串联型稳压电路
- 格式:doc
- 大小:233.50 KB
- 文档页数:11
串联型稳压电路工作原理
串联型稳压电路是一种常见的稳压电路,由稳压二极管、电阻和负载组成。
其工作原理如下:
1. 基本原理:稳压二极管是一种具有负温度系数的二极管,其正向电压降随温度的升高而下降,因此稳压二极管可以通过改变其工作温度来调节电压。
串联型稳压电路利用这一特性,将稳压二极管与电阻串联,通过电阻对电压进行调节,从而实现稳定输出电压。
2. 稳压作用:当输入电压发生变化时,稳压二极管会自动调整自身的工作温度,使其正向电压降保持不变,从而保持输出电压的稳定性。
3. 调节范围:串联型稳压电路的调节范围一般受稳压二极管的限制,一般在几十毫伏至几伏之间。
4. 负载调节:稳压电路的输出电压还受到负载电流的影响。
当负载电流发生变化时,错误地影响稳压二极管的温度,导致输出电压的波动。
为了解决这个问题,可以在稳压二极管与电阻之间加上一个电容,通过电容的滤波作用来平稳输出电压。
总的来说,串联型稳压电路通过稳压二极管和电阻组成串联电路,通过改变稳压二极管的工作温度来调节电压,实现稳定输出电压的目的。
同时,通过加入滤波电容可以减小负载变化对输出电压的影响。
知识原理要点直流稳压电源原理框图如图4-1 所示。
四、实验原理图为串联型直流稳压电源。
它除了变压、整流、滤波外,稳压器部分一般有四个环节:调整环节、基准电压、比较放大器和取样电路。
当电网电压或负载变动引起输出电压V o变化时,取样电路将输出电压Vo的一部分馈送回比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿V o 的变化,从而维持输出电压基本不变。
当输入电压(VI)改变时,能自动调节(VCE)电压的大小,使输出电压(Vo)保持恒定。
例如:VI↑→Vo↑→经取样和放大电路后→IB↓→VCE↑→Vo↓ VI是整流滤波后的电压,T为调整管,A为比较放大电路,VREF为基准电压,它由稳压管Dz与限流电阻R构成。
R1与R2组成反馈网络,是用来反映输出电压变化的取样环节。
工作原理图及功能方框图假设由于某种原因(如电网电压波动或者负载电阻变化等)使输出电压上升,取样电路将这一变化趋势送到比较放大管的基极,与发射极基准电压进行比较,并且将二者的差值进行放大,比较放大管的基电极电位(即调整管的基极电位)降低。
由于调整管采用射极输出形式,所以输出电压必然降低,从而保证Uo基本稳定。
稳压电路由于直接用输出电压的微小变化量去控制调整管。
其控制作用较小,所以,稳压效果不好。
如果在电路中增加一级直流放大电路,把输出电压的微小变化加以放大,再去控制调整管,其稳压性能便可大大提高,这就是带放大环节的串联型稳压电路。
当输入电压Ui增大(或减小)时,串联型稳压电路的稳压原理可用电路来说明。
图中可变电阻R与负载RL相串联。
若RL不变。
增大(或减小)R值使输入电压Ui变化全部降落在电阻R上,从而坚持输出电压UL基本不变。
同理,若Ui不变,当负载电流IL变化时(导致UL变化)也相应地调整R值,以保持R上的压降不变,使输出电压UL也基本不变。
则是用晶体三极管来代替可变电阻R利用负反馈的原理,实际的稳压电路中。
串联型稳压电路工作原理1. 什么是串联型稳压电路?嘿,朋友们,今天咱们聊聊串联型稳压电路。
这听起来像是高深莫测的科技名词,其实就是一套让电压稳如老狗的电路,别看它名字长,其实用起来真心不复杂。
想象一下,你的手机、电脑要是没了电压保护,搞不好就得在一瞬间“瘫痪”了。
可别小瞧这个小小的稳压电路,它可是我们电子产品的守护神,帮我们抵挡那些电压的“波动小子”。
那么,什么叫串联呢?就是把多个组件串在一起,像串珠子一样,电流得一个个通过,才能保证电压的稳定。
这种电路的设计,简直就是为了解决我们日常生活中最常见的问题:电压不稳带来的烦恼。
试想一下,如果你正在看电影,忽然电压一波动,屏幕就黑了,简直让人心碎!2. 串联型稳压电路的工作原理2.1 稳压元件的作用好,咱们来说说串联型稳压电路是怎么工作的。
首先,这里得有一个稳压元件,通常是二极管或者稳压器,这家伙就像是你家里的门卫,专门把关,确保电流不会乱窜。
电流从电源来,经过稳压元件,二极管就开始工作了,电流只有在特定的电压下才能通过,超过这个电压的部分,嘿,就得“乖乖”放弃,转头去别的地方了。
这样一来,电路输出的电压就能稳稳当当地维持在我们需要的范围内。
2.2 工作过程中的电流流动电流流动的过程,就像是一个流动的舞蹈。
在这个舞台上,稳压元件是主角,电源是乐队,电流则是舞者。
当电源给电路提供电压时,电流像是听到音乐后兴奋的舞者,跃跃欲试。
经过稳压元件的“审查”,只有符合标准的电压才能顺利通过,真是一个“严格的舞会”。
这样一来,电流就会保持在一个相对稳定的状态,让我们的设备正常工作。
3. 优缺点分析3.1 串联型稳压电路的优点说到优点,那可真不少。
首先,这种电路结构简单,制作成本也低,简直是“省心省钱”的典范。
其次,它能很好地应对小幅度的电压波动,尤其适合用在一些对电压要求不高的场合,比如手机充电器、玩具等小型电子产品。
你想想,哪儿有便宜又实用的电路呢,没几样!此外,串联型稳压电路体积小,重量轻,真的是家居生活中的“隐形战士”。
串联稳压电源电路工作原理
串联稳压电源电路工作原理:
①串联稳压电源是一种通过调整串联在输入输出之间的控制元件来实现稳定输出电压的直流电源装置;
②典型的串联稳压电路主要包括整流滤波调整三个部分其中调整部分是实现稳压功能的关键所在;
③输入交流电首先经过变压器降压至所需水平然后送入整流电路整流电路通常采用桥式整流方式将交流转变为脉动直流;
④经过整流后的电流含有大量纹波需要通过滤波电容进行平滑滤波电容越大输出电压越平稳但响应速度会下降;
⑤调整部分的核心元件为调整管如晶体管场效应管等它工作在线性放大区根据反馈信号控制自身导通程度;
⑥输出端连接基准电压源与误差放大器共同构成负反馈系统当输出电压波动时误差放大器会调整调整管基极电流;
⑦通过改变调整管集电极发射极之间导通程度即可调节流过负载的实际电流进而保持输出电压恒定;
⑧为了提高效率减少调整管发热现代设计中常采用复合调整电路如带电流限制保护功能的电路;
⑨在实际应用中还需考虑输入电压变化负载波动等因素对稳压性能的影响通过优化设计提高电路适应性;
⑩完整的串联稳压电源还需包含过载保护短路保护等功能确保在异常情况下不会损坏设备;
⑪随着技术进步出现了如开关电源等新型稳压方案它们在效率体积等方面更具优势;
⑫总结串联稳压电源以其简单可靠的特点在众多场合仍占有重要地位。
串联型稳压电路的工作原理串联型稳压电路是一种常用的电子电路,用于确保电压的稳定性。
它由一个稳压二极管和一个限流电阻组成。
该电路可以通过调整输入电压来生成一个恒定的输出电压。
串联型稳压电路的工作原理如下:当输入电压施加到稳压二极管上时,稳压二极管会处于导通态。
在导通态下,稳压二极管的电流随着输入电压的增加而增加。
当电压达到稳压二极管的额定电压时,稳压二极管开始将电流稳定在一个具体的值。
在稳压二极管中,有一个内部参考电压源,该电压源在稳压二极管的正向电压上形成一个稳定的电压。
这个稳定的电压会通过稳压二极管的正向电压补偿电路反馈回输入电阻。
这个反馈会根据输入电压的大小来调节稳压二极管的电流,从而使输出电压保持恒定。
当输入电压低于稳压二极管的额定电压时,稳压二极管不会导通,电流不会通过稳压二极管和电阻。
这时,输出电压等于输入电压。
当输入电压高于稳压二极管的额定电压时,稳压二极管导通,电流通过稳压二极管和电阻。
稳压电路通过调节输入电阻,使电阻与稳压二极管之间的电压保持不变,从而将稳定的电压提供给负载电路。
串联型稳压电路具有以下优点:1.稳定性高:稳压二极管通过反馈机制自动调节电流,以保持输出电压恒定。
无论输入电压波动多么剧烈,输出电压都将保持不变。
2.可靠性好:稳压二极管具有快速稳定输出电压的能力,可以更好地应对电源电压的突然变化。
3.简单且成本低:串联型稳压电路的组成部件较少,制造成本较低。
但串联型稳压电路也存在一些缺点:1.能耗较高:由于稳压二极管处于导通状态下,电流会持续地通过它,从而导致一定的功耗。
2.热量较大:由于电流通过稳压二极管产生的能量损失会转化为热量,因此串联型稳压电路会产生一定的热量。
总的来说,串联型稳压电路通过稳压二极管和限流电阻来实现电压的稳定输出。
它可以提供稳定的电压给负载电路,保证负载电路的正常工作。
虽然有一些缺点,但是它在电子设备和电路中得到广泛应用,是一种简单可靠的稳压电路。
串联型稳压电路串联型稳压电路是比较常用的一种电路。
电路如图5-20(a)所示。
三极管BG在电路申是调整元件,它很有“见机行事”的本领,每当由于供电或用电发生变化,电路输出电压波动欲起的时候,它都能及时地加以调节,使输出电压保持基本稳定,因此它被称做调整管口因为在电路中作为调整元件的三极管是与负载相串联的,所以这种电路叫串联型稳压电路。
稳压管DW为调整管提供基准电压,使调整管基极电位不变。
R1 是DW的保护电阻,限制通过DW的电流,起保护稳压管的作用。
Rfz ,是负载电阻,是BG的直流通路。
BG和DW配合“默契”,保证电路格出稳定的用压。
电路稳压过程是这佯的:如果输人电压Usr 增大,使输出电压Usc。
增大时,由于Ub=Uw固定不变,调整管基棗射间电压Ube。
=Ub-Usc将减小,基流Ib随之减小,而管压降Uce,随之增大,从而抵消了Usc增大的部分,使Usc,基本稳定。
如果负载电流Isc 增大,使输出电压Usc减小时,由于Ub固定,Ube将增大,使人增大,Uce减小,也同样地使Usc基本稳定。
从上面分析中可以看到,调整管既象是一个自动的可变电阻:当输出电压增大时,它的“阻值”就增大,分担了大出来的电压;当输出电压减小时,它的“阻值”就减小,补足了小下去的电压。
无论是哪种情况,都使电路保持输出一个稳定的电压。
“指挥”调整管变化的是输出电压的变化量?Usc;正是ΔUsc控制调整管的基极电流Ib,才使得调整管随着ΔUsc变化。
换句话说,是不稳定的输出电压,驱动调整管去稳定输出电压。
如果把图5-20(a)所示稳压电路的形式稍微改变一下,画成图5-20(b)样子的话,不难看出,原来串联型稳压电路就是一个射极跟随器。
R1是上偏置电阻,稳压管DW是下偏置电阻,输出电压是从发射极电阻Rfz 上取出的。
串联稳压电路的工作原理1. 引言稳压电路是电子设备中常见的一种电路,它可以将不稳定的输入电压转换为稳定的输出电压,以保证电子设备正常工作。
串联稳压电路是其中一种常见的稳压电路,本文将详细介绍串联稳压电路的工作原理。
2. 基本概念在介绍串联稳压电路之前,我们先来了解一些基本概念。
•输入电压(Vin):指进入稳压电路的未经调整的输入直流电压。
•输出电压(Vout):指从稳压电路输出的经过调整后的直流电压。
•负载(Load):指连接在稳压器输出端的元件或设备,通常为阻性负载。
3. 串联稳压器的基本结构串联稳压器由三个基本部分组成:功率晶体管(或场效应管)、参考源和比较放大器。
•功率晶体管:用于控制输出端与地之间的通断状态,根据需要使得输出端与地之间有导通或截止状态来调整输出端的电位。
•参考源:提供一个稳定的参考电压,作为比较放大器的输入之一。
•比较放大器:将输入电压与参考电压进行比较,并输出一个控制信号,用于控制功率晶体管的导通或截止。
4. 工作原理串联稳压电路的工作原理可以分为三个阶段:起动阶段、调整阶段和稳定阶段。
4.1 起动阶段在串联稳压电路刚开始工作时,输出端电压为0V。
此时,比较放大器的输出信号使得功率晶体管导通,工作于饱和区。
通过功率晶体管的导通,输入电压通过串联稳压电路,直接从输出端短接到地,此时输出端电压等于输入端电压。
4.2 调整阶段在起动阶段之后,比较放大器开始工作,并将输入电压与参考源提供的参考电压进行比较。
如果输入电压高于参考源提供的参考电压,则比较放大器输出高电平信号;反之,如果输入电压低于参考源提供的参考电压,则比较放大器输出低电平信号。
•输入电压高于参考电压:比较放大器输出高电平信号,使功率晶体管导通,输出端与地之间的通断状态保持不变,输出端电压稳定。
•输入电压低于参考电压:比较放大器输出低电平信号,使功率晶体管截止,输出端与地之间断开,输出端电压为0V。
通过比较放大器的工作,串联稳压电路可以调整输出端的通断状态,以保持稳定的输出电压。
串联型稳压电路
审阅签名:
教学过程(代号A—4)
在如图一所示电路中,如果升高,调整基本不变,反之,可调整的阻值
减小。
可是,电网电压的起伏或负载的变化都是随机而无规律的,可变电阻
极间电压和集电极电流受基极电流所控制,采取将输出电压
和发射极提供稳定的基准电压。
组成。
将输出电压的变化量的一部分取出,加到比
与基准电压)、调整管的大小,以保证输出电
压稳定。
的变化取决于:
:
的变化取决与,∴
:,
:
大小的估算:
为取样比
上式表明:输出电压取决于基准电压
可调电路如图五。
最小为
的滑动端在任意位置,则≤≤
工频电源,测量整流电路输入电压、滤波电路输出电压
器输入电压)及输出电压调节电位器,观察变化情况,如果能跟随
,使输出
电流(模拟电网电压波动)使101417测出相应的输出电压
10
14
17
的位置,使分别为空载、、
,测量相应的输出电压
上稳压电路,输出电压
取,调节滑线变阻器,再调节电位器
断开,测试输出电压的大小。
断开,输出电压约为零?
断开,,
断开时,测试输出电压
断开时,输出电压
断开,则,则:
的估算。
)输出电压的变化量;(
上升时,则
在上述电路中,,,,和的大小(
)近似等于
,的大小(
))。