山东省藁城市第一中学2017-2018学年高一上学期第三次月考数学试题
- 格式:doc
- 大小:603.29 KB
- 文档页数:4
藁城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 在复平面内,复数Z=+i 2015对应的点位于()A .第四象限B .第三象限C .第二象限D .第一象限2. 已知函数,且,则( )x x x f 2sin )(-=)2(31(log ),23(ln 3.02f c f b f a ===A .B .C .D .c a b >>a c b >>a b c >>b a c>>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力.3. 设k=1,2,3,4,5,则(x+2)5的展开式中x k 的系数不可能是( )A .10B .40C .50D .804. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为()A .1B .2C .3D .45. 《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A .钱B .钱C .钱D .钱6. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .567. 设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)8. 函数,的值域为( )2-21y x x =-[0,3]x ∈ A. B. C. D.9. 自主招生联盟成行于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.在调查某高中学校高三学生自主招生报考的情况,得到如下结果: ①报考“北约”联盟的学生,都没报考“华约”联盟②报考“华约”联盟的学生,也报考了“京派”联盟③报考“卓越”联盟的学生,都没报考“京派”联盟④不报考“卓越”联盟的学生,就报考“华约”联盟根据上述调查结果,下列结论错误的是( )A .没有同时报考“华约” 和“卓越”联盟的学生B .报考“华约”和“京派”联盟的考生一样多C .报考“北约” 联盟的考生也报考了“卓越”联盟班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________D .报考“京派” 联盟的考生也报考了“北约”联盟10.在△ABC 中,若a=2bcosC ,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形11.下列说法正确的是()A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.12.已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )A .为直角三角形B .为锐角三角形C .为钝角三角形D .前三种形状都有可能二、填空题13.以抛物线y 2=20x 的焦点为圆心,且与双曲线:的两条渐近线都相切的圆的方程为 . 14.的展开式中,常数项为___________.(用数字作答)81()x x【命题意图】本题考查用二项式定理求指定项,基础题.15.已知f (x )=,则f[f (0)]= .16.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 . 17.已知等差数列{a n }中,a 3=,则cos (a 1+a 2+a 6)= .18.已知函数f (x )=,g (x )=lnx ,则函数y=f (x )﹣g (x )的零点个数为 .三、解答题19.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在岁间,旅游途中导游发现该[10,60]旅游散团人人都会使用微信,所有团员的年龄结构按分成5组,分[10,20),[20,30),[30,40),[40,50),[50,60]别记为,其频率分布直方图如下图所示.,,,,A B C D E(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;(Ⅱ)该团导游首先在三组中用分层抽样的方法抽取了名团员负责全团协调,然后从这6名团员中,,C D E 6随机选出2名团员为主要协调负责人,求选出的2名团员均来自组的概率.C 20.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设是等比数列,且,求数列的前n 项和.(){}1nn n b a --257,71b b =={}n b n T 【命题意图】本题考查等差数列与等比数列的通项与前项和、数列求和等基础知识,意在考查逻辑思维能力、n 运算求解能力、代数变形能力,以及分类讨论思想、方程思想、分组求和法的应用.21.已知双曲线C :与点P (1,2).(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.22.(1)计算:(﹣)0+lne﹣+8+log62+log63;(2)已知向量=(sinθ,cosθ),=(﹣2,1),满足∥,其中θ∈(,π),求cosθ的值.23.直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AE⊥A1B1,D为棱A1B1上的点.(1)证明:DF⊥AE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由.24.已知函数f(x)=lnx﹣a(1﹣),a∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)若f(x)的最小值为0.(i)求实数a的值;(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.藁城区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】A【解析】解:复数Z=+i2015=﹣i=﹣i=﹣.复数对应点的坐标(),在第四象限.故选:A.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.2.【答案】D3.【答案】C【解析】二项式定理.【专题】计算题.【分析】利用二项展开式的通项公式求出展开式的x k的系数,将k的值代入求出各种情况的系数.【解答】解:(x+2)5的展开式中x k的系数为C5k25﹣k当k﹣1时,C5k25﹣k=C5124=80,当k=2时,C5k25﹣k=C5223=80,当k=3时,C5k25﹣k=C5322=40,当k=4时,C5k25﹣k=C54×2=10,当k=5时,C5k25﹣k=C55=1,故展开式中x k的系数不可能是50故选项为C【点评】本题考查利用二项展开式的通项公式求特定项的系数.4.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.5.【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a ﹣2d+a ﹣d=a+a+d+a+2d ,即a=﹣6d ,又a ﹣2d+a ﹣d+a+a+d+a+2d=5a=5,∴a=1,则a ﹣2d=a ﹣2×=.故选:B . 6. 【答案】C【解析】解:∵函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.∴函数f (x )关于直线x=1对称,∵数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),∴a 6+a 23=2.则{a n }的前28项之和S 28==14(a 6+a 23)=28.故选:C .【点评】本题考查了等差数列的通项公式性质及其前n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题. 7. 【答案】A【解析】解:∵f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,故函数y=h (x )=f (x )﹣g (x )=x 2﹣5x+4﹣m 在[0,3]上有两个不同的零点,故有,即,解得﹣<m ≤﹣2,故选A .【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题. 8. 【答案】A 【解析】试题分析:函数在区间上递减,在区间上递增,所以当x=1时,()222112y x x x =--=--[]0,1[]1,3,当x=3时,,所以值域为。
藁城区第一中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.2. 已知集合{}2|10A x x =-=,则下列式子表示正确的有( )①1A ∈;②{}1A -∈;③A ∅⊆;④{}1,1A -⊆.A .1个B .2个C .3个D .4个 3. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 4. 下列四组函数中表示同一函数的是( )A .()f x x =,2()g x =B .2()f x x =,2()(1)g x x =+C .()f x =()||g x x =D .()0f x =,()g x =1111]5. 由直线与曲线所围成的封闭图形的面积为( )A B1C D6. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]7. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 8. 若()f x 是定义在(),-∞+∞上的偶函数,[)()1212,0,x x x x ∀∈+∞≠,有()()21210f x f x x x -<-,则( )A .()()()213f f f -<<B .()()()123f f f <-<C .()()()312f f f <<D .()()()321f f f <-<9. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >810.如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .11.若复数满足71i i z+=(为虚数单位),则复数的虚部为( ) A .1 B .1- C . D .i -12.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C ,其左、右焦点分别是F 1,F 2,已知点M 坐标为(2,1),双曲线C 上点P (x 0,y 0)(x 0>0,y 0>0)满足=,则﹣S( ) A .2 B .4C .1D .﹣1二、填空题13.执行如图所示的程序框图,输出的所有值之和是 .【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.14.设m是实数,若x∈R时,不等式|x﹣m|﹣|x﹣1|≤1恒成立,则m的取值范围是.15.直线l:(t为参数)与圆C:(θ为参数)相交所得的弦长的取值范围是.16.已知1a b>>,若10log log3a bb a+=,b aa b=,则a b+= ▲.三、解答题17.解关于x的不等式12x2﹣ax>a2(a∈R).18.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且f(B )=1,a+c=2,求b 的取值范围.19.(本小题满分12分)已知过抛物线2:2(0)C y px p =>的焦点,斜率为11A x y (,) 和22B x y (,)(12x x <)两点,且92AB =. (I )求该抛物线C 的方程;(II )如图所示,设O 为坐标原点,取C 上不同于O 的点S ,以OS 为直径作圆与C 相交另外一点R , 求该圆面积的最小值时点S 的坐标.20.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ′,证明:BC ′∥面EFG .21.(本题10分)解关于的不等式2(1)10ax a x -++>.22.(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=,//EFAC ,2AD =,EA ED EF ===.(1)求证:AD BE ⊥;(2)若BE =-F BCD 的体积.藁城区第一中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】B【解析】解:根据y=sinx 图象知该函数在(0,+∞)不具有单调性;y=lg2x =xlg2,所以该函数是奇函数,且在(0,+∞)上单调递增,所以选项B 正确; 根据y=lnx 的图象,该函数非奇非偶;根据单调性定义知y=﹣x 3在(0,+∞)上单调递减. 故选B .【点评】考查正弦函数的单调性,对数的运算,以及一次函数的单调性,对数函数的图象,奇偶函数图象的对称性,函数单调性的定义.2. 【答案】C 【解析】试题分析:{}1,1A =-,所以①③④正确.故选C. 考点:元素与集合关系,集合与集合关系. 3. 【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 4. 【答案】C 【解析】试题分析:A 定义域值域均不相同,B 对应法则不相同,D 定义域不相同,故选C. 考点:定义域与值域. 5. 【答案】D【解析】由定积分知识可得,故选D 。
山东省藁城市第一中学2018届高三数学第一次强化训练试题(无答案)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2230A x x x =--<,{}2B x x =≥,则AB =A .(]2,3B . []2,3C .(2,3)D .[)2,3 2。
已知,a b ∈R ,i 为虚数单位,当(1)a bi i i +=-时,则a bia bi+=- A .i B . i - C .1i + D . 1i -3.已知向量a ,b 满足||2=a ,||3=b ,()7-=a b a ,则a 与b 的夹角为 A .6π B .3π C .23π D .56π 4. 已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,上顶点为B ,若直线c y x b =与FB 平行,则椭圆C的离心率为 ( ) A .12 B .22C .32D .63 5。
已知ABC ∆的三个内角,,A B C 依次成等差数列,BC 边上的中线7AD =,2AB =,则ABC S ∆=A .3B .23C .33D .66.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为 A .18 B . 200 C . 2800 D . 336007。
执行如图所示的程序框图,则输出的结果是A .8B .13C .21D .348. 如图,在边长为2的正方形ABCD 中,M 是AB 的中点,则过C M D ,,三点的抛物线与CD 围成阴影部分的面积是MACBDA . 23B .43 C . 2D . 839. 设{}n a 是公差为2的等差数列,2n n b a =,若{}n b 为等比数列,则12345b b b b b ++++= A . 142 B . 124 C . 128 D . 14410. 某几何体的三视图如图所示,该几何体的体积为 A . B .C .D .11. 的正四面体ABCD (四个面都是正三角形),在侧棱AB 上任取一点P (与A B 、都不重合),若点P 到平面BCD 及平面ACD 的距离分别为,a b ,则41a b+的最小值为 A . 72B . 4C .92D .512.设(),()()()x f x e f x g x h x ==-,且()g x 为偶函数, ()h x 为奇函数,若存在实数m ,当[]1,1x ∈-时,不等式()()0mg x h x +≥成立,则m 的最小值为A .2211e e -+B . 221e + C .2211e e +- D .2211e e -+二、填空题:本大题共4小题,每小题5分。
藁城区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 复数z 满足(1+i )z=2i ,则z 在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2. 一个几何体的三个视图如下,每个小格表示一个单位, 则该几何体的侧面积为()A. B. C. D. 4π5π2π+【命题意图】本题考查空间几何体的三视图,几何体的侧面积等基础知识,意在考查学生空间想象能力和计算能力.3. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( )A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.4. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种5. 执行如图所示的程序框图,若输入的分别为0,1,则输出的()A .4B .16C .27D .366. 命题“∀a ∈R ,函数y=π”是增函数的否定是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数7. 已知全集U=R ,集合M={x|﹣2≤x ﹣1≤2}和N={x|x=2k ﹣1,k=1,2,…}的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有()A .3个B .2个C .1个D .无穷多个8. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组[70,80[80,90[90,100[100,110频数34815分组[110,120[120,130[130,140[140,150]频数15x 32乙校:分组[70,80[80,90[90,100[100,110频数1289分组[110,120[120,130[130,140[140,150]频数1010y3则x ,y 的值分别为 A 、12,7 B 、 10,7C 、 10,8D 、 11,99. 下列函数中,既是偶函数又在单调递增的函数是()(0,)+∞A . B .C .D .3y x =21y x =-+||1y x =+2xy -=10.以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定11.在下面程序框图中,输入,则输出的的值是()44N =S A .B .C .D .251253255260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.12.设函数f(x)的定义域为A,若存在非零实数l使得对于任意x∈I(I⊆A),有x+l∈A,且f(x+l)≥f(x ),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为()A.0<a<1B.﹣≤a≤C.﹣1≤a≤1D.﹣2≤a≤2二、填空题13.已知正方体ABCD﹣A1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCD﹣A1B1C1D1的体积为 .14.设不等式组表示的平面区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是 .15.一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60°,行驶4小时后,到达C处,看到这个灯塔B在北偏东15°,这时船与灯塔相距为 海里.16.一质点从正四面体A ﹣BCD 的顶点A 出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB 由A 到B ,第2次运动经过棱BC 由B 到C ,第3次运动经过棱CA 由C 到A ,第4次经过棱AD 由A 到D ,…对于N ∈n *,第3n 次运动回到点A ,第3n+1次运动经过的棱与3n ﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n 次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为 . 17.已知满足,则的取值范围为____________.,x y 41y xx y x ≥⎧⎪+≤⎨⎪≥⎩22223y xy x x -+18.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.三、解答题19.(本小题满分12分)成都市某中学计划举办“国学”经典知识讲座.由于条件限制,按男、女生比例采取分层抽样的方法,从某班选出10人参加活动,在活动前,对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图所示.(1)根据这10名同学的测试成绩,分别估计该班男、女生国学素养测试的平均成绩;(2)若从这10名同学中随机选取一男一女两名同学,求这两名同学的国学素养测试成绩均为优良的概率.(注:成绩大于等于75分为优良)20.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y 单位:元关于当天需求量n 单位:件,n ∈N 的函数解析式;Ⅱ商店记录了50天该商品的日需求量单位:件,整理得下表:日需求量n 89101112频数91115105①假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.21.已知直线l1:(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2﹣2ρcosθ﹣4ρsinθ+6=0.(1)求圆C1的直角坐标方程,直线l1的极坐标方程;(2)设l1与C1的交点为M,N,求△C1MN的面积.22.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD 旋转一周所成几何体的表面积.23.在直角坐标系中,已知圆C的圆心坐标为(2,0),半径为,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.,直线l的参数方程为:(t为参数).(1)求圆C和直线l的极坐标方程;(2)点P的极坐标为(1,),直线l与圆C相交于A,B,求|PA|+|PB|的值.24.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km 的部分2元/km.(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?藁城区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案A B B A D C B B C C 题号1112答案B B二、填空题13. 2 .14. .15. 24 16. D .2,617.[]18.,三、解答题19.20.21.22.23.24.。
2017-2018学年度第一学期第三次统考高一数学(总分:150分时间: 120分钟)一、选择题(本题共12小题,每小题5分共60分,每小题只有一个选项是正确的)1.设全集U R =,集合()()2{|}{|log 20}31A x x B x x x =≤=-+≥,,则()U C B A =( ) A .(]1-∞-,B .(]()103-∞-,, C .(—1,3) D .()03,2. 如果点)cos 2,cos (sin θθθP 位于第三象限,那么角所在象限是( )A、第一象限 B 、第二象限 C 、第三象限 D 、第四象限3.函数()212()log 23f x x x =--的单调减区间是 ( ) A.()3,+∞ B.()1,+∞ C.(),1-∞ D.(),1-∞-4.若函数113x y m -⎛⎫=+ ⎪⎝⎭有零点,则实数的取值范围是 ( )A. (],1-∞-B.[)1,-+∞C.[)1,0-D.()0,+∞5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的的取值范围是( )A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.同时具有性质“①最小正周期为;②图象关于直线3x π=对称;③在(-6π,3π)上是增函数”的一个函数是 ( )A .y=sin (2x +6π)B .y=cos (2x -6π) C .y=sin (2x -6π)D .y=cos (2x +3π) 7.当(1,2)x ∈时,不等式2(1)log a x x -<恒成立,则实数的取值范围为( )A. (]2,3B. [)4,+∞C. (]1,2D. [)2,48.已知是实数,则函数()1sin f x a ax =+的图象不可能...是( )9.函数()y f x =在(0,2)上是增函数,函数(2)y f x =+是偶函数,则下列结论正确的是( )A .57(1)()()22f f f <<B .57()(1)()22f f f <<C .75()()(1)22f f f <<D .75()(1)()22f f f <<10. 在()0,2π内,使sin cos x x ≥成立的取值范围是( )A .π7π,44⎡⎤⎢⎥⎣⎦B .π5π,44⎡⎤⎢⎥⎣⎦C .5π0,4⎡⎤⎢⎥⎣⎦D .π7π0,,2π44⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ 11.已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m的取值范围是( )A .(-∞,1)B . (-∞,1]C .(0,1]D . (0,1)12.已知函数()F xx e =满足:()()()F x g x h x =+,且()g x ,()h x 分别是上的偶函数和奇函数,若(]0,2x ∀∈ 使得不等式()()20g x ah x -≥恒成立,则实数的取值范围是( )A . (-∞B .(-∞C .(0,D .()+∞ 二、填空题:(本题共4小题,每小题5分,共20分)13. 在26枚崭新的金币中,有一枚外表与真金币完全相同的假币(质量小一点),现在只有一台天平,则应用二分法的思想,最多称________次就可以发现这枚假币.14.已知|x |≤π4,则函数f (x )=cos 2x +sin x 的最小值为.15.函数的最大值为,最小值为,则M N +=_____。
河北省藁城市第一中学高三上学期第三次月考(数学理)一、选择题:(本题共18个小题,每小题4分,共72分,答案涂在答题卡上.)1.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是(A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) ( )2.已知 cosx=31-, 其中)2,(ππ∈x , 则x 等于 ( )A .31arccos +πB .31arccos -πC .)31arccos(-+πD .31arccos 2-π3. 若O 为ABC ∆所在平面内一点,且满足0)2()(=-+∙-→→→→→OA OC OB OC OB ,则ABC ∆的形状为 ( )(A)正三角形 (B )直角三角形(C) 等腰三角形 (D )以上答案均错4. 要得到函数x y sin =的图像,只需将函数2)3cos(+-=πx y 的图像沿向量→a 平移得到,则→a 为 A )2,6(π-B )2,6(-πC )2,6(--πD )2,6(π( ) 5.等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,则()'0f= A .62 B. 92 C. 122 D. 152 ( )6.若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是 ( )A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,)7. 设向量),25sin ,25(cos 0=→a ),20cos ,20(sin 0=→b 若t 是实数,且→→→+=b t a u ,则||→u 的最小值为 A2 B22 C 1 D 21( ) 8.设等差数列{a n }的前n 项和为S n ,已知S 12>0,S 13<0, 则S 1、S 2、…、S 12中值最大的为( )A.6S B. 7S C. 76S S 或 D.不确定9.已知向量的夹角为与则若→→→→→→→→=⋅+=--=c a c b a c b a ,25)(,5||),4,2(),2,1(( )A .30°B .60°C .150°D .110.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为 ( )(A )2(B )32(C )4(D )3411. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n nab 为整数的正整数n 的个数是 A .2 B .3 C .4 D .5 ( )12.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f = ( ) (A)13 (B)2 (C)132 (D)21313.已知等差数列}{n a 的前n 项和为S n ,若S 2=8,S 5=35,则过点)1,(+n a n P 和*))(1,2(2N n a n Q n ∈+++的直线斜率为 A .2 B .-41 C .-2 D .21( )14. 已知向量→a = (2,1), →→⋅b a = 10,︱→→+b a ︱= →b ︱= ( )(A (B (C )5 (D )2515.若平面内共线的A ,B ,P 三点满足条件,a a 40151+=,其中}{n a 为等差数列,则2008a 等于 A 1 B 1- C -21 D 21( ) 16.若定义在R 上的函数f(x)满足:对任意R x x ∈21,有1)()()(2121++=+x f x f x x f ,则下列说法一定正确的是 ( )(A)f(x)为奇函数 (B )f(x)为偶函数(C) f(x)+1为奇函数 (D )f(x)+1为偶函数17.已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,212322l o g l o g l o g n a a a -+++= A.(21)n n - B. 2(1)n + C. 2(1)n - D. 2n ( )18.函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为 ( )(A ))48sin(4π+π-=x y (B ))48sin(4π-π=x y (C ))48sin(4π-π-=x y (D ))48sin(4π+π=x y 二、填空题 (本大题共4小题,每小题4分共16分)19.已知两个非零向量)1,1(--=n m 和)3,3(--=n m ,若0,cos >=<,则n m +的取值范围是 _______知定义在R 上的函数)(x f y =满足)(,]1,1(),()2(x f x x f x f 时当-∈=+x =,则函数)(x f y =的图象与函数||log 3x y =的图象的交点的个数是 4 . 21设{}n a 是公比为q 的等比数列,||1q >,令1(1,2,)n n b a n =+=,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .22.在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断: ( ) ①1cot tan =⋅B A ②2sin sin 0≤+<B A ③1cos sin 22=+B A④C B A 222sin cos cos =+其中正确的是 _________三、解答题:(本大题共5小题,满分62分,解答应写出文字说明,证明过程或演算步骤)23.(12分) 已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+(Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 (Ⅲ) 令)6()(π-=x f x g ,判断函数()g x 的奇偶性,并说明理由.24.(12分)(1) 已知 40πα<< ,40πβ<< , 且 )2sin(sin 3βαβ+=,2tan 12tan42αα-= ,求βα+的值.(2)化简求值:60tan 40tan 20tan 20tan 3120tan 310tan 310tan 31++-++-.25.(12分) 已知数列{a n }为等差数列,公差0d ≠,{a n }的部分项组成的数列12,,,k k k n a a a …恰为等比数列,其中1231,5,17k k k ===,求12n k k k +++….26.(12分)已知向量(cos ,sin )m θθ=和()()2sin ,cos ,,2n θθθππ=-∈,且825m n +=求cos 28θπ⎛⎫+ ⎪⎝⎭的值.27.(14分)已知函数44)(+-=x x x f (x ≥4)的反函数为)(1x f-,数列{}n a 满足:a 1=1,)(11n n a fa -+=,(∈n N *),数列1b ,12b b -,23b b -,…,1--n n b b 是首项为1,公比为31的等比数列. (Ⅰ)求证:数列{}na 为等差数列;(Ⅱ)若n n n b a c ⋅=,求数列{}n c 的前n 项和n S .。
藁城区第一中学校2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 下列命题中的假命题是( )A .∀x ∈R ,2x ﹣1>0B .∃x ∈R ,lgx <1C .∀x ∈N +,(x ﹣1)2>0D .∃x ∈R ,tanx=22. 投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) A .0.648 B .0.432 C .0.36 D .0.3123. 已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或104. 已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5C .9D .275. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f (x )=被称为狄利克雷函数,其中R 为实数集,Q 为有理数集,则关于函数f (x )有如下四个命题:①f (f (x ))=1;②函数f (x )是偶函数;③任取一个不为零的有理数T ,f (x+T )=f (x )对任意的x=R 恒成立;④存在三个点A (x 1,f (x 1)),B (x 2,f (x 2)),C (x 3,f (x 3)),使得△ABC 为等边三角形.其中真命题的个数有( ) A .1个 B .2个 C .3个 D .4个6. 下列判断正确的是( )A .①不是棱柱B .②是圆台C .③是棱锥D .④是棱台7. 若函数()()22f x x πϕϕ⎛⎫=+< ⎪⎝⎭的图象关于直线12x π=对称,且当12172123x x ππ⎛⎫∈-- ⎪⎝⎭,,,12x x ≠时,()()12f x f x =,则()12f x x +等于( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A B D8.曲线y=e x在点(2,e2)处的切线与坐标轴所围三角形的面积为()A.e2B.2e2C.e2D.e29.如图Rt△O′A′B′是一平面图形的直观图,斜边O′B′=2,则这个平面图形的面积是()A.B.1 C.D.10.下列满足“∀x∈R,f(x)+f(﹣x)=0且f′(x)≤0”的函数是()A.f(x)=﹣xe|x| B.f(x)=x+sinxC.f(x)=D.f(x)=x2|x|11.复数z为纯虚数,若(3﹣i)•z=a+i (i为虚数单位),则实数a的值为()A.﹣B.3 C.﹣3 D.12.下列函数中,既是奇函数又是减函数的为()A.y=x+1 B.y=﹣x2C.D.y=﹣x|x|二、填空题13.设f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣2)=0,当x>0时,xf′(x)﹣f(x)>0,则使得f (x)>0成立的x的取值范围是.14.一质点从正四面体A﹣BCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB由A到B,第2次运动经过棱BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,…对于N∈n*,第3n次运动回到点A,第3n+1次运动经过的棱与3n﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为.15.设不等式组表示的平面区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是.16.设x,y满足约束条件,则目标函数z=2x﹣3y的最小值是.17.若函数f(x),g(x)满足:∀x∈(0,+∞),均有f(x)>x,g(x)<x成立,则称“f(x)与g(x)关于y=x分离”.已知函数f(x)=a x与g(x)=log a x(a>0,且a≠1)关于y=x分离,则a的取值范围是.18.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n=8时S n 取得最大值,则d 的取值范围为 .三、解答题19.已知函数f (x )=ax 2﹣2lnx .(Ⅰ)若f (x )在x=e 处取得极值,求a 的值; (Ⅱ)若x ∈(0,e],求f (x )的单调区间;(Ⅲ) 设a >,g (x )=﹣5+ln ,∃x 1,x 2∈(0,e],使得|f (x 1)﹣g (x 2)|<9成立,求a 的取值范围.20.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是243x ty t =-+⎧⎨=⎩(为参数).(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.21.一个圆柱形圆木的底面半径为1m ,长为10m ,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD (如图所示,其中O 为圆心,C ,D 在半圆上),设∠BOC=θ,直四棱柱木梁的体积为V (单位:m 3),侧面积为S (单位:m 2).(Ⅰ)分别求V 与S 关于θ的函数表达式; (Ⅱ)求侧面积S 的最大值; (Ⅲ)求θ的值,使体积V 最大.22.甲乙两个地区高三年级分别有33000人,30000人,为了了解两个地区全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个地区一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.(Ⅱ)根据抽样结果分别估计甲地区和乙地区的优秀率;若将此优秀率作为概率,现从乙地区所有学生中随机抽取3人,求抽取出的优秀学生人数ξ的数学期望;(Ⅲ)根据抽样结果,从样本中优秀的学生中随机抽取3人,求抽取出的甲地区学生人数η的分布列及数学期望.23.(本小题满分10分) 已知圆P 过点)0,1(A ,)0,4(B .(1)若圆P 还过点)2,6( C ,求圆P 的方程;(2)若圆心P的纵坐标为,求圆P的方程.24.已知等边三角形PAB的边长为2,四边形ABCD为矩形,AD=4,平面PAB⊥平面ABCD,E,F,G分别是线段AB,CD,PD上的点.(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB∥平面EFG;(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.①点H到点F的距离与点H到直线AB的距离之差大于4;②GH⊥PD.藁城区第一中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】C【解析】解:A .∀x ∈R ,2x ﹣1=0正确;B .当0<x <10时,lgx <1正确;C .当x=1,(x ﹣1)2=0,因此不正确;D .存在x ∈R ,tanx=2成立,正确. 综上可知:只有C 错误.故选:C .【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题.2. 【答案】A【解析】解:由题意可知:同学3次测试满足X ∽B (3,0.6),该同学通过测试的概率为=0.648.故选:A .3. 【答案】D 【解析】试题分析:程序是分段函数⎩⎨⎧=x y x lg 2 00>≤x x ,当0≤x 时,212=x,解得1-=x ,当0>x 时,21lg =x ,解得10=x ,所以输入的是1-或10,故选D.考点:1.分段函数;2.程序框图.11111] 4. 【答案】C【解析】解:令log 2(x 2+1)=0,得x=0, 令log 2(x 2+1)=1,得x 2+1=2,x=±1, 令log2(x 2+1)=2,得x 2+1=4,x=.则满足值域为{0,1,2}的定义域有:{0,﹣1,﹣ },{0,﹣1, },{0,1,﹣},{0,1, },{0,﹣1,1,﹣},{0,﹣1,1,},{0,﹣1,﹣,},{0,1,﹣,},{0,﹣1,1,﹣,}.则满足这样条件的函数的个数为9.故选:C .【点评】本题考查了对数的运算性质,考查了学生对函数概念的理解,是中档题.5. 【答案】 D【解析】解:①∵当x为有理数时,f(x)=1;当x为无理数时,f(x)=0∴当x为有理数时,f(f(x))=f(1)=1;当x为无理数时,f(f(x))=f(0)=1即不管x是有理数还是无理数,均有f(f(x))=1,故①正确;②∵有理数的相反数还是有理数,无理数的相反数还是无理数,∴对任意x∈R,都有f(﹣x)=f(x),故②正确;③若x是有理数,则x+T也是有理数;若x是无理数,则x+T也是无理数∴根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立,故③正确;④取x1=﹣,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0∴A(,0),B(0,1),C(﹣,0),恰好△ABC为等边三角形,故④正确.故选:D.【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题.6.【答案】C【解析】解:①是底面为梯形的棱柱;②的两个底面不平行,不是圆台;③是四棱锥;④不是由棱锥截来的,故选:C.7.【答案】C【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型.首先利用数形结合思想和转化化归思想可得()2122k k ππϕπ⨯+=+∈Z ,解得3πϕ=,从而()23f x x π⎛⎫=+ ⎪⎝⎭,再次利用数形结合思想和转化化归思想可得()()()()1122x f x x f x ,,,关于直线1112x π=-对称,可得12116x x π+=-,从而()121133f x x ππ⎛⎫+=-+= ⎪⎝⎭8. 【答案】D【解析】解析:依题意得y ′=e x,因此曲线y=e x 在点A (2,e 2)处的切线的斜率等于e 2, 相应的切线方程是y ﹣e 2=e 2(x ﹣2), 当x=0时,y=﹣e 2即y=0时,x=1,∴切线与坐标轴所围成的三角形的面积为:S=×e 2×1=.故选D .9. 【答案】D【解析】解:∵Rt △O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D .10.【答案】A【解析】解:满足“∀x ∈R ,f (x )+f (﹣x )=0,且f ′(x )≤0”的函数为奇函数,且在R 上为减函数, A 中函数f (x )=﹣xe |x|,满足f (﹣x )=﹣f (x ),即函数为奇函数,且f ′(x )=≤0恒成立,故在R 上为减函数,B 中函数f (x )=x+sinx ,满足f (﹣x )=﹣f (x ),即函数为奇函数,但f ′(x )=1+cosx ≥0,在R 上是增函数,C 中函数f (x )=,满足f (﹣x )=f (x ),故函数为偶函数;D 中函数f (x )=x 2|x|,满足f (﹣x )=f (x ),故函数为偶函数, 故选:A .11.【答案】D【解析】解:∵(3﹣i)•z=a+i,∴,又z为纯虚数,∴,解得:a=.故选:D.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.12.【答案】D【解析】解:y=x+1不是奇函数;y=﹣x2不是奇函数;是奇函数,但不是减函数;y=﹣x|x|既是奇函数又是减函数,故选:D.【点评】本题考查的知识点是函数的奇偶性和函数的单调性,难度不大,属于基础题.二、填空题13.【答案】(﹣2,0)∪(2,+∞).【解析】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)﹣f(x)>0成立,即当x>0时,g′(x)>0,∴当x>0时,函数g(x)为增函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数,∴x<0时,函数g(x)是减函数,又∵g(﹣2)==0=g(2),∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).故答案为:(﹣2,0)∪(2,+∞).14.【答案】D.【解析】解:根据题意,质点运动的轨迹为:A→B→C→A→D→B→A→C→D→A接着是→B→C→A→D→B→A→C→D→A…周期为9.∵质点经过2015次运动,2015=223×9+8,∴质点到达点D.故答案为:D.【点评】本题考查了函数的周期性,本题难度不大,属于基础题.15.【答案】.【解析】解:作出不等式组对应的平面区域,直线y=k(x+2)过定点D(﹣2,0),由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,由,解得,即A(1,3),此时k==,由,解得,即B(1,1),此时k==,故k的取值范围是,故答案为:【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.16.【答案】﹣6.【解析】解:由约束条件,得可行域如图,使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),∴目标函数z=2x﹣3y的最小值为z=2×3﹣3×4=﹣6.故答案为:﹣6.17.【答案】(,+∞).【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.18.【答案】(﹣1,﹣).【解析】解:∵S n =7n+,当且仅当n=8时S n取得最大值,∴,即,解得:,综上:d的取值范围为(﹣1,﹣).【点评】本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ) f ′(x )=2ax ﹣= 由已知f ′(e )=2ae ﹣=0,解得a=.经检验,a=符合题意.(Ⅱ)1)当a ≤0时,f ′(x )<0,∴f (x )在(0,e]上是减函数.2)当a >0时,①若<e ,即,则f (x )在(0,)上是减函数,在(,e]上是增函数;②若≥e ,即0<a ≤,则f (x )在[0,e]上是减函数.综上所述,当a ≤时,f (x )的减区间是(0,e],当a >时,f (x )的减区间是,增区间是.(Ⅲ)当时,由(Ⅱ)知f (x )的最小值是f ()=1+lna ;易知g (x )在(0,e]上的最大值是g (e )=﹣4﹣lna ; 注意到(1+lna )﹣(﹣4﹣lna )=5+2lna >0,故由题设知,解得<a <e 2.故a 的取值范围是(,e 2)20.【答案】(1)参数方程为1cos sin x y θθ=+⎧⎨=⎩,3460x y -+=;(2)145.【解析】试题分析:(1)先将曲线C 的极坐标方程转化为直角坐标系下的方程,可得22(1)1x y -+=,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线C 上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值. 试题解析:(1)曲线C 的普通方程为22cos ρρθ=,∴2220x y x +-=,∴22(1)1x y -+=,所以参数方程为1cos sin x y θθ=+⎧⎨=⎩,直线的普通方程为3460x y -+=.(2)曲线C 上任意一点(1cos ,sin )θθ+到直线的距离为33cos 4sin 65sin()914555d θθθϕ+-+++==≤,所以曲线C 上任意一点到直线的距离的最大值为145.考点:1.极坐标方程;2.参数方程.21.【答案】【解析】解:(Ⅰ)木梁的侧面积S=10(AB+2BC+CD )=10(2+4sin+2cos θ)=20(cos θ+2sin+1),θ∈(0,),梯形ABCD 的面积S ABCD =﹣sin θ=sin θcos θ+sin θ,θ∈(0,),体积V (θ)=10(sin θcos θ+sin θ),θ∈(0,);(Ⅱ)木梁的侧面积S=10(AB+2BC+CD )=10(2+4sin +2cos θ)=20(cos +1),θ∈(0,),设g (θ)=cos +1,g (θ)=﹣2sin 2+2sin+2,∴当sin =,θ∈(0,),即θ=时,木梁的侧面积s 最大.所以θ=时,木梁的侧面积s 最大为40m 2.(Ⅲ)V ′(θ)=10(2cos 2θ+cos θ﹣1)=10(2cos θ﹣1)(cos θ+1)令V ′(θ)=0,得cos θ=,或cos θ=﹣1(舍)∵θ∈(0,),∴θ=.当θ∈(0,)时,<cos θ<1,V ′(θ)>0,V (θ)为增函数;当θ∈(,)时,0<cos θ<,V ′(θ)>0,V (θ)为减函数.∴当θ=时,体积V 最大.22.【答案】【解析】解:(Ⅰ)∵抽样比f==,∴甲地区抽取人数==55人,乙地区抽取人数==50人,∴由频数分布表知:解得x=6,y=7.(Ⅱ)由频数分布表知甲地区优秀率==,乙地区优秀率==,现从乙地区所有学生中随机抽取3人,抽取出的优秀学生人数ξ的可能取值为0,1,2,3,ξ~B (3,),∴E ξ=3×=.(Ⅲ)从样本中优秀的学生中随机抽取3人,抽取出的甲地区学生人数η的可能取值为0,1,2,3,P (η=0)==,P (η=1)==,P (η=2)==,P (η=3)==,∴η的分布列为:E η==1.【点评】本题考查频数分布表的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型.23.【答案】(1)047522=++-+y x y x ;(2)425)2()25(22=-+-y x . 【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程022=++++F Ey Dx y x ,将三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为25,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆P 的方程是022=++++F Ey Dx y x ,则由已知得⎪⎩⎪⎨⎧=+-+-+=++++=++++026)2(6004040001222222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为047522=++-+y x y x .(2)由圆的对称性可知,圆心P 的横坐标为25241=+,故圆心)2,25(P , 故圆P 的半径25)20()251(||22=-+-==AP r ,故圆P 的标准方程为425)2()25(22=-+-y x .考点:圆的方程24.【答案】【解析】(1)证明:依题意,E ,F 分别为线段BA 、DC 的三等分点, 取CF 的中点为K ,连结PK ,BK ,则GF 为△DPK 的中位线, ∴PK ∥GF ,∵PK ⊄平面EFG ,∴PK ∥平面EFG , ∴四边形EBKF 为平行四边形,∴BK ∥EF , ∵BK ⊄平面EFG ,∴BK ∥平面EFG , ∵PK ∩BK=K ,∴平面EFG ∥平面PKB , 又∵PB ⊂平面PKB ,∴PB ∥平面EFG . (2)解:连结PE ,则PE ⊥AB ,∵平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD=AB , PE ⊂平面PAB ,PE ⊥平面ABCD , 分别以EB ,EF ,EP 为x 轴,y 轴,z 轴, 建立空间直角坐标系, ∴P (0,0,),D (﹣1,4,0),=(﹣1,4,﹣),∵P (0,0,), D (﹣1,4,0),=(﹣1,4,﹣),∵==(﹣,,﹣),∴G(﹣,,),设点H (x ,y ,0),且﹣1≤x ≤1,0≤y ≤4,依题意得:,∴x 2>16y ,(﹣1≤x ≤1),(i )又=(x+,y﹣,﹣),∵GH ⊥PD ,∴,∴﹣x﹣+4y﹣,即y=,(ii)把(ii)代入(i),得:3x2﹣12x﹣44>0,解得x>2+或x<2﹣,∵满足条件的点H必在矩形ABCD内,则有﹣1≤x≤1,∴矩形ABCD内不能找到点H,使之同时满足①点H到点F的距离与点H到直线AB的距离之差大于4,②GH⊥PD.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.。
藁城区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A .10 13B .12.5 12C .12.5 13D .10 152. 已知集合M={﹣1,0,1},N={x|x=2a ,a ∈M},则集合M ∩N=( ) A .{0} B .{0,﹣2} C .{﹣2,0,2} D .{0,2}3. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .4. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .5. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .6B .9C .12D .186. 下列各组函数为同一函数的是( )A .f (x )=1;g (x )=B .f (x )=x ﹣2;g (x )=C .f (x )=|x|;g (x )=D .f (x )=•;g (x )=7. 若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3||log xx y a =的图象大致是 ( )【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 8. 已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈9. 在函数y=中,若f (x )=1,则x 的值是( )A .1B .1或C .±1D .10.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A .B .8C .D .11.若函数y=f (x )是y=3x 的反函数,则f (3)的值是( ) A .0B .1C .D .312.给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x},即{x}=m在此基础上给出下列关于函数f (x )=|x ﹣{x}|的四个命题:①;②f (3.4)=﹣0.4;③;④y=f (x )的定义域为R ,值域是;则其中真命题的序号是( ) A .①② B .①③C .②④D .③④二、填空题13.设x R ∈,记不超过x 的最大整数为[]x ,令{}[]x x x =-.现有下列四个命题: ①对任意的x ,都有1[]x x x -<≤恒成立; ②若(1,3)x ∈,则方程{}22sincos []1x x +=的实数解为6π-;③若3n n a ⎡⎤=⎢⎥⎣⎦(n N *∈),则数列{}n a 的前3n 项之和为23122n n -;④当0100x ≤≤时,函数{}22()sin []sin 1f x x x =+-的零点个数为m ,函数{}()[]13xg x x x =⋅--的 零点个数为n ,则100m n +=.其中的真命题有_____________.(写出所有真命题的编号)【命题意图】本题涉及函数、函数的零点、数列的推导与归纳,同时又是新定义题,应熟悉理解新定义,将问题转化为已知去解决,属于中档题。
藁城区一中2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为()A .9.6B .7.68C .6.144D .4.91522. 若a 是f (x )=sinx ﹣xcosx 在x ∈(0,2π)的一个零点,则∀x ∈(0,2π),下列不等式恒成立的是()A .B .cosa≥C .≤a ≤2πD .a ﹣cosa ≥x ﹣cosx3. 如果a >b ,那么下列不等式中正确的是( )A .B .|a|>|b|C .a 2>b 2D .a 3>b 34. 从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .5. 设函数f (x )=,则f (1)=()A .0B .1C .2D .36. 点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是()A .[﹣1,﹣]B .[﹣,﹣]C .[﹣1,0]D .[﹣,0]班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 如图,空间四边形ABCD 中,M 、G 分别是BC 、CD 的中点,则等( )A .B .C .D .8. 设命题p :,则p 为( )A .B .C .D .9. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1C .x 2﹣=1D .﹣=110.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N11.已知点F 1,F 2为椭圆的左右焦点,若椭圆上存在点P 使得,则此椭圆的离心率的取值范围是()A .(0,)B .(0,]C .(,]D .[,1)12.现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种二、填空题13.椭圆的两焦点为F 1,F 2,一直线过F 1交椭圆于P 、Q ,则△PQF 2的周长为 .14.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .15.如图,在棱长为的正方体中,点分别是棱的中点,是侧1111D ABC A B C D ,E F 1,BC CC P 面内一点,若平行于平面,则线段长度的取值范围是_________.11BCC B 1AP AEF 1A P16.已知是数列的前项和,若不等式对一切恒成立,则的取值范围是n S 1{}2n n -n 1|12n n n S λ-+<+|n N *∈λ___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.17.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .18.设满足约束条件,则的最大值是____________. ,y x 2110y xx y y ≤⎧⎪+≤⎨⎪+≥⎩3z x y =+三、解答题19.已知定义域为R 的函数f (x )=是奇函数.(Ⅰ)求b 的值;(Ⅱ)判断函数f (x )的单调性;(Ⅲ)若对任意的t ∈R ,不等式f (t 2﹣2t )+f (2t 2﹣k )<0恒成立,求k 的取值范围. 20.某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x 年后数控机床的盈利总额y 元.(1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利?(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.21.已知函数f (x )=log a (1+x )﹣log a (1﹣x )(a >0,a ≠1).(Ⅰ)判断f (x )奇偶性,并证明;(Ⅱ)当0<a <1时,解不等式f (x )>0. 22.已知函数f (x )=xlnx+ax (a ∈R ).(Ⅰ)若a=﹣2,求函数f (x )的单调区间;(Ⅱ)若对任意x ∈(1,+∞),f (x )>k (x ﹣1)+ax ﹣x 恒成立,求正整数k 的值.(参考数据:ln2=0.6931,ln3=1.0986) 23.(本小题满分10分)已知函数.()2f x x a x =++-(1)若求不等式的解集;4a =-()6f x ≥(2)若的解集包含,求实数的取值范围.()3f x x ≤-[]0,124.已知椭圆C1:+=1(a>b>0)的离心率为e=,直线l:y=x+2与以原点为圆心,以椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)抛物线C2:y2=2px(p>0)与椭圆C1有公共焦点,设C2与x轴交于点Q,不同的两点R,S在C2上(R,S与Q不重合),且满足•=0,求||的取值范围.藁城区一中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.2.【答案】A【解析】解:f′(x)=xsinx,当x∈(0,π),f′(x)>0,函数f(x)单调递增,当x∈(π,2π),f′(x)<0,函数f(x)单调递减,又f(0)=0,f(π)>0,f(2π)<0,∴a∈(π,2π),∴当x∈(0,a),f(x)>0,当x∈(a,2π),f(x)<0,令g(x)=,g′(x)=,∴当x∈(0,a),g′(x)<0,函数g(x)单调递减,当x∈(a,2π),g′(x)>0,函数g(x)单调递增,∴g(x)≥g(a).故选:A.【点评】本题主要考查零点的存在性定理,利用导数求最值及计算能力.3.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.4.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A.【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.5.【答案】D【解析】解:∵f(x)=,f(1)=f[f(7)]=f(5)=3.故选:D.6.【答案】D【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,建立空间直角坐标系.则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,由二次函数的性质可得,当x=y=时,取得最小值为﹣;故当x=0或1,且y=0或1时,取得最大值为0,则的取值范围是[﹣,0],故选D.【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.7.【答案】C【解析】解:∵M、G分别是BC、CD的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.8.【答案】A【解析】【知识点】全称量词与存在性量词【试题解析】因为特称命题的否定是全称命题,p为:。
河北省石家庄市藁城第一中学2018年高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如右图所示,一个空间几何体的主(正)视图和左(侧)视图都是边长为的正方形,俯视图是一个直径为的圆,那么这个几何体的表面积为()A. B.C. D.参考答案:C略2. (5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0} B.{0,1} C.{0,2} D.{0,1,2}参考答案:C考点:交集及其运算.专题:集合.分析:解出集合A,再由交的定义求出两集合的交集.解答:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选C点评:本题考查交的运算,理解好交的定义是解答的关键.3. 若函数,则= .A . B. C. D.参考答案:D略4. 下面有关向量数量积的关系式,不正确的一项是()C.?=?D|?|≥?0?=0.(?)=(?)B5. 在平面上,,,,若,则的取值范围是( )A. B. C. D.参考答案:D6. 已知函数在曲线与直线的交点中,若相邻交点距离的最小值为,则的最小正周期为A. B. C. D.参考答案:C7. 函数的值域是( )A. RB.C.D.参考答案:C8. 在区间上随机取一个数,使的值介于0到之间的概率为A.B.C.D.参考答案:C9. 给定下列函数:①②③④,满足“对任意,当时,都有”的条件是()A.①②③B.②③④C.①②④D.①③④参考答案:A考点:函数的单调性与最值试题解析:“对任意,当时,都有”,则函数在上单调递减。
故①②③满足条件。
故答案为:A10. 函数f(x)=x3﹣2x﹣3一定存在零点的区间是()A. (2,+∞)B. (1,2)C. (0,1)D. (﹣1,0)参考答案:B【分析】求出,即得解.【详解】由题得,所以,因为函数是R上的连续函数,故选:B【点睛】本题主要考查零点存在性定理,意在考查学生对这些知识的理解掌握水平.二、填空题:本大题共7小题,每小题4分,共28分11. (5分)已知集合A={x|x<a},B={x|1<x<2},且A∩B≠?,则实数a的取值范围是.参考答案:(1,+∞)考点:交集及其运算.专题:集合.分析:通过集合的交集不是空集,直接写出结果即可.解答:集合A={x|x<a},B={x|1<x<2},且A∩B≠?,则a>1.故答案为:(1,+∞).点评:本题考查集合的交集的运算法则的应用,考查计算能力.12. 函数是上的减函数,则的取值范围是参考答案:略13. 直线l与直线分别交于A,B两点,线段AB的中点为,则直线l的斜率为________.参考答案:设直线的斜率为,又直线过点,则直线的方程为,联立直线与直线,得到,解得,所以,联立直线与直线,得到,解得,,所以,又线段的中点,所以,解得.故答案为:。
山东省藁城市第一中学2017 山东省藁城市第一中学2017-2018学年高一物理上学期第三次月考试题(无答案)一、本题共12小题,每小题4分,共48分.其中1~7为单选题8~12题为多选题,全部选对的得4分,选不全的得2分,有选错或不答的得0分. 1.在探究超重和失重规律时,某体重为G的同学站在一压力传感器上完成一次下蹲动作。
传感器和计算机相连,经计算机处理后得到压力F随时间t变化的图象,则下列图象中可能正确的是ABCD 2..一皮带传送装置如右图所示,皮带的速度v足够大,轻弹簧一端固定,另一端连接一个质量为m的滑块,已知滑块与皮带之间存在摩擦,当滑块放在皮带上时,弹簧的轴线恰好水平,若滑块放到皮带的瞬间,滑块的速度为零,且弹簧正好处于自由长度,则当弹簧从自由长度到第一次达最长这一过程中,物体的速度和加速度变化的情况是A.速度增大,加速度增大B.速度增大,加速度减小C.速度先增大后减小,加速度先减小后增大D.速度先增大后减小,加速度先增大后减小3.倾角为30°的长斜坡上有C、O、B三点,COOB10m,在O点竖直的固定一长10m的直杆AO。
A端与C点、坡底B点间各连有一光滑的钢绳,且各穿有一钢球(视为质点),将两球从A点由静止开始、同时分别沿两钢绳滑到钢绳末端,如右图所示,则小球在钢绳上滑行的时间tAC和tAB分别为(取g10m/s2)A.2s和2s B.和2s C.和4s D.4s和4.如下图,穿在水平直杆上质量为m的小球开始时静止。
现对小球沿杆方向施加恒力F0,垂直于杆方向施加竖直向上的力F,且F的大小始终与小球的速度成正比,即Fkv (图中未标出)。
已知小球与杆间的动摩擦因数为μ,小球运动过程中未从杆上脱落,且F0>μmg。
下列关于运动中的速度时间图象正确的是A B C D 5.如图,由物体A和B组成的系统处于静止状态.A、B的质量分别为mA和mB,且mAmB,滑轮的质量和一切摩擦不计.使绳的悬点由P点向右移动一小段距离到Q点,系统再次达到静止状态.则悬点移动前后图中绳与水平方向的夹角θ将 A.变大B.变小 C.不变D.可能变大,也可能变小6.如图所示,一小球以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即反方向弹回。
河北省藁城市第一中学2018-2019 学年高一数学放学期月考试题(三)(无答案)一.选择题(每题 5 分,共60 分)1.已知全集 U=x Z 1x6,会合 A= 1,3,4,则C U A()A.6 B .2,4C.2,5,6 D .1,2,3,4,62. sin 660的值为( )A.1B .-1C .33D .-22223.函数y log(m22)( x23x4) 的单增区间是()A.4, B. 3 , C., 1或 4, D.,3224. 以下函数中与函数y x 相等的是()A.y x2B. y log 2 2 xC. y x 2D. y (x ) 2x5.一名心率过速患者服用某种药物后心率马上显然减慢,以后跟着药力的减退,心率再次慢慢升高,下面心率关于时间的一个可能图象为( )6. 函数f ( x)x cos x 是( )A.奇函数B.偶函数C.既是奇函数又是偶函数D.既不是奇函数也不是偶函数7.已知a ln 0.2,b20.3 ,c 0.30.2,则 a、b、c、三个数的大小关系为( )A. b >c>a B. b >a>c C. a >b> c D. c >b> a8. 函数y3x8 log 2x 的零点位于区间()A. ( 0,1)B.(1,2)C.(2,3)D.(3,4)9. 函数 y2sin(x) cos( x)( x R) 的最小值是()36A.2B.-2C.-1D.- 510. 对实数a 和 ,定义运算“ ”:ab=( ) ÷ (a -b ),ba+b则( log 2 12 ) (log 2 3) =( )A. log 2 15B.log 2 36C.log 2 6D.log 4 3611.已知 tan()2 tan( ) 1 则 tan() 的值为 ( ),,5444A . 1B. 22C.3D. 13613221812. 二次函数 f(x) 知足 f(x+2) = f(-x+2) ,f(0) = 3,f(2)= 1,若在 [0, m ] 上有最大值 3,最小值 1,则的 m 取值范围是()A.(0,)B.[2,)C.(0,2]D.[2,4]二.填空题(每题 5 分,共 20 分)13. 已知 sin= 3,且是第二象限角,则cos=.514. 若函数 f(x)=x 1,( x 0)则 f(f(-2))=.x 2,( x 0)15.函数 y sin x cos x sin xcos x 的最大值为16. 已知函数 f(x)=Asin(x+)(A>0,>0,< ) 的部分图像2如右图所示,则函数 f(x) 分析 式为三、解答题(六道题,共70 分)17.已知会合 A={x|3 ≤ 3x ≤ 27} , B={x|x 2﹣ 5x ﹣ 6≥ 0} .( 1)求 A ∩ ( ?R B) ;( 2)已知会合 C={x| ( x ﹣m ) 2≤ 1, m ∈ R},若 C? A ,务实数 m 的取值范围.18. 已知 sin =12,( , ),cos3,(,0 ),求cos() 的值1325219.已知函数 f(x)=sinxcosx+cos 2 x-12(1)求函数 f(x) 的周期(2)求函数 f(x) 的单一递加区间20. 某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数目pmg/L 与时间 t h之间的关系为P=1000( 1) t,假如要使排出的废气中污染物的数目不超出12mg/L,那么起码需要2过滤多长时间?(精准到0.1h ,参照数据: lg2=0.3010,lg3=0.4771)21.已知函数f(x)=log a (x+1),g(x)=log a (1-x)(a>0,且a1)( 1)求函数f(x)+g(x)的定义域(2)判断函数f(x)+g(x)的奇偶性,并说明原因22. 已知函数f ( x)e x1定义域为 R 此中e为自然对数的底数;e x( 1)用定义证明函数 f (x)在区间0.上是增函数;( 2)设函数f (x) 的最小值是 m。
河北省藁城市第一中学高三上学期第三次月考(数学文)1.已知等比数列}{n a 的公比为正数,且3a ·9a =225a ,2a =1,则1a =( ) A. 21 B. 22 C. 2 D.2 2.不等式x x x x 22->- 的解集是 ( ) A. (02), B. (0)-∞, C. (2)+∞, D. (0)∞⋃+∞(-,0), 3.1)4(cos 22--=πx y 是 ( )A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数 4. “14m <”是“一元二次方程20x x m ++=”有实数解的 ( ) A .充分非必要条件 B.充分必要条件C .必要非充分条件 D.非充分必要条件 5.=+25.0log 10log 255 A 0 B 1 C 2D 4 ( )6.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =( ) 7.设集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B,则实数a,b 必满足( )(A )||3a b +≤ (B )||3a b +≥ (C )||3a b -≤ (D )||3a b -≥8.“()24x k k Z ππ=+∈”是“tan 1x =”成立的 ( )(A )充分不必要条件. (B )必要不充分条件.(C )充分条件. (D )既不充分也不必要条件.9. 若函数ax x x f 2)(2+-=与1)(+=x a x g 在区间(]2,1上都是减函数,则a 的取范围是( ) A ()()1,00,1 - B ()(]1,00,1 - C ()0,1- D (]1,010.定义域为R 的奇函数)(x f 单调递增,且对任意实数b a ,满足0)1()(=-+b f a f ,则b a +=A -1B 0C 1D 不确定( )11. 判断下列各命题:①若,αβ是第一象限角,且αβ>,则cos cos αβ<; ②函数).0,12()62sin(2ππ是的图象的一个对称中心-=x y ;③若函数55()sin(),()cos()22x x f x g x ππ++==,则()f x 是偶函数,()g x 是奇函数; ④若函数sin 2y x =的图像向左平移4π个单位,得到函数sin(2)4y x π=+的图像。
藁城区一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布.A .B .C .D .2. 数列{}n a 中,11a =,对所有的2n ≥,都有2123n a a a a n = ,则35a a +等于( ) A .259 B .2516 C .6116 D .31153. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣14. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .3005. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.6. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=17. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;④{}0∅⊆,正确的有( )个A.个B.个C.个D.个 8. 某几何体的三视图如图所示,则它的表面积为( )A.B.C.D.9.设S n为等比数列{a n}的前n项和,若a1=1,公比q=2,S k+2﹣S k=48,则k等于()A.7 B.6 C.5 D.410.与命题“若x∈A,则y∉A”等价的命题是()A.若x∉A,则y∉A B.若y∉A,则x∈A C.若x∉A,则y∈A D.若y∈A,则x∉A11.已知函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.若数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),则{a n}的前28项之和S28=()A.7 B.14 C.28 D.5612.已知函数f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,且当x<0时,函数的部分图象如图所示,则不等式xf(x)<0的解集是()A.(﹣2,﹣1)∪(1,2)B.(﹣2,﹣1)∪(0,1)∪(2,+∞)C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)二、填空题13.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是.14.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .15.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .16.设()x xf x e=,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________. 17.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .三、解答题18.(本小题满分10分)选修4-5:不等式选讲 已知函数|1||2|)(+--=x x x f ,x x g -=)(. (1)解不等式)()(x g x f >;(2)对任意的实数,不等式)()(22)(R m m x g x x f ∈+≤-恒成立,求实数m 的最小值.111]19.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2133(21-+=,设动点N 的轨迹为曲线C . (1)求曲线C 的方程;(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.20.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥ A 1B 1,D 为棱A 1B 1上的点. (1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,若不存在,说明理由.21.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++(a R ∈). (I )若12a >,求)(x f y =的单调区间;(II )函数()(1)g x a x =-,若0[1,]x e ∃∈使得00()()f x g x ≥成立,求实数a 的取值范围.22.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.23.如图,三棱柱ABC ﹣A 1B 1C 1中,AB=AC=AA 1=BC 1=2,∠AA 1C 1=60°,平面ABC 1⊥平面AA 1C 1C ,AC 1与A 1C 相交于点D .(1)求证:BD ⊥平面AA 1C 1C ; (2)求二面角C 1﹣AB ﹣C 的余弦值.24.已知数列{a n}共有2k(k≥2,k∈Z)项,a1=1,前n项和为S n,前n项乘积为T n,且a n+1=(a﹣1)S n+2(n=1,2,…,2k﹣1),其中a=2,数列{b n}满足b n=log2,(Ⅰ)求数列{b n}的通项公式;(Ⅱ)若|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|≤,求k的值.藁城区一中2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】D【解析】解:设从第2天起每天比前一天多织d 尺布m则由题意知,解得d=.故选:D .【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解.2. 【答案】C 【解析】试题分析:由2123n a a a a n = ,则21231(1)n a a a a n -=- ,两式作商,可得22(1)n n a n =-,所以22352235612416a a +=+=,故选C .考点:数列的通项公式. 3. 【答案】D【解析】解:函数y=e x 的图象关于y 轴对称的图象的函数解析式为y=e ﹣x,而函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y 轴对称,所以函数f (x )的解析式为y=e ﹣(x+1)=e ﹣x ﹣1.即f (x )=e ﹣x ﹣1.故选D .4. 【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队. 各个班的人数有5班的3人、16班的4人、33班的5人, 首发共有1、2、2;2、1、2;2、2、1类型;所求方案有: ++=390.故选:C . 5. 【答案】D6. 【答案】C【解析】解:如图,++().故选C .7. 【答案】C 【解析】试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 8. 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S底面+S 侧面=×π×12+×2×2+×π×=2+.故选A .【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.9. 【答案】D【解析】解:由题意,S k+2﹣S k =,即3×2k =48,2k=16,∴k=4.故选:D.【点评】本题考查等比数列的通项公式,考查了等比数列的前n项和,是基础题.10.【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.故选D.11.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.12.【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图则不等式xf(x)<0的解为:或解得:x∈(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)故选:D.二、填空题13.【答案】x﹣y﹣2=0.【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0, 故答案为x ﹣y ﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.14.【答案】 ①④⑤【解析】解:由题意知:A ≠,B ≠,C ≠,且A+B+C=π∴tan (A+B )=tan (π﹣C )=﹣tanC ,又∵tan (A+B )=,∴tanA+tanB=tan (A+B )(1﹣tanAtanB )=﹣tanC (1﹣tanAtanB )=﹣tanC+tanAtanBtanC , 即tanA+tanB+tanC=tanAtanBtanC ,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA ,tanB ,tanC 中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA :tanB :tanC=1:2:3,则6tan 3A=6tanA ,则tanA=1,故A=45°,故④正确;当tanB ﹣1=时, tanA •tanB=tanA+tanB+tanC ,即tanC=,C=60°,此时sin 2C=,sinA •sinB=sinA •sin (120°﹣A )=sinA •(cosA+sinA )=sinAcosA+sin 2A=sin2A+﹣cos2A=sin (2A ﹣30°)≤,则sin 2C ≥sinA •sinB .故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.15.【答案】 ﹣6 .【解析】解:由约束条件,得可行域如图,使目标函数z=2x ﹣3y 取得最小值的最优解为A (3,4), ∴目标函数z=2x ﹣3y 的最小值为z=2×3﹣3×4=﹣6. 故答案为:﹣6.16.【答案】35【解析】解析:本题考查几何概率的计算与切线斜率的计算.001()x x k f x e-'==,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为23. 17.【答案】①②【解析】试题分析:子集的个数是2n,故①正确.根据奇函数的定义知②正确.对于③()241f x x =-为偶函数,故错误.对于④0x =没有对应,故不是映射.对于⑤减区间要分成两段,故错误. 考点:子集,函数的奇偶性与单调性.【思路点晴】集合子集的个数由集合的元素个数来决定,一个个元素的集合,它的子集的个数是2n个;对于奇函数来说,如果在0x =处有定义,那么一定有()00f =,偶函数没有这个性质;函数的奇偶性判断主要根据定义()()()(),f x f x f x f x -=-=-,注意判断定义域是否关于原点对称.映射必须集合A 中任意一个元素在集合B 中都有唯一确定的数和它对应;函数的定义域和单调区间要区分清楚,不要随意写并集.1三、解答题18.【答案】(1)13|{<<-x x 或}3>x ;(2). 【解析】试题解析:(1)由题意不等式)()(x g x f >可化为|1||2|+>+-x x x , 当1-<x 时,)1()2(+->+--x x x ,解得3->x ,即13-<<-x ; 当21≤≤-x 时,1)2(+>+--x x x ,解得1<x ,即11<≤-x ; 当2>x 时,12+>+-x x x ,解得3>x ,即3>x (4分) 综上所述,不等式)()(x g x f >的解集为13|{<<-x x 或}3>x . (5分)(2)由不等式m x g x x f +≤-)(22)(可得m x x ++≤-|1||2|, 分离参数m ,得|1||2|+--≥x x m ,∴max |)1||2(|+--≥x x m∵3|)1(2||1||2|=+--≤+--x x x x ,∴3≥m ,故实数m 的最小值是. (10分) 考点:绝对值三角不等式;绝对值不等式的解法.1 19.【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.(2)由(1)中知曲线C 是椭圆,将直线2l :m kx y +=代入 椭圆C 的方程124322=+y x 中,得01248)34(222=-+++m kmx x k由直线2l 与椭圆C 有且仅有一个公共点知, 0)124)(34(4642222=-+-=∆m k m k ,整理得3422+=k m …………7分且211||k k m d +-=,221||kk m d ++=1当0≠k 时,设直线2l 的倾斜角为θ,则|||tan |213d d d -=⋅θ,即||213kd d d -= ∴2222121213211||4||||)()(km k d d k d d d d d d d +=-=-+=+ ||1||16143||42m m m m +=+-= …………10分∵3422+=k m ∴当0≠k 时,3||>m∴334313||1||=+>+m m ,∴34)(321<+d d d ……11分 2当0=k 时,四边形PQ F F 21为矩形,此时321==d d ,23=d∴34232)(321=⨯=+d d d …………12分综上1、2可知,321)(d d d ⋅+存在最大值,最大值为34 ……13分20.【答案】【解析】(1)证明:∵AE ⊥A 1B 1,A 1B 1∥AB ,∴AE ⊥AB , 又∵AA 1⊥AB ,AA 1⊥∩AE=A ,∴AB ⊥面A 1ACC 1, 又∵AC ⊂面A 1ACC 1,∴AB ⊥AC ,以A 为原点建立如图所示的空间直角坐标系A ﹣xyz ,则有A (0,0,0),E (0,1,),F (,,0),A 1(0,0,1),B 1(1,0,1), 设D (x ,y ,z ),且λ∈,即(x ,y ,z ﹣1)=λ(1,0,0),则 D (λ,0,1),所以=(,,﹣1),∵=(0,1,),∴•==0,所以DF ⊥AE ;(2)结论:存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为.理由如下:设面DEF的法向量为=(x,y,z),则,∵=(,,),=(,﹣1),∴,即,令z=2(1﹣λ),则=(3,1+2λ,2(1﹣λ)).由题可知面ABC的法向量=(0,0,1),∵平面DEF与平面ABC所成锐二面角的余弦值为,∴|cos<,>|==,即=,解得或(舍),所以当D为A1B1中点时满足要求.【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.21.【答案】【解析】【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想的运用和综合分析问题解决问题的能力.请22.【答案】(1)320x y ++=;(2)()2228x y -+=.【解析】试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.(2)由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,因为矩形ABCD 两条对角线的交点为()2,0M ,所以M 为距形ABCD 外接圆的圆心, 又AM ==从而距形ABCD 外接圆的方程为()2228x y -+=.1考点:直线的点斜式方程;圆的方程的求解.【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力. 23.【答案】【解析】解:(1)∵四边形AA 1C 1C 为平行四边形,∴AC=A 1C 1, ∵AC=AA 1,∴AA 1=A 1C 1,∵∠AA 1C 1=60°,∴△AA 1C 1为等边三角形, 同理△ABC 1是等边三角形, ∵D 为AC 1的中点,∴BD ⊥AC 1, ∵平面ABC 1⊥平面AA 1C 1C ,平面ABC 1∩平面AA 1C 1C=AC 1,BD ⊂平面ABC 1, ∴BD ⊥平面AA 1C 1C .(2)以点D 为坐标原点,DA 、DC 、DB 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,平面ABC 1的一个法向量为,设平面ABC 的法向量为,由题意可得,,则,所以平面ABC 的一个法向量为=(,1,1),∴cos θ=.即二面角C 1﹣AB ﹣C 的余弦值等于.【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.24.【答案】【解析】(本小题满分13分)解:(1)当n=1时,a2=2a,则;当2≤n≤2k﹣1时,a n+1=(a﹣1)S n+2,a n=(a﹣1)S n﹣1+2,所以a n+1﹣a n=(a﹣1)a n,故=a,即数列{a n}是等比数列,,∴T n=a1×a2×…×a n=2n a1+2+…+(n﹣1)=,b n==.…(2)令,则n≤k+,又n∈N*,故当n≤k时,,当n≥k+1时,.…|b1﹣|+|b2﹣|+…+|b2k﹣1﹣|+|b2k﹣|=+()+…+()…=(k+1+…+b2k)﹣(b1+…+b k)=[+k]﹣[]=,由,得2k2﹣6k+3≤0,解得,…又k≥2,且k∈N*,所以k=2.…【点评】本题考查数列的通项公式的求法,考查满足条件的实数值的求法,是中档题,解题时要认真审题,注意等比数列的性质和构造法的合理运用.。
藁城区第一中学第三次月考(理)1.已知集合A={0,1},B={z|z=x+y,x∈A,y∈A},则B的子集个数为()A.3B.4C.7D.82.已知直线m,n,l和平面α,β,且m⊂α,n⊂β,α∩β=l,给出命题p:“若m与n不垂直,则α与β不垂直”,则在命题q的逆命题、否命题、逆否命题中,真命题中的个数为A.0B.1C.2D.3 ()3.在△ABC中,“tan A tan B<1”是“△ABC为钝角三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.设命题p:函数f(x)=x3﹣ax﹣1在区间[﹣1,1]上单调递减;命题q:函数y=ln(x2+ax+1)的值域是R.如果命题p或q为真命题,p且q为假命题,则实数a的取值范围是()A.(﹣∞,3]B.(﹣∞,﹣2]∪[2,3)C.(2,3]D.[3,+∞)5.直线l1:kx﹣y﹣2k+4=0与x轴交于点M,直线l2:x+ky﹣4k﹣2=0与y轴交于点N,线段MN 的中点为P,则点P的坐标(x,y)满足的方程为()A.(x+2y﹣5)(2x﹣y)=0B.x+2y﹣5=0C.(2x+y+4)(2x+y)=0D.2x+y﹣4=06.若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2,则直线l的斜率的取值范围是()A.[2﹣,1]B.[2﹣,2+]C.[,]D.[0,+∞)7.4sin80°﹣等于()A.B.﹣C.2D.2﹣38.设函数f(x)=a sin x cos x﹣2sin2x,若直线x=是f(x)图象的一条对称轴,则()A.f(x)的最小正周期为π,最大值为1B.f(x)的最小正周期为π,最大值为2C.f(x)的最小正周期为2π,最大值为1D.f(x)的最小正周期为2π,最大值为29.在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有()A.180种B.150种C.96种D.114种10.在区间[0,1]上任取两个实数a,b,则函数f(x)=x2+ax+b2无零点的概率为()A.B.C.D.11.在(x﹣1)2(x﹣2)6的展开式中,含x3的项的系数是()A.﹣832B.﹣672C.﹣512D.﹣19212.已知圆心C在直线y=2x﹣4上的圆的半径为1,点A(0,3),若圆C上存在点M,使得|MA|=2|MO|(O为坐标原点),则圆心C的横坐标a的最大值是()A.B.C.D.13.如图所示,墙上挂有边长为a的正方形木板,它的四个角的阴影部分都是以正方形的顶点为圆心,半径为的圆弧.某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都相等,此人投镖4000次,镖击中空白部分的次数是854次.据此估算:圆周率π约为.14.某几何体的三视图如图所示,若该几何体的所有顶点都在同一个球的表面上,则这个球的表面积是()A.41πB.C.D.57π15.已知S n是数列{a n}的前n项和,且log3(S n+1)=n+1,则数列{a n}的通项公式为.16.已知△ABC内接于以O为圆心,1为半径的圆,且,则=.17.已知函数g(x)=cos2x+1,x∈R,函数f(x)与函数g(x)的图象关于原点对称.(1)求y=f(x)的解析式;(2)当时,求函数f(x)的取值范围.18.设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*).(1)若a1=﹣2,点(a8,4b7)在函数f(x)的图象上,求数列{a n}的前n项和S n;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{}的前n项和T n.19.如图,在四棱锥P﹣ABCD中,△P AD为等边三角形,AD⊥CD,AD∥BC,且AD=2BC=2,CD=,PB=,E为AD中点.(1)求证:平面P AD⊥平面ABCD;(2)若线段PC上存在点Q,使得二面角Q﹣BE﹣C的大小为30°,求的值;(3)在(2)的条件下,求点C到平面QEB的距离.20.已知椭圆C:+=1(a>b>0)的离心率为,长轴长为等于圆R:x2+(y﹣2)2=4的直径,过点P(0,1)的直线l与椭圆C交于两点A,B,与圆R交于两点M,N(Ⅰ)求椭圆C的方程;(Ⅱ)求证:直线RA,RB的斜率之和等于零;(Ⅲ)求|AB|•|MN|的取值范围.21.已知函数f(x)=,x∈(1,+∞).(1)求f(x)的单调区间;(2)若f(x)>在(1,+∞)上恒成立,求整数k的最大值.22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),椭圆C的方程为+y2=1,试在椭圆C上求一点P,使得P到直线l的距离最小.。
2018-2019学年上学期高一第三次月考数学试题一、选择题:(本大题共12小题,每小题5分,共60分,每小题给出的四个选项,只有一项是符合题目要求的).1.设集合,则()A. B. C. D.【答案】C【解析】∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2-1<0}=(-1,1),∴A∪B=(0,+∞)∪(-1,1)=(-1,+∞).故选C2.已知集合则()A. B.C. D.【答案】B【解析】【分析】先求出集合A,在根据集合补集的运算,即可得到答案.【详解】由题意,集合或,所以,故选B.【点睛】本题主要考查了集合的求解及集合的运算,着重考查了正确求解集合A,熟记集合的补集的运算方法是解答的关键,属于基础题.3.若函数f(x)=,则f(-3)的值为( )A. 5B. -1C. -7D. 2【答案】D【解析】试题分析:.考点:分段函数求值.4.已知,,下列对应不表示从到的映射是( )A. B.C. D.【答案】A【解析】【分析】直接利用映射的定义对选项中的对应逐一判断即可.【详解】对,时,中没有元素与之对应,不表示从到的映射;对、,集合中每一个元素在集合中都有唯一的元素与之对应,都表示从到的映射,故选A.【点睛】本题主要考查映射的定义,意在考查对基本概念的掌握与应用,属于简单题.5.已知,则,则值为()A. B. C. D.【答案】D【解析】∵,∴,∴,∴,解得。
又,∴。
选D。
点睛:(1)对于形如的连等式,一般选择用表示x,y的方法求解,以减少变量的个数,给运算带来方便;(2)注意对数式和指数式的转化,即;另外在对数的运算中,还应注意这一结论的应用。
6.函数的图象是()A. B. C. D.【答案】B【解析】试题分析:由题函数的图象相当于函数向右平移一个单位,然后将x轴下方的部分对折到x轴上方即可,故选B.考点:函数的图像与性质7.已知函数,则A. B. C. D.【答案】A【解析】【分析】首先求出的解析式,再代入求值即可。
2017-2018学年度第一学期高一数学月考三
1.已知集合A=2{|log y y x =,1}x >,B=1{|2x
y y ⎛⎫
= ⎪⎝⎭
,1}x >,则A
B =( )
. (A )1
{|0}2y y << (B ){|01}y y << (C )1
{|1}2
y y << (D )∅ 2.下列各组函数相等的是( )
A .21
()1
x f x x -=-与g (x )=x +1 B
.()f x
()g x =C .f (x )=(x -2)0
与g (x )=1 D .||
()t f t t
=
与()g x x =
3.函数()()x
x x f 2
1ln -
+=的零点所在的大致区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4) 4若11
|log |log 44
a
a =,且|log |log
b b a a =-,则,a b 满足的关系式是( ) A .1,1a b >>且 B .1,01a b ><<且 C .1,01b a ><<且 D .01,01a b <<<<且 5.若二次函数()2()15f x x a x =--+在区间1,12⎛⎫
⎪⎝⎭
上单调递增,则()2f 的取值范围是 A .()5,+∞ B. [)7,+∞ C. [)5,+∞ D. ()7,+∞ ( )
6.已知角x 的终边上一点坐标为55sin ,cos 66ππ⎛⎫
⎪⎝
⎭
,则角x 的最小正值为 ( )
A .
56π B .53π C .116
π D .23π 7 24cos
cos
cos 9
99
π
ππ
⋅⋅= A. B. C. D. ( )
8把函数cos y x =的图像上的所有点的横坐标缩小到原来的一半(纵坐标不变),
然后再把所得图像向右平移
4
π
个单位,则所得图形对应的解析式为( ) A 1cos()24y x π=- B cos(2)4y x π=- C 1cos()28y x π=- D cos(2)2
y x π
=-
9.设向量0000(cos25,sin 25),(sin 20,cos20)a b ==,若()c a tb t R =+∈,则c 的最小值为
2
D 12 ( )
10. 等腰三角形ABC 中,5,30,AB AC B P BC ==∠=为边中线上任意一点, 则CP BC ⋅的值为( )A 、
75
2
B 、252-
C 、5
D 、752-
11.如果函数()3cos 2y x ϕ=+的图像关于点(43
π
,0)成中心对称,那么|ϕ|的最小值为( ) A.
6π B. 4π C. 3π D. 2
π
12若函数()()
2
log 2a f x x x =+(0a >且1a ≠)在区间10,
2⎛⎫
⎪⎝⎭
内恒有()0f x >,则()f x 的单调递增区间为( )A. 1,4⎛⎫-∞-
⎪⎝⎭B. 1,4⎛⎫-+∞ ⎪⎝⎭ C. ()0,+∞ D. 1,2⎛⎫-∞- ⎪⎝⎭
13.集合{}
{}
o m R x mx x N x x x M ≠∈===--=,,1,03522
,且N ⊆M,则实数m 的值为
14.已知向量a 与b 的夹角为0
120,且3,5a b ==,则向量b 在a 方向上的射影是____ 15.定义在(1,1)-上的函数()5sin f x x x =-+,如果2(1)(1)0f a f a -+->,则实数
a 的取值范围为
16已知错误!未找到引用源。
,若错误!未找到引用源。
有错误!未找到引用源。
个根错误!未找到引用源。
,则错误!未找到引用源。
的取值范围是________________.
17.已知集合}127
{>-=x
x P ,},32{2p x x x y y M ∈--==,求P M 。
18.设函数()sin()(000f x A x A ωϕωπϕ=+>><<,,-)的部分图像如图所示; (1)求()f x 的解析式;
(2)若函数()=()x f x m ϕ-在5[03
π
,)上有两个零点
αβ、,求cos()αβ+的值.。