3理论力学-03-2015-Tang
- 格式:pdf
- 大小:735.42 KB
- 文档页数:33
理论力学理论力学(theoretical mechanics)是研究物体机械运动的基本规律的学科。
是力学的一个分支。
它是一般力学各分支学科的基础。
理论力学通常分为三个部分: 静力学、运动学与动力学。
静力学研究作用于物体上的力系的简化理论及力系平衡条件;运动学只从几何角度研究物体机械运动特性而不涉及物体的受力;动力学则研究物体机械运动与受力的关系。
动力学是理论力学的核心内容。
理论力学的研究方法是从一些由经验或实验归纳出的反映客观规律的基本公理或定律出发, 经过数学演绎得出物体机械运动在一般情况下的规律及具体问题中的特征。
理论力学中的物体主要指质点、刚体及刚体系, 当物体的变形不能忽略时, 则成为变形体力学(如材料力学、弹性力学等)的讨论对象。
静力学与动力学是工程力学的主要部分。
理论力学建立科学抽象的力学模型(如质点、刚体等)。
静力学和动力学都联系运动的物理原因——力, 合称为动理学。
有些文献把kinetics和dynamics看成同义词而混用, 两者都可译为动力学, 或把其中之一译为运动力学。
此外, 把运动学和动力学合并起来, 将理论力学分成静力学和动力学两部分。
理论力学依据一些基本概念和反映理想物体运动基本规律的公理、定律作为研究的出发点。
例如, 静力学可由五条静力学公理演绎而成;动力学是以牛顿运动定律、万有引力定律为研究基础的。
理论力学的另一特点是广泛采用数学工具, 进行数学演绎, 从而导出各种以数学形式表达的普遍定理和结论。
总述理论力学是大部分工程技术科学的基础, 也称经典力学。
其理论基础是牛顿运动定律。
20世纪初建立起来的量子力学和相对论, 表明牛顿力学所表述的是相对论力学在物体速度远小于光速时的极限情况, 也是量子力学在量子数为无限大时的极限情况。
对于速度远小于光速的宏观物体的运动, 包括超音速喷气飞机及宇宙飞行器的运动, 都可以用经典力学进行分析。
理论力学从变分法出发, 最早由拉格朗日《分析力学》作为开端, 引出拉格朗日力学体系、哈密顿力学体系、哈密顿-雅克比理论等, 是理论物理学的基础学科。
理论力学教程知识点总结一、基本概念1.1 质点:质点是理论力学研究的对象之一,它是一个没有体积的点,只有质量和位置。
在质点运动的研究中,忽略了质点的大小和形状,只关心质点的位置和速度。
1.2 力:力是导致物体产生运动、变形或改变物体的运动状态的原因。
在理论力学中,力是一个基本概念,是对物体产生影响的原因。
根据牛顿第二定律,力是导致物体加速度改变的原因,与物体质量和加速度成正比。
1.3 运动:运动是物体在空间中位置随时间变化的过程。
物体的运动可以是直线运动、曲线运动或者是平面运动等。
在理论力学中,研究物体的运动规律和运动状态的改变。
1.4 动力学:动力学是研究物体运动规律的科学,包括物体的运动状态、位置、速度、加速度等方面的研究。
动力学是理论力学的核心内容之一,是理解物体运动规律和力的作用关系的基础。
1.5 动力学方程:动力学方程是描述物体运动规律的方程,根据牛顿第二定律,动力学方程描述了物体的运动状态和受到的力之间的关系。
动力学方程包括牛顿第二定律 F=ma,它表示物体受到的外力等于质量与加速度的乘积。
二、运动方程2.1 牛顿第一定律:牛顿第一定律也称为惯性定律,它指出物体在不受外力作用时,会保持静止或匀速直线运动的状态。
牛顿第一定律是动力学方程的基础,它表明物体的运动状态需要受到外力的作用才会发生改变。
2.2 牛顿第二定律:牛顿第二定律是理论力学的基本定律之一,它描述了物体受到外力作用时的运动规律。
根据这个定律,物体受到的外力等于质量与加速度的乘积,即F=ma。
物体的质量越大,相同的力引起的加速度越小;物体的质量越小,相同的力引起的加速度越大。
2.3 牛顿第三定律:牛顿第三定律也称为作用与反作用定律,它指出作用在物体上的力总有一个与之相等的反作用力。
即使两个物体之间产生相互作用的力,这两个力的大小相等,方向相反。
牛顿第三定律描述了物体之间力的作用关系,是理论力学中一个重要的定律。
2.4 弹簧力:弹簧力是一种常见的力,当物体受到弹簧的拉伸或压缩时,会产生弹簧力。
绪论一、研究对象理论力学——研究物体机械运动一般规律的科学。
机械运动——物体在空间的位臵随时间的改变,是人们生活、生产中最常见的一种运动,是物质各种运动形式中最简单的一种。
本课程研究速度远小于光速的宏观物体的机械运动,以枷利略和牛顿总结的基本定律(牛顿三定律)为基础,属古典力学的范畴,理论力学研究的是这种运动中最一般、最普遍的规律,是各门力学分支的基础。
二、研究内容1、静力学——研究物体在力系作用下平衡的规律。
2、运动学——从几何角度研究物体的运动。
(如轨迹、速度、加速度等,不涉及作用于物体上的力)3、动力学——研究受力物体的运动与作用力之间的关系。
三、研究方法1、通过观察和实验,分析、归纳总结出力学最基本的规律。
2、经过抽象化建立力学模型,形成概念。
3、经过逻辑推理和数学演绎,建立理论体系。
4、将理论用于实践,又在实践中验证和发展理论。
四、学习目的1、为解决工程问题打下一定基础。
工程专业一般都要接触机械运动问题。
2、为后续课程打下基础。
(例:材料力学、机械原理、机械设计等)3、理论力学的研究方法有助于培养正确的分析、解决问题的能力。
静力学静力学——研究物体在力系作用下平衡条件的科学。
静力学研究的物体只限于刚体,又称刚体静力学。
刚体——物体在力的作用下,其内部任意两点之间的距离始终保持不变。
它是一个理想化的力学模型。
实际物体在力的作用下,都会产生程度不同的变形。
但是,这些微小的变形,对研究物体的平衡问题不起主要作用,可以略去不计,这样可使问题的研究大为简化。
力 —— 物体间相互的机械作用,这种作用使物体的机械运动状态发生改变。
实践表明,力对物体的作用效果决定于三个要素。
力的三要素:1、力的大小 ,2、力的方向,3、力的作用点。
可用一个矢量表示力的三要素:矢量的模——力的大小 矢量的方向——力的方向 矢量的始端(或终端)——力的作用点 常用黑体字母F 表示力的矢量,普通字母F 表示力的大小。
《理论力学》习题三答案一、单项选择题(本大题共30小题,每小题2分,共60分)1. 求解质点动力学问题时,质点的初始条件是用来( C )。
A 、分析力的变化规律; B 、建立质点运动微分方程; C 、确定积分常数; D 、分离积分变量。
2. 在图1所示圆锥摆中,球M 的质量为m ,绳长l ,若α角保持不变,则小球的法向加速度为( C )。
A 、αsin g ;B 、αcos g ;C 、αtan g ;D 、αtan gc 。
3. 已知某点的运动方程为2bt a S +=(S 以米计,t 以秒计,a 、b 为常数),则点的轨迹为( C )。
A 、是直线;B 、是曲线;C 、不能确定;D 、抛物线。
4. 如图2所示距地面H 的质点M ,具有水平初速度0v,则该质点落地时的水平距离l 与( B )成正比。
A 、H ; B、H ; C 、2H ;D 、3H 。
5. 一质量为m 的小球和地面碰撞,开始瞬时的速度为1v ,碰撞结束瞬时的速度为2v(如图3),若v v v ==21,则碰撞前后质点动量的变化值为( A )。
A 、mv ;B 、mv 2 ;C 、mv 3;D 、 0。
6. 一动点作平面曲线运动,若其速率不变,则其速度矢量与加速度矢量( B )。
A 、平行; B 、垂直; C 、夹角随时间变化; D 、不能确定。
7. 三棱柱重P ,放在光滑的水平面上,重Q 的匀质圆柱体静止释放后沿斜面作纯滚动,则系统在运动过程中( A )。
A 、沿水平方向动量守恒,机械能守恒;B 、动量守恒,机械能守恒;C 、沿水平方向动量守恒,机械能不守恒;D 、均不守恒。
图1图2图38. 动点M 沿其轨迹运动时,下列几种情况中,正确的应该是( A )。
A 、若始终有a v⊥,则必有v 的大小等于常量; B 、若始终有a v ⊥,则点M 必作匀速圆周运动;C 、若某瞬时有v ∥a,则点M 的轨迹必为直线;D 、若某瞬时有a 的大小为零,且点M 作曲线运动,则此时速度必等于零。
理论力学简介理论力学是物理学的基础学科之一,它研究运动的原因以及运动的规律性。
它为解释自然界中的各种运动现象提供了理论依据,并且在工程学、天文学、地球物理学等领域中具有广泛的应用。
本文将对理论力学的基本概念、主要定律以及应用进行简要介绍。
1.运动的描述物体的运动可以通过位置、速度和加速度等物理量来描述。
位置是物体所处的空间位置,速度是物体单位时间内位移的变化率,加速度是速度单位时间内的变化率。
这些物理量可以用矢量表示,通过定义合适的参考系,可以对物体的运动进行精确的描述。
2.牛顿力学牛顿力学是经典力学的重要分支,它由英国物理学家牛顿于17世纪提出。
牛顿三定律是牛顿力学的基础,它包括惯性定律、动量定律和作用反作用定律。
- 惯性定律:一个物体如果不受力作用,它将保持静止或匀速直线运动的状态。
- 动量定律:物体的动量是其质量和速度的乘积,力是动量的变化率。
牛顿第二定律给出了力和运动之间的定量关系:F=ma,其中F是施加在物体上的力,m是物体的质量,a是物体的加速度。
- 作用反作用定律:两个物体之间的相互作用力大小相等、方向相反。
3.重要概念在理论力学中,还有一些重要的概念需要了解。
- 势能:物体在一定位置上由于其位置与其周围环境之间的相互作用而具有的能量。
势能可以是重力势能、弹性势能、电势能等。
- 动能:物体由于其运动而具有的能量。
动能与物体的质量和速度平方成正比。
- 能量守恒定律:在一个系统内,总能量(包括动能和势能)保持不变。
能量可以从一个形式转换为另一个形式,但总能量始终保持恒定。
- 刚体:刚体是一个保持形状不变且没有体积变化的物体。
刚体力学研究物体在外力作用下的平衡和运动。
4.应用理论力学的理论基础和方法在实际应用中起着关键作用。
- 工程学中,理论力学可以用来分析结构受力和运动的情况,提供设计和优化建议。
- 天文学中,理论力学可以用来预测行星运动、天体轨道和引力相互作用。
- 地球物理学中,理论力学可以用来研究地震、地壳运动和地球内部结构。
理论力学教程 (周衍柏)(第三版)一、引言理论力学是物理学的基础学科之一,它研究物体在力的作用下的运动规律。
本教程以周衍柏教授的《理论力学教程》第三版为蓝本,系统介绍了理论力学的基本概念、基本原理和常见的力学问题求解方法。
本教程主要面向物理学及相关专业的本科生,以系统、简明的方式解析力学理论,帮助读者建立起对力学问题的基本认知。
二、基本概念2.1 点、质点、物体点是一种没有大小和形状的基础几何概念,也是力学中的基本研究对象。
质点是一个研究物体运动时常用的模型,它假设物体可以看作是质量集中在一个点上的粒子。
而物体则表示具有一定体积和形状的物质实体。
2.2 粒子系粒子系是由多个质点组成的系统。
在粒子系中,每个质点的运动状态都可以用力学中的基本物理量表示,如质量、位置矢量和速度矢量等。
2.3 音速和光速音速是指声波在介质中传播的速度,而光速则是指光在真空中传播的速度。
它们是两个重要的物理量,对于理论力学的研究具有重要意义。
三、基本原理3.1 牛顿第一定律牛顿第一定律,也称为“惯性定律”,指出在没有外力或合力为零的情况下,物体维持静止或匀速直线运动的状态。
这一定律是理论力学研究的基础。
3.2 牛顿第二定律牛顿第二定律描述了物体在外力作用下的运动规律。
它表达了力与物体的质量和加速度之间的关系,可以用等式F=FF表示,其中F是合力,F是物体的质量,F是物体的加速度。
3.3 牛顿第三定律牛顿第三定律即“作用-反作用定律”,指出任何两个物体之间的相互作用力都是同等大小、相反方向的力。
这一定律充分体现了力的相互作用性质。
四、力学问题求解方法4.1 动力学方法动力学方法是研究力学问题的一种常见方法,它通过建立物体的运动方程和受力分析,求解物体的运动规律和相关物理量。
4.2 势能法势能法是一种基于能量守恒原理的力学分析方法。
通过定义系统的势能函数,可以将力学问题转化为求解势能函数的极值问题,从而得到物体的运动规律。
4.3 矢量法矢量法是一种运用矢量运算和矢量代数求解力学问题的方法。
理论力学知识点详细总结引言理论力学是物理学的一个重要分支,研究物体的运动规律和力学特性。
它是一门基础学科,也是物理学中最早发展的学科之一。
理论力学对于理解和解释自然界的很多现象都起着关键作用,广泛应用于航天、航空、土木工程、机械制造等领域。
本文将对理论力学的主要知识点进行详细总结,包括牛顿力学、拉格朗日力学和哈密顿力学等内容。
一、牛顿力学牛顿力学是经典力学的基础理论,是研究物体运动规律和力学现象的最基本方法。
牛顿力学建立在牛顿三大定律的基础上,主要包括运动学和动力学两大部分。
1. 运动学运动学是研究物体运动的几何学方法,包括位置、速度、加速度等概念。
基本知识点包括:① 位移:物体从一个位置移动到另一个位置的距离和方向称为位移。
位移可用位移矢量表示。
② 速度:物体单位时间内移动的位移称为速度。
平均速度可用位移除以时间计算,瞬时速度可用极限定义。
③ 加速度:物体单位时间内速度变化的量称为加速度。
平均加速度可用速度变化除以时间计算,瞬时加速度可用速度的导数定义。
2. 动力学动力学是研究物体受力运动的学科,主要包括牛顿运动定律和牛顿万有引力定律。
① 牛顿三大定律:第一定律指出,物体在不受外力作用时保持匀速直线运动或静止;第二定律指出,物体受到的力与其加速度成正比,与质量成反比;第三定律指出,相互作用的两个物体之间的作用力和反作用力大小相等、方向相反。
② 牛顿万有引力定律:物体间的引力与它们的质量和距离平方成反比。
万有引力定律可用来解释行星运动、天体引力等现象。
二、拉格朗日力学拉格朗日力学是研究自由度受限制的多体系统的运动方程和动力学的方法。
它是经典力学的重要分支,由拉格朗日于18世纪提出,是经典力学的另一种处理方法。
主要包括拉格朗日方程和哈密顿原理等内容。
1. 拉格朗日方程拉格朗日方程是描述多体系统的运动方程的方法,它由拉格朗日量和运动方程组成。
主要包括:① 拉格朗日量:拉格朗日力学的核心概念,它是系统动能和势能的差的函数。