天然药物化学需要掌握的化合物结构
- 格式:docx
- 大小:592.57 KB
- 文档页数:8
天然药物化学二级结构汇总
以下是一些常见的天然药物化合物的二级结构:
1. 阿司匹林(aspirin):它是一种非处方药,常用于缓解疼痛、发热和消炎。
阿司匹林的二级结构中包含苯环和乙酰基基团。
2. 奎宁(quinine):它是一种从树皮提取的天然产物,用于治疗疟疾和肌肉痉挛。
奎宁的二级结构中包含喹啉环和甲氧基基团。
3. 阿托伐他汀(atorvastatin):它是一种用于降低胆固醇的处
方药,常用于治疗高胆固醇和心血管疾病。
阿托伐他汀的二级结构中包含吡唑环和苄酸基团。
4. 紫杉醇(paclitaxel):它是一种从紫杉树提取的天然产物,用于治疗多种癌症,如乳腺癌和卵巢癌。
紫杉醇的二级结构中包含环丙孕烷环和酪氨酸基团。
5. 可卡因(cocaine):它是一种来源于古柯植物的兴奋剂和
局部麻醉剂。
可卡因的二级结构中包含苯环和甲基基团。
以上只是一些常见的天然药物化合物的二级结构示例,还有很多其他天然药物也具有特定的二级结构,具体的结构可以通过化学分析和研究获得。
第一章总论天然药物化学是运用现代科学理论与方法研究天然药物中化学成分的一门学科;其研究内容包括各类天然药物的化学成分主要是生理活性成分或药效成分的结构特点、物理化学性质、提取分离方法以及主要类型化学成分的结构鉴定等;一.中草药有效成分的提取从药材中提取天然活性成分的方法有溶剂法、水蒸气蒸馏法及升华法等;●溶剂提取法的原理:溶剂提取法是根据“相似相容”原理进行的,通过选择适当溶剂将中药中的化学成分从药材中提取出来的一种方法;考试时请这样回答哦常用溶剂极性有弱到强排列:石油醚<环己烷<苯<乙醚<氯仿<醋酸乙酯<正丁醇<丙酮<乙醇<甲醇<水丙酮,乙醇,甲醇能够和水任意比例混合;常用溶剂的性质:亲脂性有机溶剂、亲水性有机溶剂、水一般情况下,分子较小,结构中极性基团较多的物质亲水性较强;而分子较大,结构上极性基团少的物质则亲脂性较强;●天然药物中各类成分的极性·多糖、氨基酸等成分极性较大,易溶于水及含水醇中;·鞣质是多羟基衍生物,列为亲水性化合物;·苷类的分子中结合有糖分子,羟基数目多,能表现强亲水性;·生物碱盐,能够离子化,加大了极性,就变成了亲水性化合物;·萜类、甾体等脂环类及芳香类化合物因为极性较小,易溶于氯仿、乙醚等亲脂性溶剂中;·油脂、挥发油、蜡、脂溶性色素都是强亲脂性成分,易溶于石油醚等强亲脂性溶剂中总之,天然化合物在溶剂中的溶解遵循“相似相溶”规律;即极性化合物易溶于极性溶剂,非极性化合物易溶于非极性溶剂,分子量太大的化合物往往不溶于任何溶剂;溶剂提取法的关键是选择适宜的溶剂选择溶剂依据:根据溶剂的极性和被提取成分及其共存杂质的性质,决定选择何种溶剂各溶剂法分类见天然药物化学辅导教材P5三水蒸气蒸馏法只适用于具有挥发性、能随水蒸气蒸馏而不被破坏,与水不发生反应,且难溶或不溶于水的成分的提取;天然药物中的挥发油、某些小分子生物碱如麻黄碱、烟碱、槟榔碱以及某些小分子的酚性物质如牡丹酚等的提取可采用水蒸气蒸馏法;四升华法某些固体物质如水杨酸、苯甲酸、樟脑等受热在低于其熔点的温度下,不经过熔化就可直接转化为蒸气,蒸气遇冷后又凝结成固体称为升华;天然药物中有一些成分具有升华性质,能利用升华法直接中药材中提取出来;但天然药物成分一般可升华的很少;果蔬脱水新技术实质上升华脱水法;五超临界二氧化碳流体萃取法了解部分,见天然药物化学辅导教材P6三、中草药有效成分的分离与精制一根据物质溶解度不同进行分离1. 原理: 相似相溶2. 方法: 结晶法、试剂沉淀法、酸碱沉淀法、铅盐沉淀法、盐析法二根据物质分配系数的不同进行分离K = CU / CLCU:上相,CL:下相,K值与萃取次数成反比,即K值越大,萃取次数越少,反之越多;⑴分配系数K值与萃取次数的关系原理: 利用物质在两种互不相溶的溶剂中的分配系数的不同达到分离 ;分配系数K值:一种溶质在两相溶剂中的分配比;K值在一定的温度和压力下为一常数;⑵分离因子β值与分离难易的关系分离因子β:两种溶质在同一溶剂系统中分配系数的比值;b = KA / KB KA>KBb值越大,越易分离; b =1时,无法分离;⑶酸碱度pH值对分配比的影响溶剂系统PH的变化影响酸性、碱性、及两性有机化合物的存在状态游离型或离解型,从而影响在溶剂系统中的分配比;游离型------极性小的溶剂;离解型-------极性大的溶剂◆PH<3,酸性物质多呈游离型HA、碱性物质则呈离解型BH+;◆ PH>12,酸性物质呈离解型A-、碱性物质以游离型B存在;纸色谱法 PC以滤纸纤维为惰性载体的平面色谱支持剂:纤维素滤纸固定相:纤维素上吸附的水20-25%展开剂:与水不相混溶的有机溶剂或水饱和的有机溶剂Rf值: A、物质极性大, Rf值小; B、物质极性小, Rf值大;应用:适合于分离亲水性较强的物质;液-液分配柱色谱法固定相主要为化学键合柱色谱:将吸附固定液的载体装入色谱管中进行分离和检测混合物成分的色谱法;按是否加压分:常压柱色谱、加压柱色谱按相极性分:正相色谱、反相色谱载体:硅胶含水17%以上、硅藻土及纤维素等●正相色谱:固定相>流动相极性固定相:水、缓冲溶液流动相:氯仿、乙酸乙酯、丁醇等弱极性有机溶剂洗脱顺序:极性小的化合物先出柱,极性大的化合物后出柱应用:适用于水溶性或极性较大的化合物,如生物碱、苷、糖类、有机酸等;●反相色谱:固定相<流动相极性固定相:石蜡油,化学键合相如十八烷基硅胶键合相流动相:水、甲醇、乙腈等强极性有机溶剂洗脱顺序:极性大化合物,先出柱;极性小化合物,后出柱;应用:适合于脂溶性成分,如高级脂肪酸、油脂、游离甾体等;(三)..根据物质吸附性差别进行分离吸附色谱法利用同一吸附剂对混合物中各成分吸附能力的不同而达到分离的色谱方法;吸附类型:1.物理吸附溶液分子与吸附剂表面分子的分子间作用力:硅胶、氧化铝及活性炭为吸附剂的吸附;相似者易吸附2.化学吸附:如黄酮等酚酸性物质被碱性氧化铝吸附,生物碱被酸性硅胶吸附等;3.半化学吸附:如聚酰胺与黄酮类、蒽醌类等化合物之间的氢键吸附;介于物理吸附与化学吸附之间;固-液吸附柱色谱将待分离混合物样品加在装有吸附剂的柱子中,再加适当的溶剂洗脱剂冲洗,由于吸附剂对各组分吸附能力不同,各组分在柱中向下移动的速度不同,吸附力最弱的组分随溶剂首先流出,通过分段定量收集洗脱液而使各组分得到分离;固-液吸附三要素:吸附剂、溶质、溶剂●吸附剂的种类及特点 1.极性吸附剂氧化铝、硅胶特点:a.对极性强的物质吸附能力强;b.溶剂极性减弱,则吸附剂对溶质的吸附能力增强;反之,则减弱;c.溶质即使被硅胶、氧化铝吸附,一旦加入极性较强的溶剂时,又可被置换洗脱下来;为避免化学吸附,酸性物质宜用硅胶、碱性物质宜用氧化铝作为吸附剂进行分离;通常在分离酸性或碱性物质时,洗脱溶剂中常加入适量的醋酸或氨、吡啶、二乙胺,以防止拖尾,改善分离效果;●非极性吸附剂活性炭特点:活性炭因为是非极性吸附剂,对非极性物质具有较强的亲和能力;在水中对溶质表现出强的吸附能力,溶剂极性降低,则活性炭对溶质的吸附能力也随之降低;故从活性炭上洗脱被吸附物质时,洗脱溶剂的洗脱能力将随溶剂极性的降低而增强;当用活性炭作吸附剂进行层析时,下列洗脱剂的洗脱能力由小列大为:水、l0%、20%、30%、50%、75%、95%的乙醇;聚酰胺吸附色谱法通过分子中的酰胺羰基与酚类、黄酮类化合物的酚羟基,或酰胺键上的游离胺基与醌类、脂肪酸上的羰基形成氢键缔合而产生吸附;●吸附强弱规律含水溶剂中a.形成氢键的基团数目越多,则吸附能力越强;形成氢键的能力与溶剂有关,一般在水中形成氢键的能力最强,在有机溶剂中较弱,在碱性溶液中最弱;c.分子中芳香化程度越高,则吸附性能越强;b.易形成分子内氢键的化合物,其吸附性能减弱;在聚酰胺柱色谱分离时,通常用水装柱,样品也尽可能作成水溶液上柱以利聚酰胺对溶质的充分吸附,形成较窄的原始谱带;随后用不同浓度的含水醇洗脱,并不断提高醇的浓度,逐步增强从柱上洗脱物质的能力;甲酰胺、二甲基甲酰胺及尿素水溶液因分子中均有酰胺基,作为第三者可以同时与聚酰胺及酚类等化合物形成氢键缔合,故有很强的洗脱能力;此外,水溶液中加入碱或酸均可破坏聚酰胺与溶质之间的氢键缔合,也有较强的洗脱能力;●各种溶剂在聚酰胺柱上的洗脱能力由弱至强排序为:水→甲醇→丙酮→氢氧化钠水溶液→甲酰胺→二甲基甲酰胺→尿素水溶液●应用 a.特别适合于酚类、醌类、黄酮类化合物的制备和分离;b.对生物碱、萜类、甾体、糖类、氨基酸等其它极性与非极性化合物的分离也有着广泛应用;c.用于提取物的脱鞣质处理大孔吸附树脂的吸附由于吸附性和分子筛原理,有机化合物吸附力的不同及分子量的不同,在大孔吸附脂上经一定的溶剂洗脱而分开; ①吸附性-----范德华引力或产生氢键的结果;②分子筛------本身多孔性结构所决定; 大孔吸附树脂:分为极性和非极性●影响因素:a.一般非极性化合物在水中易被非极性树脂吸附,极性化合物易被极性树脂吸附;糖是极性的水溶性化合物,与D型非极性树脂吸附作用很弱,据此经常用大孔吸附树脂将中药的化学成分和糖分离;b.物质在溶剂中的溶解度大,树脂对此物质的吸附力就小,反之就大;c.分子量小、极性小的化合物与非极性大孔吸附树脂吸附作用强;反之,与极性大孔吸附树脂吸附作用强;d.能与大孔吸附树脂形成氢键的化合物易吸附;●洗脱液的选择:最常用的水、乙醇、甲醇、丙酮、乙酸乙酯对非极性大孔树脂:洗脱液极性越小,洗脱能力越强;对极性大孔树脂:洗脱液极性越大,洗脱能力越强;●应用广泛应用于天然化合物如苷与糖类的分离、生物碱精制;主要用于水溶性大分子化合物的分离和精制:如多糖、蛋白质、多肽类化合物分离;四根据物质分子大小差别进行分离凝胶色谱法:将含有大小不同分子的混合物样品液,通过多孔性凝胶固定相,用洗脱剂将分子量由大到小的化合物先后洗脱的一种分离方法;五根据物质解离程度不同进行分离天然有机化合物中,具有酸性、碱性及两性基团的分子,在水中多呈离解状态,据此可用离子交换法或电泳技术进行分离;以下仅简单介绍离子交换法;●.原理:是以离子交换树脂作为固定相,用水或含水溶剂为流动相;当流动相流过交换柱时,溶液中的中性分子及不与离子交换树脂交换基团发生交换的化合物将通过柱子从柱底流出,而具有可交换的离子则与树脂上的交换基团进行离子交换并被吸附到柱上,随后改变条件,并用适当溶剂从柱上洗脱下来,即可实现物质分离;●结构及性质:离子交换树脂外观均为球形颗粒,不溶于水,但可在水中膨胀;●吸附规律:阳离子交换树脂——分离碱性成分;阴离子交换树脂——分离酸性成分●.应用:主要用于能产生离子型的成分如氨基酸、肽类、生物碱、有机酸、酚类等;四、结构研究法结构测定常用的波谱分析紫外-可见吸收光谱uv凡具有不饱和键的化合物,特别是存在共扼不饱和键的化合物,在紫外-可见光谱200-700 nm中有特征吸收峰,所以紫外光谱适用于鉴定不饱和键的有无,或用以推测这些不饱和键是否共扼; 红外光谱 IR红外光谱能充分反映官能团与波长的关系,所以对确定未知物的结构非常有用; 常见官能团伸缩振动区:①O-H、N-H 3750-3000 cm-1 ②C-H 3300-2700 cm-1③C≡C2400-2100 cm-1 ④C=O 1900-1650 cm-1 ⑤C=C 1690-1600 cm-1质谱 MS就是化合物分子经电子流冲击或用其他手段打掉一个电子后,形成正电离子,在电场和磁场的作用下,按质量大小排列而成的图谱;用质谱测定有机分子的分子量;核磁共振谱NMR1H–NMR和13C-NMR能提供分子中有关氢及碳原子的类型、数目、互相连接方式、周围化学环境以及构型、构象等结构信息;●氢谱H—NMR1H –NMR通过测定化学位移δ、质子数以及裂分情况重峰数及偶合常数J可以得出分子中1H 的类型、数目及相邻原子或原子团的信息;①化学位移:在有机化合物中虽同为氢核,如果它们所处的化学环境不同,则它们共振时所吸收的能量就稍有不同,在波谱上就显示出共振峰位置的移动;这种因化学环境变化引起的共振谱线的位移称为化学位移,用符号δ表示;②质子数:根据氢谱的上峰的积分面积并结合已知的分子式求得每个信号所相当的氢的个数,现在1H–NMR 可以直接给出每个信号代表的质子的个数,并可以直接获得分子中总的质子数;③信号的裂分及偶合常数J:磁不等同的两个或两组1H核在一定距离内会因相互自旋偶合干扰而使信号发生裂分,而出现ssinglet,单峰、ddoublet,双峰、ttriplet,三重峰、uartet,四重峰、mmultiplet,多重峰等;峰裂分数:n+1规律④裂分间的距离称为偶合常数J,单位Hz;其大小取决于间隔键的距离;间隔的键数越少,则J的绝对值越大;反之,越小;按间隔键的多少可分为偕偶J2 、邻偶J3及远程偶合J远 ;※一般相互偶合的两个或两组1H核信号其偶合常数相等Jab=Jba;课后作业一、名词解释1.天然药物化学:是指运用现代科学理论与方法研究天然药物中化学成分的一门学科;其学习内容包括天然药物化学的化学成分的结构特点、物理化学性质、提取分离以及主要类型化学成分的结构鉴定等等;2.有效成分:是指具有生理活性有药效、能治病的成分; 有效部位:是指具有一种主要有效成分或组成相似的有效成分的部位;无效成分:没有生理活性、没有药效、不能治病的成分4.溶剂提取法、系统溶剂提取法略第二章糖和苷概述糖是多羟基醛或酮类化合物及其聚合物;苷的共性是糖和苷键;第一节单糖的立体化学一、单糖结构式的表示方法:优势构象式、Haworth、FischerFischer投影式⑴主碳链上下排列,取代基左右排列;⑵羰基一端在上方;⑶主碳链上下两端价键和所结合的基团指向纸面后方,水平方向的价键和与之相结合的基团指向纸面前方;※因此,Fischer投影式只能在纸面上转动n180n=1,2,3…或转n90°,而不能使之翻转二、单糖的氧环各种糖之间的转化三、单糖的绝对构型Fischer投影式:看距羰基最远的不对称C-OH,OH向右———D型; OH向左———L型;Haworth投影式:看不对称C-R的朝向旋转R面上———D型; R面下———L型;四、单糖的端基差向异构单糖成环后形成了一个新的手性碳原子,该碳原子为端基碳,形成一对异构体为端基差向异构体,有α、β两种构型;Fischer投影式:看距羰基最远的不对称C-OH与C1-OH关系同侧——α型异侧——β型;Haworth投影式:看距羰基最远不对称C-R与C1-OH关系旋转异侧———α型;同侧———β型;五、单糖的构象呋喃糖的五元氧环基本为一平面;吡喃糖的六元氧环有船式和椅式两种构象,以椅式C为主;根据C椅式的存在形式又可分为C1式和1C式;直立键和平伏键的具体写法:①在C1式中位于C4、C2面上和C1、C3、 C5面下的基团为竖键;②平伏键e键与环上的键隔键平行; ③横键或竖键在环的面上面下交替排列;·α-L、β-D ,C1式 ,C1-OH在e键平伏键·α-D、β-L ,C1式 ,C1-OH在a键直立键第二节糖和苷的分类糖类物质根据其能否水解和分子量的大小分为单糖、低聚糖、多糖一.单糖类天然单糖以五碳糖、六碳糖最多,多数在生物体内呈结合状态,只有葡萄糖、果糖等少数以单糖存在;结构见课本p57二.低聚糖由2-9个单糖通过苷键结合而成的直链或支链聚糖称为低聚糖;·按单糖个数可以分为二糖、三糖等·按是否具有还原性分为还原糖和非还原糖·具有游离醛基或通基的糖为还原糖;如果二糖都以半缩醛或半缩酮上的羟基通过脱水缩合而成的聚糖没有还原性,为非还原糖;三、多聚糖由十个以上的单糖通过苷键连接而成的糖;①植物多糖:淀粉、纤维素、果聚糖、半纤维素、树胶、粘液质②动物多糖:糖原、甲壳素、肝素、硫酸软骨素、透明质酸四、苷类苷是由糖及其衍生物的半缩醛或半缩酮的羟基与非糖物质苷元脱水形成的一类化合物;新生成的化学键即位苷键;知道各类特点即可第三节糖和苷的性质一、糖和苷的物理性质●溶解性糖:小分子极性大,水溶性好,随着聚合度增高,水溶性下降;多糖难溶于冷水,或溶于热水成胶体溶液,难溶于高浓度的乙醇;单糖极性 > 双糖极性 ;①苷——亲水性其大小与连接糖的数目、性质有关;※ C-苷在水或有机溶剂中的溶解度都较小;②苷元——为亲脂性; 可溶于乙醚、氯仿等有机溶剂中;●味觉①单糖~低聚糖——甜味; ②多糖——无甜味;随着糖的聚合度增高,则甜味减小;③苷类——苦人参皂苷、甜甜菊苷等;●旋光性:数值上相接近的一个便是与之有相同苷键的一个;利用旋光性→测定苷键构型※糖有旋光性;天然存在的单糖左旋、右旋的均有,但以右旋的较多;※苷类具有旋光性,天然苷类多呈左旋;苷类水解后,由于生成的糖常是右旋的,因而使混合物呈右旋;二、糖和苷的化学性质●氧化反应:单糖分子中有醛酮、伯醇、仲醇和邻二醇等结构①其易氧化程度为:醛酮基>伯醇基>仲醇基 . ②反应速度:顺式>反式因顺式易形成环式中间体.③对固定在环的异边并无扭曲余地的邻二醇羟基不反应;④.反应在水溶液中进行或含水溶液;⑤反应定量进行;●糠醛酚醛缩合反应;也叫Molish反应-----是糖的检识反应,也是苷类的检识反应;现象:界面处紫色环; ※碳苷和糖醛酸与Molish试剂往往不反应;第四节苷键的裂解1、按裂解的程度可分:全裂解和部分裂解;2、按所用的方法可分:均相水解和双相水解;3、按照所用催化剂的不同可分:酸催化水解、碱催化水解、酶解、过碘酸裂解、乙酰解等;●酸催化水解:阳碳离子酸水解难易程度规律有利于苷键原子质子化和中间体形成的因素均有利于水解;①按苷键原子的不同,苷类水解从易到难的顺序为:N-苷> O-苷> S-苷> C-苷;注意:N碱性最强,最易质子化,所以N-苷最易水解;②N-苷的N原子在酰氨及嘧啶环上,很难水解由于受到强的吸电子效应,碱性几乎消失;③酚苷及烯醇苷比其它醇苷易水解;如苯酚苷因苷元部分有供电结构;④.2,6-二去氧糖苷>2-去氧糖苷>6-去氧糖苷>2-羟基糖苷>2-氨基糖苷由于氨基、羟基均可与苷键原子争夺质子⑤呋喃糖苷>吡喃糖苷因五元呋喃环中各取代基处在重叠位置,水解时形成中间体使张力减小;酮糖多为呋喃糖结构,醛糖多为毗喃糖结构,故酮糖苷较醛糖苷易水解;⑥.在吡喃糖苷中由于C5-R会对质子进攻苷键造成一定的位阻,故R愈大,则愈难水解;五碳糖苷>甲基五碳糖苷>六碳糖苷>七碳糖苷>糖醛酸苷⑦当苷元为小基团——横键的苷键比竖键易水解,横键上原子易于质子化当苷元为大基团——苷键竖键比横键易水解;苷的不稳定性促使其水解●碱催化水解通常苷键对碱稳定,但某些特殊的苷如:酯苷、酚苷、与羰基共轭烯醇苷——易被碱水解●酶催化水解反应反应条件温和、专属性高、能够获得原苷元常用的苷键水解酶:杏仁苷酶—水解—β-六碳醛糖苷键纤维素酶—水解—β-D-葡萄糖苷键麦芽糖酶—水解—α-D-葡萄糖苷键转化糖酶—水解—β-果糖苷键●过碘酸裂解反应Smith降解法·特点:反应条件温和、易得到原苷元;可通过产物推测糖的种类、糖与糖的连接方式以及氧环大小;·适用范围:苷元不稳定的苷和碳苷得到连有一个醛基的苷元,不适合苷元上有邻二醇羟基或易被氧化的基团的苷;·所用试剂为:NaIO4、NaBH4·产物:多元醇、羟基乙醛、苷元·碳苷是很难用酸催化水解的,而用Smith裂解获得连有一个醛基的苷元;第五节糖及苷的提取分离一、提取▲糖苷类具多羟基,极性较大,易溶于水,难溶于低极性有机溶剂,但苷类化合物的溶解度则因苷元性质不同而有较大差异;▲糖的提取方法:根据它们对水和醇的溶解度不同而采用不同的方法;如单糖包括小分子低聚糖可用水或50 %醇提取;多糖根据可溶于热水,而不溶于醇的性质提取;依据:①多糖溶于热水中,采用水煎煮法提取;②多糖不溶于醇,采用逐步提高醇的浓度、使多糖分级在醇中析出,以达到纯化和分离;▲苷类提取常用的方法:※若提取的是原生苷,需抑制或破坏酶的活性,采用热乙醇或沸水提取;※若提取次生苷可用酶解方法,酶解后用适当浓度醇或乙酸乙酯提取;※若提取苷元可先酸水解或酶解,再用低极性有机溶剂乙醚或氯仿提取;抑制或破坏酶活性的方法:①在中药中加入一定量的碳酸钙②采用甲醇、乙醇或沸水提取③在提取过程中还须尽量勿与酸和碱接触;否则,得到的不是原生苷,而是已水解失去一部分糖的次生苷,甚至是苷元;二、分离●活性炭柱层析:活性碳为非极性吸附剂,吸附量大、分离率高;对于糖的吸附力:多糖 > 低聚糖 > 单糖方法以活性碳装柱→上样→水洗脱单糖→递增浓度乙醇洗脱二糖、三糖、低聚糖、直至总苷被依次洗脱;●凝胶柱层析:利用分子筛原理;对于不同聚合度的糖类及其水溶性成分的分离特别有效,方法快速、简单、条件温和;洗脱顺序:随分子量由大及小依次流出;●离子交换柱色谱①除去水提液中的酸、碱性成分和无机离子;②制成硼酸络合物——强碱性阴离子交换树脂不同浓度的硼酸盐洗脱●季铵盐沉淀法●.分级沉淀法●蛋白质去除法三、糖和苷的检识利用糖的还原性和糖的脱水反应所产生的颜色变化、沉淀生成等现象来进行理化检识,利用纸色谱和薄层色谱进行色谱检识;●理化检识①.Molish反应:检识糖或苷类化合物;若在两液面间有紫色环产生,则含有糖或苷类化合物;②.Fehling试剂反应:检验还原糖存在;③.Tollen反应:检验还原糖存在;●色谱检识★纸色谱 PC ★薄层色谱 TLC比较下列成分苷元相同Rf值的大小:苷元<单糖苷<双糖苷特点:增加糖在固定相中溶解度,使硅胶吸附能力下降,利于斑点集中,可增加样品载样量;显色剂:除纸层析外,还有—硫酸/乙醇液、茴香醛-硫酸试剂、苯胺-二苯胺磷酸试剂;思考:1.写出Smith裂解反应的反应式;2.写出D-葡萄糖、L-鼠李糖、D-葡萄糖醛酸、芸香糖的结构式;3.苷键具有什么性质,常用哪些方法裂解苷类的酸催化水解与哪些因素有关水解难易有什么规律4.苷键的酶催化水解有什么特点;第三章苯丙素类概述:苯丙素是一类含有一个或几个C6-C3单位的天然成分;第一节苯丙酸类结构特点: C6-C3结构,具有酚羟基取代的芳香羧酸;熟悉常见苯丙酸类型结构:对羟基桂皮酸、咖啡酸、阿魏酸、芥子酸;第二节香豆素类是顺邻羟基桂皮酸的内酯,具有芳香气味;其基本骨架为苯骈α-吡喃酮,7-位常有羟基或醚基;部分香豆素在生物体内以邻羟基桂皮酸苷的形式存在,酶解后苷元邻羟基桂皮酸立即内酯化而成香豆素;一、香豆素的结构类型●简单香豆素类七叶内酯只在苯环上有取代的香豆素类;取代基包括羟基、甲氧基、亚甲二氧基和异戊烯氧基等;多数在7位上有含氧官能团的存在;异戊烯氧基除直接在O上外,在6和8位出现多电负性高●呋喃香豆素类---环合时脱去3个C 苯环上的异戊烯基与邻位酚羟基环合成呋喃环 ;①线型6 ,7呋喃骈香豆素型:C6-异戊烯基和C7-OH环合补骨脂内酯。
天然药物化学总论1、主要生物合成途径醋酸——丙二酸(AA-MA):脂肪酸、酚类、蒽酮类脂肪酸:碳链奇数:丙酰辅酶A、支链:异丁酰辅酶A、α-甲基丁酰辅酶A、甲基丙二酸单酰辅酶A、碳链偶数:乙酰辅酶A甲戊二羟酸途径(MVA)桂皮酸途径和莽草酸途径氨基酸途径复合途径2、分配系数:两种相互不能任意混溶的溶剂K=C U/ C L (C U溶质在上相溶剂的浓度、C L溶质在下相溶剂的浓度)3、分离难易度:A、B两种溶质在同一溶剂系统中分配系数的比值β=K A/K B(β>100一次萃取分离;10<β<100萃取10-12次;β<2一百以上;β=1不能分离)4、分配比与PHPH=pKa+lg[A-]/[HA](pKa=[A-][H3O+]/[HA])当PH<3酸性物质为非解离状态[HA],碱性物质为解离状态[BH+]当PH>12酸性物质为解离状态[A-],碱性物质非解离状态[B]5、离子交换树脂阳离子交换树脂:交换出阳离子,交换碱性物质阴离子交换树脂:交换出阴离子,交换酸性物质糖和苷1、几种糖的写法:D-木糖(Xyl)、D-葡萄糖(Glc)、D-甘露糖(Man)、D-半乳糖(Gal)、D-果糖(Flu)、L-鼠李糖(Rha)2、还原糖:具有游离醛基或酮基的糖非还原糖:不具有游离醛基或酮基的糖3、样品鉴别:样品+浓H2SO4+α-萘酚—→棕色环4、羟基反应:醚化反应(甲醚化):Haworth法—可以全甲基话、Purdic法—不能用于还原糖、Kuhn法—可以部分甲基化、箱守法—可以全甲基化、反应在非水溶液中5、酸水解难易程度:N>O>S>C芳香属苷较脂肪属苷易水解:酚苷>萜苷、甾苷有氨基酸取代的糖较-OH糖难水解,-OH糖较去氧糖难水解(2,6二去氧糖>2-去氧糖>3-去氧糖>羟基糖>2-氨基糖)易→难呋喃糖苷较吡喃糖苷易水解酮糖较醛糖易水解吡喃糖苷中:C5取代基越大越难水解(五碳糖>甲基五碳糖>六碳糖>七碳糖)C5上有-COOH取代时最难水解在构象中相同的糖中:a键(竖键)-OH多则易水解苷元为小基团—苷键横键比竖键易水解;即e>a苷元为大基团—苷键竖键比横键易水解;即a>e6、smith降解(过碘酸反应):Na2SO4、NaBH4 ,易得到苷元(人参皂苷—原人参二醇)7、乙酰解反应:β-苷键的葡萄糖双糖的反应速率(乙酰解反应的易难程度)(1——6)》(1——4)》(1——3)》(1——2)8、提取方法:水提醇沉、热水提冷水沉生物碱1、生物碱:生物碱是含负氧化态氮原子、存在于生物有机体的环状化合物。
天然药物化学需要掌握的化合物结构天然药物化学是研究天然界中存在的化合物对人类健康的影响的学科。
这些化合物通常由植物、动物或微生物产生,被广泛用于制药工业。
掌握天然药物化学中的化合物结构对于理解其活性和作用机制至关重要。
以下将介绍几种天然药物化学中需要掌握的常见化合物结构。
1.碱类化合物:许多天然植物和动物中都含有碱类化合物,如可卡因、鸦片碱等。
这些化合物通常具有典型的含氮环结构,如吡咯、吡啶、喹啉等。
掌握这些碱类化合物的结构可以帮助我们理解它们的药理作用,如抗炎、止痛和镇静等。
2.生物碱:生物碱是一类具有多种生理活性的天然有机碱性化合物。
它们常见于植物中,如黄连素、奎宁、鞣花酸等。
这些化合物常含有多个环结构和官能团,如吡咯、吡嗪、喹啉、苯酚等。
掌握这些生物碱的结构对于理解它们的药理活性和作用机制非常重要。
3.醇类化合物:醇类化合物是天然药物化学中常见的一类化合物,如酚类、甘露醇等。
这些化合物通常含有一个或多个羟基官能团。
掌握这些醇类化合物的结构可以帮助我们了解它们的溶解度、稳定性和药效等。
4.酮类化合物:酮类化合物是天然药物化学中另一类常见的化合物,如香兰素、雄酮等。
这些化合物含有一个或多个酮基官能团。
掌握这些酮类化合物的结构对于理解它们的药理活性和代谢途径非常重要。
5.酸类化合物:酸类化合物也是天然药物化学中常见的一类化合物,如水杨酸、乙酰水杨酸等。
这些化合物通常含有一个或多个羧酸基官能团。
掌握这些酸类化合物的结构可以帮助我们了解它们的溶解度、稳定性和药效等。
除了以上几类常见的化合物结构,天然药物化学还涉及到其他一些特殊结构的化合物,如大环化合物、萜类化合物、类固醇等。
掌握这些化合物的结构对于研究天然药物的活性和作用机制非常重要。
总之,天然药物化学中需要掌握的化合物结构涉及广泛,包括碱类化合物、生物碱、醇类化合物、酮类化合物、酸类化合物以及一些其他特殊结构的化合物。
掌握这些化合物的结构可以帮助我们理解它们的药理活性和作用机制,为新药开发和药物设计提供重要的指导。
第一章1.主要的生物合成途径包含醋酸-丙二酸途径、甲戊二羟酸途径、桂皮酸途径及莽草酸途径、氨基酸途径和复合途径五种。
2.天然药物提取分离方法溶剂提取法、两相溶剂萃取法、沉淀法、盐析法、分馏法、结晶法、色谱法。
3.(了解)化合物的纯度测定4.(了解)结构研究的主要程序初步推断化合物类型→测定分子式,计算不饱和度→确定分子中含有的官能团,或结构片段,或基本骨架→推断并确定分子的平面结构→推断并确定分子的主体结构(构型、构象)5.(了解)结构测定常用的波谱分析紫外光谱,红外光谱,核磁共振谱(分为氢谱、碳谱、核磁共振新技术)、质谱、色谱-质谱连用技术第二章1.糖和苷的结构类型、性质及提取结构类型:单糖(monosaccharides) :多羟基醛和酮,不能再被简单地水解成更小分子的糖。
如葡萄糖、鼠李糖等。
低聚糖(oligosaccharides):单糖以半缩醛或半缩酮的形式以端基碳原子的羟基与另一分子糖结合而成。
由2~9个单糖聚合而成,也称为寡糖。
如蔗糖、麦芽糖等。
多糖(polysaccharides):类似于低聚糖。
由10个以上的单糖聚合而成,分子量很大。
其性质也大大不同于单糖和低聚糖。
如淀粉、纤维素等。
苷类:单糖以半缩醛或半缩酮的形式以端基碳原子的羟基与非糖物质缩合而成。
单糖一般为无色晶体,极易溶于水,多有甜味。
分子中有醛(酮)基、伯醇基、仲醇基和邻二醇基结构,易氧化。
如:银镜反应;硝基可使醛糖氧化成糖二酸;过碘酸氧化反应:主要作用于邻二醇羟基、α-氨基醇、α-羟基醛(酮)、α-羟基酸、邻二酮和某些活性次甲基结构。
具还原反应,成醛、成脂变旋光现象。
低聚糖性质与单糖近似,水溶性大,聚合度低的有甜味。
多糖无还原性,无变旋光现象,无甜味,大多难溶于水,有的能和水形成胶体溶液。
苷类多为固体,糖基少的可结晶,糖基多的则多为吸湿性的无定形粉末。
一般无味,但有的有苦味,很少的苷有甜味,溶解度随糖基数目增加而增加。
天然药物化学成分的主要结构摘要:针对天然药物化学中化学结构种类繁多、不易掌握的特点,通过不断探索和总结教学经验,在教学实践中采用多种方法和手段提高化学结构的教学效果。
关键词:天然药物化学;化学结构;教学方法天然药物化学是运用现代科学理论与方法研究天然药物中化学成分的一门学科,是高等医药院校药学专业的一门必修课,在整个药学教育体系中具有十分重要的作用和地位。
其研究内容主要包括各类天然药物的化学成分(主要是生理活性成分或药效成分)的结构特点、理化性质、提取分离方法、主要类型化学成分的结构鉴定和生物合成途径等[1]。
其中,化合物的结构起着主导作用,即结构决定理化性质,从而决定化合物的提取分离方法,而提取分离的结果又需要阐明其化学结构。
天然药物化学成分的结构类型繁多,目前已分离鉴定的化合物数以万计,大多数学生在面对纷繁复杂的化学结构时会产生畏惧感,容易导致厌学情绪,将难以达到预期的教学效果。
为此,笔者在教学过程中做了以下尝试,取得了较好的教学效果。
1 激发学生的学习兴趣天然药物化学是一门理论性较强的自然学科,学生在学习过程中难免会感到枯燥无味,学习兴趣不高。
因此,在教学过程中,教师应更新教育观念,改进教学方法和教学思路,激发学生的学习积极性和主动性。
在总论部分,以天然药物的发展历史和成功开发的天然药物新药为实例来讲解这门课程的学习目标和内容,让学生了解天然药物化学的特有魅力;通过国内外创新药物研发现状的介绍来激发学生的使命感和责任感,同时通过介绍我国的动植物资源特别是中草药的独特优势让学生对我国天然药物发展的未来充满希望和信心。
在每章节的学习中,以学生熟悉的药物或现象为导入点,循序渐进引导学生产生浓厚的学习兴趣。
如讲生物碱时向学生介绍印第安人曾利用最毒的生物碱乌头碱涂抹在箭头上用于战争以及鲁滨逊等先驱研究吗啡等生物碱的`过程[2];讲鞣质时以“削好的苹果在空气中放置后为什么会变色”为问题而引入。
2 重视基本杂环和官能团的核心作用天然药物中的化学成分就其化学本质而言是由一些化学元素组成的化学品。
1、糖的波谱学特性▲糖的1HNMR特征:1H-NMR判断糖苷键的相对构型★端基质子——δ5.0左右其它质子——δ3.5~4.5可通过C1-H与C2-H的偶合常数来判断(α-D葡萄糖:J=3~4Hz、β-D葡萄糖:J=6~8Hz)IR——α葡萄糖苷在770、780 cm-1有强吸收峰;MS——葡萄糖苷乙酰化物331碎片峰强度:α> β端基碳——δ95~105 ppm 一般在13C-NMR谱中:D-葡萄糖苷C1——α型97~101 ppmβ型103~106 ppm CH-OH (C2、C3、C4) 70~85 ppm CH2-OH (C6) 62 左右CH3 < 20 ppm用吡喃糖中端基碳的碳氢偶合常数,可确定苷键的构型:α苷键J C-H≈170Hz β苷键J C-H≈160Hz苷化位移【糖与苷元成苷后,苷元的α-C、β-C和糖的端基碳的化学位移值均发生了改变】醇型苷①糖上端基碳的苷化位移和苷元醇羟基的种类有关:伯醇>仲醇>叔醇②苷元α-C的苷化位移和糖的种类有关:α- 糖苷<7;β- 糖苷>7①苷元α-碳手性和糖端基手性都为R (或S)时,苷化位移值与苷元为 位无取代的环醇相同。
②苷元α-碳和糖端基碳手性不同时,端基碳和α-碳的苷化位移值比苷元为β-无取代的相应碳的苷化位移值大约为3.5ppm。
酯苷、酚苷的苷化位移:当糖与-OH 形成酯苷键或酚苷键时,其苷化位移值较特殊,端基碳和苷元α-碳均向高场位移。
三萜类化合物——齐墩果酸:同五异十其余七:当苷元和端基碳的绝对构型相同时, α-C 向低场位移约5个化学位移单位,不同时位移10个化学位移单位(仅限于两个β-C 取代不同的环醇苷),其余的苷则位移约7个化学位移单位。
同小异大:当苷元β-C 的前手性和端基碳的绝对构型相同时, β-C 向高场位移约2个化学位移单位,不同时则为约4个化学位移单位(限于两个β-C 为前手性碳的环醇苷)。
2、蒽醌类化合物的波谱学特性UV 苯醌 三个吸收峰 ~240 nm (强峰);~285 nm (中强峰);~400 nm (弱峰) 萘醌四个吸收峰 (-OH 、-Ome 等助色团→分子中相应的吸收峰红移。
《天然药物化学》课程标准一、课程性质与定位《天然药物化学》是高职高专药学专业的一门专业基础技术课程,实践性强,是培养相关专业药物制剂提取分离专门人才的一个必备环节。
该课程主要介绍天然药物化学成分的结构、性质、有效成分的提取、分离、鉴定等基本知识,着重培养学生天然药物化学成分提取分离和鉴定的基本技术与技能,同时注意传授知识、培养技能、提高素质为一体,注重培养学生实践际操作能力、综合应用能力、团结协作能力、自主创新能力及终身学习能力。
本课程主要服务于医药、中医药产业,为医药、中医药行业培养岗位技能型人才,其在人才培养方案中的主要作用是:培养从事药物调剂、天然药物制剂产品生产、检验等工作,掌握天然药物化学成分提取、分离和鉴定基本技能,能胜任天然药物提取工、天然药物制剂检验工等相关工作岗位,综合素质好的高技能人才。
因此,本课程的功能是:使学生具有天然药物制剂产品开发和生产等方面技能,为将来学生从事天然药物制剂产品的研究、开发、生产及天然药物及其制剂质量控制工作奠定基础,同时也为医药生产、药品营销企业以及医院天然药物房培养具有良好职业道德、较强专业技能,具有可持续发展能力的高级技术应用性专门人才。
二、课程设计(一)设计思路1.根据本课程在人才培养方案整个课程体系中的定位(课程衔接见图1)。
先修课化学基础课药学类专业基础课药用植物学《天然药物化学》药学专业基础课程药物制剂检测技术药物制剂技术职业技能鉴定就业岗位后续课本课程是在化学基础课、药用植物学等课程的基础上开设的,经过前期的基础学习,学生掌握了一定的基础知识和技能,为本课程的学习奠定了基础。
同时,本课程也为后续《药物制剂技术》等专业课程奠定基础。
2.针对与课程密切相关的三大就业岗位群(天然药物制剂生产岗位群、研发人员的助手岗位群、药学服务岗位群)需求,基于工作过程的需要等等的职业能力和岗位要求分析的基础上确定完成工作所需要的知识点、专业技能和职业素质要求,并兼顾学生考取相关工种涉及到的基础知识和基本技能。
【注:蓝色字体部分要求掌握结构类型,其余要求能写出结构式。
】第二章糖和苷单糖:D —葡萄糖、D —半乳糖、D —甘露糖、D —果糖、D —木糖、L —鼠李糖、二糖:樱草糖、芸香糖苷类:天麻苷、苦杏仁苷、野樱苷、黑芥子苷、芦荟苷第三章苯丙素类莽草酸、桂皮酸、咖啡酸、绿原酸、香豆素类:伞形花内酯、七叶内酯、补骨脂内酯、白芷内酯、花椒内酯、邪蒿内酯、黄曲霉毒素B1L-SW D-^⅛⅛R= β-D-glc苦杏仁苛CHOCH3OHD-廿鉗糖CHOCHOCHO=0a ⅛l⅛一当构成二糖或孝糖时CH2OH戸荟昔CBarbItloinΓ-)⅛>⅛⅛A√.⅛J七叶内酯R=H伞形花内酯七叶内酯昔R=glc戋型:补骨脂内酯型白芷内酯1'花椒内酯邪蒿内醋箕l⅛蒔亲E丄木脂素类:鬼臼毒素、芝麻脂素、芝麻林脂素、五味子素、五味子酯、厚朴酚、和厚朴酚、QH鬼臼毒素(1 一苯代蔡内酯)>⅞X ULl< fιιvofιxrH(-∙->-sc L Sa IlIilICH3O OCHOROCHRo羸IoHOR0√ H ‰j PC4五∣⅛子醉R Il五味子素R CH3五味P酣甲R-COC S H S五味子酸「RI=B a= -CHr五味子酣戊Rι⅛ CII3第四章苯醌类:辅酶Q10辅SQlD (n=1°)coenzyme SQ lD萘醌类:胡桃醌、维生素K蒽醌类:茜草素、大黄酚、大黄素、大黄素甲醚、芦荟大黄素、大黄酸、大黄酸蒽酮、O大黄酚⑴RI =CH l Rz=H乂黄素(2) R l=CHJ R2=OH火黄素甲醛(3) R l=CHJ R2=OCH3 芦荟大黄索(4) R l=H R z=CH z OH大黄醴(5} R l=H R2=COOH第五章黄酮类IVfeOIlvfeO于于^^酉昆II.A.维生素Kl维生素K2芹菜素、黄苓苷、芦丁、槲皮素、银杏素、橙皮苷、儿茶素、大豆苷、葛根黄素查耳酮、橙酮、花色素番泻苷AOH O QH茜草素第八章甾体及其苷类异羟基毛地黄毒苷(狄高辛)、G—毒毛旋花子苷、蟾毒配基、薯蕷皂苷、原菝葜皂苷、菝葜皂苷六元内酯环强心苷精氫酸<⅛Bt-1'Rha强rt⅛ > #- EfcrHOOH橙皮苛-,Ac A.A -⅛⅛, "R L=H大业昔1¾=<⅛1JC银杏双黄酮錯构武(+)-CateChlnR=H, ⅛⅛⅛⅛R=Xylose l,葛根負集-7-木砖昏OH …G-毒毛旋花子强心昔(乌本昔)速效强心昔b.蟾毒酉己基辛二円先屣二酰己二酉蛊■J-⅛tO命名:3b,14b -二羟基-5b -强心甾-20(22)-烯(3b,14b -dihydroxy-5b -Card-20(22)-enolide)3b,14b -二羟基海葱甾-4,20,22-三烯(3b,14b -dihydroxyacilla-4,20,22-trienolid⅜3b,11a,14b 三羟基-5b -I酥甾-20,22-二烯第九章生物碱可卡因、阿托品、H 3C-N(OHH8阿托品(atropine) R=H C dl) Jt ⅛ 篦着碱(hyoscyamine) R=U (I-) * 冷 山葭蒼减仙IiMM 怡mine) R=OlI (SCoPOlilmme)OO O苦参碱、苦参碱(一)苯询腔类生物鹹代表⅛⅛φ⅛—麻螢裁、⅛⅛⅛⅛麻黄碱、伪麻黄碱、吗啡碱、互为至依异构林' 区别在于CI的构型不同.⅛⅛⅛ tt≡!L R'-CH j6⅛麻黄歲(PPhednIIe) ( PeUdtH i PhPdrinF)小檗碱、N可视为2分子异喳啡稠合而成延胡索乙素小簾Jrt型小築碱{黄连蛊-利血平、2.萝芙木生物械/*"Ld <∩I WO-HJCOQC X⅛∖√>Cθ- OCHJOCH J-O^0CH3TJCH S利血平freserpine)L长希碱和长;⅛新碱⅛<⅛4⅞( VttkhlaNtine1∖'1□R } R=(,H j⅛⅛j⅜ (话mτi紳細襄yggj R=( Ho长春新碱、。
第一章总论一、绪论1.天然药物化学定义:天然药物化学是运用现代科学理论与方法研究天然药物中化学成分的一门学科。
2. 天然药物化学研究内容:其研究内容包括各类天然药物的化学成分的结构特点、物理化学性质、提取分离方法以及主要类型化学成分的结构鉴定等。
此外,还将涉及主要类型化学成分的生物合成途径等途径。
3.明代李挺的《医学入门》(1575)中记载了用发酵法从五倍子中得到没食子酸的过程。
二、生物合成1.一次代谢定义:对维持植物生命活动不可缺少的且几乎存在于所有的绿色植物中的过程产物:糖、蛋白质、脂质、核酸、乙酰辅酶A、丙二酸单酰辅酶A、莽草酸、一些氨基酸等对植物机体生命来说不可缺少的物质二次代谢定义:以一次代谢产物作为原料或前体,又进一步经历不同的代谢过程,并非在所有植物中都能发生,对维持植物生命活动又不起重要作用。
称之为二次代谢过程。
产物:生物碱、萜类等2.主要生物合成途径(一) 醋酸-丙二酸途径(AA-MA)主要产物:脂肪酸类、酚类、蒽酮类起始物质:乙酰辅酶A 起碳链延伸作用的是:丙二酸单酰辅酶A碳链的延伸由缩合及还原两个步骤交替而成,得到的饱和脂肪酸均为偶数。
碳链为奇数的脂肪酸起始物质不是乙酰辅酶A,而是丙酰辅酶A。
酚类与脂肪酸不同之处是在由乙酰辅酶A出发延伸碳链过程中只有缩合过程。
(二)甲戊二羟酸途径(MV A)主要产物:萜类、甾体类化合物起始物质:乙酰辅酶A焦磷酸烯丙酯(IPP)起碳链延伸作用焦磷酸二甲烯丙酯(DMAPP)单萜-----------得到焦磷酸香叶酯(10个碳)倍半萜类-------得到焦磷酸金合欢酯(15个碳)三萜-----------得到焦磷酸香叶基香叶酯(20个碳)(三)桂皮酸途径主要产物:苯丙素类、香豆素类、木质素类、木脂体类、黄酮类(四)氨基酸途径主要产物:生物碱类并非所有的氨基酸都能转变为生物碱,在脂肪族氨基酸中主要有鸟氨酸、赖氨酸,芳香族中则有苯丙氨酸、酪氨酸及色氨酸三、提取分离方法(一)根据物质在两相溶剂中的分配比不同进行分离1.常见方法有液-液萃取法、逆流分溶法(CCD)、液滴逆流色谱法(DCCC)、高速逆流色谱(HSCCC)、气液分配色谱(GC或GLC)及液-液分配色谱(LC或LLC)P21 图1-11 利用pH梯度萃取分离物质的模式图CCD法是一种多次、连续的液-液萃取分离过程2.正相色谱:通常,分离水溶性或极性较大的成分如生物碱、苷类、糖类、有机酸等化合物时,固定相多采用强极性溶剂,如水、缓冲溶液等,流动相则用氯仿、乙酸乙酯、丁醇等弱极性有机溶剂,称之为正相色谱3.反相分配色谱:分离脂溶性化合物,如高级脂肪酸、油脂、游离甾体等时,则两相可以颠倒,固定相可用液状石蜡,而流动相则用水或甲醇等强极性溶剂,故称之为反相分配色谱4.反相硅胶色谱填料:根据烃基(—R)长度为乙基(—C2H5)还是辛基(—C8H17)或十八烷基(—C18H37)分别命名为RP-2、RP-8、RP-18.三者亲脂性强弱顺序如下:RP-18> RP-8> RP-25.加压液相色谱与液-液分配色谱的区别?液-液分配柱色谱中用的载体(如硅胶)颗粒直径较大,流动相仅靠重力作用自上而下缓缓流过色谱柱,流出液用人工分段收集后再进行分析,因此柱效较低,费时较长。
【注:蓝色字体部分要求掌握结构类型,其余要求能写出结构式。
】
第二章糖和誉
单糖:D—葡萄糖、D—半乳糖、D—甘館糖、D-果糖、D —木糖、L一鼠糖、
二糖:櫻草糖.芸香糖
昔类:天麻昔.苦杏仁昔、野櫻昔、黑芥子昔、芦荟昔
R=H 野樱昔
R二卩・D・glc苦杏仁苜報昔
芦芸昔CBarbaloin)
第三章苯丙素类
莽草酸、桂皮酸、咖啡酸、绿原酸、
香豆素类:伞形花酯、七叶酯、补骨脂酯、白芷酯、花椒酯、邪蒿酯、黄曲鑫毒素B1
HO 7-%战香应黍 伞形花内酯 RO^6^ s 1 七叶内酯R=H 补骨脂内酯 七叶内酯昔R=glc 戋型:补骨脂内酯型 績曲窓亲R1
T
木脂素类:鬼白毒素、芝麻脂素、芝麻林脂素、五味子素、五味子酯、厚朴酚、和厚朴酚、 妙f XX 四 喃< furofur C+”芝麻躺余 (-♦-J-sesaiiiiii 鬼臼毒素 (1苯代蔡内酩〉 第四章醍类
苯醍类:辅酶Q10
SWQ10 (n=10)
coenzymes Q 10
感醍类:茜草素、大黄酚、大黄素、大黄素甲瞇、芦荟大黄素、大黄酸、大黄酸愍酮、番泻昔A
MeO. MeO 1
荼醍类:胡桃醍、维生素K
第五章黄酮类
银杏素、橙皮苜、儿茶素、大豆昔、根黄素、查耳酮、橙酮、花色素
蔬琴素R=H
茨琴昔R=簡萄枷醛酸
大黄酚 大
英素 大萸
索甲醱 芦
養大黄秦
大黄酸 (IJR^CHj R 2=H (2) R I =CH3 R 2=OH (3) R 卢CH3 R 2=OCH 3 (4) &二H R 2=CH 2OH
(5) R!=H R 2=COOH
芹菜素、黄苓昔、芦丁、懈皮素、
o
OH (+> cat echi ii
R=H,為根黄素
R=Xylose,葛抿茨秦_7-木糖昔
第八章笛体及其苗类
异疑基毛地黄毒昔(狄髙辛)、G—毒毛旋花子昔、蟾毒配基.薯禎皂昔.原祓藝皂昔、祓影皂昔六元酯环强心昔
可卡因、 o
(3方 JU -dihydroxy-5/> -card-20(22)-enolide) 3b,\4b •二轻基海葱笛・420,22・三烯 (3bJ4b -dihydroxyacilla-4,20,22-trienolide) 3b ,gl4b -三轻基・5方-蟾酥^-20,22-二烯
第九章生物碱
阿托品(atropine) R=H ( dl ) 十芍斗壬 篦着碱(hyoscyamine) R=H (I-)八乃 山 K ^^(an isodamine) R=OH (x ❶polamine)
H 3C -N 0
H 3c —N o 3 o
阿托品、
(一)苯丙艘矣生物碱 代表化合物
一麻黄仪伪麻黃碱 麻黃碱、
苦参碱、
苦参碱 氧化苦参碱
伪麻黄碱、 *马啡(morphine) R=II 可待因(codeine) R-CH 3
H 吗啡碱、 HO'、二 互为立体异构体,区别在于C1的构型不同. 麻黃碱 R=H, R^CHj 伪麻黄碱 (ephedrine)
(pseudoephedrine
1.长春碱和长春新碱
长春碱 (vinblastine. VLB ) R=CII 3 长春新碱
(virwrisfine, V('R) R=('HO
新碱、
小漿碱、 原小樂碱型
小藥碱型 ,OCH S
可视为2分子异奎林稠合而成
延胡索乙来 小槊碱(黄连秦 利血平、
喜树碱、
H0
乌头碱、
乌头磁(aconitine)
OH OBz OAc
紫杉醇紫杉醇(taxol)。