,BA=BG=5,BC=BE ,由勾股定理得,,∴DG=DC ﹣CG=1,则, ∵ BA BG BC BE=,∠ABG=∠CBE , ∴△ABG ∽△CBE ,∴35 CE BCAG AB==,解得,CE=310,故答案为3105.【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.16.40【解析】如图,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案为:40.17.x≥-1【解析】分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.详解:根据题意得:x+1≥0,解得:x≥﹣1.故答案为x≥﹣1.点睛:考查了函数的定义域,函数的定义域一般从三个方面考虑:(1)当函数表达式是整式时,定义域可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数非负.18.1【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a ,b 互为相反数,∴a+b=1,∴a 2﹣b 2=(a+b )(a ﹣b )=1,故答案为1.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)任意写出两个符合题意的答案,如:2243,43y x x y x x =-+=++;(2)21222y y ax c +=+,顶点坐标为()0,2c【解析】【分析】(1)根据关于y 轴对称的二次函数的特点,只要两个函数的顶点坐标根据y 轴对称即可;(2)根据函数的特点得出a=m ,-2b a -2n m =0,224444ac b mp n a m--= ,进一步得出m=a ,n=-b ,p=c ,从而得到y 1+y 2=2ax 2+2c ,根据关系式即可得到顶点坐标.【详解】解:(1)答案不唯一,如2243,43y x x y x x =-+=++;(2)∵y 1=ax 2+bx+c 和y 2=mx 2+nx+p 是“关于y 轴对称的二次函数”, 即a=m ,-2b a -2n m =0,224444ac b mp n a m--=, 整理得m=a ,n=-b ,p=c ,则y 1+y 2=ax 2+bx+c+ax 2-bx+c=2ax 2+2c ,∴函数y 1+y 2的顶点坐标为(0,2c ).【点睛】本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.20.大型标牌上端与下端之间的距离约为3.5m .【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE 和BE 的长,然后求得DE 的长,用CE 的长减去DE 的长即可得到上端和下端之间的距离.试题解析:设AB ,CD 的延长线相交于点E ,∵∠CBE=45°,CE ⊥AE ,∴CE=BE ,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE=3tan30203oAE⋅=⨯=11.54,∴CD=CE﹣DE=15﹣11.54≈3.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m.21.(1)13;(2)13.【解析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:1 3(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是26=13.考点:概率的计算.22.从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】【分析】设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得. 【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题意得:1280(1+x)2=1280+1600.解得x1=0.5=50%,x2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.23.(1)m=﹣1;y=﹣3x﹣1;(2)P1(5,0),P2(113-,0).【解析】【分析】(1)将A代入反比例函数中求出m的值,即可求出直线解析式,(2)联立方程组求出B的坐标,理由过两点之间距离公式求出AB的长,求出P点坐标,表示出BP长即可解题.【详解】解:(1)∵点A(m,2)在双曲线2yx=-上,∴m=﹣1,∴A(﹣1,2),直线y=kx﹣1,∵点A(﹣1,2)在直线y=kx﹣1上,∴y=﹣3x﹣1.(2)312y xyx=--⎧⎪⎨=-⎪⎩,解得12xy=-⎧⎨=⎩或233xy⎧=⎪⎨⎪=-⎩,∴B(23,﹣3),∴ABP(n,0),则有(n﹣23)2+32=2509,解得n=5或11 3 -,∴P1(5,0),P2(113-,0).【点睛】本题考查了一次函数和反比例函数的交点问题,中等难度,联立方程组,会用两点之间距离公式是解题关键.24.(1)18;(2)12【解析】【分析】(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.【详解】解:(1)画树状图得:共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,所以都选择A通道通过的概率为18,故答案为:18;(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,∴至少有两辆汽车选择B通道通过的概率为41 82 =.【点睛】考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.25.(1) ∠A=30°;(2)2 233π-【解析】【分析】(1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.【详解】解:(1)连结OC∵CD为⊙O的切线∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S阴影=.【点睛】本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.26.直角三角形斜边上的中线等于斜边的一半;1.【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半和等边三角形的判定与性质填空即可.【详解】证明:如图,作Rt△ABC的斜边上的中线CD,则CD=12AB=AD(直角三角形斜边上的中线等于斜边的一半),∵AC=12 AB,∴AC=CD=AD 即△ACD是等边三角形,∴∠A=1°,∴∠B=90°﹣∠A=30°.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,重点在于逻辑思维能力的训练.27.(1)见解析;(2)①见解析;②.【解析】【分析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)①先证明△ABD≌△ACE,得BD=CE,同理根据三角形中位线定理可得结论;②如图4,连接AM,计算AN和DE、EM的长,如图3,证明△ABD≌△CAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,∵点N,P是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∴△PMN是等腰三角形;(2)①如图2,∵∠DAE=∠BAC,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE,∵点M、N、P分别是线段DE、BC、CD的中点,∴PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形;②当△ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△CAE,∴BD=CE,如图4,连接AM,∵M是DE的中点,N是BC的中点,AB=AC,∴A、M、N共线,且AN⊥BC,由勾股定理得:AN==4,∵AD=AE=1,AB=AC=6,∴=,∠DAE=∠BAC,∴△ADE∽△AEC,∴,∴,∴AM=,DE=,∴EM=,如图3,Rt△ACM中,CM===,∴BD=CE=CM+EM=.【点睛】此题是三角形的综合题,主要考查了三角形的中位线定理,等腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=CE,PN=BD,解(2)①的关键是判断出△ABD≌△ACE,解(2)②的关键是判断出△ADE∽△AEC。
2019年湖北省荆州市中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共30分)1.在代数式、2xy、、、、、中,是整式的有A. 3个B. 4个C. 5个D. 6个2.如图,数轴上A、B两点对应的实数分别是1和,若点A关于点B的对称点为点C,则点C所对应的实数为A. B. C. D.3.小华做了如下四道计算题:;你认为小华做对的有A. 1道B. 2道C. 3道D. 4道4.如图,直线,等腰直角的直角顶点C落在直线上,若,则的度数是A. B. C. D.5.解分式方程时,去分母后变形为A. B.C. D.6.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为A. B. C. D.7.如图,在点M,N,P,Q中,一次函数的图象不可能经过的点是A. MB. NC. PD. Q8.如图,菱形中,AC与BD交于点O,,,则AC的长为A. 1B.C. 2D.9.为积极响应南充市创建“全国卫生城市”的号召,某校1500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是A. 样本容量是200B. D等所在扇形的圆心角为C. 样本中C等所占百分比是D. 估计全校学生成绩为A等大约有900人10.如图,AB是的直径,C,D是上AB两侧的点,若,则的值为A.B.C.D.二、填空题(本大题共8小题,共24分)11.计算:||___________.12.如图,已知,,AD交BC于点O,请写出图中一组相等的线段______ .13.如图所示是一个运算程序的示意图,若开始输入x的值为81,则第2018次输出的结果为__________.14.如图,某校数学兴趣小组利用自制的直角三角形小硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知米,米,目测点D到地面的距离米,到旗杆的水平距离米,则旗杆的高度为______米15.在中,,,那么AC的取值范围是______ .16.已知一元二次方程的两个实数根分别是m、n,则代数式_______.17.用半径为12cm,圆心角为的扇形纸片围成一个圆锥的侧面接缝忽略不计,则该圆锥底面圆的半径为______cm.18.如图所示,点A在双曲线上,点A的坐标为,点B在双曲线上,且轴,C,D在x轴上,若四边形ABCD为矩形,则它的面积是_____.三、计算题(本大题共1小题,共10分)19.化简求值:,其中x是不等式组的整数解.四、解答题(本大题共6小题,共56分)20.中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:根据如表数据,分析哪个班的成绩较好,请详细说明.21.如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.求证: ≌ ;求证:.22.有这样一个问题:探究函数的图象和性质.小石根据学习函数的经验,对此函数的图象和性质进行了探究.下面是小石的探究过程,请补充完整:函数的自变量x的取值范围是______ ;求m的值;如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点根据描出的点,画出此函数的图象;进一步探究,结合函数的图象,写出此函数的性质一条即可:______ .23.问题:已知、均为锐角,,,求的度数.探究:用6个小正方形构造如图所示的网格图每个小正方形的边长均为,请借助这个网格图求出的度数;延伸:设经过图中M、P、H三点的圆弧与AH交于R,求的弧长.24.某校在一块一边筑墙墙长的空地上修建一矩形花园,如图,花园一边靠墙,另三边用总长为50m的栅栏围成,设BC边长为xm,花园面积为.求y与x之间的函数关系,并写出自变量x的取值范围.结合题意判断,当x取何值时,花园面积最大.25.如图,已知,与x轴交于A、B两点,AC是的直径,OA、OD的长是关于x的方程的两根,且.求BC的长;求证:AD是的切线;连结CD交于点E,过点E作的切线交x轴于点F,求直线EF的解析式.2019年湖北省荆州市中考数学模拟试卷参考答案1. B2. A3. B4. C5. D6. A7. D8. D9. B10. C11.12.13. 114.15.16. 617. 318. 219. 解:原式,解不等式组,解不等式,得:,解不等式,得:,不等式组的解集为,不等式的整数解是,,.又,,,或,当时,原式,当时,原式.20. 821. 证明:四边形ABCD是矩形,,,又是折痕,,,在与中,,≌ ;≌ ,,又与关于AC所在直线对称,,,,,,.22. 解:;当时,,即.此函数的图象如右图所示.当时,y随x的增大而增大;当时,y随x的增大而增大23. 解:连结AM、MH,则.,,,≌ .,.,,,,即.由勾股定理可知.,.24. 解:四边形ABCD是矩形,,,,,,花园的面积为:;与x之间的函数关系式为:;,,当时,y随x的增大而增大,当时,y最大,最大值.当时,花园的面积最大,最大面积为.25. 解:,,又,为的中位线,;证明:、OD的长是关于x的方程的两根,,,,,解得,而,,方程变形为,解得,,,,,,,为直角三角形,,,是的切线;证明:连结AE、PE,如图,在中,,,,为等腰直角三角形,,是的直径,.,,即点E为CD的中点,而,,点E的坐标为,为是的切线,,,,,设直线AC的解析式为,把,代入得,解得,直线AC的解析式为,设直线EF的解析式为,直线与直线平行,,把代入得,解得,直线EF的解析式为.。
荆州市二O一九年初中毕业生学业及升学考试试卷数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将准考证号条形码粘贴在答题卡指定位置.2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.填空题和解答题用0.5毫米的黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题(本大题10个小题,每小题只有唯一正确答案,每小题3分,共30分)1.下列实数中,无理数是( )A.-52B.πCD.|-2|2.用配方法解关于x的一元二次方程x2-2x-3=0,配方后的方程可以是( ) A.(x-1)2=4 B.(x+1)2=4 C.(x-1)2=16 D.(x+1)2=16 3.已知:直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( )A.30°B.35°C.40°D.45°4|x-y-3|互为相反数,则x+y的值为( ) A.3 B.9 C.12 D.275.对于一组统计数据:2,3,6,9,3,7,下列说法错误..的是( )A.众数是3 B.中位数是6 C.平均数是5 D.极差是76.已知点M(1-2m,m-1)关于x轴的对称点...在第一象限,则m的取值范围在数轴上表示正确的是( )7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )8.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=-3x的图象于点B,以AB为边作□ABCD,其中C、D在x轴上,则S□ABCD为( )A.2 B.3 C.4 D.59.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB 于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )A.2 B.CD.3A.B.C.D.ACBA.B.C.D.l11第3题图l22第8题图第9题图ADEPQ10.已知:顺次连结矩形各边的中点,得到一个菱形,如图①;再顺次连结菱形各边的中点,得到一个新的矩形,如图②;然后顺次连结新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第2012个图形中直角三角形的个数有( )A.8048个B.4024个C.2012个D.1066个二、填空题(本大题共8个小题,每小题3分,共24分)11-(-2)-2--2)0=__▲__.12.若92+-yx与3--yx互为相反数,则x+y=__▲__13. 如图,已知正方形ABCD的对角线长为将正方形ABCD沿直线EF折叠,则图中阴影部分的周长为__▲__14.已知:多项式x2-kx+1是一个完全平方式,则反比例函数y=1kx-的解析式为_▲__ 15.如图,在直角坐标系中,四边形OABC是直角梯形,BC∥OA,⊙P(此处原题仍用字母O,与表示坐标原点的字母重复——录入者注)分别与OA、OC、BC相切于点E、D、B,与AB交于点F.已知A(2,0),B(1,2),则tan∠FDE=__▲__.16.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为__▲__cm2.(结果可保留根号)17.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程11x-+1m=1的解为__▲__.18.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE—ED—DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为y cm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:AD=BE=5;cos∠ABE=35;当0<t≤5时,y=25t2;当t=294秒时,△ABE∽△QBP;其中正确的结论是__▲__(填序号).三、解答题19.(本题满分7分)先化简,后求值:211()(3)31a aa a+----g,其中a+1.图(1) 图(2)第17题图Q第15题图cm第15题图图①图②图③第13题图20.(本题满分8分)如图,Rt △ABC 中,∠C =90°,将△ABC 沿AB 向下翻折后,再绕点A 按顺时针方向旋转α度(α<∠BAC ),得到Rt △ADE ,其中斜边AE 交BC 于点F ,直角边DE 分别交AB 、BC 于点G 、H . (1)请根据题意用实线补全图形; (2)求证:△AFB ≌△AGE .21.(本题满分8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人? (2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D 粽的人数;(4)若有外型完全相同的A 、B 、C 、D 粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率.22.(本题满分9分)如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图.已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m .设油罐横截面圆心为O ,半径为5m ,∠D =56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)第22题图αA D EF G CB H第20题图A C B23.(本题满分10分)荆州素有“中国淡水鱼都”之美誉.某水产经销商在荆州鱼博会上批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?24.(本题满分12)已知:y 关于x 的函数y =(k -1)x 2-2kx +k +2的图象与x 轴有交点. (1)求k 的取值范围;(2)若x 1,x 2是函数图象与x 轴两个交点的横坐标,且满足(k -1)x 12+2kx 2+k +2=4x 1x 2. ①求k 的值;②当k ≤x ≤k +2时,请结合函数图象确定y 的最大值和最大值.25.(本题满分12分)如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A 、D ,交y 轴于点E ,连结AB 、AE 、BE .已知tan ∠CBE =13,A (3,0),D (-1,0),E (0,3). (1)求抛物线的解析式及顶点B 的坐标; (2)求证:CB 是△ABE 外接圆的切线;(3)试探究坐标轴上是否存在一点P ,使以D 、E 、P 为顶点的三角形与△ABE 相似,若存在,直接写出....点P 的坐标;若不存在,请说明理由; (4)设△AOE 沿x 轴正方向平移t 个单位长度(0<t ≤3)时,△AOE 与△ABE 重叠部分的面积为s ,求s 与t 之间的函数关系式,并指出t 的取值范围.图甲图乙(备用图)) 第23题图荆州市二O 一九年初中毕业生学业及升学考试数学试题参考答案一、选择题(每选对一题得3分,共30分)1.B 2.A 3.B 4.D 5.B 6.A 7.B 8.D 9.C 10.B二、填空题(每填对一题得3分,共24分)11.-1 12.27 13.8 14.y =1x 或y =-3x15.1216.360 17.x =3 18.①③④ 19.解:原式=311a a ---=21a -.当a+1. 20.解:(1)画图,如图1;(2)由题意得:△ABC ≌△AED .∴AB =AE ,∠ABC =∠E .在△AFB 和△AGE中, ,,,ABC E AB AE αα∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AFB ≌△AGE (ASA).21.解:(1)60÷10%=600(人). 答:本次参加抽样调查的居民有600人.2分(3)8000×40%=3200(人).答:该居民区有8000人,估计爱吃D 粽的人有3200人. (4)如图3;(列表方法略,参照给分).P (C 粽)=312=14.答:他第二个吃到的恰好是C 粽的概率是14. 开始 A B C D B C D A C D A B D A B C图3图2 α图1D EFG CB H22.解:如图4,连结AO、BO.过点A作AE⊥DC于点E,过点O作ON⊥DC于点N,ON交⊙O于点M,交AB于点F.则OF⊥AB.∵OA=OB=5m,AB=8m,∴AF=BF=12AB=4(m),∠AOB=2∠AOF.在Rt△AOF中,sin∠AOF=AFAO=0.8=sin53°.∴∠AOF=53°,则∠AOB=106°.∵OF3(m),由题意得:MN=1m,∴FN=OM-OF+MN=3(m).∵四边形ABCD是等腰梯形,AE⊥DC,FN⊥AB,∴AE=FN=3m,DC=AB+2DE.在Rt△ADE中,tan56°=AEDE=32,∴DE=2m,DC=12m∴S阴=S梯形ABCD-(S扇OAB-S△OAB)=12(8+12)×3-(106360π×52-12×8×3)=20(m2).答:U型槽的横截面积约为20m2.23.解:(1)y=26 (2040), 24 (40).x xx x⎧⎨>⎩≤≤(2)设该经销商购进乌鱼x千克,则购进草鱼(75-x)千克,所需进货费用为w元.由题意得:40,89%(75)95%93%75. xx x>⎧⎨⨯-+⨯⎩≥解得x≥50.由题意得w=8(75-x)+24x=16x+600.∵16>0,∴w的值随x的增大而增大.∴当x=50时,75-x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.24.解:(1)当k=1时,函数为一次函数y=-2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k-1)x2-2kx+k+2=0.△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2.即k≤2且k=1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k=1.由题意得(k-1)x12+(k+2)=2kx1.将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=21kk-,x1x2=21kk+-,∴2k·21kk-=4·21kk+-.解得:k1=-1,k2=2(不合题意,舍去).∴所求k值为-1.②如图5,∵k1=-1,y=-2x2+2x+1=-2(x-12)2+32.且-1≤x≤1.由图象知:当x=-1时,y最小=-3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.图5图425.(1)解:由题意,设抛物线解析式为y=a(x-3)(x+1).将E(0,3)代入上式,解得:a=-1.∴y=-x2+2x+3.则点B(1,4).…………………………………………………………………………………2分(2)如图6,证明:过点B作BM⊥y于点M,则M(0,4).在Rt△AOE中,OA=OE=3,∴∠1=∠2=45°,AE.在Rt△EMB中,EM=OM-OE=1=BM,∴∠MEB=∠MBE=45°,BE∴∠BEA=180°-∠1-∠MEB=90°.∴AB是△ABE在Rt△ABE中,tan∠BAE=BEAE=13=tan∠CBE,∴∠BAE=∠CBE.在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°.∴∠CBA=90°,即CB⊥AB.∴CB是△ABE外接圆的切线.………………………………………………………………5分(3)P1(0,0),P2(9,0),P3(0,-13).………………………………………………………8分(4)解:设直线AB的解析式为y=kx+b.将A(3,0),B(1,4)代入,得30,4.k bk b+=⎧⎨+=⎩解得2,6.kb=-⎧⎨=⎩∴y=-2x+6.过点E作射线EF∥x轴交AB于点F,当y=3时,得x=32,∴F(32,3).…………9分情况一:如图7,当0<t≤32时,设△AOE平移到△DNM的位置,MD交AB于点H,MN 交AE于点G.则ON=AD=t,过点H作LK⊥x轴于点K,交EF于点L.由△AHD∽△FHM,得AD HKFM HL=.即332t HKHKt=--.解得HK=2t.∴S阴=S△MND-S△GNA-S△HAD=12×3×3-12(3-t)2-12t·2t=-32t2+3t.…………11分情况二:如图8,当32<t≤3时,设△AOE平移到△PQR的位置,PQ交AB于点I,交AE 于点V.由△IQA∽△IPF,得AQ IQFP IP=.即3332IQtIQt-=--.解得IQ=2(3-t).∴S阴=S△IQA-S△VQA=12×(3-t)×2(3-t)-12(3-t)2=12(3-t)2=12t2-3t+92.图8图7图6综上所述:s =22333 0),221933 (3).222t t t t t t ⎧-+<⎪⎪⎨⎪-+<⎪⎩≤≤(……………………………………………………12分。
湖北省荆州市沙市区2019年中考数学一模试卷一.选择题BA.3+不是同类项无法进行运算,故此选项错误;==×=,故此选项错误;.∵B2226.(3分)(2019•沙市区一模)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的7.(3分)(2019•沙市区一模)如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()8.(3分)(2019•沙市区一模)如图,在▱ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有()9.(3分)(2019•日照)在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则的值是()=,再根据==10.(3分)(2019•安徽)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线l ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图象大致是( )B=2取到最小值为:=AB=﹣x+2•x+2>﹣取到最小值为:=0二.填空题11.(3分)(2019•沙市区一模)已知,,则代数式的值为3.m=1+=)﹣=12.(3分)(2019•沙市区一模)两块大小一样斜边为4且含有30°角的三角板如图水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB边上的E′点时,的长度为.的长度为:=.故答案是:.13.(3分)(2019•上海)在△ABC中,点D、E分别在AB、AC上,∠AED=∠B,如果AE=2,△ADE的面积为4,四边形BCED的面积为5,那么AB的长为3.14.(3分)(2019•仙桃)张凯家购置了一辆新车,爸爸妈妈商议确定车牌号,前三位选定为8ZK后,对后两位数字意见有分歧,最后决定由毫不知情的张凯从如图排列的四个数字中随机划去两个,剩下的两个数字从左到右组成两位数,续在8ZK之后,则选中的车牌号为8ZK86的概率是.15.(3分)(2019•宁波)把二次函数y=(x﹣1)2+2的图象绕原点旋转180°后得到的图象的解析式为y=﹣(x+1)2﹣2.16.(3分)(2019•沙市区一模)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2,如果x1+x2﹣x1x2<﹣1,且k为整数,则k的值为﹣1或0.17.(3分)(2019•沙市区一模)如图,Rt△ABC中,∠ACB=90°,AC=BC=2,若把Rt△ABC 绕边AB所在直线旋转一周,则所得几何体的表面积为8π.AC=42=8π18.(3分)(2019•沙市区一模)如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数(k>0)的图象与线段OA,AB分别交与点C,D.若AB=3BD,则四边形BOCD的面积为.,(k=x,×,kx解方程组得)=1+(故答案为:三.解答题19.(7分)(2019•沙市区一模)先化简再求值,其中a=+1.,+120.(8分)(2019•娄底)如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC 绕点B沿顺时针方向旋转90°得到△A1BC1.(1)线段A1C1的长度是10,∠CBA1的度数是135°.(2)连接CC1,求证:四边形CBA1C1是平行四边形.21.(8分)(2019•常州)甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球.①取出的3个球恰好是2个红球和1个白球的概率是多少?②取出的3个球全是白球的概率是多少?==22.(9分)(2019•山西)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?,23.(10分)(2019•沙市区一模)如图,已知抛物线y=x2﹣(m2﹣2)x﹣2m与x轴交与点A(x1,0),B(x2,0),与y轴交与点C,且满足.(1)求这条抛物线的解析式;(2)若点M是这条抛物线对称轴上的一个动点,当MB+MC的值最小时,求点M的坐标.然后将其代入已知等式=,24.(12分)(2019•沙市区一模)如图,已知AB为⊙O的直径,PA与⊙O相切与点A,线段OP与弦AC垂直并相交于点D,OP与⊙O相交于点E,连接BC.(1)求证:△PAD∽△ABC;(2)若PA=10,AD=6,求AB和PE的长.PD=,OP==﹣25.(12分)(2019•湛江)如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?NM=;时,=t时,即:t=或或。
湖北省荆州市2019年中考数学模拟试卷一.选择题(每题3分,满分30分)1.国家体育场“鸟巢”工程总占地面积21公顷,建筑面积258 000m2.将举行奥运会,残奥会开闭幕式,田径比赛及足球比赛决赛.奥运会后将成为北京市具有地标性的体育建筑和奥运遗产.其中,258 000m2用科学记数法表示为()A.258×103B.25.8×104C.2.58×105D.0.258×1062.下列计算正确的是()A.(﹣a3)2=﹣a6B.(a﹣b)2=a2﹣b2C.3a2+2a3=5a5D.a6÷a3=a33.如图,∠A+∠B+∠C+∠D+∠E等于()A.180°B.360°C.540°D.720°4.分别从正面、左面和上面这三个方向看下面的四个几何体中的一个,得到如图所示的平面图形,那么这个几何体是()A.B.C.D.5.甲乙两名同学本学期参加了相同的5次数学考试,老师想判断这两位同学的数学成绩谁更稳定,老师需比较这两人5次数学成绩的()A.平均数B.中位数C.众数D.方差6.若一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,则反比例函数y=的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限7.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣68.如图,在平面直角坐标系中,点A的坐标为(0,5),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,则点B与其对应点B′之间的距离为()A.6 B.5 C.D.9.小明利用所学教学知识测量某建筑物BC的高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发.先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端c的仰角为72°,建筑物底端B的俯角为63°.其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度为()米(计算结果精确到0.1米)参考数据:sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96A.157.1 B.157.4 C.257. 1 D.257.410.如图,将矩形ABCD沿对角线AC折叠,点B的对应点为点B′,AB与CD相交于点F,若AB=3,sin∠CAB=,则DF的长度是()A.1 B.2 C.D.3二.填空题(满分18分,每小题3分)11.计算: +()﹣1﹣|﹣2|﹣4cos45°=12.如图,正比例函数y=2x的图象与一次函数y=﹣3x+k的图象相交于点P(1,m),则两条直线与x轴围成的三角形的面积为.13.如图,在▱ABCD中,按以下步骤作图:①以C为圆心,以适当长为半径画弧,分别交BC,CD于M,N两点;②分别以M,N为圆心,以大于MN的长为半径画弧,两弧在∠BCD的内部交于点P;⑨连接CP并延长交AD于E.若AE=2,CE=6,∠B=60°,则ABCD的周长等于.14.对于任意实数a,b,我们规定:a⊗b=.根据上述规定解决下列问题:(1)计算:(﹣)⊗(﹣1)=.(2)若(x﹣3)⊗(x+3)=1,则x=.15.若方程2x2+x﹣2m+1=0有一正实根和一负实根,则m的取值范围是.16.如图,在平面直角坐标系中,一次函数y=kx+b和函数y=(x>0)的图象交于A、B 两点.利用函数图象直接写出不等式<kx+b(x>0)的解集是.三.解答题(共8小题,满分72分)17.(8分)解不等式组:,并把不等式组的解集在数轴上表示出来.18.(8分)先化简,再求值:÷(1﹣)•,其中x、y满足方程组.19.(8分)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC =7,AD=2.请直接写出线段BE的长为.20.(8分)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”某中学为了解学生对四大名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,求他们恰好选中同一名著的概率.21.(8分)已知,如图,在平面直角坐标系xOy中,直线l1:y=x+3分别交x轴、y轴于点A、B两点,直线l2:y=﹣3x过原点且与直线l1相交于C,点P为y轴上一动点.(1)求点C的坐标;(2)求出△BCO的面积;(3)当PA+PC的值最小时,求此时点P的坐标.22.(10分)如图,AB是⊙O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB 于点E,点F是AB延长线上一点,CF=EF.(1)求证:FC是⊙O的切线;(2)若CF=5,tan A=,求⊙O半径的长.23.(10分)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为x元(x为正整数),每月的销售量为y条.(1)直接写出y与x的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?24.(12分)如图,已知抛物线y=ax2+bx+c的顶点为A(4,3),与y轴相交于点B(0,﹣5),对称轴为直线l,点M是线段AB的中点.(1)求抛物线的表达式;(2)写出点M的坐标并求直线AB的表达式;(3)设动点P,Q分别在抛物线和对称轴l上,当以A,P,Q,M为顶点的四边形是平行四边形时,求P,Q两点的坐标.参考答案一.选择题1.解:258 000=2.58×105.故选:C.2.解:A、(﹣a3)2=a6,故本选项错误;B、(a﹣b)2=a2﹣2ab+b2,故本选项错误;C、不是同类项,不能合并,故本选项错误;D、a6÷a3=a3,故本选项正确.故选:D.3.解:∵∠1是△CEF的外角,∴∠1=∠C+∠E;∵∠2是△BDG的外角,∴∠2=∠B+∠D,∵∠A+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故选:A.4.解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选:A.5.解:由于方差和极差都能反映数据的波动大小,故需比较这两人5次数学成绩的方差.故选:D.6.解:∵一元二次方程x2﹣4x﹣4m=0有两个不等的实数根,∴△=b2﹣4ac=16+16m>0,∴m>﹣1,∴m+2>1,∴反比例函数y=的图象所在的象限是第一、三象限,故选:B.7.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.8.解:∵点A的坐标为(0,5),△OAB沿x轴向右平移后得到△O′A′B′,点A的对应点A′在直线y=x上,∴A′点纵坐标为:5,故5=x,解得:x=6,即A到A′的距离为6,则点B与其对应点B′之间的距离为6.故选:A.9.解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,∵AD=260,DH:AH=1:2.4,∴DH=100(m),∵四边形DHBF是矩形,∴BF=DH=100,在Rt△EFB中,tan63°=,∴EF=,在Rt△EFC中,FC=EF•tan72°,∴CF=×3.08≈157.1,∴BC=BF+CF=257.1(m).故选:C.10.解:∵sin∠CAB=∴∠CAB=30°∵折叠可知:∠FAC=∠BAC=30°∵四边形ABCD是矩形,∴DC∥AB,∠D=90°,DC=AB=3∴∠FCA=∠CAB=30°,∴FC=FA,∠DAF=30°FA=FC=DC﹣FD=3﹣FD∴sin∠DAF==解得DF=1.所以DF的长为1.故选:A.二.填空11.解:原式=2+2﹣2+﹣4×=,故答案为:12.解:∵正比例函数y=2x的图象与一次函数y=﹣3x+k的图象相交于点P(1,m),∴m=2×1=2,m=﹣3+k∴k=5,∴一次函数解析式为y=﹣3x+5,∴一次函数y=﹣3x+5的图象与x轴的交点坐标为(,0)∴两条直线与x轴围成的三角形的面积=×2×=13.解:由作图可知∠ECD=∠ECB,∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠D=60°,∴∠DEC=∠ECB=∠ECD,∴DE=D C,∴△DEC是等边三角形,∴DE=DC=EC=6,∴AD=BC=8,AB=CD=6,∴四边形ABCD的周长为28,故答案为28.14.解:(1)由﹣>﹣1,根据题中的新定义得:原式==1;(2)由x﹣3<x+3,根据题中的新定义化简得:=1,去分母得:x﹣3=5x﹣9,解得:x=,经检验x=是分式方程的解,故答案为:(1)1;(2)15.解:∵方程2x2+x﹣2m+1=0有一正实根和一负实根,∴,解得:m>.故答案为:m>.16.解:不等式<kx+b(x>0)的解集实际上是反比例函数值小于一次函数值的自变量x 的取值范围,根据图象得:1<x<4故答案为:1<x<4.三.解答17.解:,由①得:x≥1,由②得:x<4,则不等式的解集为1≤x<4,18.解:原式=÷•=﹣••=﹣,∵x、y满足方程组,∴3x+3y=﹣6,则x+y=﹣2,∴原式=﹣=﹣.19.解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.故答案为:等边,30°;【问题解决】解:∵∠DBC<∠ABC,∴60°<α≤120°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3﹣1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=2,∴DE=,∴BE=BD+DE=7+,故答案为:7+或7﹣.20.解:(1)∵调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,故答案为:1、2;(2)扇形统计图中“4部”所在扇形的圆心角为:×360°=54°;故答案为:54;(3)条形统计图如图所示,(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.21.解:(1)∵直线l1:y=x+3①与直线l2:y=﹣3x②相交于C,∴联立①②解得,x=﹣,y=,∴C(﹣,);(2)把x=0代入y=x+3得y=3,∴B(0,3)∴OB=3∵C(﹣,)∴△BCO的面积=OB×|﹣═×3×=;(3)在y=x+3中,当y=0时,x=﹣3∴A(﹣3,0)作点A(﹣3,0)关于y轴的对称点A′(3,0),连接CA′交y轴于点P,此时PC+PA 最小,如图:设直线CA′的解析式为y=kx+b把C(﹣,),A′(3,0)代入上式得:,解得:∴直线CA′的解析式为y=﹣x+令x=0时y=∴点P(0,).22.(1)证明:如图,连接OD.∵点D是半圆的中点,∴∠AOD=∠BOD=90°,∴∠ODC+∠OED=90°,∵OD=OC,∴∠ODC=∠OCD.又∵CF=EF,∴∠FCE=∠FEC.∵∠FEC=∠OED,∴∠FCE=∠OED.∴∠FCE+∠OCD=∠OED+∠ODC=90°,即FC⊥OC,∴FC是⊙O的切线;(2)解:∵tan A=,∴在Rt△ABC中,=,∵∠ACB=∠OCF=90°,∴∠ACO=∠BCF=∠A,∵△ACF∽△CBF,∴===.∴AF=10,∴CF2=BF•AF.∴BF=.∴AO==.23.解:(1)由题意可得:y=100+5(80﹣x)整理得y=﹣5x+500;(2)由题意,得:w=(x﹣40)(﹣5x+500)=﹣5x2+700x﹣20000=﹣5(x﹣70)2+4500∵a=﹣5<0∴w有最大值即当x=70时,w=4500最大值∴应降价80﹣70=10(元)答:当降价10元时,每月获得最大利润为4500元;(3)由题意,得:﹣5(x﹣70)2+4500=4220+200解之,得:x1=66,x2=74,∵抛物线开口向下,对称轴为直线x=70,∴当66≤x≤74时,符合该网店要求而为了让顾客得到最大实惠,故x=66∴当销售单价定为66元时,既符合网店要求,又能让顾客得到最大实惠.24.解:(1)函数表达式为:y=a(x=4)2+3,将点B坐标代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣x2+4x﹣5;(2)A(4,3)、B(0,﹣5),则点M(2,﹣1),设直线AB的表达式为:y=kx﹣5,将点A坐标代入上式得:3=4k﹣5,解得:k=2,故直线AB的表达式为:y=2x﹣5;(3)设点Q(4,s)、点P(m,﹣m2+4m﹣5),①当AM是平行四边形的一条边时,当点Q在A的下方时,点A向左平移2个单位、向下平移4个单位得到M,同样点P(m,﹣m2+4m﹣5)向左平移2个单位、向下平移4个单位得到Q(4,s),即:m﹣2=4,﹣m2+4m﹣5﹣4=s,解得:m=6,s=﹣3,故点当点Q在点A上方时,AQ=MP=2,同理可得点Q的坐标为(4,5),②当AM是平行四边形的对角线时,由中点定理得:4+2=m+4,3﹣1=﹣m2+4m﹣5+s,解得:m=2,s=1,故点P、Q的坐标分别为(2,1)、(4,1);综上,P、Q的坐标分别为(6,1)、(4,﹣3)或(2,1)、(4,5)或(2,1)、(4,1).。
2019年湖北省荆州市六校联考中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.在√2,−1,0,√5,这四个数中,最小的实数是()A. √2B. −1C. 0D. √5【答案】B【解析】解:四个数大小关系为:−1<0<√2<√5,则最小的实数为−1,故选:B.将四个数按照从小到大顺序排列,找出最小的实数即可.此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A. 6.7×105B. 6.7×106C. 0.67×107D. 67×108【答案】B【解析】解:6700000=6.7×106.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.如图,已知直线AB、CD被直线AC所截,AB//CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α−β,③β−α,④360∘−α−β,∠AEC的度数可能是()A. ①②③B. ①②④C. ①③④D. ①②③④【答案】D【解析】解:(1)如图,由AB//CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β−α.(2)如图,过E2作AB平行线,则由AB//CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB//CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α−β.(4)如图,由AB//CD,可得∠BAE4+∠AE4C+∠DCE4=360∘,∴∠AE4C=360∘−α−β.∴∠AEC的度数可能为β−α,α+β,α−β,360∘−α−β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α−β或β−α.故选:D.根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等,两直线平行,内错角相等.4.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时)3 3.54 4.5人数1121A. 中位数是4,平均数是3.75B. 众数是4,平均数是3.75C. 中位数是4,平均数是3.8D. 众数是2,平均数是3.8【答案】C【解析】解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:3+3.5+2×4+4.55=3.8.故选:C.根据众数、平均数和中位数的概念求解.本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.5.下列二次根式中,为最简二次根式的是()A. √45B. √x2+y2C. √baD. √1.7【答案】B【解析】解:A、√45=√5×32=3√5;C、√ba =√aba×a=√ab|a|;D、√1.7=√1710=√17010×10=√17010;故选:B.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.6.如图,在底边BC为2√3,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A. 2+√3B. 2+2√3C. 4D. 3√3【答案】B【解析】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2√3,∴△ACE的周长=AC+AE+CE=AC+BC=2+2√3,故选:B.根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2√3,即可得到结论本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.7.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A. 16cm2B. 20cm2C. 80cm2D. 160cm2【答案】C【解析】解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x−4cm,宽是5cm,则4x=5(x−4),去括号,可得:4x=5x−20,移项,可得:5x−4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选:C.首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x−4cm,宽是5cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少.此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.8.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A. 0.5B. 1C. 1.5D. 2【答案】A【解析】解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC=√AB2−BC2=√2.52−1.52=2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC=√DE2−CD2=√2.52−22=1.5米,故AE=AC−CE=2−1.5=0.5米.故选:A.在直角三角形ABC中,根据勾股定理,得:AC=2米,由于梯子的长度不变,在直角三角形CDE中,根据勾股定理,得CE=1.5米,所以AE=0.5米,即梯子的顶端下滑了0.5米.此题中主要注意梯子的长度不变,分别运用勾股定理求得AC和CE的长,即可计算下滑的长度.9.如图是某几何体的三视图,则该几何体的全面积等于()A. 112B. 136C. 124D. 84【答案】B【解析】解:如图:由勾股定理√52−42=3,3×2=6,6×4÷2×2+5×7×2+6×7=24+70+42=136.故选:B.由三视图可知该几何体是一个三棱柱,先根据勾股定理得到主视图三角形等边的长,再根据三棱柱的全面积=2个底面积+3个侧面积,列式计算即可求解.考查了由三视图判断几何体,由三视图求几何体的表面积,关键是由三视图得到数据的对应量.10.如图,反比例函数y1=1与二次函数y1=ax2+xbx+c图象相交于A、B、C三个点,则函数y=ax2++c的图象与x轴交点的个数是()bx−1xA. 0B. 1C. 2D. 3【答案】D【解析】解:当y1=y2时,得1x =ax2+bx+c,即ax2+bx−1x+c=0,∵方程的解即反比例函数y1=1x与二次函数y1=ax2+bx+c图象交点的横坐标,∵反比例函数y1=1x与二次函数y1=ax2+bx+c图象相交于A、B、C三个点,∴函数y=ax2+bx−1x +c的图象与x轴交点即是ax2+bx−1x+c=0的解,∴函数y=ax2+bx−1x+c的图象与x轴交点的个数是3个,故选:D.当y1=y2时,得到方程ax2+bx−1x +c=0,方程的解即反比例函数y1=1x与二次函数y1=ax2+bx+c图象交点的横坐标,于是得到函数y=ax2+bx−1x+c的图象与x轴交点即是ax2+bx−1x+c=0的解,即可得到结论.本题考查了反比例函数图形上点的坐标特征,函数图形与方程的关系,正确的理解题意是解题的关键.二、填空题(本大题共8小题,共24.0分)11.计算:(12)−2+(π−3)0−√9=______.【答案】2【解析】解:原式=4+1−3=2,故答案为:2原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.将一组数√2,2,√6,2√2,√10,…,4√5按下面的方式进行排列:√2,2,√6,2√2,√10;2√3,√14,4,3√2,2√5;√22,2√6,√26,2√7,√30;…若2√2的位置记为(1,4),√26的位置记为(3,3),则这组数中最大的有理数的位置记为______.【答案】(7,2)【解析】解:∵4√5=√80,∴这列数中最大的数是√64=8,观察发现数字的规律为√2n,设64是这列数中的第n个数,则2n=64,解得n=32,观察发现,每5个数一行,即5个数一循环,∴32÷5=6…2,∴√64是第7行的第2个数.最大的有理数n的位置记为(7,2).故答案为:(7,2).根据规律发现,被开方数是从2开始的偶数列,最后一个数的被开方数是80,所以最大的有理数是被开方数是64的数,然后求出√64在这列数的序号,又5个数一组,求出是第几组第几个数,即可确定它的位置.本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力,本题的关键是求出最大的有理数的序号,并5个数作为一个循环组.13.关于x的分式方程x+kx+1+2xx+1=1的解为非正数,则k的取值范围是______.【答案】k≥1且k≠3【解析】解:去分母得:x+k+2x=x+1,解得:x=1−k2,由分式方程的解为非正数,得到1−k2≤0,且1−k2≠−1,解得:k≥1且k≠3,故答案为:k≥1且k≠3分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.此题考查了分式方程的解,始终注意分母不为0的条件.14.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有______个三角形(用含字母n的代数式表示).【答案】4n−3【解析】解:分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1−3;图②中三角形的个数为5=4×2−3;图③中三角形的个数为9=4×3−3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n−3.故答案为4n−3.分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3−3.按照这个规律即可求出第n各图形中有多少三角形.此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.15.直线y=2x−1沿y轴平移3个单位,则平移后直线与y轴的交点坐标为______.【答案】(0,2)或(0,−4)【解析】解:直线y=2x−1沿y轴平移3个单位可得y=2x−1+3或y=2x−1−3,即y=2x+2或y=2x−4,则平移后直线与y轴的交点坐标为:(0,2)或(0,−4).故答案为:(0,2)或(0,−4).由直线y=2x−1沿y轴平移3个单位可得y=2x−1+3或y=2x−1−3,然后再根据一次函数y=kx+b与y轴交点为(0,b)可得答案.此题主要考查了一次函数图象的几何变换,关键是掌握直线平移后,函数解析式的b值上移加,下移减.16.如图,四边形ABCD中,AB=AC=AD,若∠CAD=76∘,则∠CBD=______度.【答案】38【解析】解:∵AB=AC=AD,∴点B,C,D可以看成是以点A为圆心,AB为半径的圆上的三个点,∴∠CBD是弧CD对的圆周角,∠CAD是弧CD对的圆心角;∵∠CAD=76∘,∴∠CBD=12∠CAD=12×76∘=38∘.由已知我们可以将点B,C,D可以看成是以点A为圆心,AB为半径的圆上的三个点,从而根据同弧所对的圆周角等于圆心角的一半求得即可.本题利用了同弧对的圆周角是圆心角的一半的性质求解.17.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45∘角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明)______.【答案】点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线【解析】解:(1)如图所示,∠ABC=45∘.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,故答案为:点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.本题考查作图−应用设计、正方形、长方形、等腰直角三角形的性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.18.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋的图象恰转90∘后,得到△A′O′B,且反比例函数y=kx好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k=______.【答案】6【解析】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴BO=2,AO⋅AO⋅BO=4,∵S△ABO=12∴AO=2,BO=4,∵△ABO≌,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=12A′O′=1,BD=12BO′=2,∴x=BO−CD=4−1=3,y=BD=2,∴k=x⋅y=3⋅2=6.故答案为6.先根据S△ABO=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中点,求出点C的坐标,点C的横纵坐标之积即为k值.本题考查了反比例函数图象上点的坐标特征,解答本题的关键在于读懂题意,作出合适的辅助线,求出点C的坐标,然后根据点C的横纵坐标之积等于k值求解即可.三、计算题(本大题共2小题,共18.0分)19.抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.【答案】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50−10−20−4=16(人);补全条形图如图所示:(3)700×450=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=212=16.【解析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.已知关于x的一元二次方程kx2+(3k+1)x+2k+1=0.(1)求证:该方程必有两个实数根;(2)设方程的两个实数根分别是x1,x2,若y1是关于x的函数,且y1=mx−1,其中m=x1x2,求这个函数的解析式;(3)设y2=kx2+(3k+1)x+2k+1,若该一元二次方程只有整数根,且k是小于0的整数.结合函数的图象回答:当自变量x满足什么条件时,y2>y1?【答案】(1)证明:∵a=k,b=3k+1,c=2k+1,∴△=b2−4ac=9k2+6k+1−4k(2k+1)=9k2+6k+1−8k2−4k=k2+2k+1=(k+1)2≥0,∴方程必有两个实数根;(2)解:∵方程的两个实数根分别是x1,x2,∴x1x2=2+1k,而m=x1x2,y1=mx−1,∴y1=(2+1k)x−1;(3)解:∵方程只有整数根且k是小于0的整数,∴x2=−2−1k 要为整数,只能1k为整数,∴k=−1,∴y2=−x2−2x−1,y1=x−1,∴y1与y2的交点坐标为A(−3,−4)B(0,−1),∴在坐标系中画出两函数的图象如图所示,由图象可知:当−3<x<0时,y2>y1.【解析】(1)用根的判别式判断根的情况;(2)用一元二次方程根与系数的关系,可以求出关于y1解析式;(3)根据已知方程只有整数根且k是小于0的整数确定出k的值,进而确定两个函数的解析式,求出两个函数的交点坐标,在坐标系中画出图象,再确定出y2>y1时的x的取值范围.本题有一定的难度,先用到一元二次方程的根的判别式和根与系数的关系来确定方程有根和函数的解析式,再求出了两函数的交点坐标,从而在坐标系中画出图象,确定出x 的取值范围.四、解答题(本大题共5小题,共48.0分)21. 如果实数x 、y 满足方程组{2x +3y =3x+3y=0,求代数式(xy x+y +2)÷1x+y .【答案】解:原式=xy x+y ⋅(x +y)+2⋅(x +y)=xy +2x +2y ,方程组{2x +3y =3x+3y=0,解得:{y =−1x=3,当x =3,y =−1时,原式=−3+6−2=1.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x 与y 的值,代入计算即可求出值. 此题考查了分式的化简求值,解二元一次方程组,掌握分式的化简方法与解方程组的方法是解决问题的关键.22. 已知四边形ABCD 是矩形,连接AC ,点E 是边CB 延长线上一点,CA =CE ,连接AE ,F 是线段AE 的中点,(1)如图1,当AD =DC 时,连接CF 交AB 于M ,求证:BM =BE ;(2)如图2,连接BD 交AC 于O ,连接DF 分别交AB 、AC 于G 、H ,连接GC ,若∠FDB =30∘,S 四边形GBOH =15√32,求线段GC 的长.【答案】证明:(1)如图1,∵AC =EC ,F 是AE 的中点,∴CF ⊥AE ,∴∠AFC =90∘,∵四边形ABCD 是矩形,AD =DC ,∴矩形ABCD 为正方形,∴AB =BC ,∠ABC =90∘,∴∠AFC =∠ABC ,∵∠AMF =∠BMC ,∴∠EAB=∠MCB,∵∠ABE=∠ABC=90∘,∴△AEB≌△CMB,∴BE=BM;(2)如图2,连接BF并延长交直线AD于M,∵F是AE的中点,∴AF=EF,∵四边形ABCD是矩形,∴AD//BC,AC=BD,∴∠M=∠FBE,∵∠AFM=∠EFB,∴△AMF≌△EBF,∴FM=BF,AM=BE,∵AD=BC,∴AD+AM=BC+BE,即DM=CE,∵AC=CE,∴EC=DM=AC=BD,∴△DMB是等腰三角形,∵F是BM的中点,∴DF平分∠BDM,∵∠BDF=30∘,∴∠BDM=60∘,∴△BDM是等边三角形,∴∠M=60∘,在Rt△BCD中,∠BDC=90∘−60∘=30∘,∴∠DBC=60∘,∵OB=OC,∴∠DBC=∠OCB=60∘,∴△ACE为等边三角形,在△OHD中,∠HOD=∠BOC=60∘,∴∠OHD=90∘,设OH=x,则OD=2x,BD=4x,BC=2x,∴DH=√3x,AH=x,DC=AB=2√3x,Rt△ABC中,∠ACE=60∘,∴∠BAC=30∘,∴cos30∘=AHAG,AG=x√32=2√3x3,∴BG=AB−AG=2√3x−2√3x3=4√3x3,∴S四边形GBOH=S△DGB−S△OHD,=12BG⋅AD−12OH⋅DH,=12⋅4√3x3⋅2x−12⋅x⋅√3x=15√32,解得:x2=9,x=±3,∴BC=2x=6,BG=4√33×3=4√3,由勾股定理得:CG=√BC2+BG2=√(4√3)2+62=2√21.【解析】(1)如图1,根据等腰三角形的三线合一得CF⊥AE,则∠AFC=90∘,证明△AEB≌△CMB,可得BE=BM;(2)如图2,作辅助线构建三角形全等,先证明△AMF≌△EBF,得FM=BF,AM=BE,再证明△DMB是等腰三角形,由三线合一得:DF平分∠BDM,根据∠FDB=30∘得△BDM 是等边三角形;由此△ACE为等边三角形,△OHD为直角三角形,设未知数:OH=x,根据S四边形GBOH=S△DGB−S△OHD,列方程得出结论.本题考查了矩形的性质和全等三角形的性质和判定,又考查了等边三角形和30∘的直角三角形的性质,设未知数,表示边的长度,根据直角三角形中30∘角所对的直角边是斜边的一半得出其它边长,与三角函数和勾股定理相结合,分别表示出△DGB和△OHD各边的长,为列方程作铺垫,从而使问题得以解决.23.某校九年级的小红同学,在自己家附近进行测量一座楼房高度的实践活动.如图,她在山坡坡脚A出测得这座楼房的楼顶B点的仰角为60∘,沿山坡往上走到C处再测得B点的仰角为45∘.已知OA=200m,此山坡的坡比i=12,且O、A、D在同一条直线上.求:(1)楼房OB的高度;(2)小红在山坡上走过的距离AC.(计算过程和结果均不取近似值)【答案】解:(1)在Rt△ABO中,∠BAO=60∘,OA=200.…(2分)∵tan60∘=OBOA,即OBOA=√3,∴OB=√3OA=200√3(m).…(2分)(2)如图,过点C作CE⊥BO于E,CH⊥OD于H.则OE=CH,EC=OH.根据题意,知i=CHAH =12,可设CH=x,AH=2x.…(1分)在Rt△BEC中,∠BCE=45∘,∴BE=CE,即OB−OE=OA+AH.∴200√3−x=200+2x.解得x=200(√3−1)3.…(1分)在Rt△ACH中,∵AC2=AH2+CH2,∴AC2=(2x)2+x2=5x2.∴AC=√5x=200√5(√3−1)3[或200(√15−√5) 3](m).(1分)答:高楼OB的高度为200√3m,小玲在山坡上走过的距离AC为200(√15−√5) 3m.…(1分)【解析】(1)由在Rt△ABO中,∠BAO=60∘,OA=200,则可得tan60∘=OBOA,则利用正切函数的知识即可求得答案;(2)首先过点C作CE⊥BO于E,CH⊥OD于H,由题意可知i=CHAH =12,然后设CH=x,AH=2x,在Rt△BEC中,∠BCE=45∘,利用直角三角形的性质,即可得方程:200√3−x=200+2x,由在Rt△ACH中,利用勾股定理即可求得答案.本题考查仰角的定义,以及解直角三角形的实际应用问题.此题难度适中,解题的关键是要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想的应用,注意辅助线的作法.24.某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【答案】解:由题意得:(1)50+x−40=x+10(元)(3分)(2)设每个定价增加x元.列出方程为:(x+10)(400−10x)=6000解得:x1=10x2=20要使进货量较少,则每个定价为70元,应进货200个.(3分)(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400−10x)=−10x2+300x+4000=−10(x−15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【解析】(1)根据利润=销售价−进价列关系式;(2)总利润=每个的利润×销售量,销售量为400−10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.25.如图1,在平面直角坐标系中,一次函数y=−2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=______,BC=______,AC=______;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择______题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】8 4 4√5A【解析】解:(1)∵一次函数y=−2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90∘,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC=√AB2+BC2=4√5,故答案为:8,4,4√5;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB−AD=8−AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8−AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y−5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,−3)Ⅱ、AP=DP,∴16+y2=16+(y−5)2,∴y=5,2),∴P(0,52Ⅲ、AD=DP,25=16+(y−5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,AC=2√5,DE⊥AC于E,由折叠知,AE=12在Rt△ADE中,DE=√AD2−AE2=√5,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90∘,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O 作ON ⊥AC 于N ,易证,△AON∽△ACO , ∴AN OA =OA AC , ∴AN 4=4√5, ∴AN =4√55, 过点N 作NH ⊥OA ,∴NH//OA ,∴△ANH∽△ACO ,∴AN AC =NH OC =AH OA ,∴4√554√5=NH8=AH 4, ∴NH =85,AH =45,∴OH =165,∴N(165,85), 而点P 2与点O 关于AC 对称,∴P 2(325,165), 同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(−125,245), 即:满足条件的点P 的坐标为:(0,0),(325,165),(−125,245).(1)先确定出OA =4,OC =8,进而得出AB =8,BC =4,利用勾股定理即可得出AC ;(2)A 、①利用折叠的性质得出BD =8−AD ,最后用勾股定理即可得出结论; ②分三种情况利用方程的思想即可得出结论;B 、①利用折叠的性质得出AE ,利用勾股定理即可得出结论;②先判断出∠APC =90∘,再分情况讨论计算即可.此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC ,解(2)的关键是利用分类讨论的思想解决问题.。
湖北省荆州市2019年中考数学试卷一、选择题(本大题共10小题,每小题只有唯一正确答案.每小题3分,共30分)1.(3分)(2019•荆州)若□×(﹣2)=1,则□内填一个实数应该是()A.B.2C.﹣2 D.﹣考点:有理数的乘法分析:根据乘积是1的两个数互为倒数解答.解答:解:∵﹣×(﹣2)=1,∴□内填一个实数应该是﹣.故选D.点评:本题考查了有理数的乘法,是基础题,注意利用了倒数的定义.2.(3分)(2019•荆州)下列运算正确的是()A.3﹣1=﹣3 B.=±3 C.(ab2)3=a3b6D.a6÷a2=a3考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂分析:运用负整数指数幂的法则运算,开平方的方法,同底数幂的除法以及幂的乘方计算.解答:解:A、3﹣1=≠3a,故A选项错误;B、=3≠±3,故B选项错误;C、(ab2)3=a3b6故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.故选:C.点评:此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心.3.(3分)(2019•荆州)如图,AB∥ED,AG平分∠BAC,∠ECF=70°,则∠FAG的度数是()A.155°B.145°C.110°D.35°考点:平行线的性质.分析:首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.故选:B.点评:本题考查了平行线的性质.根据“两直线平行,内错角相等”求得∠BAC的度数是解题的难点.4.(3分)(2019•荆州)将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是()A.y=(x﹣4)2﹣6 B.y=(x﹣4)2﹣2 C.y=(x﹣2)2﹣2 D.y=(x﹣1)2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.解答:解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),所以平移后得到的抛物线解析式为y=(x﹣4)2﹣2.故选B.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.(3分)(2019•荆州)已知α是一元二次方程x2﹣x﹣1=0较大的根,则下面对α的估计正确的是()A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选C.点评:本题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比较典型的题目,难度适中.6.(3分)(2019•荆州)如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.A D=DE C.A D2=BD•CD D.A D•AB=AC•BD考点:相似三角形的判定;圆周角定理.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.故选D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.7.(3分)(2019•荆州)如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选A.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8.(3分)(2019•荆州)已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5B.1C.3D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)(2019•荆州)如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的内角度数是()A.()n•75°B.()n﹣1•65°C.()n﹣1•75°D.()n•85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故选:C.点评:本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.10.(3分)(2019•荆州)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4dm B.2dm C.2dm D.4dm考点:平面展开-最短路径问题.分析:要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.解答:解:如图,把圆柱的侧面展开,得到矩形,则则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2,∴这圈金属丝的周长最小为2AC=4cm.故选A.点评:本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2019•荆州)化减×﹣4××(1﹣)0的结果是.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据二次根式的乘法法则和零指数幂的意义计算得到原式=2﹣,然后合并即可.解答:解:原式=2×﹣4××1=2﹣=.故答案为.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.12.(3分)(2019•荆州)若﹣2x m﹣n y2与3x4y2m+n是同类项,则m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:若﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×(﹣2)=8.8的立方根是2.故答案为2.点评:本题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n 的值.13.(3分)(2019•荆州)如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为(0,1),则点E的坐标是(,).考点:位似变换;坐标与图形性质.分析:由题意可得OA:OD=1:,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案为:(,).点评:此题考查了位似变换的性质与正方形的性质.此题比较简单,注意理解位似变换与相似比的定义是解此题的关键.14.(3分)(2019•荆州)我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,则x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.15.(3分)(2019•荆州)如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)(2019•荆州)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.解答:解:如图所示:这个格点正方形的作法共有4种.故答案为:4.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.17.(3分)(2019•荆州)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.分析:求图中阴影部分的面积,就要从图中分析阴影部分的面积是由哪几部分组成的.很显然图中阴影部分的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.点评:本题主要考查了扇形的面积计算方法,不规则图形的面积通常转化为规则图形的面积的和差.18.(3分)(2019•荆州)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A 的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣6.考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为(a,b)则ab=2,可得FC•OF=6.设点C 坐标为(x,y),从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如图所示.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为(a,b),∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为(x,y),∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•(﹣y)=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:本题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答本题的关键.三、解答题(本大题共7题,共66分)19.(7分)(2019•荆州)先化简,再求值:()÷,其中a,b满足+|b﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,则原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.(8分)(2019•荆州)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.解答:解:DF=BE还成立;理由:∵正方形ABCD绕点A逆时针旋转一定角度α,∴∠FAD=∠EAB,在△ADF与△ABE中∴△ADF≌△ABE(SAS)∴DF=BE.点评:本题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.21.(8分)(2019•荆州)钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.若甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.(参考数据:cos59°≈0.52,sin46°≈0.72)考点:解直角三角形的应用-方向角问题.分析:作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,分别在Rt△ACD中,和在Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比较即可确定答案解答:解:如图,作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,∵在Rt△ACD中,=cos∠ACD,∴AC==≈1.92a;∵在Rt△BCD中,=cos∠BCD,∴BC==≈1.39a;∵其平均速度分别是20海里/小时,18海里/小时,∴1.92a÷20=0.096a.1.39a÷18=0.077a,∵a>0,∴0.096a>0.077a,∴乙先到达.点评:本题考查了解直角三角形的应用,解决本题的关键在于设出未知数a,使得运算更加方便,难度中等.22.(9分)(2019•荆州)我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:(1)根据题中数据求出a与b的值即可;(2)根据(1)a与b的值,确定出m与n的值即可;(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解答:解:(1)根据题意得:a=5,b=1;(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,故八年级队比七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解本题的关键.23.(10分)(2019•荆州)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?考点:二次函数的应用.分析:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;解答:解:(1)根据题中条件销售价每降低10元,月销售量就可多售出50千克,则月销售量y(台)与售价x(元/台)之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,则,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200(300≤x≤350);(2)W=(x﹣200)(﹣5x+2200),整理得:W=﹣5(x﹣320)2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.点评:本题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.24.(12分)(2019•荆州)已知:函数y=ax2﹣(3a+1)x+2a+1(a为常数).(1)若该函数图象与坐标轴只有两个交点,求a的值;(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2﹣x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.考点:二次函数综合题.分析:(1)根据a取值的不同,有三种情形,需要分类讨论,避免漏解.(2)①函数与x轴相交于点A(x1,0),B(x2,0)两点,则x1,x2,满足y=0时,方程的根与系数关系.因为x2﹣x1=2,则可平方,用x1+x2,x1x2表示,则得关于a 的方程,可求,并得抛物线解析式.②已知解析式则可得A,B,C,D坐标,求sin∠DCB,须作垂线构造直角三角形,结论易得.解答:解:(1)函数y=ax2﹣(3a+1)x+2a+1(a为常数),若a=0,则y=﹣x+1,与坐标轴有两个交点(0,1),(1,0);若a≠0且图象过原点时,2a+1=0,a=﹣,有两个交点(0,0),(1,0);若a≠0且图象与x轴只有一个交点时,令y=0有:△=(3a+1)2﹣4a(2a+1)=0,解得a=﹣1,有两个交点(0,﹣1),(1,0).综上得:a=0或﹣或﹣1时,函数图象与坐标轴有两个交点.(2)①∵函数与x轴相交于点A(x1,0),B(x2,0)两点,∴x1,x2为ax2﹣(3a+1)x+2a+1=0的两个根,∴x1+x2=,x1x2=,∵x2﹣x1=2,∴4=(x2﹣x1)2=(x1+x2)2﹣4x1x2=()2﹣4•,解得a=﹣(函数开口向上,a>0,舍去),或a=1,∴y=x2﹣4x+3.②∵函数y=x2﹣4x+3与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x1<x2,∴A(1,0),B(3,0),C(0,3),∵D为A关于y轴的对称点,∴D(﹣1,0).根据题意画图,如图1,过点D作DE⊥CB于E,∵OC=3,OB=3,OC⊥OB,∴△OCB为等腰直角三角形,∴∠CBO=45°,∴△EDB为等腰直角三角形,设DE=x,则EB=x,∵DB=4,∴x2+x2=42,∴x=2,即DE=2.在Rt△COD中,∵DO=1,CO=3,∴CD==,∴sin∠DCB==.点评:本题考查了二次函数图象交点性质、韦达定理、特殊三角形及三角函数等知识,题目考法新颖,但内容常规基础,是一道非常值得考生练习的题目.25.(12分)(2019•荆州)如图①,已知:在矩形ABCD的边AD上有一点O,OA=,以O为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.若点E是CD边上一动点(点E与C,D不重合),过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD 重叠部分的面积为S.(1)求证:四边形ABHP是菱形;(2)问△EFG的直角顶点G能落在⊙O上吗?若能,求出此时x的值;若不能,请说明理由;(3)求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质;切线长定理;轴对称的性质;特殊角的三角函数值.专题:压轴题.分析:(1)连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.(2)当点G落到AD上时,可以证到点G与点M重合,可求出x=2.(3)当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤3时,如图④,S=S△GEF﹣S△SGR,只需求出SG、RG,就可得到S与x之间的函数关系式.当FG与⊙O相切时,如图⑤,易得FK=AB=3,KQ=AQ﹣AK=2﹣2+x.再由FK=KQ即可求出x,从而求出S.解答:解:(1)证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.(2)△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.(3)①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣(6﹣2x)=3x﹣6.∵tan∠SRG===,∴SG=(x﹣2).∴S△SGR=SG•RG=•(x﹣2)•(3x﹣6).=(x﹣2)2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣(x﹣2)2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=(+2)﹣(3﹣x)=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=(2﹣2+x).解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×(3﹣)2=﹣6.∴FG与⊙O相切时,S的值为﹣6.点评:本题考查了矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.。
2019年湖北省荆州市中考数学试卷一、选择题(本大题共10小题每小题只有唯一正确答案,每小题3分,共30分)1.(3分)下列实数中最大的是()A.B.πC.D.|﹣4|2.(3分)下列运算正确的是()A.x﹣x=B.a3•(﹣a2)=﹣a6C.(﹣1)(+1)=4D.﹣(a2)2=a43.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=40°,则∠2的度数为()A.10°B.20°C.30°D.40°4.(3分)某几何体的三视图如图所示,则下列说法错误的是()A.该几何体是长方体B.该几何体的高是3C.底面有一边的长是1D.该几何体的表面积为18平方单位5.(3分)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是()A.①②B.①③C.②③D.①②③6.(3分)若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.(3分)在平面直角坐标系中,点A的坐标为(1,),以原点为中心,将点A顺时针旋转30°得到点A',则点A'的坐标为()A.(,1)B.(,﹣1)C.(2,1)D.(0,2)8.(3分)在一次体检中,甲、乙、丙、丁四位同学的平均身高为1.65米,而甲、乙、丙三位同学的平均身高为1.63米,下列说法一定正确的是()A.四位同学身高的中位数一定是其中一位同学的身高B.丁同学的身高一定高于其他三位同学的身高C.丁同学的身高为1.71米D.四位同学身高的众数一定是1.659.(3分)已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0B.k>﹣2且k≠﹣1C.k>﹣2D.k<2且k≠1 10.(3分)如图,点C为扇形OAB的半径OB上一点,将△OAC沿AC折叠,点O恰好落在上的点D处,且l:l=1:3(l表示的长),若将此扇形OAB围成一个圆锥,则圆锥的底面半径与母线长的比为()A.1:3B.1:πC.1:4D.2:9二、填空题(本大题共6小题每小题3分,共18分)11.(3分)二次函数y=﹣2x2﹣4x+5的最大值是.12.(3分)如图①,已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD的中点,截面EFG将这个正方体切去一个角后得到一个新的几何体(如图②),则图②中阴影部分的面积为cm2.13.(3分)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.14.(3分)如图,灯塔A在测绘船的正北方向,灯塔B在测绘船的东北方向,测绘船向正东方向航行20海里后,恰好在灯塔B的正南方向,此时测得灯塔A在测绘船北偏西63.5°的方向上,则灯塔A,B间的距离为海里(结果保留整数).(参考数据sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50,≈2.24)15.(3分)如图,AB为⊙O的直径,C为⊙O上一点,过B点的切线交AC的延长线于点D,E为弦AC的中点,AD=10,BD=6,若点P为直径AB上的一个动点,连接EP,当△AEP是直角三角形时,AP的长为.16.(3分)边长为1的8个正方形如图摆放在直角坐标系中,直线y=k1x平分这8个正方形所组成的图形的面积,交其中两个正方形的边于A,B两点,过B点的双曲线y=的一支交其中两个正方形的边于C,D两点,连接OC,OD,CD,则S△OCD=.三、解答题(本大题共8小题,共72分)17.(8分)已知:a=(﹣1)(+1)+|1﹣|,b=﹣2sin45°+()﹣1,求b﹣a 的算术平方根.18.(8分)先化简(﹣1)÷,然后从﹣2≤a<2中选出一个合适的整数作为a 的值代入求值.19.(8分)如图①,等腰直角三角形OEF的直角顶点O为正方形ABCD的中心,点C,D 分别在OE和OF上,现将△OEF绕点O逆时针旋转α角(0°<α<90°),连接AF,DE(如图②).(1)在图②中,∠AOF=;(用含α的式子表示)(2)在图②中猜想AF与DE的数量关系,并证明你的结论.20.(8分)体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:(1)表中的数a=,b=;(2)估算该九年级排球垫球测试结果小于10的人数;(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.21.(8分)若二次函数y=ax2+bx+c(a≠0)图象的顶点在一次函数y=kx+t(k≠0)的图象上,则称y=ax2+bx+c(a≠0)为y=kx+t(k≠0)的伴随函数,如:y=x2+1是y=x+1的伴随函数.(1)若y=x2﹣4是y=﹣x+p的伴随函数,求直线y=﹣x+p与两坐标轴围成的三角形的面积;(2)若函数y=mx﹣3(m≠0)的伴随函数y=x2+2x+n与x轴两个交点间的距离为4,求m,n的值.22.(10分)如图,AB是⊙O的直径,点C为⊙O上一点,点P是半径OB上一动点(不与O,B重合),过点P作射线1⊥AB,分别交弦BC,于D,E两点,在射线l上取点F,使FC=FD.(1)求证:FC是⊙O的切线;(2)当点E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若tan∠ABC=,且AB=20,求DE的长.23.(10分)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?24.(12分)如图,在平面直角坐标系中,平行四边形OABC的顶点A,C的坐标分别为(6,0),(4,3),经过B,C两点的抛物线与x轴的一个交点D的坐标为(1,0).(1)求该抛物线的解析式;(2)若∠AOC的平分线交BC于点E,交抛物线的对称轴于点F,点P是x轴上一动点,当PE+PF的值最小时,求点P的坐标;(3)在(2)的条件下,过点A作OE的垂线交BC于点H,点M,N分别为抛物线及其对称轴上的动点,是否存在这样的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.2019年湖北省荆州市中考数学试卷答案与解析一、选择题(本大题共10小题每小题只有唯一正确答案,每小题3分,共30分)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:∵<π<<|﹣4|=4,∴所给的几个数中,最大的数是|﹣4|.故选:D.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据合并同类项法则判断A;根据单项式乘单项式的法则判断B;根据平方差公式以及二次根式的性质判断C;根据幂的乘方法则判断D.【解答】解:A、x﹣x=x,故本选项错误;B、a3•(﹣a2)=﹣a5,故本选项错误;C、(﹣1)(+1)=5﹣1=4,故本选项正确;D、﹣(a2)2=﹣a4,故本选项错误;故选:C.【点评】本题考查了二次根式的运算,整式的运算,掌握合并同类项法则、单项式乘单项式的法则、幂的乘方法则、平方差公式以及二次根式的性质是解题的关键.3.【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2+∠ABC+∠1+∠BAC=180°,∵∠ABC=30°,∠BAC=90°,∠1=40°,∴∠2=180°﹣30°﹣90°﹣40°=20°,故选:B.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.4.【分析】根据几何体的三视图判断出几何体的形状,然后根据数据表面积即可进行判断.【解答】解:A、该几何体是长方体,正确;B、该几何体的高为3,正确;C、底面有一边的长是1,正确;D、该几何体的表面积为:2×(1×2+2×3+1×3)=22平方单位,故错误,故选:D.【点评】考查了由三视图判断几何体的知识,解题的关键是能够判断该几何体的形状,难度不大.5.【分析】利用矩形的性质得到AE=CE,则OE为等腰三角形底边上的中线,利用等腰三角形的性质可得到射线OE平分∠MON.【解答】解:∵四边形ABCD为矩形,∴AE=CE,而OA=OC,∴OE为∠AOC的平分线.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质和等腰三角形的性质.6.【分析】利用一次函数的性质得到k>0,b≤0,再判断△=k2﹣4b>0,从而得到方程根的情况.【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了一次函数的性质.7.【分析】如图,作AE⊥x轴于E,A′F⊥x轴于F.利用全等三角形的性质解决问题即可.【解答】解:如图,作AE⊥x轴于E,A′F⊥x轴于F.∵∠AEO=∠OF A′=90°,∠AOE=∠AOA′=∠A′OF=30°∴∠AOE=∠A′,∵OA=OA′,∴△AOE≌△A′OF(AAS),∴OF=OE=,A′F=AE=1,∴A′(,1).故选:A.【点评】本题考查旋转变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.8.【分析】根据平均数是指在一组数据中所有数据之和再除以数据的个数,它是反映数据集中趋势的一项指标.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息,对每一项进行分析即可【解答】解:A、四位同学身高的中位数可能是某两个同学身高的平均数,故错误;B、丁同学的身高一定高于其他三位同学的身高,错误;C、丁同学的身高为1.65×4﹣1.63×3=1.71米,正确;D.四位同学身高的众数一定是1.65,错误.故选:C.【点评】本题考查了算术平均数、中位数、众数,解答此题不是直接求平均数、中位数、众数,而是利用平均数、中位数、众数的概念进行综合分析,平均数受极值的影响较大,而中位数不易受极值影响.9.【分析】根据分式方程的解法即可求出答案.【解答】解:∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.10.【分析】连接OD,能得∠AOB的度数,再利用弧长公式和圆的周长公式可求解.【解答】解:连接OD交OC于M.由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.【点评】本题运用了弧长公式和轴对称的性质,关键是运用了转化的数学思想.二、填空题(本大题共6小题每小题3分,共18分)11.【分析】直接利用配方法得出二次函数的顶点式进而得出答案.【解答】解:y=﹣2x2﹣4x+5=﹣2(x+1)2+7,即二次函数y=﹣x2﹣4x+5的最大值是7,故答案为:7.【点评】此题主要考查了二次函数的最值,正确配方是解题关键.12.【分析】根据已知条件得到GF=GE=EF==2,过G作GH⊥EF于H,求得GH=GF=,根据三角形的面积公式即可得到结论.【解答】解:∵已知正方体ABCD﹣A1B1C1D1的棱长为4cm,E,F,G分别是AB,AA1,AD的中点,∴GF=GE=EF==2,过G作GH⊥EF于H,∴GH=GF=,∴图②中阴影部分的面积=×2×=2cm2.故答案为:2.【点评】本题考查了勾股定理,等边三角形的判定和性质,解直角三角形,正确的理解题意是解题的关键.13.【分析】根据题意得到:6﹣0.5≤0.5x﹣1<6+0.5,据此求得x的取值范围.【解答】解:依题意得:6﹣0.5≤0.5x﹣1<6+0.5解得13≤x<15.故答案是:13≤x<15.【点评】考查了一元一次不等式组的应用,解题的关键是得到关于x的不等式组6﹣0.5≤0.5x﹣1<6+0.5.14.【分析】根据题意得MN=20,∠ANB=63.5°,∠BMN=45°,∠AMN=∠BNM=90°,于是得到BN=MN=20,如图,过A作AE⊥BN于E,得到四边形AMNE是矩形,根据矩形的性质得到AE=MN=20,EN=AM,解直角三角形即可得到结论.【解答】解:由题意得,MN=20,∠ANB=63.5°,∠BMN=45°,∠AMN=∠BNM=90°,∴BN=MN=20,如图,过A作AE⊥BN于E,则四边形AMNE是矩形,∴AE=MN=20,EN=AM,∵AM=MN•tan26.5°=20×0.50=10,∴BE=20﹣10=10,∴AB==10≈22海里.故答案为:22.【点评】此题主要考查了方向角以及锐角三角函数关系,得出NC的长是解题关键.15.【分析】根据切线的性质得出△ABD是直角三角形,DB2=CD•AD,根据勾股定理求得AB,即可求得AE,然后分两种情况求得AP的长即可.【解答】解:∵过B点的切线交AC的延长线于点D,∴AB⊥BD,∴AB===8,当∠AEP=90°时,∵AE=EC,∴EP经过圆心O,∴AP=AO=4;当∠APE=90°时,则EP∥BD,∴=,∵DB2=CD•AD,∴CD===3.6,∴AC=10﹣3.6=6.4,∴AE=3.2,∴=,∴AP=2.56.综上AP的长为4和2.56.故答案为4和2.56.【点评】本题考查了切线的性质,勾股定理的应用,垂径定理的应用,平行线的判定和性质,分类讨论是解题的关键.16.【分析】设A(4,t),利用面积法得到×4×t=4+1,解方程得到A(4,),利用待定系数法求出直线解析式为y=x,再确定B(2,),接着利用待定系数法确定双曲线的解析式为y=,利用反比例函数图象上点的坐标特征求出C(,2),D(3,),然后用一个矩形的面积分别减去三个三角形的面积计算S△OCD.【解答】解:设A(4,t),∵直线y=k1x平分这8个正方形所组成的图形的面积,∴×4×t=4+1,解得t=,∴A(4,),把A(4,)代入直线y=k1x得4k1=,解得k1=,∴直线解析式为y=x,当x=2时,y=x=,则B(2,),∵双曲线y=经过点B,∴k2=2×=,∴双曲线的解析式为y==,当y=2时,=2,解得x=,则C(,2);当x=3时,y==,则D(3,),∴S△OCD=3×2﹣×3×﹣×2×﹣(2﹣)×(3﹣)=.故答案为.【点评】本题考查了比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.三、解答题(本大题共8小题,共72分)17.【分析】利用平方差公式和绝对值的计算法则求得a的值,由二次根式的化简,特殊角的三角函数值已经负整数指数幂求得b的值,代入求值即可.【解答】解:∵a=(﹣1)(+1)+|1﹣|=3﹣1+﹣1=1+,b=﹣2sin45°+()﹣1=2﹣+2=+2.∴b﹣a=+2﹣1﹣=1.∴==1.【点评】考查了实数的运算,平方差公式,属于基础计算题,也是易错题,注意:本题求得是b﹣a的算术平方根,不是(b﹣a)的值.18.【分析】根据分式的减法和除法可以化简题目中的式子,然后从﹣2≤a<2中选出一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(﹣1)÷===,当a=﹣2时,原式==﹣1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.【分析】(1)如图①,利用旋转的性质得到∠DOF=∠COE=α,再根据正方形的性质得到∠AOD=90°,从而得到∠AOF=90°﹣α;(2)如图②,利用正方形的性质得∠AOD=∠COD=90°,OA=OD,再利用△OEF 为等腰直角三角形得到OF=OE,利用(1)的结论得到∠AOF=∠DOE,则可证明△AOF≌△DOE,从而得到AF=DE.【解答】解:(1)如图①,∵△OEF绕点O逆时针旋转α角,∴∠DOF=∠COE=α,∵四边形ABCD为正方形,∴∠AOD=90°,∴∠AOF=90°﹣α;故答案为90°﹣α;(2)AF=DE.理由如下:如图②,∵四边形ABCD为正方形,∴∠AOD=∠COD=90°,OA=OD,∵∠DOF=∠COE=α,∴∠AOF=∠DOE,∵△OEF为等腰直角三角形,∴OF=OE,在△AOF和△DOE中,∴△AOF≌△DOE(SAS),∴AF=DE.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的性质和正方形的性质.20.【分析】(1)抽查了九年级学生数:5÷0.1=50(人),20≤x<30的人数:50×=20(人),即a=20,30≤x<40的人数:50﹣5﹣21﹣20=4(人),b==0.08;(2)该九年级排球垫球测试结果小于10的人数450×(1﹣0.1)=45(人);(3)P(选出的2人为一个男生一个女生的概率)==.【解答】解(1)抽查了九年级学生数:5÷0.1=50(人),20≤x<30的人数:50×=20(人),即a=20,30≤x<40的人数:50﹣5﹣21﹣20=4(人),b==0.08,故答案为20,0.08;(2)该九年级排球垫球测试结果小于10的人数450×(1﹣0.1)=45(人),答:该九年级排球垫球测试结果小于10的人数为45人;(3)列表如下∴P(选出的2人为一个男生一个女生的概率)==.【点评】本题考查了统计图与概率,熟练掌握列表法与树状图求概率是解题的关键.21.【分析】(1)先求出二次函数的顶点坐标,再把求得的顶点坐标代入一次函数解析式求得P,进而求得一次函数与坐标轴的交点坐标,再根据三角形面积公式进行计算得结果;(2)根据函数y=x2+2x+n与x轴两个交点间的距离为4,列出n的方程求得n,再求出二次函数的顶点坐标,再将其顶点坐标代入一次函数解析式中求得m.【解答】解:∵y=x2﹣4,∴其顶点坐标为(0,﹣4),∵y=x2﹣4是y=﹣x+p的伴随函数,∴(0,﹣4)在一次函数y=﹣x+p的图象上,∴﹣4=0+p.∴p=﹣4,∴一次函数为:y=﹣x﹣4,∴一次函数与坐标轴的交点分别为(0,﹣4),(﹣4,0),∴直线y=﹣x+p与两坐标轴围成的三角形的两直角边都为|﹣4|=4,∴直线y=﹣x+p与两坐标轴围成的三角形的面积为:.(2)设函数y=x2+2x+n与x轴两个交点的横坐标分别为x1,x2,则x1+x2=﹣2,x1x2=n,∴,∵函数y=x2+2x+n与x轴两个交点间的距离为4,∴,解得,n=﹣3,∴函数y=x2+2x+n为:y=x2+2x﹣3=(x+1)2﹣4,∴其顶点坐标为(﹣1,﹣4),∵y=x2+2x+n是y=mx﹣3(m≠0)的伴随函数,∴﹣4=﹣m﹣3,∴m=1.【点评】本题是一个新定义阅读题,主要考查了新定义,二次函数的性质,一次函数的性质,求一次函数与坐标轴的交点,求二次函数与x轴的交点,三角形的面积,根与系数的关系,关键是根据新定义,求出二次函数的顶点坐标,代入一次函数中便可得结果.22.【分析】(1)连接OC,证明OC⊥CF即可;(2)①四边形BOCE是菱形,可以先证明四边形BOCE是平行四边形,再结合半径相等得证四边形BOCE是菱形,也可以直接证明四条边相等得到四边形BOCE是菱形;②由三角函数概念得=tan∠ABC=,可求得AC=12,BC=16,由垂径定理可求出BH;利用三角形面积公式求得PE=BH=8,再利用勾股定理或三角函数求得OP,BP,DP,由DE=PE﹣PD求出DE的长.【解答】解:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵PF⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∵FC=FD∴∠FCD=∠FDC∵∠FDC=∠BDP∴∠OCB+∠FCD=90°∴OC⊥FC∴FC是⊙O的切线.(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②若tan∠ABC=,且AB=20,求DE的长.∵=tan∠ABC=,设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=202,解得k=4,∴AC=12,BC=16,∵点E是的中点,∴OE⊥BC,BH=CH=8,∴OE×BH=OB×PE,即10×8=10PE,解得:PE=8,由勾股定理得OP===6,∴BP=OB﹣OP=10﹣6=4,∵=tan∠ABC=,即DP=BP==3∴DE=PE﹣DP=8﹣3=5.【点评】本题主要考查了圆的切线的判定定理、垂径定理的应用、等边三角形的性质、菱形的判定定理、勾股定理、解直角三角形等,解题的关键是熟练掌握性质定理和判定定理.23.【分析】(1)设参加此次研学活动的老师有x人,学生有y人,根据“若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)利用租车总辆数=师生人数÷35结合每辆客车上至少要有2名老师,即可得出租车总辆数为8辆;(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,根据8辆车的座位数不少于师生人数及租车总费用不超过3000元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为正整数即可得出租车方案数,设租车总费用为w元,根据租车总费用=400×租用35座客车的数量+320×租用30座客车的数量,即可得出w 关于m的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设参加此次研学活动的老师有x人,学生有y人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据师生人数,确定租车辆数;(3)根据各数量之间的关系,正确列出一元一次不等式组.24.【分析】(1)由平行四边形OABC的性质求点B坐标,根据抛物线经过点B、C、D用待定系数法求解析式.(2)由OE平分∠AOC易证得∠COE=∠AOE=∠OEC,故有CE=OC,求得点E坐标,进而求得直线OE解析式.求抛物线对称轴为直线x=7,即求得点F坐标.作点E关于x轴的对称点点E',由于点P在x轴上运动,故有PE=PE',所以当点F、P、E'在同一直线上时,PE+PF=PE'+PF=FE'最小.用待定系数法求直线E'F解析式,即求得E'F与x轴交点P的坐标.(3)设AH与OE相交于点G,且G的横坐标为t,即能用t表示OG、AG的长,由AH ⊥OE于点G,根据勾股定理可得AG2+OG2=OA2,把t代入解方程即求得t的值即求得点G坐标.待定系数法求直线AG解析式,令y=3时求x的值即为点H坐标.故可得HE=9﹣5=4,且点H、E关于直线x=7对称.由于以点M,N,H,E为顶点的平行四边形中,H、E固定,以HE为平行四边形的边或对角线进行分类讨论.①以HE为边时,可得MN∥HE,且MN=HE,故可得点M横坐标为3或11,代入抛物线解析式即求得纵坐标.②以HE为对角线时,根据平行四边形对角线互相平分可得点M在抛物线对称轴上,求顶点即可.【解答】解:(1)∵平行四边形OABC中,A(6,0),C(4,3)∴BC=OA=6,BC∥x轴∴x B=x C+6=10,y B=y C=3,即B(10,3)设抛物线y=ax2+bx+c经过点B、C、D(1,0)∴解得:∴抛物线解析式为y=﹣x2+x﹣(2)如图1,作点E关于x轴的对称点E',连接E'F交x轴于点P∵C(4,3)∴OC=∵BC∥OA∴∠OEC=∠AOE∵OE平分∠AOC∴∠AOE=∠COE∴∠OEC=∠COE∴CE=OC=5∴x E=x C+5=9,即E(9,3)∴直线OE解析式为y=x∵直线OE交抛物线对称轴于点F,对称轴为直线:x=﹣7∴F(7,)∵点E与点E'关于x轴对称,点P在x轴上∴E'(9,﹣3),PE=PE'∴当点F、P、E'在同一直线上时,PE+PF=PE'+PF=FE'最小设直线E'F解析式为y=kx+h∴解得:∴直线E'F:y=﹣x+21当﹣x+21=0时,解得:x=∴当PE+PF的值最小时,点P坐标为(,0).(3)存在满足条件的点M,N,使得以点M,N,H,E为顶点的四边形为平行四边形.设AH与OE相交于点G(t,t),如图2∵AH⊥OE于点G,A(6,0)∴∠AGO=90°∴AG2+OG2=OA2∴(6﹣t)2+(t)2+t2+(t)2=62∴解得:t1=0(舍去),t2=∴G(,)设直线AG解析式为y=dx+e∴解得:∴直线AG:y=﹣3x+18当y=3时,﹣3x+18=3,解得:x=5∴H(5,3)∴HE=9﹣5=4,点H、E关于直线x=7对称①当HE为以点M,N,H,E为顶点的平行四边形的边时,如图2则HE∥MN,MN=HE=4∵点N在抛物线对称轴:直线x=7上∴x M=7+4或7﹣4,即x M=11或3当x=3时,y M=﹣×9+×9﹣=∴M(3,)或(11,)②当HE为以点M,N,H,E为顶点的平行四边形的对角线时,如图3则HE、MN互相平分∵直线x=7平分HE,点F在直线x=7上∴点M在直线x=7上,即M为抛物线顶点∴y M=﹣×49+×7﹣=4∴M(7,4)综上所述,点M坐标为(3,)、(11,)或(7,4).【点评】本题考查了平行四边形的性质,二次函数的图象与性质,平行线性质,角平分线定义,等腰三角形性质,轴对称求最短路径,解二元一次方程,勾股定理,解一元二次方程.其中第(2)题由轴对称求最短路径和第(3)题已知平行四边形的两顶点固定、求另两个顶点位置,都是函数与几何综合题里的常考题型.。
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.3的倒数是( )A .3B .3-C .13D .13- 解析:C【解析】根据倒数的定义可知.解:3的倒数是. 主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,△A′B′C′是△ABC 以点O 为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4:9,则OB′:OB 为( )A .2:3B .3:2C .4:5D .4:9解析:A【解析】【分析】 根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴23OBOB'=,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.3.如图,数轴上有M、N、P、Q四个点,其中点P所表示的数为a,则数-3a所对应的点可能是( )A.M B.N C.P D.Q解析:A【解析】解:∵点P所表示的数为a,点P在数轴的右边,∴-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍,∴数-3a所对应的点可能是M,故选A.点睛:本题考查了数轴,解决本题的关键是判断-3a一定在原点的左边,且到原点的距离是点P到原点距离的3倍.4.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b解析:A【解析】【分析】根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选A.【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.5.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A.B.C.D.解析:D【解析】【分析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A,B,C中铁片顺序为1,1,5,6,选项D中铁片顺序为1,5,6,1.故选D.【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键.6.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.16解析:C【解析】根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.【详解】∵一元二次方程x2-2x-5=0的两根是x1、x2,∴x1+x2=2,x1•x2=-5,∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-ba,x1•x2=ca.7.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.CDACB.BCABC.BDBCD.ADAC解析:D【解析】【分析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=BD BC CD BC AB AC==.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.8.下列叙述,错误的是( )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形解析:D【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,故选D.【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.9.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是3和﹣1,则点C所对应的实数是( )A.1+3B.2+3C.23﹣1 D.23+1解析:D【解析】【详解】设点C所对应的实数是x.根据中心对称的性质,对称点到对称中心的距离相等,则有()---,解得x=23+1.x3=31故选D.10.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.抛一枚硬币,出现正面的概率C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D.任意写一个整数,它能被2整除的概率解析:C【解析】。
2019年湖北省荆州市江陵县中考数学一模试卷一.选择题(共10小题,满分30分,每小题3分)1.在,﹣1,0,,这四个数中,最小的实数是()A.B.﹣1C.0D.2.世界文化遗产长城总长约为670万m,若将670万m用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5B.6C.7D.83.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.85.下列二次根式中是最简二次根式的是()A.B.C.D.6.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.37.如图,小明将一个正方形纸剪出一个宽为4cm的长条后,再从剩下的长方形纸片上剪去一个宽为5cm的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为()A.16cm2B.20cm2C.80cm2D.160cm28.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.0.5B.1C.1.5D.29.如图是某几何体的三视图,则该几何体的全面积等于()A.112B.136C.124D.8410.如图,反比例函数y1=与二次函数y1=ax2+bx+c图象相交于A、B、C三个点,则函数y=ax2+bx﹣+c的图象与x轴交点的个数是()A.0B.1C.2D.3二.填空题(共8小题,满分24分,每小题3分)11.计算:()﹣2+(π﹣3)0﹣=.12.将一组数,2,,2,,…,4按下面的方式进行排列:,2,,2,;2,,4,3,2;,2,,2,;…若2的位置记为(1,4),的位置记为(3,3),则这组数中最大的有理数的位置记为.13.关于x的分式方程+=1的解为非正数,则k的取值范围是.14.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有个三角形(用含字母n的代数式表示).15.将一次函数y=x﹣1的图象向下平移3个单位得到的函数关系式为.16.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.17.如图.六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形对角线,请在大长方形中完成下列画图,要求:(1)仅用无刻度直尺;(2)保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;(2)在图(2)中画出线段AB的垂直平分线,并简要说明画图的方法(不要求证明).18.如图,在Rt△AOB中,直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后,得到△A′O′B,且反比例函数y=的图象恰好经过斜边A′B的中点C,若S ABO=4,tan∠BAO=2,则k=.三.解答题(共7小题,满分66分)19.如果实数x、y满足方程组,求代数式(+2)÷.20.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.21.抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.22.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C 的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)23.已知关于x的一元二次方程ax2+x+2=0(1)求证:当a<0时,方程ax2+x+2=0一定有两个不等的实数根;(2)若代数式﹣x2+x+2的值为正整数,且x为整数时,求x的值;(3)当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0);当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0);若点M在点N的左边,试比较a1与a2的大小.24.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.25.已知,如图在平面直角坐标系中,过点A(0,2)的直线与⊙O相切于点C,与x轴交于点B 且半径为.(1)求∠BAO的度数.(2)求直线AB的解析式.2019年湖北省荆州市江陵县中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【解答】解:四个数大小关系为:﹣1<0<<,则最小的实数为﹣1,故选:B.【点评】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.2.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:∵670万=6.7×106,∴n的值为6.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等,两直线平行,内错角相等.4.【分析】根据众数、平均数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选:C.【点评】本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.5.【分析】根据最简二次根式的定义选择即可.【解答】解:A、是最简二次公式,故本选项正确;B、=3不是最简二次根式,故本选项错误;C、=3不是最简二次根式,故本选项错误;D、=2不是最简二次根式,故本选项错误;故选:A.【点评】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.6.【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.7.【分析】首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少.【解答】解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x﹣4cm,宽是5cm,则4x=5(x﹣4),去括号,可得:4x=5x﹣20,移项,可得:5x﹣4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选:C.【点评】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.8.【分析】在直角三角形ABC中,根据勾股定理,得:AC=2米,由于梯子的长度不变,在直角三角形CDE中,根据勾股定理,得CE=1.5米,所以AE=0.5米,即梯子的顶端下滑了0.5米.【解答】解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC===1.5米,故AE=AC﹣CE=2﹣1.5=0.5米.故选:A.【点评】此题中主要注意梯子的长度不变,分别运用勾股定理求得AC和CE的长,即可计算下滑的长度.9.【分析】由三视图可知该几何体是一个三棱柱,先根据勾股定理得到主视图三角形等边的长,再根据三棱柱的全面积=2个底面积+3个侧面积,列式计算即可求解.【解答】解:如图:由勾股定理=3,3×2=6,6×4÷2×2+5×7×2+6×7=24+70+42=136.故选:B.【点评】考查了由三视图判断几何体,由三视图求几何体的表面积,关键是由三视图得到数据的对应量.10.【分析】当y1=y2时,得到方程ax2+bx﹣+c=0,方程的解即反比例函数y1=与二次函数y1=ax2+bx+c图象交点的横坐标,于是得到函数y=ax2+bx﹣+c的图象与x轴交点即是ax2+bx﹣+c=0的解,即可得到结论.【解答】解:当y1=y2时,得=ax2+bx+c,即ax2+bx﹣+c=0,∵方程的解即反比例函数y1=与二次函数y1=ax2+bx+c图象交点的横坐标,∵反比例函数y1=与二次函数y1=ax2+bx+c图象相交于A、B、C三个点,∴函数y=ax2+bx﹣+c的图象与x轴交点即是ax2+bx﹣+c=0的解,∴函数y=ax2+bx﹣+c的图象与x轴交点的个数是3个,故选:D.【点评】本题考查了反比例函数图形上点的坐标特征,函数图形与方程的关系,正确的理解题意是解题的关键.二.填空题(共8小题,满分24分,每小题3分)11.【分析】原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=4+1﹣3=2,故答案为:2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.12.【分析】根据规律发现,被开方数是从2开始的偶数列,最后一个数的被开方数是80,所以最大的有理数是被开方数是64的数,然后求出在这列数的序号,又5个数一组,求出是第几组第几个数,即可确定它的位置.【解答】解:∵4=,∴这列数中最大的数是=8,观察发现数字的规律为,设64是这列数中的第n个数,则2n=64,解得n=32,观察发现,每5个数一行,即5个数一循环,∴32÷5=6…2,∴是第7行的第2个数.最大的有理数n的位置记为(7,2).故答案为:(7,2).【点评】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力,本题的关键是求出最大的有理数的序号,并5个数作为一个循环组.13.【分析】分式方程去分母转化为整式方程,由分式方程的解为非正数,确定出k的范围即可.【解答】解:去分母得:x+k+2x=x+1,解得:x=,由分式方程的解为非正数,得到≤0,且≠﹣1,解得:k≥1且k≠3,故答案为:k≥1且k≠3【点评】此题考查了分式方程的解,始终注意分母不为0的条件.14.【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3﹣3.按照这个规律即可求出第n 各图形中有多少三角形.【解答】解:分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1﹣3;图②中三角形的个数为5=4×2﹣3;图③中三角形的个数为9=4×3﹣3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n﹣3.故答案为4n﹣3.【点评】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.15.【分析】根据“上加下减”的平移规律解答即可.【解答】解:将一次函数y=x﹣1的图象向下平移3个单位后,得到的图象对应的函数关系式为y=x﹣1﹣3,即y=x﹣4.故答案为:y=x﹣4【点评】此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.解析式变化的规律是:左加右减,上加下减.16.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.【点评】此题主要考查了圆内接四边形的性质,关键是熟练掌握圆内接四边形的性质定理.17.【分析】(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.【解答】解:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,故答案为:点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN 就是所求的线段AB的垂直平分线.【点评】本题考查作图﹣应用设计、正方形、长方形、等腰直角三角形的性质,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.18.【分析】先根据S=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中△ABO点,求出点C的坐标,点C的横纵坐标之积即为k值.【解答】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S=•AO•BO=4,△ABO∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.故答案为6.【点评】本题考查了反比例函数图象上点的坐标特征,解答本题的关键在于读懂题意,作出合适的辅助线,求出点C的坐标,然后根据点C的横纵坐标之积等于k值求解即可.三.解答题(共7小题,满分66分)19.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【解答】解:原式=•(x+y)+2•(x+y)=xy+2x+2y,方程组,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.【点评】此题考查了分式的化简求值,解二元一次方程组,掌握分式的化简方法与解方程组的方法是解决问题的关键.20.【分析】(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长【解答】(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.【点评】此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.21.【分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.【分析】在图中共有三个直角三角形,即Rt△AOC、Rt△PCF、Rt△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间的关系,列方程求解即可解决.【解答】解:作PE⊥OB于点E,过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),过点P作PB⊥OA,垂足为B.由i=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【点评】本题考查的知识点是解直角三角形的应用,关键要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.23.【分析】(1)求出b2﹣4ac的值,根据正负即可判断;(2)求出原式=﹣(x2﹣x﹣2)的范围确定其整数,得出1,2,算出﹣x2+x+2=1和﹣x2+x+2=2的解即可;(3)把a=a1,a=a1代入求出其值,求出a1﹣a2的值即可.【解答】解:(1)△=1﹣8a∵a<0,∴﹣8a>0即:△>0∴方程ax2+x+2=0一定有两个不等的实数根.(2):原式=﹣(x2﹣x﹣2),=﹣+∵不论x为何值,﹣(x﹣)2≤0,∴原式=﹣(x﹣)2+≤,∵代数式﹣x2+x+2的值为正整数,∴代数式﹣x2+x+2的值为1,2,当﹣x2+x+2=1时,这时x的值不是整数,不符合题意,舍去;当﹣x2+x+2=2时,x=0或1,答:x的值是0或1.(3)解:∵当a=a1时,抛物线y=ax2+x+2与x轴的正半轴相交于点M(m,0),∴0=a1m2+m+2①,∵当a=a2时,抛物线y=ax2+x+2与x轴的正半轴相交于点N(n,0),∴0=a2n2+n+2②,∴,,∴=,∵点M在点N的左边,且M、N均在x轴正半轴,∴m>0,n>0,m<n,∴mn+2m+2n>0,m﹣n<0,m2n2>0,∴a1﹣a2=,∴a1<a2.【点评】本题主要考查对抛物线与X轴的交点,解一元二次方程,根的判别式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.24.【分析】首先利用函数对称轴以及图象上点的坐标,进而求出解析式,进而得出答案.【解答】解:由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:,解得:,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飞行的最高高度为:米.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式是解题的关键.25.【分析】(1)连接OC,由切线的性质可知OC⊥AB且OC=,在Rt△AOC中,可求得sin ∠BAO,则可求得∠BAO的度数;(2)在Rt△AOB中,利用直角三角形的性质可求得BO的长,则可求得B点坐标,利用待定系数法可求得直线AB的解析式.【解答】解:(1)连接OC,如图,∵AB与⊙O相切,∴OC⊥AB且OC=,∵A(0,2),∴OA=2,在Rt△AOC中,sin∠BAO==,∴∠BAO=60°;(2)∵∠BAO=60°,∴∠OBC=30°,∴OB=2OC=2,∴B(﹣2,0),设直线AB解析式为y=kx+b,∴,解得,∴直线AB解析式为y=x+2.【点评】本题为一次函数的综合应用,涉及直线和圆的位置关系、切线的性质、解直角三角形、直角三角形的性质、待定系数法等知识.在(1)中注意利用三角函数定义,在(2)中求得B点坐标是解题的关键.本题考查知识点较多,但难度不大.。
2019中考数学模拟试卷一、选择题1. 下列说法中,正确的是( )A. 0是正整数B. 1是素数C. √22是分数 D. 227是有理数2. 关于x 的方程x 2−mx −2=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定3. 将直线y =2x 向下平移2个单位,平移后的新直线一定不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列说法正确的是( )A. 一组数据的中位数一定等于该组数据中的某个数据B. 一组数据的平均数和中位数一定不相等C. 一组数据的众数可以有几个D. 一组数据的方差一定大于这组数据的标准差5. 对角线互相平分且相等的四边形一定是( )A. 等腰梯形B. 矩形C. 菱形D. 正方形6. 已知圆O 1的半径长为6cm ,圆O 2的半径长为4cm ,圆心距O 1O 2=3cm ,那么圆O 1与圆O 2的位置关系是( )A. 外离B. 外切C. 相交D. 内切二、填空题 7. √4=______.8. 一种细菌的半径是0.00000419米,用科学记数法把它表示为______米. 9. 因式分解:x 2−4x =______. 10. 不等式组{3x +6>0x−1≤0的解集为______.11. 在一个不透明的布袋中装有2个白球、8个红球和5个黄球,这些球除了颜色不同之外,其余均相同.如果从中随机摸出一个球,摸到黄球的概率是______. 12. 方程√x +3=2的解是x =______.13. 近视眼镜的度数y(度)与镜片焦距x(米)呈反比例,其函数关系式为y =120x.如果近似眼镜镜片的焦距x =0.3米,那么近视眼镜的度数y 为______.14. 数据1、2、3、3、6的方差是______.15. 在△ABC 中,点D 是边BC 的中点,AB ⃗⃗⃗⃗⃗ =a ⃗ ,AC⃗⃗⃗⃗⃗ =b ⃗ ,那么AD ⃗⃗⃗⃗⃗⃗ =______(用a ⃗ 、b ⃗ 表示).16. 如图,在矩形ABCD 中,点E 在边CD 上,点F 在对角线BD 上,DF :DE =2:√5,EF ⊥BD ,那么tan∠ADB =______.17. 如图,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为______度.18. 如图,在△ABC 中,AB =AC =5,BC =6,点D 在边AB 上,且∠BDC =90∘.如果△ACD 绕点A 顺时针旋转,使点C 与点B 重合,点D 旋转至点D 1,那么线段DD 1的长为______.三、解答题19. 先化简,再求值:2xx 2−4+x+1x+2−32−x ,其中x =2+√3.20. 解方程组:{4x 2−4xy +y 2=1x+2y=321.如图,在梯形ABCD中,AD//BC,∠BAD=90∘,AC=AD.(1)如果∠BAC−∠BCA=10∘,求∠D的度数;(2)若AC=10,cot∠D=1,求梯形ABCD的面积.322.有一座抛物线拱型桥,在正常水位时,水面BC的宽为10米,拱桥的最高点D到水面BC的距离DO为4米,点O是BC的中点,如图,以点O为原点,直线BC 为x,建立直角坐标xOy.(1)求该抛物线的表达式;(2)如果水面BC上升3米(即OA=3)至水面EF,点E在点F的左侧,求水面宽度EF的长.23.如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90∘,联结MN、AC,N与边AD交于点E.(1)求证;AM=AN;(2)如果∠CAD=2∠NAD,求证:AM2=AC⋅AE.24.已知平面直角坐标系xOy(如图),直线y=x+m的经过点A(−4,0)和点B(n,3).(1)求m、n的值;(2)如果抛物线y=x2+bx+c经过点A、B,该抛物线的顶点为点P,求sin∠ABP的值;(3)设点Q在直线y=x+m上,且在第一象限内,直线y=x+m与y轴的交点为点D,如果∠AQO=∠DOB,求点Q的坐标.25.在圆O中,AO、BO是圆O的半径,点C在劣弧AB⌢上,OA=10,AC=12,AC//OB,联结AB.(1)如图1,求证:AB平分∠OAC;(2)点M在弦AC的延长线上,联结BM,如果△AMB是直角三角形,请你在如图2中画出点M的位置并求CM的长;(3)如图3,点D在弦AC上,与点A不重合,联结OD与弦AB交于点E,设点D与点C的距离为x,△OEB的面积为y,求y与x的函数关系式,并写出自变量x 的取值范围.答案和解析【答案】 1. D 2. A 3. B 4. C 5. B 6. C7. 28. 4.19×10−6 9. x(x −4) 10. −2<x ≤1 11. 13 12. 1 13. 400 14. 2.815. 12(a⃗ +b ⃗ ) 16. 2 17. 120 18. 422519. 解:原式=2x(x+2)(x−2)+(x+1)(x−2)(x+2)(x−2)+3(x+2)(x+2)(x−2)=2x +x 2−x −2+3x +6(x +2)(x −2) =x 2+4x +4(x +2)(x −2) =(x +2)2(x +2)(x −2)=x+2x−2,当x =2+√3时, 原式=√3+22+√3−2=4+√3√3=4√3+33. 20. 解:{4x 2−4xy +y 2=1 ②x+2y=3 ①由②得(2x −y)2=1,所以2x −y =1③,2x −y =−1④ 由①③、①④联立,得方程组: {2x −y =1x+2y=3,{2x −y =−1x+2y=3解方程组{2x −y =1x+2y=3得,{y =1x=1解方程组{2x −y =−1x+2y=3得,{x =15y =75.所以原方程组的解为:{y 1=1x 1=1,{x 2=15y 2=7521. 解:(1)在△ABC 中,∠B =90∘,则∠BAC +∠BCA =90∘, 又∠BAC −∠BCA =10∘, ∴∠BCA =40∘, ∵AD//BC ,∴∠CAD =∠BCA =40∘, 又∵AC =AD ,∴∠D =∠ACD =12×(180∘−40∘)=70∘;(2)作CH ⊥AD ,垂足为H ,在Rt △CDH 中,cot∠D =13,令DH =x ,CH =3x , 则在Rt △ACH 中,AC 2=AH 2+CH 2, 即102=(10−x)2+(3x)2, 解得:x =2则CH =3x =6,BC =AH =10−x =8,∴梯形ABCD 的面积=12(BC +AD)×CH =12×(10+8)×6=54,22. 解:(1)设抛物线解析式为:y =ax 2+c ,由题意可得图象经过(5,0),(0,4), 则{25a +4=0c=4, 解得:a =−425,故抛物线解析为:y =−425x 2+4;(2)由题意可得:y =3时,3=−425x 2+4 解得:x =±52, 故EF =5,答:水面宽度EF 的长为5m .23. 证明:(1)∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =90∘,又∠MAN =90∘, ∴∠BAM =∠DAN , 在△BAM 和△DAN 中, {∠B =∠ADN =90∘AB =AD ∠BAM =∠DAN , ∴△BAM≌△DAN ,∴AM =AN ;(2)四边形ABCD 是正方形, ∴∠CAD =45∘,∵∠CAD =2∠NAD ,∠BAM =∠DAN , ∴∠MAC =45∘,∴∠MAC =∠EAN ,又∠ACM =∠ANE =45∘, ∴△AMC∽△AEN , ∴AM AE=AC AN,∴AN ⋅AM =AC ⋅AE ,∴AM 2=AC ⋅AE .24. 解:(1)把A(−4,0)代入直线y =x +m 中得:−4+m =0, m =4,∴y =x +4,把B(n,3)代入y =x +4中得:n +4=3,n =−1,(2)把A(−4,0)和点B(−1,3)代入y =x 2+bx +c 中得:{1−b +c =316−4b+c=0,解得:{c =8b=6, ∴y =x 2+6x +8=(x +3)2−1, ∴P(−3,−1),易得直线PB 的解析式为:y =2x +5, 当y =0时,x =−52, ∴G(−52,0),过B 作BM ⊥x 轴于M ,过G 作GH ⊥AB 于H , 由勾股定理得:BG =√BQ 2+GQ 2=√32+(52−1)2=3√52, S △ABG =12AG ⋅BM =12AB ⋅GH ,12×(4−52)×3=12×3√2GH ,∴GH =3√24, Rt △GHB 中,sin∠ABP =GH BG=3√243√52=√1010; (3)设Q(x,x +4),∵∠BOD =∠AQO ,∠OBD =∠QBO , ∴△BDO∽△BOQ , ∴BDBO =BOBQ , ∴BO 2=BD ⋅BQ ,∴12+32=√12+12⋅√(x +1)2+(x +4−3)2, 10=√2⋅√2(x +1),x=4,∴Q(4,8).25. 解:(1)∵OA、OB是⊙O的半径,∴AO=BO,∴∠OAB=∠B,∵OB//AC,∴∠B=∠CAB,∴∠OAB=∠CAB,∴AB平分∠OAC;(2)由题意知,∠BAM不是直角,所以△AMB是直角三角形只有以下两种情况:∠AMB=90∘和∠ABM=90∘,①当∠AMB=90∘,点M的位置如图1,过点O作OH⊥AC,垂足为点H,∵OH经过圆心,AC=12,∴AH=HC=1AC=6,2在Rt△AHO中,∵OA=10,∴OH=√OA2−AH2=8,∵AC//OB,∠AMB=90∘,∴∠OBM=180∘−∠AMB=90∘,∴∠OHC=∠AMB=∠OBM=90∘,∴四边形OBMH是矩形,∴BM=OH=8、OB=HM=10,∴CM=HM−HC=4;②当∠ABM=90∘,点M的位置如图2,由①可知,AB=√AM2+BM2=8√5、cos∠CAB=AMAB =168√5=2√55,在Rt△ABM中,cos∠CAB=ABAM =2√55,∴AM=20,则CM=AM−AC=8,综上所述,CM的长为4或8;(3)如图3,过点O作OG⊥AB于点G,由(1)知sin∠OAG=sin∠CAB,由(2)可得sin∠CAB=√55,∵OA=10,∴OG=2√5,∵AC//OB,∴BEAE =OBAD,又AE=8√5−BE、AD=12−x、OB=10,∴BE8√5−BE =1012−x,∴BE=80√522−x,∴y=12×BE×OG=12×80√522−x×2√5=40022−x(0≤x<12).【解析】1. 解:A.0不是正整数,故本选项错误;B.1是正整数,故本选项错误;C.√22是无理数,故本选项错误;D.227是有理数,正确;故选:D.根据实数的分类,即可解答.本题考查了实数,解决本题的关键是掌握实数的分类.2. 解:△=(−m)2−4×1×(−2)=m2+8,∵m2≥0,∴m2+8>0,即△>0,∴方程有两个不相等的实数根.故选:A.先计算△=(−m)2−4×1×(−2)=m2+8,由于m2为非负数,则m2+8>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac的意义即可判断方程根的情况.此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.3. 解:k>0,b=0函数图象过第一,三象限,将直线y=2x向下平移2个单位,所得直线的k=2>0,b<0,函数图象过第一,三、四象限;故选:B.上下平移时只需让b的值加减即可.本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后k不变这一性质.b值的变化为上加下减.4. 解:A、一组数据的中位数不一定等于该组数据中的某个数据,故本选项错误;B、一组数据的平均数和众数不一定相等,故本选项错误;C、一组数据的众数可以有几个,这种说法是正确的,故本选项正确.D、一组数据的方差不一定大于这组数据的标准差,故本选项错误;故选:C.根据中位数、众数、平均数和方差的概念对各选项进行判断,选出正确答案即可.本题考查了中位数、众数、平均数和方差等知识点,属于基础题,解答本题的关键是熟练掌握各知识点的概念.5. 解:对角线互相平分切相等的四边形一定是矩形,故选:B.根据矩形的判定解答即可.此题考查矩形的判定,关键是根据对角线互相平分切相等的四边形一定是矩形解答.6. 解:因为6−4=2,6+4=10,圆心距为3cm,所以,2<d<8,根据两圆相交,圆心距的长度在两圆的半径的差与和之间,所以两圆相交.故选:C.求出两圆半径的和与差,再与圆心距比较大小,确定两圆位置关系.根据两圆的位置关系得到其数量关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R−r<d<R+r;内切,则d=R−r;内含,则d<R−r.考查了圆与圆的位置关系,本题利用了两圆相交,圆心距的长度在两圆的半径的差与和之间求解.7. 解:∵22=4,∴√4=2.故答案为:2如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.此题主要考查了学生开平方的运算能力,比较简单.8. 解:0.00000419=4.19×10−6,故答案为:4.19×10−6.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9. 解:x2−4x=x(x−4).故答案为:x(x−4).直接提取公因式x,进而分解因式得出即可.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10. 解:解不等式x−1≤0,得:x≤1,解不等式3x+6>0,得:x>−2,∴不等式组的解集为:−2<x≤1,故答案为:−2<x≤1.分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11. 解:∵布袋中共有15个球,其中黄球有5个,∴从中随机摸出一个球,摸到黄球的概率是515=13,故答案为:13.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12. 解:两边平方得,x+3=4,移项得:x=1.当x=1时,x+3>0.故本题答案为:x=1.把方程两边平方去根号后求解.在解无理方程是最常用的方法是两边平方法及换元法,本题用了平方法.13. 解:把x=0.3代入120x,y=400,故答案为:400.把x=0.3代入y=120x,即可算出y的值.此题主要考查了反比例函数的定义,本题实际上是已知自变量的值求函数值的问题,比较简单.14. 解:这组数据的平均数是:(1+2+3+3+6)÷5=3,则方差S2=15[(1−3)2+(2−3)2+(3−3)2+(3−3)2+(6−3)2]=2.8;故答案为:2.8.根据平均数的计算公式先求出这组数据的平均数,再根据方差公式进行计算即可.本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15. 解:延长AD 到E ,使得DE =AD ,连接BE .∵AD =DE ,∠ADC =∠BDE ,CD =DB ,∴△ADC≌△EDB ,∴AC =BE ,∠C =∠EBD ,∴BE//AC ,∴BE⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ =b ⃗ , ∴AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =a ⃗ +b ⃗ ,∴AD ⃗⃗⃗⃗⃗⃗ =12(a ⃗ +b ⃗ ), 故答案为AD ⃗⃗⃗⃗⃗⃗ =12(a ⃗ +b ⃗ ). 延长AD 到E ,使得DE =AD ,连接BE.首先证明AC =BE ,AC//BE ,利用三角形法则求出AE⃗⃗⃗⃗⃗ 即可解决问题; 本题考查平面向量、全等三角形的判定和性质、平行线的判定、三角形法则等知识,解题的关键是学会倍长中线,构造全等三角形解决问题,属于中考常考题型. 16. 解:∵EF ⊥BD ,∴∠DFE =90∘,设DF =2x ,DE =√5x ,由勾股定理得:EF =x ,∵四边形ABCD 是矩形,∴∠ADC =90∘,∴∠ADB +∠CDB =90∘,∠CDB +∠DEF =90∘,∴∠ADB =∠DEF ,∴tan∠ADB =tan∠DEF =DF EF =2xx =2,故答案为:2.根据矩形的性质求出∠ADC =90∘,根据垂直得出∠DFE =90∘,设DF =2x ,DE =√5x ,由勾股定理得出EF =x ,求出∠ADB =∠DEF ,解直角三角形求出即可.本题考查了解直角三角形、矩形的性质和勾股定理,能求出∠ADB =∠DEF 是解此题的关键.17. 解:∵弦AC 与半径OB 互相平分,∴OA =AB ,∵OA =OC ,∴△OAB 是等边三角形,∴∠AOB =60∘,∴∠AOC =120∘,故答案为120.首先根据垂径定理得到OA =AB ,结合等边三角形的性质即可求出∠AOC 的度数. 本题主要考查了垂径定理的知识,解题的关键是证明△OAB 是等边三角形,此题难度不大.18. 解:如图,作AE ⊥BC 于E .∵AB =AC =5,BC =6,∴BE=EC=12BC=3,∴AE=√AB2−BE2=4.∵S△ABC=12AB⋅CD=12BC⋅AE,∴CD=BC⋅AEAB =6×45=245,∴AD=√AC2−CD2=75.∵△ACD绕点A顺时针旋转,使点C与点B重合,点D旋转至点D1,∴AD=AD1,∠CAD=∠BAD1,∵AB=AC,∴△ABC∽△ADD1,∴BCDD1=ABAD,∴6DD1=575,∴DD1=4225.故答案为4225.作AE⊥BC于E.根据等腰三角形三线合一的性质得出BE=EC=12BC=3,利用勾股定理求出AE=4.根据三角形的面积得出CD=BC⋅AEAB =245,那么AD=√AC2−CD2=75.再根据旋转的性质可知AD=AD1,∠CAD=∠BAD1,那么△ABC∽△ADD1,利用相似三角形的性质可求出DD1.本题考查了旋转的性质、等腰三角形的性质、相似三角形的判定和性质,解题的关键是证明△ABC∽△ADD1.19. 先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20. 把方程组中的第二个方程变形为两个一元一次方程,与组中的第一个方程构成新方程组,求解即可.本题考查了二元二次方程组的解法,解决本题亦可变形方程组中的①式,代入②式得一元二次方程求解.21. (1)在△ABC中,∠B=90∘,∠BAC−∠BCA=10∘,可求∠BCA,由AD//BC得∠CAD=∠BCA,由AC=AD可求∠D;(2)作CH⊥AD,垂足为H,在Rt△CDH中,cot∠D=13,令DH=x,CH=3x,AC=10,AH=10−x,利用勾股定理求x,可得CH=3x=6,BC=AH=10−x=8,用梯形面积公式计算.本题考查了梯形中角的计算、面积的计算问题,体现了梯形问题转化为三角形问题解决的思想.22. (1)直接假设出二次函数解析式进而得出答案;(2)根据题意得出y=3进而求出x的值,即可得出答案.此题主要考查了二次函数的应用,正确得出函数解析式是解题关键.23. (1)根据正方形的性质、全等三角形的判定定理证明△BAM≌△DAN,根据全等三角形的性质证明;(2)证明△AMC∽△AEN,根据相似三角形的性质证明.本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.24. (1)分别将A、B两点的坐标代入直线y=x+m中可得:m、n的值;(2)先利用待定系数法求二次函数的解析式,并配方成顶点式,求点P的坐标,作辅助线构建直角△GHB,根据三角函数的定义可得结论;(3)设Q(x,x+4),证明△BDO∽△BOQ,列比例式BDBO =BOBQ,可得方程,解方程可得结论.本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,勾股定理的应用,三角函数的应用,三角形相似的判定和性质,数形结合思想和方程思想的运用是解题的关键.25. (1)由AO=BO知∠OAB=∠B,根据OB//AC知∠B=∠CAB,据此可得∠OAB=∠CAB,即可得证;(2)①∠AMB=90∘时,作OH⊥AC可得AH=HC=12AC=6,由勾股定理求得OH= BM=8,根据矩形OBMH知HM=OB=10,由CM=HM−HC可得答案;②∠ABM=90∘时,由①可知AB=8√5、cos∠CAB=AMAB =2√55,在Rt△ABM中根据cos∠CAB=ABAM=2√55可得AM=20,继而得出答案;(3)作OG⊥AB,由(1)知sin∠OAG=sin∠CAB,从而sin∠CAB=√55,结合OA=10求得OG=2√5,根据AC//OB知BEAE =OBAD,即8√5−BE=1012−x,据此求得BE=80√522−x,利用y=12×BE×OG可得答案.本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、平行线的性质、矩形的判定与性质及解直角三角形的能力.。