云南省普通高中2017_2018学年高二数学上学期寒假作业(Word版含答案)7理科数学
- 格式:doc
- 大小:224.50 KB
- 文档页数:4
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业7 理1.已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32【解析】:2.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为() A .2- B .2 C .4- D .4【解析】:3双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。
【解析】:4.已知抛物线关于y 轴对称,它的顶点在坐标原点,并且经过点M (32,3-),求它的标准方程。
【解析】:5.当a 为何值时,直线1+=ax y 与抛物线x y 82=只有一个公共点?【解析】:6.中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且13221=F F ,椭圆的长半轴与双曲线的半实轴之差为4,离心率之比为3:7。
求这两条曲线的方程。
【解析】:7.求与双曲线141622=-y x 共焦点,且过点)2,23(的双曲线方程。
【解析】:8、已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11,2A ⎛⎫ ⎪⎝⎭.(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程;(3)过原点O 的直线交椭圆于点,B C ,求ABC ∆面积的最大值。
9、设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,∆21F PF 是底角为30o的等腰三角形,求离心率【解析】10、设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心, FA 为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点, 求坐标原点到,m n 距离的比值.【解析】。
2017-2018学年高二上学期数学寒假作业(一)1、命题“若,则”的否命题为( )A.若,则且B.若,则或C.若,则且D.若,则或2、已知命题:“”,命题:“直线与直线互相垂直”,则命题是命题的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3、若动点到点和直线的距离相等,则点的轨迹方程为( )A. B. C. D.4、一个多面体的三视图如下图所示,正视图为等腰直角三角形,俯视图中虚线平分矩形的面积,则该多面体的表面积为( )A. B. C. D.5、如图,棱长为1的正方体中,为线段上的动点,则下列结论正确的有( )①三棱锥的体积为定值②的最大值为③的最小值为A.①②B.①②③C.③④D.②③④6、已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为( )A. B. C. D.7、如图,边长为的正方形中,点分别是边的中点,,分别沿折起,使三点重合于点,若四面体的四个顶点在同一个球面上,则该球的半径为( )A. B. C. D.8、若直线的方向向量为,平面的法向量为,则( )A. B. C. D.与斜交9、下图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为( )A. B. C. D.10、若圆与曲线没有公共点,则半径的取值范围是( )A. B. C.D11、已知双曲线的两条渐近线均和圆相切,且圆的圆心是双曲线的一个焦点,则该双曲线的方程为( )A. B. C. D.12、已知椭圆的左焦点为与过原点的直线相交于两点,连接.若,则的离心率为( )A. B. C. D.13、已知三棱锥的三视图的正视图是等腰三角形,俯视图是边长为的等边三角形,侧视图是直角三角形,且三棱锥的外接球表面积为,则三棱锥的高为.14、命题:“或”的否定是.15、若直线, 当时.16、在椭圆上有两个动点,为定点, ,则最小值为.17、已知:以点为圆心的圆与轴交于点和点,与轴交于点和点,其中为原点.1.求证:的面积为定值;2.设直线与圆交于点,,若, 求圆的方程.18、设:函数的定义域为;:不等式对一切正实数均成立.如果命题或为真命题,命题且为假命题,求实数的取值范围19、如图,在四棱锥中,底面四边形是正方形,,且.1.求证:平面底面;2.设,当为何值时直线与平面所成角的余弦值为?20、已知动点在抛物线上,过点作轴的垂线,垂足为,动点满足.1.求动点的轨迹的方程;2.点,过点且斜率为的直线交轨迹于两点,设直线,的斜率分别为,求的值.21、如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.为线段的中点,为线段上的动点.(1).求证:;2.当点是线段中点时,求二面角的余弦值;3.是否存在点,使得直线平面?请说明理由.22、已知椭圆的两个焦点,且椭圆过点,且是椭圆上位于第一象限的点,且的面积.1.求点的坐标;2.过点的直线与椭圆相交与点,直线与轴相交与两点,点,则是否为定值,如果是定值,求出这个定值,如果不是请说明理由.数学作业(一)参考答案一、单选题1.D2.A3.B4.D5.A6.C7.D8.B9C10.C11. A 12.B二、填空题13.214.且15.或16.9三、解答题17.1.证明:∵圆过原点.∴,设圆的方程为,令,得,;令,得,.∴,即的面积为定值.2.∵,∴垂直平分线段.∵,∴,∴直线的方程为,∴,解得或.当时,圆心的坐标为,,此时圆心到直线:的距离,圆与直线相交于两点. 符合题意,此时,圆的方程为.当时,圆心的坐标为,,此时到直线的距离,圆与直线不相交,∴不符合题意,应舍去.∴圆心的方程.18.为真命题的定义域为对任意实数均成立,所以为真命题.为真命题对一切正实数均成立对一切正实数均成立,由于,所以,所以,所以,所以为真命题.由题意知与有且只有一个是真命题,当真假时,不存在;当假真时,,综上,.19.1.因为,,,所以平面,又平面,所以平面底面.2.取的中点,连接,设,因为平面平面,平面平面,,平面,所以平面.以为坐标原点,方向为轴,方向为轴,方向为轴,建立空间直角坐标系.由题意,得平面的法向量为,,则,,.20.1.设点,由,则点,将代入中,得轨迹的方程为.2.设过点的直线方程为,,.联立,得,则.∵,,∴.21.1.由已知,且平面平面,所以,即.又因为且,所以平面.由已知,所以平面.因为平面,所以.2.由1可知两两垂直.分别以为轴、轴、轴建立空间直角坐标系如图所示. 由已知,所以.因为为线段的中点,为线段的中点,所以.易知平面的一个法向量.设平面的一个法向量为,由得取,得.由图可知,二面角的大小为锐角,所以.所以二面角的余弦值为.3.存在点,使得直线平面.设,且,,则,所以.所以.设平面的一个法向量为,由得取,得(显然不符合题意).又,若平面,则.所以.所以.所以在线段上存在点,且时,使得直线平面.22.1.因为椭圆过点,∴,计算的得出,∴椭圆的方程为:∵的面积,∴∴,代入椭圆方程.∵,计算得出∴2.解法一:设直线的方程为:,直线的方程为:,可得:即直线的方程为:,可得:即联立消去整理的:. 由,可得;故为定值,且.解法二、设,直线、、的斜率分别为,由得,可得:,∴由, 令,得,即同理的,即,则故为定值,该定值为。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业8 理1.若(1-2x)2 010=a0+a1x+…+a2 010x2 010 (x∈R),则a12+a222+…+a2 01022 010的值为( )A.2 B.0 C.-1 D.-22.从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为( )A.929B.1029C.1929D.20293.袋中有40个小球,其中红色球16个,蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作成一个样本,则这个样本恰好是按分层抽样方法得到的概率为( )A.C14C28C312C416C1040B.C24C18C312C416C1040C.C24C38C112C416C1040D.C14C38C112C216C10404.集合A={(x,y)|y≥|x-1|,x∈N*},集合B={(x,y)|y≤-x+5,x∈N*}.先后掷两颗骰子,设掷第一颗骰子得点数记作a,掷第二颗骰子得点数记作b,则(a,b)∈A∩B的概率等于( )A.14B.29C.736D.5365.一射手射击时其命中率为0.4,则该射手命中的平均次数为2次时,他需射击的次数为________.6.(2010·江西)将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).7.若随机变量X的分布列为:P(X=m)=1/3,P(X=n)=a,若EX=2,则DX的最小值?8.随机变量ξ的分布列如下:其中a,b,c成等差数列.若E(ξ)=3,则D(ξ)的值是________.9.某车间准备从10名工人中选配4人到某生产线工作,为了安全生产,工厂规定:一条生产线上熟练工人数不得少于3人.已知这10名工人中有熟练工8名,学徒工2名.(1)求工人的配置合理的概率;(2)为了督促其安全生产,工厂安全生产部门每月对工人的配备情况进行两次抽检,求两次检验得到的结果不一致的概率.10. 某食品企业一个月内被消费者投诉的次数用X表示.据统计,随机变量X的概率分布如列下:Array(1)求a的值和X的数学期望;(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.1.C [∵(1-2x)2 010=1-C 12 0102·x+C 22 01022·x 2+…+C 2 0102 01022 010·x2 010∴a 12+a 222+…+a 2 01022 010=-C 12 010+C 22 010+…+C 2 0102 010 =(1-1)2 010-C 02 010=-1.]2.D [(间接法)P =1-P =1-C 320C 330-C 310C 330=2029.]3.A [分层抽样即按红、蓝、白、黄球之比为16∶12∶8∶4来抽取的,即抽取球的个数依次为4,3,2,1,∴P=C 416C 312C 28C 14C 1040.]4. 解析:由于y ≥|x -1|⇔⎩⎪⎨⎪⎧x -y -1≤0x +y -1≥0,根据二元一次不等式表示平面的区域,可知A ∩B 对应如右图所示的阴影部分的区域中的整数点.其中整数点有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0)(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2),共14个.现先后抛掷2颗骰子,所得点数分别有6种,共会出现36种结果,其中落入阴影区域内的有8种,即(1,1),(1,2),(1,3)(1,4),(2,1),(2,2),(2,3),(3,2).所以满足(a ,b )∈A ∩B 的概率为836=29.答案:B 5.5解析 设射手射击n 次的命中次数为ξ,则ξ~B(n ,p),由题意知E(ξ)=0.4n =2,解之,得n =5. 6.1 080解析 先将6位志愿者分组,共有C 26·C 24A 22种方法;再把各组分到不同场馆,共有A 44种方法.由乘法原理知,不同的分配方案共有C 26·C 24A 22·A 44=1 080(种).7. ∵P (X=m )=1/3,P(X=n)=a,∴根据分布列的性质得,P(X=n)=a =2/3,∵EX=2,∴1/3×m +2/3×n =2,∴m +2n=6,再根据方差的计算公式得,DX=﹙m -2﹚×﹙1/3﹚+﹙n -2﹚×﹙2/3﹚=1/3﹙m +2n -12﹚,把m +2n=6代入化简得,DX=2﹙n -2﹚,∴DX 的最小值是0. 8.解析 根据已知条件:⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得:a =16,b =13,c =12,∴D(ξ)=16×⎝⎛⎭⎪⎫-1-132+13×⎝ ⎛⎭⎪⎫0-132+12×⎝ ⎛⎭⎪⎫1-132=59.答案 599.解:(1)一条生产线上熟练工人数不得少于3人有C 48+C 38C 12种选法.工人的配置合理的 概率C 48+C 38C 12C 410=1315. (2)两次检验是相互独立的,可视为独立重复试验,因两次检验得出工人的配置合理的概率均为1315,故“两次检验得出的结果不一致”即两次检验中恰有一次是合格的概率为C 121315(1-1315)=52225.10.解:(1)由概率分布的性质有0.1+0.3+2a+a=1,解得a=0.2.∴X的概率分布列为X∴E(X)=0×0.1+1×0.3+2×0.4+3×0.2=1.7.(2)设事件A表示“两个月内共被投诉2次”;事件A1表示“两个月内有一个月被投诉2次,另外一个月被投诉0次”;事件A2表示“两个月内每个月均被投诉1次”.则由事件的独立性得P(A1)=C12P(X=2)P(X=0)=2×0.4×0.1=0.08,P(A2)=[P(X=1)]2=0.32=0.09,∴P(A)=P(A1)+P(A2)=0.08+0.09=0.17.故该企业在这两个月内共被消费者投诉2次的概率为0.17.。
训练01 正弦定理与余弦定理高考频度:★★★★☆ 难易程度:★★★☆☆在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求角A 的大小;(2)若sin B +sin C =1,试判断ABC △的形状. 【参考答案】(1)A =23π;(2)ABC △是等腰钝角三角形.(1)在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. (2)几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.(3)研究测量距离问题是高考中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档题.解题时要选取合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.1.(2017新课标全国Ⅰ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,2a =,c =C =A .π12B .π6C .π4D .π32.已知A ,B ,C 为ABC △的内角,tan A 、tan B 是关于x 的方程210()x p p +-+=∈R 的两个实根.(1)求C 的大小;(2)若3AB =p 的值.3.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A +=,a =2b =. (1)求c 的值;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练02 等差数列与等比数列的综合问题高考频度:★★★★☆ 难易程度:★★★☆☆已知等差数列{}n a 满足32a =,前3项和3S =92. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足1b =1a ,4b =15a ,求数列{}n b 的前n 项和n T . 【参考答案】(1)1=2n n a +;(2)21nn T =-.解决等差数列与等比数列的综合问题,关键是理清两个数列的关系,(1)如果同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;(2)如果两个数列是通过运算综合在一起的,就要从分析运算入手,把两个数列分割开,再根据两个数列各自的特征进行求解.1.已知公差不为0的等差数列{}n a 满足134,,a a a 成等比数列,n S 为数列{}n a 的前n 项和,则5a = A .0B .2-C .3D .无法求解2.(2017新课标全国Ⅰ文)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.3.已知等差数列{}n a 的前n 项和为n S ,且373,28a S ==,在等比数列{}n b 中,344,8b b ==. (1)求n a 及n b ;(2)设数列{}n n a b 的前n 项和为n T ,求n T ._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练03 简单的线性规划问题高考频度:★★★★★ 难易程度:★★★☆☆(1)已知x ,y 满足10240220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,如果目标函数1y z x m +=-的取值范围为[0,2),则m 的取值范围为A .[0,12] B .(-∞,12] C .(-∞,12)D .(-∞,0](2)若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)【参考答案】(1)C ;(2)D .【试题解析】(1)作出10240220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩表示的可行域,如图中阴影部分所示.目标函数1y z x m +=-的几何意义为可行域内的点(x ,y )与A (m ,-1)连线的斜率.由10240x y x y +-=⎧⎨--=⎩得21x y =⎧⎨=-⎩,即B (2,-1).由题意知2m =不符合题意,故点A 与点B 不重合,因而当连接AB 时,斜率取到最小值0.由1y =-与220x y --=得交点C (12,-1),在点A 由点C 向左移动的过程中,可行域内的点与点A 连线的斜率小于2,而目标函数的取值范围满足z ∈[0,2),则12m <,故选C .求解线性规划问题时需要注意以下几点:(1)在可行解中,只有一组(x ,y )使目标函数取得最值时,最优解只有1个.如边界为实线的可行域,当目标函数对应的直线不与边界平行时,会在某个顶点处取得最值.(2)同时有多个可行解取得一样的最值时,最优解有多个.如边界为实线的可行域,目标函数对应的直线与某一边界线平行时,会有多个最优解.(3)可行域一边开放或边界线为虚线均可导致目标函数找不到相应的最值,此时也就不存在最优解. (4)对于面积问题,可先画出平面区域,然后判断其形状(三角形区域是比较简单的情况),求得相应的交点坐标、相关的线段长度等,若图形为规则图形,则直接利用面积公式求解;若图形为不规则图形,则运用割补法计算平面区域的面积,其中求解距离问题时常常用到点到直线的距离公式. (5)对于求参问题,则需根据区域的形状判断动直线的位置,从而确定参数的取值或范围.1.设x ,y 满足211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,若3M x y =+,N =(12)x 72-,则A .M N >B .M N =C .M N <D .M ,N 的大小关系不能确定2.设实数x ,y 满足约束条件3602000x y x y x y --≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数0),(0z ax by a b =+>>的最大值为10,则222a b a ++的最小值为A .2113 B .2213 C .3613D .2413_______________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________训练04 基本不等式高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)函数1(0)4y x x x=+>取得最小值时,x 的值为 A .12-B .12C .1D .2(2)已知1x >,1y >,且2log x ,14,2log y 成等比数列,则xy 有A B .最小值2CD .最大值2(3)已知,,x y z 为正实数,则222xy yzx y z +++的最大值为A .5B .45C .2D .23【参考答案】(1)B ;(2)A ;(3)C .(3)由题意可得:222211,22x y z y +≥+≥,结合不等式的性质有2x z y ==时等号成立,即2222xy yz x y z +≤++222xy yz x y z +++的最大值为2.故选C .利用基本不等式求最值的常用技巧如下:(1)若直接满足基本不等式条件,则直接应用基本不等式.(2)若不直接满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造“1”的代换等.常见的变形手段有:①拆——裂项拆项,对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定积创造条件;②并——分组并项,目的是分组后各组可以单独应用基本不等式,或分组后先由一组应用基本不等式,再组与组之间应用基本不等式得出最值;③配——配式配系数,有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配式与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值.(3)若一次应用基本不等式不能达到要求,需多次应用基本不等式,但要注意等号成立的条件必须要一致.注意:若可用基本不等式,但等号不成立,则一般利用函数的单调性求解.1.若正实数a ,b 满足1a b +=,则A .11a b+有最大值4BC .ab 有最小值14D .22a b +有最小值22.在区间[2,4]-上随机地取一个数x A .13 B .12C .23D .343.某建筑公司用8000万元购得一块空地,计划在该块地上建造一栋至少12层、每层4000平方米的楼房,经初步估计得知,如果将楼房建为1(2)x x ≥层,则每平方米的平均建筑费用为3000()50Q x x =+(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为_____________层,每平方米的平均综合费用最少为_____________元(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练05 命题真假的判断高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)已知命题p :2+2=5,命题q :23≤,则下列判断错误的是A .p q ∨为真,q ⌝为假B .p q ∧为假,q ⌝为假C .p q ∧为真,q ⌝为假D .p q ∧为假,p q ∨为真(2)已知命题p :∀x ∈[1,2],230x a -≥,命题q :∃x ∈R ,2220x ax a ++-=,若命题“p 且q ”是真命题,则实数a 的取值范围为_______________; (3)下列命题:①“54>或45>”;②命题“若a b >,则a c b c +>+”的否命题; ③命题“矩形的两条对角线相等”的逆命题. 其中真命题的个数为_______________.【参考答案】(1)C ;(2)(,2][,13]-∞-;(3)2.(3)①因为54>是真命题,所以“54>或45>”是真命题;②命题“若a b >,则a c b c +>+”的否命题为“若a b ≤,则a c b c +≤+”,不等式两边同时加上一个数,不等式方向不变,故命题“若a b >,则a c b c +>+”的否命题为真命题;③命题“矩形的两条对角线相等”的逆命题为“若两个四边形的对角线相等,则这个四边形是矩形”,显然不正确,如等腰梯形的对角线相等,但不是矩形,故命题“矩形的两条对角线相等”的逆命题为假命题.所以正命题的个数为2.(1)四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.(2)给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,则只需举一反例即可;②由于原命题与其逆否命题为等价命题,有时可以利用这种等价性间接地证明命题的真假. (3)辨别复合命题的构成形式时,应根据组成复合命题的语句中所出现的逻辑联结词,或语句的意义确定复合命题的形式.当p q ∨为真,p 与q 一真一假;p q ∧为假时,p 与q 至少有一个为假.(4)要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.要确定一个特称命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假命题.1.给出下列两个命题,命题p :函数[(ln 11)()]y x x =-+为偶函数;命题q :函数1ln 1xy x-=+是奇函数,则下列命题为假命题的是 A .p q ∧ B .()p q ∨⌝ C .p q ∨D .()p q ∧⌝2.给出以下四个命题:①“若0x y +=,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤-,则20x x q ++=有实根”的逆否命题; ④“若ab 是正整数,则a ,b 都是正整数”.其中的假命题是_______________.(写出所有假命题的序号)3.若tan 1m x ≤+”为真命题,则实数m 的最大值为_______________._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练06 充分、必要条件的判断高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)(2017天津)设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“4652S S S +>”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【参考答案】(1)B ;(2)C .(1)从定义来看,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分而不必要条件,若B 是A 的真子集,则A 是B 的必要而不充分条件. (2)设“若p ,则q ”为原命题,那么:①原命题为真,逆命题为假时,则p 是q 的充分不必要条件; ②原命题为假,逆命题为真时,则p 是q 的必要不充分条件; ③当原命题与逆命题都为真时,则p 是q 的充要条件;④当原命题与逆命题都为假时,则p 是q 的既不充分也不必要条件.1.设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.若条件:1p x ≤,且p ⌝是q 的充分不必要条件,则q 可以是 A .1x > B .0x > C .2x ≤D .10x -<<_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练07 全称量词与存在量词高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)命题“对任意的x ∈R ,都有2e ln(1)0x x ++≥”的否定为A .对任意的x ∈R ,都有2e ln(1)0x x ++< B .不存在x ∈R ,使得2e ln(1)0x x ++<C .存在0x ∈R ,使得020e ln(1)0xx ++≥ D .存在0x ∈R ,使得020e ln(1)0x x ++<(2)命题“有些实数的平方是0”的否定为A .x ∀∈R ,20x ≠B .0x ∃∈R ,200x ≠ C .x ∀∈R ,20x =D .0x ∃∈R ,200x =【参考答案】(1)D ;(2)A .1.下列命题中,是真命题且是全称命题的是A .对任意的a b ∈R 、,都有222220a b a b -+-<+B .菱形的两条对角线相等C .x ∃∈R x =D .正比例函数在定义域上是单调函数 2.下列特称命题是假命题的是 A .有些不相似的三角形面积相等B .存在一实数0x ,使20010x x ++<C .存在实数a ,使函数=y ax b +的值随x 的增大而增大D .有一个实数的倒数是它本身3.若命题“0x ∃∈R ,使得200(1)10x a x +-+<”是假命题,则实数a 的取值范围是__________________._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练08 椭圆的离心率高考频度:★★★★☆ 难易程度:★★☆☆☆(1)(2017浙江)椭圆22194x y +=的离心率是A B C .23D .59(2)已知椭圆的方程为222(3)0x y m m +=>,则此椭圆的离心率为A .13BCD .12(3)(2017新课标全国III 文)已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A BC .3D .13【参考答案】(1)B ;(2)B ;(3)A .(3)以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223()a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A .1.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A.13B.12C.23D.342.直线y=与椭圆C:22221(0)x ya ba b+=>>交于A,B两点,以线段AB为直径的圆恰好经过椭圆的右焦点,则椭圆C的离心率为A BC1D.4-_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练09 双曲线的离心率与渐近线方程高考频度:★★★★☆难易程度:★★★☆☆(1)已知F 1,F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若双曲线上存在点A ,使得1290F AF ∠=︒,且|AF 1|=3|AF 2|,则双曲线的离心率e =ABCD(2)设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为A .430x y ±=B .350x y ±=C .540x y ±=D .340x y ±=【参考答案】(1)B ;(2)A .【试题解析】(1)由121223AF AF a AF AF ⎧-=⎪⎨=⎪⎩⇒123AF a AF a ⎧=⎪⎨=⎪⎩,由1290F AF ∠=︒,得2221212AF AF F F +=,即222(()2)3a a c +=,得e =B .(1)对于双曲线的渐近线方程,有以下两种考查方式:①已知双曲线的方程求其渐近线方程;②给出双曲线的渐近线方程求双曲线方程,由渐近线方程可确定a ,b 的关系,结合已知条件可解.1.(2017新课标全国II 文)若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)2.如图,已知F 1、F 2分别为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,P 为第一象限内一点,且满足|F 2P|=a ,(1F P +12F F )·2F P =0,线段F 2P 与双曲线C 交于点Q ,若|F 2P|=5|F 2Q|,则双曲线C 的渐近线方程为A .y x =B .12y x =±C .2y x =±D .3y x =±3.若双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(3,)4-,则此双曲线的离心率为 ._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练10 抛物线的定义的应用高考频度:★★★☆☆ 难易程度:★★★☆☆(1)已知抛物线C :20)2(x py p =>上一点4(),A m 到其焦点的距离为174,则p ,m 的值分别为 A .1p =,2m = B .1p =,2m =± C .12p =,2m = D .12p =,2m =± (2)过抛物线24y x =的焦点作直线交抛物线于点11(),A x y ,22(),B x y ,若7AB =,则AB 的中点M到抛物线准线的距离为_________________;(3)已知等腰梯形ABCD 的顶点都在抛物线22(0)y px p =>上,且AB CD ∥,2AB =,4CD =,60ADC ∠=︒,则点A 到抛物线的焦点的距离是_________________.【参考答案】(1)D ;(2)72;(3)12.(3)由题意可设(,1)A m,(2)D m +A到抛物线的焦点的距离是2p m +=+=1.如图,已知点()Q 及抛物线24x y =上的动点,()P x y ,则y PQ +的最小值是A .2B .3C .4D .2.设F 为抛物线2:12C x y =的焦点,A ,B ,C 为抛物线上不同的三点,若FA FB FC ++=0,则FA FB FC ++=A .3B .9C .12D .183.已知11(),A x y ,22(),B x y ,33(),C x y 是抛物线20)2(y px p =>上的三个点,且它们到焦点F 的距离AF ,BF ,CF 成等差数列,求证:2222132y y y =+._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练11 导数的几何意义高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)曲线2xy x =+在点(−1,−1)处的切线方程为 A .21y x =+B .21y x =-C .23y x =--D .22y x =--(2)已知函数()f x 是奇函数,当0x <时,()ln()2f x x x x =-++,则曲线()y f x =在1x =处的切线方程为 A .23y x =+B .23y x =-C .23y x =-+D .23y x =--(3)已知曲线1n y x+=在点(1,1)处的切线与x 轴的交点的横坐标为n x ()n *∈N ,令lg n n a x =,则1299a a a ++⋅⋅⋅+=__________________.【参考答案】(1)A ;(2)B ;(3)2-. 【试题解析】(1)因为22(2)(2)2(2)(2)x x x x y x x ''+-+'==++,所以切线的斜率122|2(12)x k y =-'===-+,所以切线方程为(11)2y x +=+,即21y x =+.故选A .若已知曲线过点00(),P x y ,求曲线过点P 的切线,则需分点00(),P x y 是切点和不是切点两种情况求解: (1)当点00(),P x y 是切点时,切线方程为000()()y y x f 'x x -=-; (2)当点00(),P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标11()),(P x f x ';第二步:写出过11()),(P x f x '的切线方程为111()()()y f x x x 'x f -=-; 第三步:将点P 的坐标00(,)x y 代入切线方程求出1x ;第四步:将1x 的值代入方程111()()()y f x x x 'x f -=-,可得过点00(),P x y 的切线方程.1.曲线2e x y =在点2(1,e )处的切线与坐标轴所围成的三角形的面积为A B .2e CD .23e2.已知函数()e 1xf x mx =-+的图象为曲线C ,若曲线C 存在与直线e y x =垂直的切线,则实数m 的取值范围为A .[e,)+∞B .(e,)+∞CD 3.设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为__________________._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练12 函数的单调性问题高考频度:★★★★★ 难易程度:★★★★☆已知函数322()4361f x x tx t x t =+-+-,其中t ∈R . (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间.【参考答案】(1)60x y +=;(2)见试题解析.【试题解析】(1)当1t =时,32()436f x x x x =+-,(0)0f =,因为2()1266f x x x '=+-,(0)6f '=-,所以曲线()y f x =在点(0,(0))f 处的切线方程为6y x =-,即60x y +=.②若0t >,则tt >-,当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 的单调递增区间是(,)t -∞-,(,)2+∞;()f x 的单调递减区间是(,)2t t -.(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数()f x 在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数()f x 在(),a b 内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(),a b 的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性.1.(2017浙江)函数()y f x =的导函数()y f 'x =的图象如图所示,则函数()y f x =的图象可能是2.已知函数ln ()xf x x a=+在1x =处的切线方程为20x y b -+=. (1)求实数a ,b 的值; (2)若函数21()()2g x f x x kx =+-,且()g x 是其定义域上的增函数,求实数k 的取值范围._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练13 函数的极值与最值问题高考频度:★★★★☆ 难易程度:★★★★☆已知函数n (l )f x x x =.(1)求函数()f x 的单调区间和极值; (2)若4()x m f k m≥+-对任意的[3,5]m ∈恒成立,求实数k 的取值范围.【参考答案】(1)见试题解析;(2)291[,)5e++∞. 【试题解析】(1)函数()f x 的定义域为(0,)+∞,()1ln f x x '=+,令0()f 'x >,得1e x >;令0()f 'x <,得10e x <<. 故函数()f x 在(10,e )上单调递减,在1(,)e+∞上单调递增.故当1e x =时,()f x 取得极小值,且1111()ln e e e e()f x f ===-极小值,无极大值.(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)求函数()f x 极值的方法:①确定函数()f x 的定义域;②求导函数()f 'x ;③求方程0()f 'x =的根; ④检查()f 'x 在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f 'x 在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f 'x ,求方程0()f 'x =的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.(4)求()f x 在[,]a b 上的最大值与最小值的步骤为:①求()f x 在(,)a b 内的极值;②将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.1.若32(),242()()3f x m n x mx m x n =∈++-+R 在R 上有两个极值点,则实数m 的取值范围为 A .(1,1)-B .(1,2)C .(,1)(2,)-∞+∞UD .(,1)(1,)-∞-+∞U2.(2016江苏)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥1111P A B C D -,下部的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍.(1)若6m AB =,12m PO =,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当1PO 为多少时,仓库的容积最大?_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练14 利用导数研究函数的零点或方程的根高考频度:★★★★☆ 难易程度:★★★★☆设函数32()f x x ax bx c =+++.(1)设4a b ==,若函数()f x 有三个不同零点,求实数c 的取值范围; (2)求证:230a b ->是()f x 有三个不同零点的必要而不充分条件. 【参考答案】(1)32(0,)27;(2)证明见试题解析.(2)当24120a b =-<∆时,2()320f x x ax b '=++>,(,)x ∈-∞+∞, 此时函数()f x 在区间(,)-∞+∞上单调递增,所以()f x 不可能有三个不同零点. 当24120a b =-=∆时,2()32f x x ax b '=++只有一个零点,记作0x . 当0(,)x x ∈-∞时,()0f x '>,()f x 在区间0(,)x -∞上单调递增; 当0(,)x x ∈+∞时,()0f x '>,()f x 在区间0(,)x +∞上单调递增. 所以()f x 不可能有三个不同零点.综上所述,若函数()f x 有三个不同零点,则必有24120a b =->∆. 故230a b ->是()f x 有三个不同零点的必要条件.当4a b ==,0c =时,230a b ->,322()44(2)f x x x x x x =++=+只有两个不同零点,所以230a b ->不是()f x 有三个不同零点的充分条件, 因此230a b ->是()f x 有三个不同零点的必要而不充分条件.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.1.已知函数384()ln 33f x x x =--,则函数()f x 的零点个数为_______________. 2.已知函数2()(2)e (1)xf x x a x =-+-有两个零点,求实数a 的取值范围._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练15 导数的综合应用高考频度:★★★★★ 难易程度:★★★★☆(2017新课标全国Ⅲ文)已知函数2ln )1(()2x ax f x a x =+++. (1)讨论()f x 的单调性; (2)当a ﹤0时,证明:3()24f x a≤--.【参考答案】(1)见试题解析;(2)见试题解析.(2)由(1)可知,当0a <时,()f x 在12x a =-处取得最大值,最大值为111()ln()1224f a a a-=---.所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x'=-,当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞时,()0g x '<,所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,故当1x =时()g x 取得最大值,最大值为0(1)g =,所以当0x >时,()0g x ≤. 从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤--.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.1.已知点P 与2()ln 32(0)g x a x b a =+>图象的公共点,若以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为___________________. 2.已知函数2()f x x x =-,e (1)xg x ax =--,其中e 为自然对数的底数.(1)讨论函数()g x 的单调性;(2)当0x >时,()()f x g x ≤恒成立,求实数a 的最大值._______________________________________________________________________________ _______________________________________________________________________________答案及解析训练01 正弦定理与余弦定理【参考答案】1.【答案】B【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2.【答案】(1)60C =︒;(2)1-【解析】(1)由已知,方程210x p x p +-+=的判别式为22)4(1)3440p p p ∆=--+=-≥+,所以2p ≤-tan tan 1A B p =-,于是1tan tan 1(1)0A B p p -=--=≠60C =︒.3.【答案】(1)4c =;(2【解析】(1)由已知可得tan A =2π3A =. 在ABC △中,由余弦定理得22π2844cos 3c c =+-,即22240c c +-=,解得4c =(负值舍去).(2)由题设可得π2CAD ∠=,所以π6BAD BAC CAD ∠=∠-∠=.故ABD △面积与ACD △面积的比值为1πsin 26112AB AD AC AD ⋅⋅=⋅.又ABC △的面积为142sin 2BAC ⨯⨯∠=,所以ABD △.训练02 等差数列与等比数列的综合问题【参考答案】1.【答案】A【解析】设等差数列{}n a 的公差为d ,首项为1a ,所以312a a d =+,413a a d =+.因为134,,a a a 成等比数列,所以2111()(23)a d a a d +=+,解得14a d =-,所以5140a a d =+=.故选A .2.【答案】(1)(2)nn a =-;(2)1122()33n n n S +-=-+,1n S +,n S ,2n S +成等差数列.【思路分析】(1)由等比数列的通项公式解得2q =-,12a =-即可求解;(2)利用等差中项即可证明1n S +,n S ,2n S +成等差数列.3.【答案】(1)n a n =,12n n b -=;(2)(1)21n n T n =-⋅+.(2)由(1)知n a n =,12n n b -=,所以12n n n a b n -=⋅. 所以23112232422n n T n -=+⨯+⨯+⨯++⨯ ①,2312122232(1)22n n n T n n -=⨯+⨯+⨯++-⨯+⨯ ②,②-12)n -++=故(1)21nn T n =-⋅+.训练03 简单的线性规划问题【参考答案】1.【答案】A【解析】作出不等式组211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩表示的平面区域,如图中阴影部分所示,当直线30x y M +-=经过点A (-1,2)时,目标函数3M x y =+取得最小值-1. 又由平面区域知13x -≤≤,则当1x =-时,N =1()2x72-取得最大值32-. 由此可知一定有M N >,故选A . 2.【答案】C方法2:由题意知,不等式组3602000x y x y x y --≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩所表示的平面区域如图中阴影部分所示,因为0a >,0b >,所以由可行域得当目标函数过点(4,6)时,z 取得最大值,所以4610a b +=,532b a -=,所以22225325()32b a b a b b -++=++-=2134b -212b +454,当2113b =时,222a b a ++取得最小值3613.训练04 基本不等式【参考答案】2.【答案】A2211y a a =++,则11=,当且仅当2211a a =++,即0a =时,等号成立,所以问题转化为||1x ≤,即11x -≤≤,所以在区间[2,4]-上随机地取一个数xA .3.【答案】20 5000【解析】设楼房每平方米的平均综合费用为()f x ,则8000100002000050400()()0f x Q x x x x ⨯=+=+3000(12,)x x +≥∈N 30005000≥=,当且仅当20x =时,等号取到.所以当20x =时,最小值为5000元.故该楼房应建为20层,每平方米的平均综合费用最少为5000元.训练05 命题真假的判断【参考答案】1.【答案】D【解析】函数[(ln 11)()]y x x =-+]的定义域是()1,1-,且是偶函数,故命题p 为真命题; 函数1ln1xy x-=+的定义域是()1,1-,且是奇函数,故命题q 是真命题, 故命题p q ∧,()p q ∨⌝,p q ∨均为真命题,命题()p q ∧⌝为假命题.故选D .3.【答案】1-【解析】根据正切函数的性质可知tan 1y x =+tan )113(y π=-+=,所以1m ≤m 的最大值为1训练06 充分、必要条件的判断【参考答案】1.【答案】A 【解析】πππ||012126θθ-<⇔<<1sin 2θ⇒<,但0θ=时1sin 02θ=<,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin 2θ<”的充分不必要条件,故选A .训练07 全称量词与存在量词【参考答案】1.【答案】D【解析】A 中含有全称量词“任意的”,因为2222222=(10+1a b a b a b --+-+-≥)();故是假命题.B 、D 在叙述上没有全称量词,但实际上是指“所有的”,菱形的对角线不一定相等,所以B 是假命题,C 是特称命题,故选D .故选B . 3.【答案】[1,3]-【解析】由题设可知:“x ∀∈R ,都有01)1(2≥+-+x a x 恒成立”,所以2(1)40a ∆=--≤,即2|1|≤-a ,也即212≤-≤-a ,所以31≤≤-a .故实数a 的取值范围是[1,3]-.【易错点晴】本题考查的是全称命题的否定与特称命题之间的关系.求解时要充分借助“全称命题的否定是特称命题”、“特称命题的否定是全称命题”这一事实,先搞清所给的命题是全称命题还是特称命题,然后再依据上述结论加以判别求解写出答案.解答本题时,先将问题合理转化为:“x ∀∈R ,都有01)1(2≥+-+x a x 恒成立”是真命题,进而获解.常常会和命题四种形式中“否命题”混淆,从造成解答上的错误.训练08 椭圆的离心率【参考答案】1.【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||()FM k a c =-,||OE k a =.设OE 的中点为N ,则O B N F B M△∽△,则1||||2||||OE OB FM BF =,即2(c )k a a k a a c=-+,整理,得13c a =,所以椭圆C 的离心率13e =,故选A . 【名师点睛】求解椭圆的离心率问题有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ca或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .训练09 双曲线的离心率与渐近线方程【参考答案】1.【答案】C【解析】由题意222222111c a e a a a+===+,因为1a >,所以21112a <+<,则1e <<C . 【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题的关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【答案】B3.【答案】53【解析】双曲线22221(0,0)x y a b a b-=>>的渐近线bx y a =-过点(3,)4-,即34b a -=-,即34b a =,而222a b c +=,所以35c a =,即双曲线的离心率53c e a ==.训练10 抛物线的定义的应用【参考答案】1.【答案】A【解析】作PB x ⊥轴于A 点,并与准线相交于B 点.抛物线24x y =的焦点为()0,1F ,准线为1y =-,由抛物线的几何意义可得PB PF =,所以11y PQ PA PQ PB PQ PF PQ +=+=+-=+-≥112FQ -=.故选A .。
2017-2018学年寒假作业高二数学试题一必修5文理都用一、选择题(本大题共12小题,共60.0分)1.若,则A. B.C. D.2.若正实数满足,则的最小值A. 3B. 4C.D.3.若实数满足条件则的最大值为A. B. C. D.4.中,角A、B、C成等差,边a、b、c成等比,则一定是A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形5.如图,在平面四边形ABCD中,,则BC的长为A. B. 2 C. 3 D.6.若的内角所对的边分别为,已知,且,则等于A. B. C. D.7.中,边长a、b是方程的两根,且则边长c等于A. B. C. 2 D.8.已知等比数列满足,则A. 1B.C.D. 49.设为等差数列的前n项和,若,则当最大时正整数n为A. 4B. 5C. 6D. 1010.数列满足,则A. B. C. 2 D.11.等差数列中,,且为其前n项之和,则A. 都小于零,都大于零B. 都小于零,都大于零C. 都小于零,都大于零D. 都小于零,都大于零12.已知函数的图象关于对称,且在上单调,若数列是公差不为0的等差数列,且,则的前100项的和为A. B. C. D. 0二、填空题(本大题共4小题,共20.0分)13.设函数,则不等式的解集为______ .14.在锐角中,,则a等于______ .15.已知等差数列满足,则数列的前n项和 ______ .16.设等比数列满足,则的最大值为______ .三、解答题(本大题共6小题,共72.0分)17.某客运公司用两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次两种车辆的载客量分别为36人和60人,在甲地和乙地之间往返一次的营运成本分别为1600元辆和2400元辆公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆若每天要运送不少于900人从甲地去乙地的旅客,并于当天返回,为使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?营运成本最小为多少元?18.已知实数满足.求的取值范围;求最小值.19.在中,角所对的边分别是,满足.求的面积;若,求a的值.20.如图,中,,点D在线段AC上,且Ⅰ求:BC的长;Ⅱ求的面积.21.数列的通项公式是.这个数列的第4项是多少?是不是这个数列的项?若是这个数列的项,它是第几项?该数列从第几项开始各项都是正数?22.已知是等差数列,是各项均为正数的等比数列,.Ⅰ求数列的通项公式;Ⅱ求数列的前n项和.高二数学试题一必修5文理都用1. D2. B3. C4. A5. C6. C7. D8. B9. B10. C11. C12. B13. 14. 15. 16. 6417. 解:设应配备A型车、B型车各x辆,y辆,营运成本为z元;则由题意得,;;故作平面区域如下,故联立,解得,;此时,有最小值元.答:应配备A型车5辆、B型车12辆,营运成本最小,36800元.18.解:实数满足,作出可行域如图所示,并求顶点坐标,表示可行域内任一点与定点连线的斜率,由图知,又,的取值范围是表示可行域内任一点到直线的距离在图中作出直线,由图易知可行域中的点B到该直线的距离最小点B到该直线的距离,,可得最小值为:3.19. 解:分分的面积分分分20. 解:Ⅰ因为,所以分在中,设,由余弦定理可得:分在和中,由余弦定理可得:分因为,所以有,所以由可得,即分Ⅱ由Ⅰ知,则,又,则的面积为,又因为,所以的面积为分21. 解:,.这个数列的第4项是.解方程,得,或,,是这个数列的项,它是第16项.由,得,或.数列从第7项开始各项都是正数.22. 解:Ⅰ设数列的公差为的公比为,由.则解得或舍,所以.Ⅱ.。
【最新2018】高二数学寒假作业答案解析word版本
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
高二数学寒假作业答案解析
1.已知集合,,则 ( C )
A. B. C. D.
2. 设是定义在上的奇函数,当时,,则 ( A )
A. B. C.1 D.3
3. 已知向量满足,则 ( D )
A.0
B.1
C.2
D.
4.设是等比数列,则是数列是递增数列的( B )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
5. 设m,n是两条不同的直线,、、是三个不同的平面,给出下列命题,正确的是( B )
A.若,,则
B.若,,则
C.若,,则
D.若,,,则 [来
6. 函数y=sin(2x+)的图象沿x轴向左平移个单位后,得到一个偶函数的
图象,则的一个可能的值为( A )
A. B. C. D.
7.已知的内角A,B,C所对的边分别为a,b,c,若的可能取值为( D )
A. B. C. D.
8.设函数,则的值为( A )。
1.已知双曲线错误!的一条渐近线方程为y =错误!x ,则双曲线的离心率为( ) (A )错误! (B )错误! (C )错误! (D )错误!【解析】:2.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4【解析】:3双曲线221mx y +=的虚轴长是实轴长的2倍,则m =2017---2018高二年级 寒 假 作 业 第(7)期 姓名 班级 学号 组编: 校对: 专题七《圆锥曲线》。
【解析】:4.已知抛物线关于y 轴对称,它的顶点在坐标原点,并且经过点M(32,3-),求它的标准方程。
【解析】:5。
当a为何值时,直线1+=ax y 与抛物线x y 82=只有一个公共点? 【解析】:6。
中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且13221=F F ,椭圆的长半轴与双曲线的半实轴之差为4,离心率之比为3:7。
求这两条曲线的方程。
【解析】:7。
求与双曲线141622=-y x 共焦点,且过点)2,23(的双曲线方程。
【解析】:8、已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11,2A ⎛⎫ ⎪⎝⎭.(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程;(3)过原点O 的直线交椭圆于点,B C ,求ABC ∆面积的最大值.9、设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,∆21F PF 是底角为30的等腰三角形,求离心率【解析】10、设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点;(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程; (2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业2 理一、选择题:1.设集合}21|{≤≤=x x A ,}41|{≤≤=y y B ,则下述对应法则f 中,不能构成A 到B 的映射的是( )A .2:x y x f =→ B .23:-=→x y x f C .4:+-=→x y x f D .24:x y x f -=→2.若函数)23(x f -的定义域为[-1,2],则函数)(x f 的定义域是( )A .]1,25[--B .[-1,2]C .[-1,5]D .]2,21[3,设函数⎩⎨⎧<≥-=)1(1)1(1)(x x x x f ,则)))2(((f f f =( )A .0B .1C .2D .24.若)(),()(12x f N n x x f n n则∈=++是( )A .奇函数B .偶函数C .奇函数或偶函数D .非奇非偶函数 5. 已知f (x )是定义在R 上的偶函数,并满足:)(1)2(x f x f -=+,当2≤x ≤3,f (x ) =x ,则f (5.5)=( )A .5.5B .-5.5C .-2. 5D .2.56.函数)2(xf y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( )A .[0,1]B .[1,2]C .[2,4]D .[4, 16]7. 若函数f(x)是区间[a,b]上的增函数,也是区间[b,c]上的增函数,则函数f(x)在区间[a,b]上是( )A .增函数B .是增函数或减函数C .是减函数D .未必是增函数或减函数 8.设函数),2(21)(+∞-++=在区间x ax x f 上是单调递增函数,那么a 的取值范围是( )A . 210<<a B .21>a C .a<-1或a>1 D .a>-2二、填空9.已知定义域为(-∞,0)∪(0,+∞)的函数f (x )是偶函数,并且在(-∞,0)上是增函数,若f (-3)=0,则不等式)(x f x<0的解集是 . 10.若1)1(log )1(<-+k k ,则实数k 的取值范围是 . 三、解答11. 设f (x )是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足f (-a 2+2a -5)<f (2a 2+a +1), 求实数a 的取值范围.12.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且 (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|<x f 的解集为a x x 求},2121|{<<-的值参考答案:1.D (提示:作出各选择支中的函数图象). 2.C (提示:由523121≤-≤-⇒≤≤-x x ). 3.B (提示:由内到外求出) 4.. A 5.D 6.D 7.D 8.B 9. (-3,0)∪(3,+∞)10.. ),(10)0,1( -11. ∵)(x f 为R 上的偶函数, ,087)41(212 ,04)1(52),12()52(),52()]52([)52(222222222>++=++>+-=+-++<+-∴+-=-+--=-+-∴a a a a a a a a f a a fa a f a a f a a f 而不等式等价于∵)(x f 在区间)0,(-∞上单调递增,而偶函数图象关于y 轴对称, ∴)(x f 在区间(0,+∞)上单调递减,,140431252)12()52(22222<<-⇒<-+⇒++>+-++<+-∴a a a a a a a a a f a a f 得由∴实数a 的取值范围是(-4,1). 12. 1))(,0101x f x x ∴⎩⎨⎧>->+ 定义域为)();1,1(x f x -∈为奇函数;x x x f -+=11log )(2,求导得e x x x e x x x f a a log 12)11(log 11)(2-='-+⋅⋅+-=', ①当1>a 时,)(,0)(x f x f ∴>'在定义域内为增函数; ②当10<<a 时,)(,0)(x f x f ∴<'在定义域内为减函数; (2)①当1>a 时,∵)(x f 在定义域内为增函数且为奇函数,3,23log ,1)21(=∴==⇔∴a f a 得命题;②当)(,10x f a 时<<在定义域内为减函数且为奇函数,33,231log ,1)21(=∴==-⇔∴a f a 得命题;。
数学寒假作业(一)测试范围:解三角形使用日期:腊月十九 测试时间:120分钟一、选择题(本大题共12个小题,每个小题5分,共60分,每小题给出的四个备选答案中,有且仅有一个是符合题目要求的)1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 22.在△ABC 中,若AB =3-1,BC =3+1,AC =6,则B 等于( ) A .30° B .45° C .60° D .120°3.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( ) A.31010 B .-31010 C.55D .-554.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75° C .30° D .15°5.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为( ) A .α>β B .α=β C .α+β=90°D .α+β=180°6.(2012·天津理,6)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725 C .±725D.24257.△ABC 的三边分别为2m +3,m 2+2m ,m 2+3m +3(m >0),则最大内角度数为( ) A .150° B .120° C .90°D .135°8.在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为( ) A .A >B B .A <B C .A ≥B D .A ,B 的大小关系不能确定9.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a sin A sin B +b cos 2A =2a ,则ba =( )A .2 3B .2 2 C. 3D. 210.在△ABC 中,a 2+b 2-ab =c 2=23S △ABC ,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形11.在△ABC 中,若|AB →|=2,|AC →|=5,AB →·AC →=-5,则S △ABC =( )A.532B. 3C.52 D .512.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.三角形一边长为14,它对的角为60°,另两边之比为85,则此三角形面积为________.14.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.15.如图,已知梯形ABCD 中,CD =2,AC =19,∠BAD =60°,则梯形的高为__________.16.在△ABC 中,cos 2A 2=b +c2c ,则△ABC 的形状为________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,若tan A =3,cos C =55.(1)求角B 的大小;(2)若c =4,求△ABC 面积.18.(本题满分12分)在△ABC 中,已知a =6,A =60°,b -c =3-1,求b 、c 和B 、C .19.(本题满分12分)如图,某海轮以30n mile/h 的速度航行,在点A 测得海面上油井P 在南偏东60°,向北航行40min 后到达点B ,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再航行80min 到达C 点,求P 、C 间的距离.20.(本题满分12分)在△ABC 中,a 、b 、c 分别为内角A 、B 、C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.21.(本题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C ,求b 及c 的长.22.(本题满分14分)在△ABC中,角A、B、C的对边分别为a、b、c,已知3cos(B-C)-1=6cos B cos C.(1)求cos A的值;(2)若a=3,△ABC的面积为2,求b、c.家长签字:日期:数学寒假作业(一)答案1、[答案] D2、[答案] C[解析] cos B =AB 2+BC 2-AC 22AB ·BC =12,∴B =60°.3、[答案] D4、[答案] A5、[答案] B[解析] 仰角和俯角都是水平线与视线的夹角,故α=β.6、[答案] A7、[答案] B8、解析:由正弦定理a sin A =bsin B ,∴a >b .∴A >B .答案:A 9、[答案] D[解析] ∵a sin A sin B +b cos 2A =2a ,∴由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A ,∴sin B (sin 2A +cos 2A )=2sin A ,∴sinB =2sin A ,∴sin B sin A = 2.由正弦定理,得ba =sin Bsin A = 2.10、[答案] B[解析] 由a 2+b 2-ab =c 2得:cos C =a 2+b 2-c 22ab =12,∴∠C =60°,又23S △ABC =a 2+b 2-ab ,∴23×12ab ·sin60°=a 2+b 2-ab ,得2a 2+2b 2-5ab =0,即a =2b 或b =2a . 当a =2b 时,代入a 2+b 2-ab =c 2得a 2=b 2+c 2;当b =2a 时,代入a 2+b 2-ab =c 2得b 2=a 2+c 2.故△ABC 为直角三角形.11、[答案] A[解析] AB →·AC →=|AB →|·|AC →|cos A =10cos A =-5,∴cos A =-12,∴sin A =32,∴S △ABC =12|AB →|·|AC →|·sin A =532.12、[答案] D[解析] 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形,由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin π2-A 1sin B 2=cos B 1=sin π2-B 1sin C 2=cos C 1=sinπ2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1B 2=π2-B1C 2=π2-C1,那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾,故假设不成立, 即△A 2B 2C 2是钝角三角形,故选D.13、[答案] 403[解析] 设另两边长为8x 和5x ,则cos60°=64x 2+25x 2-14280x 2得x =2,另两边长为16和10,此三角形面积为S =12×16×10·sin60°=40 3. 14、[答案]102[解析] ∵tan A =13,∴sin A =1010,由正弦定理,得AB =BC ·sin C sin A =102. 15、[答案] 332[解析] 解法一:∵∠BAD =60°,∴∠ADC =180°-∠BAD =120°.∵CD =2,AC =19,∴19sin120°=2sin ∠CAD ,∴sin ∠CAD =5719. ∴sin ∠ACD =sin(60°-∠CAD )=35738.∴AD =AC ·sin ∠ACD sin D=19×35738sin120°=3.∴h =AD ·sin60°=332. 解法二:在△ACD 中,AC 2=AD 2+CD 2-2AD ·CD cos120°,∴AD 2+2AD -15=0.∴AD =3 (AD =-5舍去).∴h =AD sin60°=332.16、[答案] 直角三角形[解析] ∵cos 2A 2=1+cos A 2=b +c 2c =12+b2c ,∴cos A =b c .由余弦定理,得cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc ,∴a 2+b 2=c 2.∴△ABC 为直角三角形.17、[解析] (1)∵cos C =55,∴sin C =255,∴tan C =2.∵tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =-3+21-3×2=1,又0<B <π,∴B =π4.(2)由正弦定理,得b sin B =c sin C ,∴b =c ×sin B sin C =4×22255=10.∵B =π4,∴A =3π4-C .∴sin A =sin(3π4-C )=sin 3π4cos C -cos 3π4sin C =22×55-(-22)×255=31010.∴S △ABC =12bc sin A =12×10×4×31010=6.18、[解析] 由余弦定理,得6=b 2+c 2-2bc cos60°,∴b 2+c 2-bc =6 ①由b -c =3-1平方得:b 2+c 2-2bc =4-2 3 ② ①、②两式相减得bc =2+2 3.由⎩⎨⎧b -c =3-1bc =2+23,解得⎩⎨⎧b =3+1c =2,由正弦定理,得sin B =b sin Aa =3+1sin60°6=6+24.∵6<3+1,∴B =75°或105°.∵a 2+c 2>b 2,∴B 为锐角, ∴B =75°,从而可知C =45°.[点评] 求角B 时,若先求得sin C =c sin A a =22,∵a >c ,∴C =45°,从而得B =75°. 若用余弦定理cos B =a 2+c 2-b 22ac =6-24,∴B =75°. 19、[解析] AB =30×4060=20,BC =30×8060=40.在△ABP 中,∠A =120°,∠ABP =30°,∠APB =30°, ∴BP =ABsin ∠APB ·sin ∠BAP =20sin30°sin120°=20 3. 在Rt △BCP 中,PC =BC 2+BP 2=402+2032=207.∴P 、C 间的距离为207nmile.20、[解析] (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,得a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)由a 2=b 2+c 2+bc ,得sin 2A =sin 2B +sin 2C +sin B sin C .又sin B +sin C =1,故sin B =sin C =12.因为0°<B <90°,0°<C <90°,故B =C . 所以△ABC 是等腰的钝角三角形.21、[解析] (1)∵cos2C =1-2sin 2C =-14,0<C <π,∴sin C =104.(2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4. 由cos2C =2cos 2C -1=-14及0<C <π,得cos C =±64.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0(b >0),解得b =6或26,∴⎩⎨⎧b =6c =4,或⎩⎨⎧b =26c =4.22、[解析] (1)由3cos(B -C )-1=6cos B cos C ,得3(cos B cos C -sin B sin C )=-1,即cos(B +C )=-13,∴cos A =-cos(B +C )=13.(2)∵0<A <π,cos A =13,∴sin A =223.由S △ABC =22,得12bc sin A =22, ∴bc =6.由余弦定理,得a 2=b 2+c 2-2bc cos A ,∴9=(b +c )2-2bc (1+cos A )=(b +c )2-16, ∴b +c =5. 由⎩⎪⎨⎪⎧ b +c =5bc =6,得⎩⎪⎨⎪⎧ b =2c =3或⎩⎪⎨⎪⎧b =3c =2.数学寒假作业(二)测试范围:数列使用日期:腊月二十一 测试时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a n =cos n π,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 2.在数列2,9,23,44,72,…中,第6项是( ) A .82 B .107 C .100 D .833.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24 D .424.数列{a n }中,a 1=1,对所有n ≥2,都有a 1a 2a 3…a n =n 2,则a 3+a 5=( ) A.6116 B.259 C.2516 D.31155.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A .4 B .5 C .6 D .76.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n),则a n =( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n7.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99.以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .188.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .99.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .1610.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =( )A .2n +1-1 B .2n -1 C .2n -1D .2n+111.含2n +1个项的等差数列,其奇数项的和与偶数项的和之比为( ) A.2n +1n B.n +1n C.n -1n D.n +12n12.如果数列{a n }满足a 1=2,a 2=1,且a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,那么此数列的第10项为( )A.1210 B.129 C.110 D.15二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上) 13.等比数列{a n }中,a 3=12, a 5=48,那么a 7=________.14.已知数列{a n }的前n 项和为S n =n 2+1,则数列{a n }的通项公式为a n =________. 15.已知等差数列{a n },{b n }的前n 项和分别为A n ,B n ,且满足A n B n =2n n +3,则a 1+a 2+a 12b 2+b 4+b 9=________.16.在数列{a n }中,a 1=1,(n +1)a n =(n -1)a n -1(n ≥2),S n 是其前n 项的和,则S n 等于________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)公差d ≠0的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,且S 8=32,求S 10的大小.18.(12分)等差数列{a n}中,a4=10,且a3,a6,a10成等比数列,求数列{a n}前20项的和S20.19.(12分)已知数列{a n}的首项a1=3,通项a n=2n p+nq(n∈N*,p,q为常数),且a1,a4,a5成等差数列,求:(1)p,q的值;(2)数列{a n}的前n项和S n的公式.20.(12分)设{a n}为等比数列,{b n}为等差数列,且b1=0,c n=a n+b n,若{c n}是1,1,2,…,求数列{c n}的前10项的和.21.(12分)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.22.(12分)设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,a ∈N *.(1)求数列{a n }的通项;(2)设b n =n a n,求数列{b n }的前n 项和S n .家长签字:日期:数学寒假作业(二)答案1、答案 D2、答案 B3、答案 C解析 思路一:设公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+d =2,4a 1+6d =10,解得a 1=14,d =32.则S 6=6a 1+15d =24.思路二:S 2,S 4-S 2,S 6-S 4也成等差数列,则2(S 4-S 2)=S 6-S 4+S 2,所以S 6=3S 4-3S 2=24.4、答案 A5、答案 C解析 由等差数列的性质可知a 2、a 5、a 8也成等差数列,故a 5= a 2+a 82=6,故选C.6、答案 A解析 依题意得a n +1-a n =lnn +1n ,则有a 2-a 1=ln 21,a 3-a 2=ln 32,a 4-a 3=ln 43,…,a n -a n -1=ln n n -1,叠加得a n -a 1=ln(21·32·43·…·nn -1)=ln n ,故a n =2+ln n ,选A.7、答案 B解析 ∵a 1+a 3+a 5=105,a 2+a 4+a 6=99, ∴3a 3=105,3a 4=99,即a 3=35,a 4=33. ∴a 1=39,d =-2,得a n =41-2n .令a n =0且a n +1<0,n ∈N *,则有n =20.故选B. 8、答案 A解析 设等差数列{a n }的公差为d ,∵a 4+a 6=-6,∴a 5=-3,∴d =a 5-a 15-1=2,∴a 6=-1<0,a 7=1>0,故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6.9、答案 C解析 由4a 1+a 3=4a 2⇒4+q 2=4q ⇒q =2,则S 4=a 1+a 2+a 3+a 4=1+2+4+8=15.故选C.10、答案 B 11、答案 B 12、答案 D 解析 ∵a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,∴{a n ·a n -1a n -1-a n }为常数列.∴a n ·a n -1a n -1-a n =a 2·a 1a 1-a 2=2,∴a n ·a n -1=2a n -1-2a n .∴1a n -1a n -1=12,∴{1a n }为等差数列,1a 1=12,d =12.∴1a n =12+(n -1)·12=n 2.∴a n =2n,∴a 10=15.13、解析:由题意可知a 3,a 5,a 7成等比数列,∴a 25=a 3·a 7,∴a 7=48212=192.14、解析:当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又当n =1时,a 1=S 1=2不满足a n =2n -1,∴a n =⎩⎪⎨⎪⎧2 n =1,2n -1n ≥2.15、解析:a 1+a 2+a 12b 2+b 4+b 9=3a 1+12d 13b 1+12d 2=a 5b 5=a 1+a 92b 1+b 92=9×a 1+a 929×b 1+b 92=A 9B 9=2×99+3=32. 16、解析:∵(n +1)a n =(n -1)a n -1, ∴a n a n -1=n -1n +1,∴a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=n -1n +1·n -2n ·n -3n -1·…·24·13·1=2n n +1=2(1n -1n +1).∴S n =2(1-1n +1)=2n n +1.17、解:根据题意得⎩⎪⎨⎪⎧a 1+3d 2=a 1+2d a 1+6d ,8a 1+28d =32,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以S 10=S 8+a 9+a 10=32+2a 1+17d =60.18、解析 设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d .a 10=a 4+6d =10+6d .由a 3,a 6,a 10成等比数列,得a 3a 10=a 26. 即(10-d )(10+6d )=(10+2d )2, 整理得10d 2-10d =0,解得d =0或d =1. 当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7. 于是S 20=20a 1+20×192d =20×7+190=330.19、解:(1)由a 1=3,得2p +q =3,又a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4,得3+25p +5q =25p +8q ,解得p =1,q =1. (2)由(1)得a n =2n+n ,S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12.20、解析 ∵c 1=a 1+b 1,即1=a 1+0,∴a 1=1.又⎩⎪⎨⎪⎧a 2+b 2=c 2,a 3+b 3=c 3,即⎩⎪⎨⎪⎧q +d =1, ①q 2+2d =2. ②②-2×①,得q 2-2q =0. 又∵q ≠0,∴q =2,d =-1.c 1+c 2+c 3+…+c 10=(a 1+a 2+a 3+…+a 10)+(b 1+b 2+b 3+…+b 10) =a 11-q 101-q +10b 1+10×92d =210-1+45·(-1)=978.21.(12分)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.21、解析 (1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1, ∴{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =(-12)n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+1+(-12)+…+(-12)n -2=1+1--12n -11--12=1+23=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).22、解:(1)a 1+3a 2+32a 3+…+3n -1a n =n3,a 1+3a 2+32a 3+…+3n -2a n -1=n -13(n ≥2),3n -1a n =n 3-n -13=13(n ≥2),a n =13n (n ≥2).验证n =1时也满足上式,∴a n =13n (n ∈N *).(2)b n =n ·3n,S n =1·3+2·32+3·33+…+n ·3n3S n =1·32+2·33+…+(n -1)·3n +n ·3n +1上述两式相减得: -2S n =3+32+33+3n -n ·3n +1=3-3n +11-3-n ·3n +1.即S n =n2·3n +1-14·3n +1+34.数学寒假作业(三)测试范围:不等式使用日期:腊月二十三 测试时间:100分钟 一、选择题(共10小题,每小题5分,共50分) 1.不等式(x +3)2<1的解集是( )A .{x |x >-2}B .{x |x <-4}C .{x |-4<x <-2}D .{x |-4≤x ≤-2} 2.设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N3.下列命题中正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b4.(2012·安徽高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0 C.32 D .35.设x ,y 为正数,则(x +y )⎝ ⎛⎭⎪⎫1x +4y 的最小值为( )A .6B .9C .12D .156.不等式组⎩⎪⎨⎪⎧-2x -3>10,x 2+7x +12≤0的解集为( )A .[-4,-3]B .[-4,-2]C .[-3,-2]D .∅7.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .a (a -b )>08. 在如图所示的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值是( )A .-3B .3C .-1D .19. 若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .210.已知x >0,y >0.若2y x +8xy >m 2+2m 恒成立,则实数m 的取值范围是( ) A .m ≥4或m ≤-2 B .m ≥2或m ≤-4 C .-2<m <4 D .-4<m <2 二、填空题(共4小题,每小题5分,共20分) 11.函数y =2-x -4x (x >0)的值域为________. 12.不等式2x 2+2x -4≤12的解集为________.13.已知不等式x 2-ax -b <0的解集为(2,3),则不等式bx 2-ax -1>0的解集为________.14.设D 是不等式组⎩⎪⎨⎪⎧x +2y ≤10,2x +y ≥3,0≤x ≤4,y ≥1,表示的平面区域,则D 中的点P (x ,y )到直线x +y =10的距离的最大值是________.三、解答题(共4小题,共50分) 15.(12分)解下列关于x 的不等式 (1)1<x 2-3x +1<9-x(2)ax2-x-a2x+a<0(a<-1)16.(12分)已知关于x的不等式kx2-2x+6k<0(k≠0).(1)若不等式的解集是{x|x<-3或x>-2},求k的值;(2)若不等式的解集是R,求k的取值范围.17.(12分)一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?18.(14分)已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16,(1)求不等式g(x)<0的解集;(2)若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.家长签字:日期:数学寒假作业(三)答案1.选C 原不等式可化为x 2+6x +8<0,解得-4<x <-2.2.选A 因为M -N =2a 2-4a -(a 2-2a -3)=a 2-2a +3=(a -1)2+2>0,所以M >N . 3.选C 选项A 中,当c =0时,ac 2=bc 2,所以A 不正确;选项B 中,当a =0,b =-1时a >b ,但a 2<b 2,所以B 不正确;选项D 中,当a =-2,b =-1时,a 2>b 2,但a <b ,所以D 不正确.很明显C 正确.4.选A 可行域为如图所示的阴影部分,可知z =x -y 在点A (0,3)处取得最小值,∴z 最小值=-3.5.选B x ,y 为正数,(x +y )·⎝ ⎛⎭⎪⎫1x +4y =1+4+y x +4x y ≥9,当且仅当y =2x等号成立.6.选 A ⎩⎪⎨⎪⎧-2x -3>10x 2+7x +12≤0⇒⎩⎪⎨⎪⎧x -3<-5x +3x +4≤0⇒⎩⎪⎨⎪⎧x <-2-4≤x ≤-3⇒-4≤x ≤-3.7.选C 由已知可得,c <0,a >0,b 不一定,若b =0时,C 不一定成立,故选C. 8.选A 若最优解有无数个,则y =-1a x +z a 与其中一条边平行,而三边的斜率分别为13、-1、0,与-1a 对照可知a =-3或1,又因z =x +ay 取得最小值,则a =-3.9.选B 如图所示:约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,表示的可行域如阴影部分所示.当直线x =m 从如图所示的实线位置运动到过A 点的位置时,m 取最大值.解方程组⎩⎪⎨⎪⎧x +y -3=0,y =2x ,得A 点坐标为(1,2),∴m 的最大值是1,故选B.10.选D ∵x >0,y >0.∴2y x +8x y ≥8(当且仅当2y x =8xy 时取“=”). 若2y x +8xy >m 2+2m 恒成立, 则m 2+2m <8,解之得-4<m <2.11.解析:当x >0时,y =2-⎝ ⎛⎭⎪⎫x +4x ≤2-2x ×4x =-2.当且仅当x =4x ,x =2时取等号.答案:(-∞,-2]12.解析:由已知得2x 2+2x -4≤2-1,所以x 2+2x -4≤-1,即x 2+2x -3≤0,解得-3≤x ≤1.答案:{x |-3≤x ≤1}13.解析:方程x 2-ax -b =0的根为2,3.根据韦达定理得:a =5,b =-6,所以不等式为6x 2+5x +1<0,解得解集为⎝ ⎛⎭⎪⎫-12,-13.答案:⎝ ⎛⎭⎪⎫-12,-1314.解析:画出可行域,由图知最优解为A (1,1),故A 到x +y =10的距离为d =4 2.答案:4 215.解:(1)∵1<x 2-3x +1<9-x , ∴x 2-3x +1>1且x 2-3x +1<9-x . ∴x >3或x <0且-2<x <4. ∴-2<x <0或3<x <4.∴原不等式1<x 2-3x +1<9-x 的解集为{x |-2<x <0或3<x <4}. (2)由ax 2-x -a 2x +a <0 ∴(x -a )(ax -1)<0因a <-1∴(x -a )⎝ ⎛⎭⎪⎫x -1a >0,当a <-1时,1a >a ,所以x <a , 或x >1a .∴不等式的解集为{x |x <a ,或x >1a }.16.解:(1)因为不等式的解集为{x |x <-3或x >-2},所以-3,-2是方程kx 2-2x +6k =0的两根且k <0 .由根与系数的关系得⎩⎪⎨⎪⎧-3×-2=6,-3+-2=2k ,解得k =-25.(2)因为不等式的解集为R ,所以⎩⎪⎨⎪⎧k <0,Δ=4-4k ·6k <0,即⎩⎪⎨⎪⎧k <0,k >66或k <-66.所以k <-66.即k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-66.17.解:设水稻种x 亩,花生种y 亩,则由题意得⎩⎪⎨⎪⎧x +y ≤2,240x +80y ≤400,x ≥0,y ≥0.即⎩⎪⎨⎪⎧x +y ≤2,3x +y ≤5,x ≥0,y ≥0,画出可行域如图阴影部分所示而利润P =(3×400-240)x +(5×100-80)y =960x +420y (目标函数),可联立⎩⎪⎨⎪⎧x +y =2,3x +y =5,得交点B (1.5,0.5).故当x =1.5,y =0.5时,P 最大值=960×1.5+420×0.5=1 650,即水稻种1.5亩,花生种0.5亩时所得到的利润最大. 18.解:(1)g (x )=2x 2-4x -16<0, ∴(2x +4)(x -4)<0,∴-2<x <4, ∴不等式g (x )<0的解集为{x |-2<x <4}. (2)∵f (x )=x 2-2x -8.当x >2时,f (x )≥(m +2)x -m -15恒成立, ∴x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1).∴对一切x >2,均有不等式x 2-4x +7x -1≥m 成立. 而x 2-4x +7x -1=(x -1)+4x -1-2≥2x -1×4x -1-2=2(当且仅当x =3时等号成立),∴实数m 的取值范围是(-∞,2].数学寒假作业(四)测试范围:简易逻辑使用日期:腊月二十五 测试时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .sin 45°=1C .x 2+2x -1>0 D .梯形是不是平面图形呢?2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①a >b >0是a 2>b 2的充要条件;②a >b >0是1a <1b 的充要条件;③a>b >0是a 3>b 3的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0, 则a 2+b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真5.(2013·广州一模)“m <2”是“一元二次不等式x 2+mx +1>0的解集为R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知条件p :|x +1|>2,条件q :5x -6>x 2,则非p 是非q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 7.有下列四个命题:①“若x +y =0, 则x ,y 互为相反数”的逆否命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题. 其中真命题为( )A .①②B .②③C .①③D .③④8.已知命题p :若x ∈N *,则x ∈z .命题q :∃x 0∈R ,⎝ ⎛⎭⎪⎫12x 0-1=0.则下列命题为真命题的是( )A .非pB .p ∧qC .非p ∨qD .非p ∨非q 9.(2014·江西卷)下列叙述中正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0” B .若a ,b ,c ∈R ,则“ab 2>cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,a ,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β10.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤111.下列命题中的假命题是( )A .∀x >0且x ≠1,都有x +1x >2B .∀a ∈R ,直线ax +y =a 恒过定点(1,0)C .∀φ∈R ,函数y =sin(x +φ)都不是偶函数D .∀m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减 12.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 13.命题:“若a ·b 不为零,则a ,b 都不为零”的逆否命题是________________________________________________________________________.14.用“充分、必要、充要”填空:①p∨q为真命题是p∧q为真命题的__________条件;②非p为假命题是p∨q为真命题的__________条件;③A:|x-2|<3,B:x2-4x-15<0,则A是B的________条件.15.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是__________.16.若“x2>1”是“x<a”的必要不充分条件,则a的最大值为______.三、解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)对于下述命题p,写出“非p”形式的命题,并判断“p”与“非p”的真假:(1)p:91∈(A∩B)(其中全集U=N*,A={x|x是质数},B={x|x是正奇数});(2)p:有一个素数是偶数;(3)p:任意正整数都是质数或合数;(4)p:三角形有且仅有一个外接圆.18.(12分)写出命题“已知a,b∈R,若关于x的不等式x2+ax+b≤0有非空解集,则a2≥4b”的逆命题,并判断其真假.19.(12分)已知方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.20.(12分)已知a >0,a ≠1,设p :函数y =log a (x +3)在(0,+∞)上单调递减,q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∨q 真,p ∧q 假,求实数a 的取值范围.21.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)非p 是非q 的充分不必要条件,求实数a 的取值范围.家长签字:日期:数学寒假作业(四)答案1、B 解析:可以判断真假的陈述句.2、D 解析:原命题是真命题,所以其逆否命题也为真命题.3、A 解析:①a >b >0⇒a 2>b 2,仅仅是充分条件;②a >b >0⇒1a <1b ,仅仅是充分条件;③a >b >0⇒a 3>b 3,仅仅是充分条件.4、D 解析:否命题和逆命题是互为逆否命题,有着一致的真假性.5、B 解析:一元二次不等式x 2+mx +1>0的解为m ∈(-2,2),则m <2只是其必要不充分条件.6、A 解析:非p :|x +1|≤2,-3≤x ≤1,非q :5x -6≤x 2,x 2-5x +6≥0,x ≥3或x ≤2,非p ⇒非q ,充分不必要条件. 7、C 解析:若x +y =0,则x ,y 互为相反数,为真命题,则逆否命题也为真;“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等” 为假命题;若q ≤1⇒4-4q ≥0,即Δ=4-4q ≥0,则x 2+2x +q =0有实根,为真命题.“不等边三角形的三个内角相等”逆命题为“三个内角相等的三角形是不等边三角形”,为假命题.8、D 解析: 显然命题p 为真;因为对∀x ∈R ,都有⎝ ⎛⎭⎪⎫12x -1>0,所以命题q 为假,所以非q 为真,由“或”“且”“非”命题的真值表知D 正确.9、D 解析:由于“若b 2-4ac ≤0,则ax 2+bx +c ≥0”是假命题,所以“ax 2+bx +c ≥0”的充分条件不是“b 2-4ac ≤0”,A 错;∵ab 2>cb 2,且b 2>0,∴a >c .而a >c 时,若b 2=0,则ab 2>cb 2不成立,由此知“ab 2>cb 2”是“a >c ”的充分不必要条件,B 错;“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2<0”,C 错;由l ⊥α,l ⊥β,则a ∥β,可得α∥β,理由是:垂直于同一条直线的两个平面平行,D 正确.10、A 解析:∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1.∃x 0∈R ,x 20+2ax 0+2-a =0, 即方程x 2+2ax +2-a =0有实根,∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2或a ≥1.∴a ≤-2或a =1.11、C 解析:当x >0时,x +1x ≥2x ·1x =2,∵x ≠1,∴x +1x >2,故A 为真命题;将(1,0)代入直线ax +y =a 成立,B 为真命题;当φ=π2时,函数y =sin ⎝ ⎛⎭⎪⎫x +π2是偶函数,C 为假命题;当m =2时,f (x )=x -1是幂函数,且在(0,+∞)上单调递减,∴D 为真命题,故选C.12、A 解析:∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1. ∃x 0∈R ,x 20+2ax 0+2-a =0,即方程x 2+2ax +2-a =0有实根,∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2,a ≥1. ∴a ≤-2,或a =1.13、答案:若a ,b 至少有一个为零,则a ·b 为零 14、答案:①必要 ②充分 ③充分15、解析:ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0, 得-3≤a <0.∴-3≤a ≤0.答案:[-3,0]16、解析:由x 2>1得x <-1或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-117、解析:(1)非p :91∉A ,或91∉B ;p 真,非p 假. (2)非p :每一个素数都不是偶数;p 真,非p 假.(3)非p :存在一个正整数不是质数且不是合数;p 假,非p 真.(4)非p :存在一个三角形有两个及其以上的外接圆或没有外接圆;p 真,非p 假.18、解析:逆命题为:“已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集”.由a 2≥4b 知,Δ=a 2-4b ≥0.这说明抛物线y =x 2+ax +b 与x 轴有交点,那么x 2+ax +b ≤0必有非空解集.故逆命题是真命题.19、解析:令f (x )=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0,-2k -12>1,f (1)>0,即k <-2,所以其充要条件为k <-2.20、解析:对于命题p :当0<a <1时,函数y =log a (x +3)在(0,+∞)上单调递减. 当a >1时,函数y =log a (x +3)在(0,+∞)上单调递增,所以如果p 为真命题,那么0<a <1.如果p 为假命题,那么a >1.对于命题q :如果函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点,那么Δ=(2a -3)2-4>0,即4a 2-12a +5>0⇔a <12,或a >52.又∵a >0,所以如果q 为真命题,那么0<a <12或a >52.∴a 的取值范围是⎣⎢⎡⎭⎪⎫12,1∪⎝ ⎛⎭⎪⎫52,+∞. 21、解析:(1)由x 2-4ax +3a 2<0,的(x -3a )(x -a )<0. 又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0, 解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2, 即2<x ≤3.所以q 为真时,2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)∵非p 是非q 的充分不必要条件,∴q 是p 的充分不必要条件,则有(2,3](a ,3a ).于是满足⎩⎨⎧a ≤2,3a >3,解得1<a ≤2,故所求a 的取值范围是(1,2].数学寒假作业(五)测试范围:圆锥曲线使用日期:腊月二十七 测试时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2→| =( )A.32B. 3C.72 D .42.抛物线的顶点和椭圆x 225+y 29=1的中心重合,抛物线的焦点和椭圆x 225+y 29=1的右焦点重合,则抛物线的方程为( )A .y 2=16xB .y 2=8xC .y 2=12xD .y 2=6x3.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( )A .m >12 B .m ≥1 C .m >1 D .m >24.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1C.x 2108-y 236=1D.x 227-y 29=15.(2013·惠州一调)已知实数4,m ,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为( )A.306B.7C.306或7D.56或76.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)7.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25=y 24=18.(2013·新课标全国卷Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .49.动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)10.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )A .x 2=y -12 B .x 2=2y -116 C .x 2=2y -1 D .x 2=2y -211.椭圆x 225+y 29=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是( )A .(5,0)或(-5,0) B.⎝ ⎛⎭⎪⎫52,332或⎝ ⎛⎭⎪⎫52,-332C .(0,3)或(0,-3) D.⎝ ⎛⎭⎪⎫532,32或⎝ ⎛⎭⎪⎫-532,3212.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率的取值范围是( )A .(1,3)B .(1,2)C .(1,3]D .(1,2]二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 13.抛物线y 2=8x 上一个点P (P 在x 轴上方)到焦点的距离是8,此时P 点的坐标是________.14.与椭圆x 24+y 23=1具有相同的离心率且过点(2,-3)的椭圆的标准方程是____________.15.若直线y =32x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率是________.16.抛物线y 2=x 上存在两点关于直线y =m (x -3)对称,则m 的范围是_________________.三、解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的双曲线的标准方程: (1)焦点在 x 轴上,虚轴长为12,离心率为 54; (2)顶点间的距离为6,渐近线方程为y =±32x .18.(12分) 已知椭圆C 的焦点F 1(-22,0)和F 2(22,0),长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.19.(12分)中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3∶7.求这两条曲线的方程.20. (12分)已知动点P 与平面上两定点A (-2,0)、B (2,0)连线的斜率的积为定值-12.(1)试求动点P 的轨迹方程C ;(2)设直线l :y =kx +1与曲线C 交于M 、N 两点,当|MN |=423时,求直线l 的方程.21.(12分)设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),抛物线C 2:x 2+by =b 2.(1)若C 2经过C 1的两个焦点,求C 1的离心率;(2)设A (0,b ),Q ⎝ ⎛⎭⎪⎫33,54b ,又M ,N 为C 1与C 2不在y 轴上的两个交点,若△AMN 的垂心为B ⎝ ⎛⎭⎪⎫0,34b ,且△QMN 的重心在C 2上,求椭圆C 1和抛物线C 2的方程.22.(12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63.过点A (0,-b )和B (a ,0)的直线与原点的距离为32. (1)求椭圆的方程;(2)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C ,D 两点,问:是否存在k 的值,使以CD 为直径的圆过E 点,请说明理由.家长签字:日期:数学寒假作业(五)答案1、C2、A3、C 解析:由e 2=⎝ ⎛⎭⎪⎫c a 2=1+m 1=1+m >2,m >1.4、B5、C6、B7、C 解析:依题意可设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则A ⎝ ⎛⎭⎪⎫1,b 2a ,B ⎝ ⎛⎭⎪⎫1,-b 2a ,又|AB |=b 2a -⎝ ⎛⎭⎪⎫-b 2a =2b 2a =3,∴2b 2=3a .又a 2-b 2=c 2=1,∴a =2,b = 3.故C 的方程为x 24+y 23=1.8、C 解析:设P (a ,b )为抛物线上在第一象限内的点,则a +2=42,得a =32,因为点P (a ,b )在抛物线上,所以b =26,所以S △POF =12×2×26=23,故选C.9、B 解析:直线x +2=0是抛物线的准线,又动圆圆心在抛物线上,由抛物线的定义知,动圆必过抛物线的焦点(2,0).10、C 解析:由y =14x 2⇒x 2=4y ,焦点F (0,1),设PF 中点Q (x ,y )、P (x 0,y 0), 则⎩⎪⎨⎪⎧2x =0+x 0,2y =1+y 0,4y 0=x 20,∴x 2=2y -1. 11、C 解析:|PF 1|+|PF 2|=2a =10,∴|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1||PF 2|22=25. 当且仅当|PF 1|=|PF 2|=5时,取得最大值,此时P 点是短轴端点,故选C.12、C 解析:|PF 2|2|PF 1|=(|PF 1|2a )2|PF 1|=|PF 1|+4a 2|PF 1|+4a ≥8a ,当|PF 1|=4a 2|PF 1|,即|PF 1|=2a 时取等号. 又|PF 1|≥c -a ,∴2a ≥c -a .∴c ≤3a ,即e ≤3.∴双曲线的离心率的取值范围是(1,3]. 13、答案:()6,4314、答案:x 28+y 26=1或3y 225+4x 225=1 15、答案:216、解析:设抛物线上两点A (x 1,y 1),B (x 2,y 2)关于直线y =m (x -3)对称,A ,B 中点M (x ,y ),则当m =0时,有直线y =0,显然存在点关于它对称.当m ≠0时,⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2⇒y 1-y 2x 1-x 2=1y 1+y 2=12y =-1m ,所以y =-m 2,所以M 的坐标为(52,-m 2),∵M 在抛物线内,则有52>(m2)2,得-10<m <10且m ≠0,综上所述,m ∈(-10,10).答案:(-10,10)17、解析:(1)焦点在x 轴上,设所求双曲线的方程为x 2a 2-y 2b 2=1.由题意,得⎩⎪⎨⎪⎧2b =12,c a =54,b 2=c 2-a 2.解得a =8,b =6,c =10.所以焦点在x 轴上的双曲线的方程为x 264-y 236=1.(2)当焦点在x 轴上时,设所求双曲线的方程为x 2a 2-y 2b 2=1由题意,得⎩⎪⎨⎪⎧2a =6,b a =32.解得a =3,b =92.所以焦点在x 轴上的双曲线的方程为 x 29-y 2814=1.同理可求当焦点在y 轴上双曲线的方程为y 29-x 24=1. 故所求双曲线的方程为x 29-y 2814=1或y 29-x 24=1.18、解析:由已知条件得椭圆的焦点在x 轴上,其中c =22,a =3,从而b =1,所以其标准方程是 x 29+y 2=1.联立方程组⎩⎪⎨⎪⎧x 29+y 2=1,y =x +2,消去y 得,10x 2+36x +27=0.设A (x 1,y 1),B (x 2,y 2),AB 线段的中点为M (x 0,y 0),那么:x 1+x 2=-185,x 0=x 1+x 22=-95.所以y 0=x 0+2=15.也就是说线段AB 的中点坐标为⎝ ⎛⎭⎪⎫-95,15.19、解析:设椭圆的方程为x 2a 21+y 2b 21=1,双曲线的方程为 x 2a 22-y 2b 22=1,半焦距c =13,由已知得:a 1-a 2=4,c a 1∶c a 2=3∶7,解得:a 1=7,a 2=3.所以:b 21=36,b 22=4,故所求两条曲线的方程分别为:x 249+y 236=1 ,x 29-y 24=1.20、解析:(1)设点P (x ,y ),则依题意有y x +2·yx -2=-12,整理得x 22+y 2=1.由于x ≠±2,所以求得的曲线C 的方程为x 22+y 2=1(x ≠±2).(2)联立方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +1,消去y 得:(1+2k 2)x 2+4kx =0.解得x 1=0, x 2=-4k1+2k 2(x 1,x 2分别为M ,N 的横坐标).由|MN |=1+k 2|x 1-x 2|=1+k 2⎪⎪⎪⎪⎪⎪4k 1+2k 2=432,解得:k =±1.所以直线l 的方程x -y +1=0或x +y -1=0.。
云南省高二数学寒假作业(5)评卷人 得分一、选择题(题型注释)1.“0m n >>”是“方程221mx ny +=”表示焦点在y 轴上的椭圆”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件2.如果方程121||22=---m y m x 表示双曲线,那么实数m 的取值范围是( ).A. 2>m B .1<m 或2>m C . 21<<-m D .11<<-m 或2>m3.已知△ABC 的三边长6,5,3===c b a ,则△ABC 的面积为 ( ). A.14B .142C .15D .1524.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .1925.设x x x f ln )(=,若2)(0='x f ,则=0x ( ). A . 2e B . eC .ln 22D .ln 26.如图,1F 和2F 分别是双曲线12222=-by a x (0,0>>b a )的两个焦点,A 和B 是以O为圆心,以1OF 为半径的圆与该双曲线左支的两个交点,且AB F 2∆是等边三角形,则双曲线的离心率为( )A .3B.5C.13+D.257.若某班从4名男生、2名女生中选出3人参加志愿者服务,则至少选出2名男生的概率为( )A.51B.52C.53D.548.如果平面外一条直线上有两点到这个平面的距离相等,则这条直线和这个平面的位置关系是A .平行B .相交C .平行或相交D .不可能垂直第II 卷(非选择题)评卷人 得分二、填空题(题型注释)9.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是_______。
10.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (-1,6,1),点G 是△ABC 的重心 ,则G 点的坐标是___________11.设x,y 满足约束条件130,0x y x y x y -≥-⎧⎪+≤⎨⎪≥≥⎩则z=x-2y 的取值范围为 ;12.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的个数有____________个.13.()6211⎪⎭⎫ ⎝⎛-+x x x 展开式中的常数项为________________.14.右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米.评卷人 得分三、解答题(题型注释)15.已知椭圆22221(0)x y a b a b +=>>的离心率为32e =,且过点(13,2),(1)求椭圆的方程;(2)设直线:(0,0)l y kx m k m =+≠>与椭圆交于P ,Q 两点,且以PQ 为对角线的菱形的一顶点为(-1,0),求:△OPQ 面积的最大值及此时直线的方程.16.21.(本小题满分12分)了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成[2,4),[4,6),[6,8),[8,10),[10,12]五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.(Ⅰ)求实数a 的值及参加“掷实心球”项目测试的人数;(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;(Ⅲ)若从此次测试成绩最好和最差的两组男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.17.19. (本小题满分12分)某次会议有6名代表参加,A 、B 两名代表来自甲单位,C 、D 两名代表来自乙单位,E 、F 两名代表来自丙单位,现随机选出两名代表发言,问: (1)代表A 被选中的概率是多少?(2)选出的两名代表“恰有一名来自乙单位或两名都来自丙单位”的概率是多少?18.(12分)已知抛物线C :x y 42=的准线与x 轴交于M 点,过M 点斜率为k 的直线l 与抛物线C 交于A 、B 两点(A 在M 、B 之间). (1)F 为抛物线C 的焦点,若||45||AF AM =,求k 的值; (2)若4MB MA =,求FMB ∆的面积19.(本小题满分10分) 已知不等式2230x x --<的解集为A ,不等式260x x +-<的解集是B. (1)求AB ;(2)若不等式20x ax b ++<的解集是,AB 求 20ax x b ++<的解集.20.(本小题满分12分)如图,在底面是正方形的四棱锥P -ABCD 中,PA ⊥面ABCD , BD 交AC 于点E ,F 是PC 中点,G 为AC 上一点. (1)求证:BD ⊥FG ;(2)确定点G 在线段AC 上的位置,使FG ∥平面PBD ,并说明理由; (3)当二面角B -PC -D 的大小为23π时,求PC 与底面ABCD 所成角的正切值.试卷答案1.C2.D3.B4.B5.B6.C7.D8.C9.280x y +-= 10.102,2,3⎛⎫ ⎪⎝⎭11.[-3,3] 12.300 13.-5 14.62 15.∴224,1a b ==∴(Ⅱ)设1122(,),(,),P x y Q x y PQ 的中点为00(,)x y将直线y kx m =+与联立得222(14)8440k x kmx m +++-=, 222216(41)0,41k m k m ∆=+->∴+>①又0x =又(-1,0整理得2341km k =+②)1,此时k =y = 16. 17. 18.(1)法一:由已知)0,1(-M 设),(11y x A ,则|1|1||12++=x k AM ,|1|4)1()1(||11212121+=+-=+-=x x x y x AF ,由||5||4AF AM =得,5142=+k ,解得43±=k 法二:记A 点到准线距离为d ,直线l 的倾斜角为α, 由抛物线的定义知d AM 45||=,∴54||cos ±=±=AM d α,∴43tan ±==αk(2)方法一:0)42()1(422222=+-+⇒⎩⎨⎧+==k x k x k x k y xy 又4MB MA =)1(4112+=+⇒x x求根公式代入可解出54±=k 方法二:⇒⎩⎨⎧+==)1(42x k y x y 0442=+-y k y4MB MA =2121221212221122)(4144y y y y y y y y y y y y -+=+=+⇒=⇒ 5448164172±=⇒-=⇒k k44221=⋅⋅=∴∆FMB S 19.(1)解2230x x --<得13x -<<,所以(1,3)A =-.-----2分 解260x x +-<得32x -<<,所以(3,2)B =-. ∴(1,2)AB =-. -----5分(2)由20x ax b ++<的解集是(1,2)-,所以10420a b a b -+=⎧⎨++=⎩,解得12a b =-⎧⎨=-⎩-----8分∴220x x -+-<,解得解集为R. -----10分 20.(1)以A 为原点,AB 、AD 、PA 所在的直线分别为x 、y 、z 轴, 建立空间直角坐标系A -xyz 如图所示,设正方形ABCD的边长为1,PA=a,则A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,a)(a>0),(3)设平面PBC的一个法向量为u=(x,y,z),。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业11 理一、选择题1。
设α,β为不重合的平面,m ,n 为不重合的直线,则下列命题正确的是 ( ).A .若α⊥β,α∩β=n ,m ⊥n ,则m ⊥αB .若m ⊂α,n ⊂β,m ⊥n ,则n ⊥αC .若n ⊥α,n ⊥β,m ⊥β,则m ⊥αD .若m ∥α,n ∥β,m ⊥n ,则α⊥β2.在正方体ABCD -A 1B 1C 1D 1中,O 是BD 1的中点,直线A 1C 交平面AB 1D 1于点M ,则下列结论错误的是( ).A .A 1、M 、O 三点共线B .M 、O 、A 1、A 四点共面C .A 、O 、C 、M 四点共面D .B 、B 1、O 、M 四点共面 3。
已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能是( )4。
如图,平面四边形ABCD 中,1===CD AD AB ,CD BD BD ⊥=,2,将其沿对角线BD 折成四面体BCD A -',使平面⊥BD A '平面BCD ,若四面体BCD A -'顶点在同一个球面上,则该球的体积为( )A . π23B . π3C . π32D . π2 二、填空题面AMN ,则5.在正三棱锥S ABC -中,1,30SA ASB =∠=︒,过A 作三棱锥的截截面三角形AMN 的 周长的最小值为 。
6.如图,矩形ABCD 中,AB =2,BC =4,将△ABD 沿对角线BD 折起到△A ′BD 的位置,使点A ′在平面BCD 内的射影点O 恰 好落在BC 边上,则异面直线A ′B 与CD 所成角的大小为________.7。
设球O 的半径为R ,A 、B 、C 为球面上三点,A 与B 、A 与C 的球面距离都为R 2π,B 与C 的球面距离为R 32π,则球O 在二面角B —OA —C 内的那一部分的体积是8.已知P 为△ABC 所在平面外一点,且PA 、PB 、PC 两两垂直,则下列命题:①PA ⊥BC ;②PB ⊥AC ;③PC ⊥AB ;④AB ⊥BC .其中正确的个数是________.三、解答题9.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=21AB ,点E 、M 分别为A 1B 、C 1C 的中点,过点A 1,B ,M 三点的平面A 1BMN 交C 1D 1于点N 。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业2 理一、选择题:1.设集合}21|{≤≤=x x A ,}41|{≤≤=y y B ,则下述对应法则f 中,不能构成A 到B 的映射的是( )A .2:x y x f =→ B .23:-=→x y x f C .4:+-=→x y x f D .24:x y x f -=→2.若函数)23(x f -的定义域为[-1,2],则函数)(x f 的定义域是( )A .]1,25[--B .[-1,2]C .[-1,5]D .]2,21[3,设函数⎩⎨⎧<≥-=)1(1)1(1)(x x x x f ,则)))2(((f f f =( )A .0B .1C .2D .24.若)(),()(12x f N n x x f n n则∈=++是( )A .奇函数B .偶函数C .奇函数或偶函数D .非奇非偶函数 5. 已知f (x )是定义在R 上的偶函数,并满足:)(1)2(x f x f -=+,当2≤x ≤3,f (x ) =x ,则f (5.5)=( )A .5.5B .-5.5C .-2.5D .2.56.函数)2(xf y =的定义域为[1,2],则函数)(log 2x f y =的定义域为( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]7. 若函数f(x)是区间[a,b]上的增函数,也是区间[b,c]上的增函数,则函数f(x)在区间[a,b]上是( )A .增函数B .是增函数或减函数C .是减函数D .未必是增函数或减函数 8.设函数),2(21)(+∞-++=在区间x ax x f 上是单调递增函数,那么a 的取值范围是( )A . 210<<a B .21>a C .a<-1或a>1 D .a>-2二、填空9.已知定义域为(-∞,0)∪(0,+∞)的函数f (x )是偶函数,并且在(-∞,0)上是增函数,若f (-3)=0,则不等式)(x f x<0的解集是 . 10. 若1)1(log )1(<-+k k ,则实数k 的取值范围是 . 三、解答11. 设f (x )是定义在R 上的偶函数,在区间(-∞,0)上单调递增,且满足f (-a 2+2a -5)<f (2a 2+a +1), 求实数a 的取值范围.12.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且 (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|<x f 的解集为a x x 求},2121|{<<-的值参考答案:1.D (提示:作出各选择支中的函数图象). 2.C (提示:由523121≤-≤-⇒≤≤-x x ). 3.B (提示:由内到外求出) 4.. A 5.D 6.D 7.D 8.B 9. (-3,0)∪(3,+∞)10.. ),(10)0,1( -11. ∵)(x f 为R 上的偶函数, ,087)41(212 ,04)1(52),12()52(),52()]52([)52(222222222>++=++>+-=+-++<+-∴+-=-+--=-+-∴a a a a a a a a f a a fa a f a a f a a f 而不等式等价于∵)(x f 在区间)0,(-∞上单调递增,而偶函数图象关于y 轴对称, ∴)(x f 在区间(0,+∞)上单调递减,,140431252)12()52(22222<<-⇒<-+⇒++>+-++<+-∴a a a a a a a a a f a a f 得由∴实数a 的取值范围是(-4,1). 12. 1))(,0101x f x x ∴⎩⎨⎧>->+ 定义域为)();1,1(x f x -∈为奇函数;x x x f -+=11log )(2,求导得e x x x e x x x f a a log 12)11(log 11)(2-='-+⋅⋅+-=', ①当1>a 时,)(,0)(x f x f ∴>'在定义域内为增函数; ②当10<<a 时,)(,0)(x f x f ∴<'在定义域内为减函数; (2)①当1>a 时,∵)(x f 在定义域内为增函数且为奇函数,3,23log ,1)21(=∴==⇔∴a f a 得命题;②当)(,10x f a 时<<在定义域内为减函数且为奇函数,33,231log ,1)21(=∴==-⇔∴a f a 得命题;。
本文档包括:算法与程序框图、基本算法语句、算法案例、算法初步综合、随机抽样、用样本估计总体、变量间的相关关系、统计综合、随机事件的概率、古典概型、几何概型、概率综合、必修3综合质检、命题及其关系等14天内容,及答案解析。
(1)算法与程序框图一、选择题1.下面的结论正确的是( )A.—个程序的算法步骤是可逆的B.—个算法可以无止境地运算下去C.完成一件事情的算法有且只有一种D.设计算法要本着简单方便的原则2.一个算法的步骤如下:如果输入的值为,则输出的值为( )第一步,输入的值;第二步,计算的绝对值;第三步,计算;第四步,输出的值.A.4B.5C.6D.83.有下列说法:①顺序结构是最简单的算法结构;②顺序结构是按照程序语句的自然顺序依次地执行程序;③条件结构包括两分支结构和多分支结构两种;④条件结构可以根据设定的条件,控制语句流程,有选择地执行不同的语句序列.其中正确的说法是( )A.①②③B.①③④C.②③④D.①②③④4.给出以下四个问题:①输入一个数,输出它的绝对值;②求面积为的正方形的周长;③求三个数中的最大数;④求函数的函数值.其中需要用条件结构来描述算法的有( )A.0个B.1个C.3个D.4个5.下列各式中的值不能用算法求解的是( )A. ;B. ;C. ;D.6.如图所示的程序框图表示的算法含义是( )A.计算边长为的直角三角形的面积B.计算边长为的直角三角形内切圆的面积C.计算边长为的直角三角形外接圆的面积D.计算以为弦的圆的面积7.阅读如图所示的程序框图,若输入,则输出的值为( )A.B.C.D.8.运行如图程序框图,使得当成绩不低于分时,输出“及格”,当成绩低于分时,输出“不及格”,则( )A.①框中填"是",②框中填"否"B.①框中填"否",②框中填"是"C.①框中填"是",②框中可填可不填D.①框中填"否",②框中可填可不填9.阅读如下程序框图,如果输出,那么在空白矩形框中应填人的语句为( )A.B.C.D.10.执行下面的程序框图,若输入的,,分别为,,,则输出的 ( )A.B.C.D.二、填空题11.有关算法的描述有下列几种说法:①对一类问题都有效;②对个别问题有效;③可以一步一步地进行,每一步都有唯一的结果;④是一种通法,只要按部就班地做,总能得到结果.其中描述正确的为__________12.已知直角三角形的两直角边长分别为,设计计算三角形周长的算法如下: 第一步,输入.第二步,计算.第三步,计算___.第四步,输出.将算法补充完整,横线处应填__________.13.执行下面的程序框图,若输入的是,那么输出的是__________.14.某篮球队名主力队员在最近三场比赛中投进的三分球个数如表所示:队员如图是统计该名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填__________,输出的__________.参考答案一、选择题1.答案:D解析:算法程序是有序步骤,是不可逆的,算法的程序是有限的,同一个问题的算题也是不唯一的.2.答案:B解析:选B.分析算法中各变量、各语句的作用,再根据算法的步骤可知:该算法的作用是计算并输出的函数值.第一步,输入;第二步,计算的绝对值;第三步,计算;第四步,输出的值为.3.答案:D解析:熟练掌握程序框图的三种基本逻辑结构是解决本题关键.4.答案:C解析:其中①③④都需要对条件作出判断,都需要用条件结构,②用顺序结构即可.5.答案:C解析:根据算法的有限性知③不能用算法求解.答案:C6.答案:B解析:直角三角形内切圆半径故选7.答案:B解析:选.,则输出的值为.8.答案:A解析:选.当时,应输出“及格”;当时,应输出“不及格”,故①框中应填“是”,②框中应填“否”.9.答案:C解析:由框图可以看出需要一个对的赋值语句,当时, ,当时, ,输出,只有C项满足条件.故选C.10.答案:D解析:第一次循环, ,,,;第二次循环, ,,,;第三次循环, ,,,,退出循环,输出为.故选D.二、填空题11.答案:①③④解析:算法通常是指可以用计算机来解决的某一类问题的程序或步骤,所以①正确,②错误.由于算法必须是明确的,有效的,而且在有限步内完成,故③④正确.12.答案:解析:根据“已知两直角边长分别为,计算三角形周长”的要求,可知三角形的周长.13.答案:-399解析:14.答案:;解析:依据题设条件中提供的算法流程图可知:该算法程序中执行的是求出六名主力队员所投三分球的个数之和,即求,所以当时,运算程序继续进行,故由题意图中判断框应填,输出的.(2)基本算法语句一、选择题1.对赋值语句的描述正确的是( )①可以给变量提供初值②可以将表达式的值赋给变量③可以给一个变量重复赋值④不能给同一个变量重复赋值A.①②③B.①②C.②③④D.①②④2.下列选项中,正确的赋值语句是( )A.B.C.D.3.有以下程序:程序执行后的结果是( )A.3,5B.5,3C.5,5D.3,34.下面的问题中必须用条件语句才能实现的个数是( )①已知三角形三边长,求三角形的面积;②求方程为常数的根;③求三个实数中的最大者;④求函数的图象的对称轴方程.A.B.C.D.5.运行程序在两次运行中分别输入8,4和2,4,则两次运行程序的输出结果分别为( )A.8,2B.8,4C.4,2D.4,46.读程序:甲:乙:对甲、乙程序和输出结果判断正确的是( )A.程序不同,结果不同B.程序不同,结果相同C.程序相同,结果不同D.程序相同,结果相同7.如图所示的程序运行后,输出的值为( )A.45B.44C.43D.428.下面程序运行后,输出的结果为( )A.B.C.D.9.如果下面程序执行后输出的结果是,那么在后面的“条件”应为( )A.B.C.D.10.阅读如图所示的程序,若输出的值为,则输入的值的集合为( )A.B.C.D.二、填空题11.程序如下:该程序的输出结果__________.12.根据下列算法语句,当输入为时,输出的值为__________.13.已知有下面的程序,如果程序执行后输出的结果是那么在程序后面的“条件”应为__________14.程序如下:以上程序运行的结果为__________.参考答案一、选择题1.答案:A解析:赋值语句的功能:赋值语句可以给变量提供初始值,可以将表达式的值赋给变量,可以给一个变量重复赋值.故选A.2.答案:C解析:赋值语句的表达式“变量=表达式”,故C正确3.答案:C解析:执行完第一行:A=3,执行完第二行:B=5,执行完第三行:A=5,执行完第四行:B=5,最后输出A,B的值分别为5,5.4.答案:C解析:①已知三角形三边长,求三角形的面积,直接代入公式,需要用顺序结构;②求方程为常数的根,需要分类讨论的取值,根据取值的不同,执行后面不同的算法;③求三个实数中的最大者,需要用到条件语句;④求的图象的对称轴方程,不需要用条件语句.5.答案:C解析:对、的情况进行区分,当输入的时候, ,所以;当输入时,不成立,所以选择执行.6.答案:B解析:选B.执行甲、乙程序后,可知都是计算的值.7.答案:B解析:8.答案:D解析:选D.依题意知,第1次循环: ;第2次循环: ,;第3次循环: ;…,第2 018次循环,循环结束,输出9.答案:D解析:选D.因为,所以应在时,条件符合,终止循环,故条件应为“”.10.答案:A解析:由题意知令得或,故选A.二、填空题11.答案:A=33,B=22解析:12.答案:31解析:由算法语句可知输入,,所以输出.考点:算法语句13.答案:(或)解析:因为输出的结果是360,即,需执行4次,s需乘到后结束算法.所以,程序中后面的“条件”应为 (或).14.答案:120解析:(3)算法案例一、选择题1.对于更相减损术,下列说法错误的是( )A.更相减损术与辗转相除法的作用是一样的,都是求最大公约数B.更相减损术与辗转相除法相比,计算次数较多,因此,此法不好,不能用此法C.更相减损术是我国古代数学专著《九章算术》中提出的D.更相减损术的基本步骤是用较大数减去较小的数2.下列关于进位制的说法错误的是( )A.进位制是人们为了计数和运算方便而约定的记数系统B.二进制就是满二进一,十进制就是满十进一C.满几进几,就是几进制,几进制的基数就是几D.为了区分不同的进位制,必须在数的右下角标注基数3.(2)(2)101010+的值是( )A. (2)1011B. (2)1100C. (2)1101D. (2)10004.用秦九韶算法求多项式652()7632f x x x x =+++当4x =时的值时,先算的是()A. 4⨯4=16B. 7⨯4=28C. 44464⨯⨯=D. 74634⨯+=5.下面一段程序的功能是( )(说明: INT(x)表示不超过x 的最大整数)A.求,x y 的最小公倍数B.求,x y 的最大公约数C.求x 被y 整除的商D.求y 除以x 的余数6.用秦九韶算法求多项式1110()n n n n f x a x a x a x a --=++⋅⋅⋅++当0x x =时的值时,求0()f x 需要算乘方、乘法、加法的次数分别为( ) A. (1),,2n n n n + B. ,2,n n nC. 0,2,n nD. 0,,n n7.用更相减损术求120与75的最大公约数时,反复想减,则进行减法运算的次数是( )A.4B.5C.6D.38.用秦九韶算法计算多项式65432()654325f x x x x x x x =++++++当100x =时的值,需做的加法与乘法的总次数是( )A.10B.9C.12D.89.阅读下面的算法程序:上述程序的功能是( )A.计算310⨯的值B.计算93的值C.计算103的值D.计算12310⨯⨯⨯⨯的值10.已知532()231,f x x x x x =++++应用秦九韶算法计算当3x =时这个多项式的值时, 3v 的值为( )A.27B.11C.109D.36二、填空题11.利用秦九韶算法求当23x =时,多项式3273511y x x x =+-+的值.(1) 1:23;S x =322:73511;S y x x x =+-+3:S 输出.y(2) 1:23;S x =322:73511;S y x x x =+-+3:S 输出.y(3) 算6次乘法和3次加法.(4) 算3次乘法和3次加法.以上描述正确的为__________.12.若k 进制数()123k 与38相等,则k =__________.13.已知函数()32256f x x x x =--+,用秦九韶算法,则()10f =__________ 14.如图,是用辗转相除法求两个正整数(),a b a b >的最大公约数算法的程序框图,其中①处应填入的是__________参考答案一、选择题1.答案:B解析:更相减损术与辗转相除法求最大公约数各有各的优点.2.答案:D解析:十进制的数一般不标注基数.3.答案:B解析:二进制数进行加法计算时,同十进制数加法类似,要逢2进1.4.答案:D解析:用秦九韶算法求多项式652()7632f x x x x =+++当4x =时的值时,先算的是74634.⨯+=5.答案:B解析:由循环条件m/n<>INT(m/n),知当m 与n 的商不是整数时,执行循环体.循环体为由三个赋值语句构成的顺序结构,不妨令12,8,x y ==第一次循环,121,8≠,执行循环体1284,8, 4.c m n =-===, 第二次循环82,4=结束循环,输出n 的值4. 故该程序是通过辗转相除法求最大公约数.故选B.6.答案:D解析:7.答案:A解析:用更相减损术求120与75的最大公约数,列式做出结论.8.答案:C解析:9.答案:C解析: 该算法中使用了循环语句,在i 不超过10的条件下,反复执行循环体,依次得到3,23,33,...103,所以循环结束时,输出结果为103,因此该程序的功能是计算103的值,故应选C.10.答案:D解析:532()231((((0)2)3)1)+1,f x x x x x x x x x x =++++=++⋅++01231,1303,33211,113336.v v v v ==⨯+==⨯+==⨯+=二、填空题11.答案:(2)(4)解析:12.答案:5解析:13.答案:756解析:()32256f x x x x =--+25()26x x x --+=()()25 6.x x x =--+当10x =时, ()()()10102105106f =-⨯-⨯+()8105106=⨯-⨯+75106756.=⨯+=14.答案:a MOD b解析:根据辗转相除法的原理,易知①处应填入的是r=aMOD b.(4)算法初步综合一、选择题1.下面对算法描述正确的一项是( )A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同2.根据下面的算法,可知输出的结果S 为( )第一步, 1i =;第二步,判断10i <是否成立,若成立,则2,23i i S i =+=+,重复第二步,否则执行下一步; 第三步,输出S .A.19B.21C.25D.273.在设计求函数()2,21,2266,2x x f x x x x x ⎧>⎪=--<≤⎨⎪-≤-⎩的值的程序中不可能用到的算法语句为( )A.输入语句B.条件语句C.输出语句D.循环语句4.用秦九韶算法求多项式23456()1235879653f x x x x x x x =+-++++在4x =-的值时, 4V 的值为( )A. 57-B. 220C. 845-D. 33925.在k 进制中,十进制数103记为87,则k 等于( )A.6B.12C.14D.166.如下图所示是一个算法框图,已知13a =,输出的结果为7,则2a 的值是( )A.9B.10C.11D.127.执行如图所示的程序框图,则输出S的值为( )A. 2016B. 2C. 1 2D. 18.执行两次下图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a的值分别为( )A.0,0B.1,1C.0,1D.1,09.执行如图所示的程序框图,如果最后输出的s 的值为110,那么判断框中实数a 的取值范围是( )A. [)9,10B. (]9,10C. []9,10D.无法确定10.某店一个月的收入和支出总共记录了N 个数据12,,,,N a a a ⋯其中收入记为正数,支出记为负数.该店用如图所示的程序框图计算月总收入S 和月净盈利,V 那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A. 0?,A V S T >=-B. 0?,A V S T <=-C. 0?,A V S T >=+D. 0?,A V S T <=+二、填空题11.一个算法如下:第一步, s 取值0,i 取值1.第二步,若i 不大于12,则执行下一步;否则执行第六步.第三步,计算s i +并用结果代替s .第四步,用2i +的值代替i .第五步,转去执行第二步.第六步,输出s .则运行以上步骤输出的结果为__________.12.如图所示的流程图,输出的结果是__________.13下面的程序框图能判断任意输人的整数是奇数还是偶数.其中判断框内的条件是 .14.如图,是用辗转相除法求两个正整数(),a b a b >的最大公约数算法的程序框图,其中①处应填入的是__________参考答案一、选择题1.答案:C解析:算法的特点:有穷性,确定性,顺序性与正确性,不唯一性,普遍性; 算法可以用自然语言、图形语言,程序语言来表示,故A、B不对;同一问题可以用不同的算法来描述,但结果一定相同,故D不对.C对.故应选C.2.答案:C解析:该算法的运行过程是:i=1,i=<成立,110i=+=123,S=⨯+=2339,i=<成立,310i=+=325,S=⨯+=25313,i=<成立,510i=+=527,S=⨯+=27317,i=<成立,710i=+=729,S=⨯+=29321,910i=<成立,i=+=9211,211325,S =⨯+=1110i =<不成立,输出25.S =3.答案:D解析:对于分段函数的算法,输入语句和输出语句都是需要的,条件语句也是需要的,只有循环语句不可能用到,故选D.4.答案:B解析:解析: 0103,57,V V V x ==+=-21628634,V V x =+=+=()32793447957,V V x =+=⨯-+=-()4385748220.V V x =-=-⋅--=5.答案:B解析:由k 进制中基数为k,得870103k k ⨯+⨯=,即8k=96,k=12.故选B.6.答案:C解析:根据题中算法框图可知, 122a ab +=,又13,7,a b ==∴13,7,a b ==2372a +∴=,∴211a =. 7.答案:B解析:2,0S k ==,满足条件2016k <,则1,1S k =-=;满足条件2016k <,则1,22S k ==; 满足条件2016,k <则2,3S k ==;满足条件2016k <,则1,4;S k =-=满足条件2016k <,则1,5;2S k ==观察规律,可知S 的取值以3为周期变化,当201536712k ==⨯+时,满足条件2016k <,则2,2016,S k ==结束循环,输出2.故选B.8.答案:D解析:第一次7x =,227<,3b =,237>,1a =;第二次9x =,229<,3b =,239=,0a =,选D.9.答案:A解析:11111,2;,3;,4;,5;;,10234510s n s n s n s n s n ========⋯==,故910a ≤<,故选A.10.答案:C解析:由题意可得,判断框内应填“0?A > ”,月净盈利V 为S 与T 的和,故处理框中填“V S T =+”,所以选C.二、填空题11.答案:36解析:用程序框图表示出算法条件和循环条件,弄清每一次变量数值的变化以及程序结束运算是s 的值.12.答案:24解析:答案:解析: 根据条件结构中“是”“否”输出的结论填空即可.14.答案:a MOD b解析:根据辗转相除法的原理,易知①处应填入的是r=a MOD b.(5)随机抽样一、选择题1.下列说法不正确的是( )A.简单随机抽样是从个体数较少的总体中逐个随机抽取个体B.系统抽样是从个体数较多的总体中,将总体均分,再按事先确定的规则在各部分抽取C.系统抽样是将差异明显的总体均分成几部分,再进行抽取D.分层抽样是将由差异明显的几部分组成的总体分成几层,分层进行抽取2.下列抽样实验中,适合用抽签法的是( )A.从某工厂生产的3000件产品中抽取600件进行质量检验B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验3.用简单随机抽样的方法从含有N 个个体的总体中抽取一个样本,则在抽样过程中,每个个体被抽取的可能性( )A.相等B.逐渐増大C.逐渐减少D.不能确定4.某单位有老年人28人,中年人54人.青年人81人,为调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A.简单随即抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样5.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…, 960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A.7B.9C.10D.156.某商场出售三种品牌电脑,现库存量分别是60台、36台和24台,用分层抽样的方法从中抽取10台进行检测,则这三种品牌的电脑依次应抽取的台数是( )A.6,3,1B.5,3,2C.5,4,1D.4,3,37.中央电视台动画城节目为了对本周热心小观众给予奖励,要从已确定编号的10000名小观众中抽取10名幸运小观众,现采用系统抽样方法抽取,其分段间隔为( )A.10B.100C.1000D.100008.某班有男生36人,女生18人,用分层抽样的方法从该班全体学生中抽取一个容量为9的样本,则抽取的女生人数为( )A.6B.4C.3D.29.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100B.150C.200D.25010.某企业在甲、乙、丙、丁四个城市分别有150个、120个、190个、140个销售点.为了调查产品的质量,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙城市有20个特大型销售点,要从中抽取8个调查,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次为( )A.分层抽样法、系统抽样法B.分层抽样法、简单随机抽样法C.系统抽样法、分层抽样法D.简单随机抽样法、分层抽样法二、填空题11.关于简单随机抽样,有下列说法:①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.其中正确的有__________(请把你认为正确的所有序号都写上).12.将全班同学按学号编号,制作相应的卡片号签,放入同一个箱子里均匀搅拌,从中抽出15个号签,就相应的15名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱)进行调查,使用的是__________法.13.将参加数学夏令营的100名同学编号为001,002,…,100.现采用系统抽样的方法抽取一个容量为25的样本,且在第一段中随机抽取的号码为004,则在046至078号中,被抽中的人数为__________.14.某工厂生产了某种产品6000件,它们来自甲、乙、丙三条生产线.为了检查这批产品的质量,工厂决定采用分层抽样的方法进行抽样.若从甲、乙、丙三条生产线中抽取的个体数分别为,,a b c ,且2a c b +=,则乙生产线生产了__________件产品.一、选择题1.答案:C解析:2.答案:B解析:利用抽签法的概念和步驟可做出判断.A 总体容量较大,样本容量也较大,不适宜用抽签法;B 总体容量较小,样本容量也较小,可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.故选B.3.答案:A解析:4.答案:D解析:5.答案:C解析:由系统抽样的特点知,抽样号码的间隔为9603032=,抽取的号码依次为9,39,69,,939⋯,落入区间[]451,750内有459,489,,729⋯,所以做问卷调查B 的有10人.6.答案:B解析: 抽样比为10160362412=++,则三种品牌的电脑依次应抽取的台数是111605,363,242121212⨯=⨯=⨯=.故选B. 7.答案:C解析:要抽10名幸运小朋友,所以要分成10个小组,因此分段间隔为1000.8.答案:C解析:根据分层抽样的定义直接计算即可.∵男生36人,女生18人,∴男生和女生人数比为36:18=2:1,∴抽取一个容量为9的样本,则抽取的女生人数为11993213⨯=⨯=+,本题主要考查分层抽样的定义和应用,比较基础.9.答案:A解析:计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n 值. 分层抽样的抽取比例为701350050=, 总体个数为350015005000+=, ∴样本容量1500010050n =⨯=. 故选:A.10.答案:B解析:二、填空题11.答案:①②③④解析:由随机抽样的特征可判断12.答案:抽签解析:抽签法分为编号、制签、取样三步,这里用了学生的学号作为编号,后面的抽取过程符合抽签法的实施步骤,所以采用的是抽签法.13.答案:8解析:抽样距为4,第一个号码为004,故在001~100中是4的整数倍的数被抽出,在046至078号中有 048,052,056,060,064,068,072,076,共8个.14.答案:2000解析:由题知样本容量为3a b c b ++=,设乙生产线生产了x 件产品, 则36000b x b =, 解得2000x =.(6)用样本估计总体一、选择题1.下列说法中错误的是( )①用样本的频率分布估计总体频率分布的过程中,样本容量越大,估计越精确;②一个容量为n的样本,分成若干组,已知某组的频数和频率分别是40,0.125,则n的值为240;③频率分布直方图中,小长方形的高等于该小组的频率;④将频率分布直方图中各小长方形上端的一个端点顺次连接起来,就可以得到频率分布折线图;⑤每一个总体都有一条总体密度曲线,它反映了总体在各个范围内取值的百分比.A.①③B.②③④C.②③④⑤D.①②③④⑤2.一个学校有初中生800人,高中生1200人,则25是初中生占全体学生的( )A.频数B.频率C.概率D.频率分布3.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[)[)[)20,40,40,60,60,80[),80,100若低于60分的人数是15人,则该班的学生人数是( )A. 45B. 50C. 55D. 604.从甲、乙两种玉米苗中各抽10株,测得它们的株高分别如下:(单位:cm)根据上表数据估计( )A.甲种玉米比乙种玉米不仅长得高而且长得整齐B.乙种玉米比甲种玉米不仅长得高而且长得整齐C.甲种玉米比乙种玉米长得高但长势没有乙整齐D.乙种玉米比甲种玉米长得高但长势没有甲整齐5.如图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是( )A.65B.64C.63D.626.已知样本: 12,7,11,12,11,12,10,10,9,8,13,12,10,9,6,11,8,9,8,10,那么频率为0.25的样本的范围是( )A. [)5.5,7.5B. [)7.5,9.5C. [)9.5,11.5D. [)11.5,13.57.一组数据的标准差为s,将这组数据中每一个数据都缩小到原来的12,所得到的一组新数据的方差是( )A.2 2 sB. 24sC.2 4 sD. 2s8.某中学为落实素质教育特别设置校本课程.高一年级360名学生选择摄影、棋类、武术、美术四门校本课程情况的扇形统计图如图所示,从图中可以看出选择美术的学生人数有( )A.18人B.24人C.36人D.54人PM是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,如图是根据9. 2.5PM监测点统计的数据(单位:毫克/每立方米)列出某地某日早8点至晚7点甲、乙两个 2.5的茎叶图,则甲、乙浓度的方差较小的是( )A.甲B.乙C.甲乙相等D.无法确定10.某高二(1) 班一次阶段考试数学成绩的茎叶图和频率分布直方图的可见部分如图所示,根据图中的信息,可确定被抽测的人数及分数在[90,100]内的人数分别为( )A.20,2B.24,4C.25,2D.25,4二、填空题11.为了了解商场某日旅游鞋的销售情况,抽取了部分顾客购鞋的尺寸,将所得的数据整理后,画出频率分布直方图(如下图),已知从左至右前3个小组的频率之比为1 : 2 : 3,第4小组与第5小组的频率分别为0.175和0.075,第2个小组的频数为10,则抽取的顾客人数是__________.12.在一次马拉松比赛中, 35名运动员的成绩(单位:分钟)的茎叶图如图所示.13| 0 0 3 4 5 6 6 8 8 8 914| 1 1 1 2 2 2 3 3 3 4 4 5 5 5 6 6 7 815| 0 1 2 2 3 3 3~号,再用系统抽样方法从中抽取7人,则其中成绩在若将运动员按成绩由好到差编为135139,151上的运动员人数是__________区间[]13.随机抽取某班10名同学,测量他们的身高(单位:cm)获得身高数据的茎叶图(如图),则这个班的众数为__________,极差__________.14.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:若要从这四人中选择一人去参加该运动会射击项目比赛,最佳人选是__________(填“甲”“乙”“丙”“丁”中的一个)参考答案一、选择题 1.答案:C 解析:选C.样本越多往往越接近于总体,所以①正确;②中n=40÷0.125=320;③中频率分布直方图中,小长方形的高等于该小组的频率÷组距;④中应将频率分布直方图中各小长方形上端的中点顺次连接起来得到频率分布折线图;⑤中有一些总体不存在总体密度曲线,如“掷硬币”这样的离散型总体(结果是固定的,只有正面和反面两种可能,且可能性相等),故②③④⑤错误. 2.答案:B 解析: 3.答案:B解析:第一、第二小组的频率分别是0.1,0.2,所以低于60分的频率是0.3,设班级人数为m ,则150.3,50m m==.选B. 4.答案:D 解析:∵()12541403722141939214210=⨯+++++++++130010=⨯()30cm ==()()1127164427441640164031031cm 1010⨯++++++++=⨯= ∴<,即乙种玉米的苗长得高.∵,即甲种玉米的苗长得整齐.综上,乙种玉米的苗长得高,甲种玉米的苗长得整齐. 故选D. 5.答案:B解析:甲的中位数为28,乙的中位数为36, ∴甲、乙比赛得分的中位数之和为64. 6.答案:D解析:[)5.5,7.5的频数为2,频率为0.1; [)7.5,9.5的频数为6,频率为0.3; [)9.5,11.5的频数为7,频率为0.35; [)11.5,13.5的频数为5,频率为0.25. 7.答案:C 解析: 8.答案:A解析:()360125%40%30%18⨯---= (人),故选A. 9.答案:A 解析:,.所以甲、乙浓度的方差较小的是甲. 10.答案:C解析:由频率分布直方图,可知分数在[]90,100内的频率和在[)50,60内的频率相同,所以分数在[]90,100内的人数为2,总人数为2250.08=。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业10 理一、选择题:1.已知随机变量ξ+η=8,若ξ~B(10,0.6),则Eη,Dη分别是( ) A.6和2.4 B.2和2.4C.2和5.6 D.6和5.62.设火箭发射失败的概率为0.01,若发射10次,其中失败的次数为X,则下列结论正确的是( ) A.E(X)=0.01B.P(X=k)=0.01k×0.9910-kC.D(X)=0.1D.P(X=k)=Ck10×0.01k×0.9910-k3.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列,则有结论( )C.两人的产品质量一样好D.无法判断谁的质量好一些4.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花销售情况需求量X(束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则期望利润是( )A.706元 B.690元C二、填空题:5.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X,则P(X≤6)=__________.6.某个部件由三个元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________.7.由于电脑故障,使得随机变量X的分布列中部分数据丢失(以代替),其表如下:8.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小王同学计算ξ断定这两个“?”处的数值相同.据此,小王给出了正确答案E (ξ)=__________. 三、解答题:9. 1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?10.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列.1.解析:由题意Eξ=6,Dξ=2.4,又η=8-ξ,则Eη=E(8-ξ)=8-Eξ=8-6=2,Dη=D(8-ξ)=Dξ=2.4.答案:B2.解析:该试验为独立重复试验,故E(X)=0.1,D(X)=10×0.01×0.99=0.099,P(X=k)=Ck10×0.01k×0.9910-k,故选D.答案:D3.解析:∵E(X甲)=0×0.4+1×0.3+2×0.2+3×0.1=1,E(X乙)=0×0.3+1×0.5+2×0.2+3×0=0.9.∵E(X甲)>E(X乙),∴乙的产品质量比甲的产品质量好一些.答案:B4.解析:节日期间这种鲜花需求量X的均值为E(X)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为Y,则Y=5X+1.6(500-X)-500×2.5=3.4X-450,所以E(Y)=3.4E(X)-450=3.4×340-450=706(元).答案:A5.解析:P (X ≤6)=P (X =4)+P (X =6)=C44+C34C13C47=1335.答案:13356.解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,∴该部件的使用寿命超过1 000小时的事件为(A B +A B +AB )C . ∴该部件的使用寿命超过1 000小时的概率为P =⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38. 答案:387.解析:由0.20+0.10+0. 5+0.10+0.1 +0.20=1知,两个方框内数字分别为2、5,故E (X )=3.5.答案:3.58.解析:由分布的性质可知2?+!=1,E (ξ)=?+2!+3?=4?+2!=2(2?+!)=2.答案:29.解:记事件A :最后从2号箱中取出的是红球; 事件B :从1号箱中取出的是红球.P (B )=42+4=23, P (B )=1-P (B )=13.(4分)(1)P (A |B )=3+18+1=49.(6分)(2)∵P (A |B )=38+1=13,∴P (A )=P (A ∩B )+P (A ∩B ) =P (A |B )P (B )+P (A |B )P (B ) =49×23+13×13=1127.(12分)10.解:(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率P (X =2)=C25×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-233=40243.(4分)(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5);“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A4A 5)+P (A 1A 2A 3A 4A 5)+P (A1A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881.(8分) (3)由题意可知,ξ的所有可能取值为0,1,2,3,6.P (ξ=0)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29;P (ξ=2)=P (A 1A 2A 3)=23×13×23=427;P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827;P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827.(12分)所以ξ的分布列是。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业5 理1.已知全集U={-2,-1,0,1,2},A={-2,-1},B={1,2},则U C (A ∪B)=( )A.∅B.{0}C.{-1,1}D.{-2,-1,1,2}2.命题∀x ∈R,cosx ≤1的真假判断及其否定是( )A.真,∃x 0∈R,cosx 0>1B.真,∀x ∈R,cosx>1C.假,∃x 0∈R,cosx 0>1D.假,∀x ∈R,cosx>13.一等腰三角形的周长是底边长的5倍,那么顶角的余弦值为( )A.518B.34C.2D.784.在△ABC 中,AB =(cos18°,cos72°),BC =(2cos63°,2cos27°),则△ABC 面积为( )A.4B.2C.2D.5.如果函数y=3cos(2x+φ)的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,那么|φ|的最小值为( ) A.6π B.4π C.3π D.2π 6.在△ABC 中,P 是BC 边中点,角A,B,C 的对边分别是a,b,c,若c AC +a PA +b PB =0,则△ABC 的形状为 ( )A.等边三角形B.钝角三角形C.直角三角形D.等腰三角形但不是等边三角形7.对于集合{a 1,a 2,…,a n }和常数a 0,定义:ω=错误!未找到引用源。
为集合{a 1,a 2,…,a n }相对a 0的“正弦方差”,则集合57,,266πππ⎧⎫⎨⎬⎩⎭相对a 0的“正弦方差”为( ) A.12 B.13 C.14 D.与a 0有关的一个值8.函数y=sin ωx(ω>0)的部分图象如图所示,点A,B 是最高点,点C 是最低点,若△ABC 是直角三角形,则ω的值为( ) A.2π B.4π C.3π D.π9.已知函数2()(1cos2)sin f x x x =+,x R ∈,则()f x 是( )A. 最小正周期为π的奇函数B. 最小正周期为π/2的奇函数C. 最小正周期为π的偶函数D. 最小正周期为π/2的偶函数10.△ABC 的三内角A,B,C 所对的边分别为a,b,c,设向量m=(3c-b,a-b),n=(3a+3b,c), m ∥n,则cosA= .11.已知α∈R,sin α+2cos α则tan2α= .12已知函数()sin 3f x A x π⎛⎫=+ ⎪⎝⎭,x R ∈,且5122f π⎛⎫= ⎪⎝⎭.(1)求A 的值; (2)若()()ff θθ--,0,2πθ⎛⎫∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.13.(14分)已知α∈,2ππ⎛⎫ ⎪⎝⎭,且sin 2α+cos 2α. (1)求cos α的值. (2)若sin(α+β)=-35,β∈0,2π⎛⎫ ⎪⎝⎭,求sin β的值.14.已知向量m=,cos 44x x ⎫⎪⎭,n=sin ,cos 44x x ⎛⎫ ⎪⎝⎭,函数f(x)=m ·n. (1)求函数f(x)的最小正周期及单调递减区间.(2)在锐角△ABC 中,A,B,C 的对边分别是a,b,c,且满足acosC+12c=b,求f(2B)的取值范围.。
训练01 求函数的平均变化率高考频度:★☆☆☆☆难易程度:★☆☆☆☆.【名师点睛】1.对于函数()y f x=,我们把式子2121()()f x f xx x--称为函数()y f x=从1x到2x的平均变化率.习惯上用x∆表示21x x-,即21x x x∆=-.函数()y f x=的变化量是21()()y f x f x∆=-,于是,平均变化率可以表示为yx∆∆.注意:(1)x∆是一个整体符号,而不是∆与x相乘.(2)1x,2x是定义域内不同的两点,因此0x∆≠,但x∆可正也可负;21()()y f x f x∆=-是21x x x∆=-相应的改变量,y∆的值可正可负,也可为零.因此,平均变化率可正可负,也可为零.2.求函数()y f x=从1x到2x的平均变化率的三个步骤:(1)求出或者设出自变量的改变量:21x x x∆=-;(2)根据自变量的改变量求出函数值的改变量:21()()y f x f x∆=-;(3)求出函数值的改变量与自变量的改变量的比值,即2121()()f x f xyx x x-∆=∆-.1.如图,函数f(x)在A,B两点间的平均变化率是-A.1 B.1-C.2 D.22.求函数f(x)=x2+2x+3从1到1+Δx的平均变化率._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练02 平均变化率的应用高考频度:★☆☆☆☆难易程度:★☆☆☆☆,其中m,的单位为s.(1(2)求第1s内高度的平均变化率.【名师点睛】平均变化率问题在生活中随处可见,常见的有求某段时间内的平均速度、加速度及膨胀率、经济效益等.找准自变量、因变量和相应增量是解题的关键.1.水经过虹吸管从容器甲流向容器乙中,t s后容器甲中水的体积(单位:cm3)V(t)=5×2-0.1t,则第一个10 s内V的平均变化率为A.0.25 cm3/s B.0.5 cm3/sC.-0.5 cm3/s D.-0.25 cm3/s2.如图,已知一个倒置的正四棱锥形容器的底面边长为10 cm,高为10 cm,现用一根水管以9 ml/s的速度向容器里注水.(1)将容器中水的高度h表示为时间t的函数;(2)求第二个1 s内水面高度的平均变化率.______________________________________________________________________________________________________________________________________________________________ _______________________________________________________________________________训练03 求函数在定点处的导数高考频度:★☆☆☆☆ 难易程度:★★☆☆☆求下列函数的导数:(1)求函数y =3在x =2处的导数; (2)求函数1y x=在x =1处的导数; (3)求函数y =在x =x 0(x 0>0)处的导数.【参考答案】(1)0;(2)1-;(3.(3)记()y f x =,由y =,得ΔΔy x =()()00ΔΔf x x f x x +-==,∴函数y=x =x 0处的导数0'x x y ==Δlim x →.【名师点睛】1.一般地,函数()y f x =在0x x =处的瞬时变化率是0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即00()limx yf x x ∆→∆'==∆000()()limx f x x f x x∆→+∆-∆. 2.求函数()f x 在某点处的导数、求瞬时变化率的步骤简称为一差、二比、三极限. 3.利用定义求函数()y f x =在0x x =处的导数的两个注意点: (1)0()f x '与x ∆的具体取值无关,x ∆不可以是0.1.设函数y =f (x )在x =x 0处可导,且()()0003lim 1x f x x f x x∆→-∆-=∆,则f′(x 0)等于A .1B .-1C .13-D .132.若3()f x x =,0()6f x '=,则0x 的值是___________.______________________________________________________________________________________________________________________________________________________________ _______________________________________________________________________________训练04 瞬时速度的应用高考频度:★☆☆☆☆ 难易程度:★★☆☆☆一物体做初速度为0的自由落体运动,运动方程为s 2(g =10 m/s 2,位移单位:m,时间单位:s),求物体在t =2 s时的瞬时速度. 【参考答案】20 m/s.【名师点睛】做变速运动的物体在不同时刻的速度是不同的,我们把物体在某一时刻的速度称为瞬时速度. 设物体的运动规律为()s s t =,则该物体在时刻t 的瞬时速度v 就是物体在t 到t t +∆这段时间内,当t ∆无限趋近于0时,st∆∆无限趋近的常数. 设非匀速直线运动中物体的位移随时间变化的函数为s =s (t ),则求物体在t =t 0时刻的瞬时速度的步骤如下: (1)写出时间改变量Δt ,位移改变量Δs =s (t 0+Δt )-s (t 0); (2)求平均速度:ΔΔs v t=;(3)求瞬时速度v :当Δt →0→v (常数).注意:(1)t ∆无限趋近于0是指时间间隔t ∆越来越短,能超过任意小的时间间隔,但始终不能为0. (2),t s ∆∆在变化中都趋近于0,其比值st∆∆趋近于一个确定的常数,这时,此常数才称为0t 时刻的瞬时速度.(3)瞬时速度与平均速度的区别与联系:平均速度与路程和时间都有关系,它反映的是物体在一段时间内的平均运动状态;瞬时速度是物体在某一时刻的速度,是在这一时刻附近时间差t ∆趋近于0时平均速度的极限值.1.物体运动时位移s 与时间t 的函数关系式是s =-4t 2+16t ,若此物体在某一时刻的速度为零,则相应时刻为 .2.一质点M 按运动方程s (t )=at 2+1做直线运动(位移单位:m ,时间单位:s).若质点M 在t =2 s 时的瞬时速度为8 m/s ,求常数a 的值._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练05 导数的实际意义高考频度:★☆☆☆☆ 难易程度:★☆☆☆☆某河流在x min 内流过的水量为y m 3,且()y f x ==(1)当x 从1变到4时,y 关于x 的平均变化率是多少? (2)求()16f ',并解释它的实际意义. 【参考答案】(1)13m 3/min ;(2)见试题解析.实际意义为当时间为16 min 时,水流速度为18m 3/min. 【名师点睛】函数在某点处的导数反映了函数在该点处的瞬时变化率,它揭示了事物在某时刻的变化状况,导数可以描述任何事物的瞬时变化率.1.将原油精炼为汽油、柴油、塑胶等产品,需要对原油进行冷却和加热.如果第x h 时,原油的温度(单位:℃)为()()271508y f x x x x ==-+≤≤,求函数()y f x =在x =2和x =6处的导数,并解释它们的实际意义.2.已知某工人上班后开始连续工作,其生产的产品重量y (单位:g)是工作时间x (单位:h)的函数,且该函数表达式为y =f (x )=220x +. (1)求当x 从1 h 变到4 h 时,y 关于时间x 的平均变化率,并解释它的实际意义; (2)求()()1,4f f '',并解释它们的实际意义._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练06 导数的几何意义高考频度:★★★☆☆ 难易程度:★★☆☆☆已知点P 在曲线21y x =+上,若曲线21y x =+在点P 处的切线与曲线221y x =--相切,求点P 的坐标.【参考答案】73)或(,73).令Δ=420x -8(2-20x )=0,解得x 0此时y 0=73, 所以点P 的坐标为73)或(,73). 【名师点睛】1.导数的几何意义:函数()y f x =在0x x =处的导数,就是曲线()y f x =在0x x =处的切线的斜率,即0000()()()limx f x x f x k f x x∆→+∆-'==∆.2.求曲线的切线方程的步骤:(1)如果所给点00()P x y ,就是切点,一般叙述为“在点P 处的切线”,此时只要求函数()f x 在点0x x =处的导数0()f x ',即得切线的斜率0()k f x =',再根据点斜式写出切线方程. (2)已知切线过点(),a b 求切线方程(点(),a b 可以在曲线上,也可以不在曲线上). ①设切点坐标为00(,())x f x ; ②利用斜率000()()f x bk f x x a-'==-求出切点坐标及斜率;③写切线方程:000()()()y f x f x x x '-=-. 注意:曲线在点P 处的切线垂直于x 轴时的情况.1.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.2.已知函数y=ax+1x图象上各点处的切线斜率均小于1,求实数a的取值范围._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练07 导数几何意义的实际应用高考频度:★☆☆☆☆难易程度:★★☆☆☆“菊花”烟花是最壮观的烟花之一,制造时通常期望它在达到最高点时爆裂.如果烟花距地面的高度h (单位:m)与时间t (单位:s)之间的关系式为h(t)=-4.9t2+14.7t,求烟花在t=2 s 时的瞬时速度,并解释烟花升空后的运动状况.【参考答案】见试题解析.画出二次函数h (t )=-4.9t 2+14.7t (t ≥0,h ≥0)的函数图象,如图,结合导数的几何意义,我们可以看出:在t =1.5 s 附近曲线比较平坦,也就是说此时烟花的瞬时速度几乎为0,达到最高点并爆裂;在0~1.5 s 之间,曲线在任何点处的切线斜率都大于0且切线的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来越小的速度升空;在1.5~3 s,曲线在任何点处的切线斜率都小于0且切线的倾斜程度越来越大,即烟花达到最高点后,以越来越大的速度下降,直到落地.【名师点睛】1.若函数()y f x =在0x x =处的导数存在且0()0f x '>(即切线的斜率大于零),则函数()y f x =在0x x =附近的图象是上升的;若0()0f x '<(即切线的斜率小于零),则函数()y f x =在0x x =附近的图象是下降的. 导数绝对值的大小反映了曲线上升和下降的快慢.2.导数的几何意义是曲线的切线的斜率.反之,在曲线上取确定的点,作曲线的切线,则可以根据切线斜率的符号及绝对值的大小来确定曲线的升降情况及升降的快慢程度.3.函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况,由切线的倾斜程度可以判断出函数图象升降的快慢.因此,研究复杂的函数问题,可以考虑通过研究其图象的切线来了解函数的性质.1.如图,点A (2,1),B (3,0),E (x ,0)(x ≥0),过点E 作OB 的垂线l .记AOB △在直线l 左侧部分的面积为S ,则函数S=f(x)的图象为下图中的2.某斜坡在某段内的倾斜程度可以近似地用函数y=-x2+4x x≤2)来刻画,试分析该段斜坡坡度的变化情况._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练08 利用导数公式及运算法则求函数导数高考频度:★★★☆☆ 难易程度:★★☆☆☆求下列函数的导数: (1)221()(31)y x x =-+; (2)sincos 22x x y x =-;(3)y =.【参考答案】见试题解析.(2)∵sin cos 22x x y x =-, ∴111(sin )()(sin )1cos 222y x x '=x 'x 'x '=--=-.(3)∵3122359y x x x-=-+-,∴31223)()(5)((9)y x 'x ''x '-'=-+-1322313109()22x x -=⨯-+-⨯-⋅21)1x=+-. 【名师点睛】1.基本初等函数的导数公式 (1)若()f x c =,则()0f x '=;(2)若()()f x x Q αα*=∈,则1()f x x αα-'=;(3)若()sin f x x =,则()cos f x x '=; (4)若()cos f x x =,则()sin f x x '=-;(5)若()x f x a =,则()ln (01)xf x a a a a '=>≠且;(6)若()e x f x =,则()e xf x '=; (7)若()log a f x x =,则1()(01)ln f x a a x a'=>≠且; (8)若()ln f x x =,则1()f x x'=. 2.导数运算法则(1)[()()]()()f x g x f x g x '''±=±; (2)[()()]()()()()f x g x f x g x f x g x '''⋅=+; (3)2()()()()()[](()0)()[()]f x f xg x f x g x g x g x g x ''-'=≠. 3.求函数导数的一般原则:①遇到连乘积的形式,先展开化为多项式形式,再求导; ②遇到根式形式,先化为分数指数幂,再求导; ③遇到复杂分式,先将分式化简,再求导. 4.熟记如下结论: ①21()'x x 1=-; ②奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数; ③(ln ||)x 'x1=; ④21[]()[()()0()]()x 'x x x f 'f f f -≠=; ⑤[]()()()()a x x 'a x f bg f 'x bg'=++.1A BC D.2.f(x)=x(2015+ln x),若f'(x0)=2016,则x0=A.e2B.1C.ln 2 D.e_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练09 导数的几何意义的应用高考频度:★★★☆☆难易程度:★★★☆☆设函数f(x)=a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方程为y=3.(1)求f(x)的解析式;(2)证明:曲线y=f(x)上任意一点处的切线与直线x=1和直线y=x所围成的三角形的面积为定值,并求出此定值.【参考答案】(1)f (x )=(2)见试题解析.【试题解析】(1)求导可得f '(x )=由题意,可得2123210(2)a b a b ⎧+=⎪+⎪⎨⎪-=+⎪⎩,因为a ,b ∈Z ,故f (x )=(2)在曲线上任取一点(x 0,x 0由f '(x 0)=1-()2000200[1111(]1)x x y x x x x -+-=----.令x =1,得y所以切线与直线x =1的交点为(1,令y =x ,得y =2x 0-1,所以切线与直线y =x 的交点为(2x 0-1,2x 0-1). 显然直线x =1与直线y =x 的交点为(1,1).1||2x 0-1-1|2x 0-2|=2,所以所围成的三角形的面积为定值2.【名师点睛】(1)求曲线在某点处的切线时,要注意切点既是曲线上的点也是切线上的点,即切点的坐标同时适合曲线方程和切线方程,利用这个方法可以确定一些未知的常数.(2)函数()y f x =在某点处的导数、曲线()y f x =在某点处切线的斜率和倾斜角,这三者是可以相互转化的.(3)当曲线()y f x =在点00((),)x f x 处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是0x x =.(4)注意区分曲线在某点处的切线和曲线过某点的切线.曲线()y f x =在点00((),)x f x 处的切线方程是000()()()y f x f x x x -='-;求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.1与曲线A BC D2.已知曲线 及曲线上一点P (1,-2).(1)求曲线 在P 点处的切线方程;(2)求曲线过P 点的切线方程._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练10 函数与导数图象之间的关系高考频度:★★★☆☆ 难易程度:★★☆☆☆如图中有一个图象是函数f (x )=13x 3+ax 2+(a 2-1)x+1(a ∈R ,且a ≠0)的导函数的图象,则f (-1)=A .13B .13- C .73D .13- 或53【参考答案】B【名师点睛】已知一个具体函数,我们可以用导数公式和运算法则求函数的导数;对于含有参数的函数,我们可以通过已知的某一个(或多个)点的导数值或函数值反过来确定参数或参数间的关系,此即逆向思维的体现.1.函数f (x )=ax 2+bx +c 的图象过原点,它的导函数y =f '(x )的图象是如图所示的一条直线,则A .2b a ->0,244ac b a ->0B .2b a -<0,244ac b a ->0C .2b a ->0,244ac b a-<0D .2b a -<0,244ac b a-<02.已知函数32()f x ax bx cx =++过点(1,5),其导函数()y f x ='的图象如图所示,求()f x 的解析式._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练11 复合函数的导数高考频度:★★★☆☆ 难易程度:★★☆☆☆求下列函数的导数: (1)y =;(2)()sin e ax b y +=; (3)2πsin 23y x ⎛⎫=+⎪⎝⎭; (4)()25log 21y x =+. 【参考答案】见试题解析.(3)设y =u 2,sin u v =,π23v x =+, 则2π2cos 24sin cos 2sin 22sin 43x u v x y y u v u v v v v x ⎛⎫''⋅'⋅'⋅⋅===+ ⎪⎝⎭==. (4)设y =5log 2u ,u =2x +1,则()()()210105log 21ln221ln 2x y u x u x '''=+==+. 【名师点睛】1.一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作(())y f g x =.复合函数(())y f g x =的导数和函数()y f u =,()u g x =的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.2.当函数中既有复合函数求导,又有函数的四则运算时,要根据题中给出的表达式决定是先用四则运算还是先用复合函数求导法则,同时需要注意,复合函数的求导原则是从外层到内层进行,不要遗漏. 3.复合函数的求导,关键在于分清函数的复合关系,合理选定中间变量,明确求导过程中每次是哪个变量对哪个变量求导.一般地,如果所设中间变量可直接求导,就不必再选中间变量.1.已知函数()ln(1)f x ax =-的导函数是()f 'x ,且()22f '=,则实数a 的值为 A .12 B .23C .34D .12.已知()()sin (0,0,0π)f x A x A ωϕωϕ=+>><<,其导函数()f x '的图象如图所示,则()πf 的值为AB .C D ._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练12 函数的单调性与导数高考频度:★★★★☆ 难易程度:★★★☆☆求下列函数的单调区间:(1)()3f x x x =-;(2)()232ln f x x x =-.【参考答案】(1)单调递增区间为,⎛-∞ ⎝和⎫∞⎪⎪⎭,单调递减区间为⎛ ⎝.(2)单调递增区间为⎫+∞⎪⎪⎭,单调递减区间为⎛ ⎝.(2)函数的定义域为(0,+∞),()223162x f x x x x -=-=⋅'.令f′(x )>0,即23120x x -⋅>,解得0x <或x又∵x >0,∴x ;令f′(x )<0,即23120x x -⋅<,解得x <或0x <,又∵x >0,∴0x <∴f (x )的单调递增区间为⎫+∞⎪⎪⎭,单调递减区间为⎛ ⎝. 【名师点睛】1.在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间内单调递增;如果()0f x '<,那么函数()y f x =在这个区间内单调递减.注意:在某个区间内,()0f x '>(()0f x '<)是函数()f x 在此区间内单调递增(减)的充分条件,而不是必要条件.函数()f x 在(,)a b 内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(,)a b 内恒成立,且()f x '在(,)a b 的任意子区间内都不恒等于0. 2.求可导函数单调区间的基本步骤: (1)确定定义域; (2)求导数()f x ';(3)解不等式()0f x '>,解集在定义域内的部分为单调递增区间; (4)解不等式()0f x '<,解集在定义域内的部分为单调递减区间.3.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.4.当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接.1.函数f (x )=(x-3)e x 的单调递增区间是 A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)2.已知()()ln 0a xf x a x=≠, (1)写出()f x 的定义域. (2)求()f x 的单调区间._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练13 函数与导函数图象之间的关系高考频度:★★☆☆☆难易程度:★☆☆☆☆设函数f(x)是其定义域内的可导函数,其图象如图所示,则其导函数f '(x)的图象可能是【参考答案】B【名师点睛】1.一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的单调递增区间,导函数为负的区间是函数的单调递减区间.f x,要注3.研究一个函数的图象与其导函数图象之间的关系时,注意抓住各自的关键要素.对于函数()f'x,则应注意其函数值在哪意其图象在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数()f x的单调区间是否一致.个区间内大于零,在哪个区间内小于零,并分析这些区间与函数()4.常见的函数值变化快慢与导数的关系为:对于①,函数值增加得越来越快,()0f x '>且越来越大; 对于②,函数值增加得越来越慢,()0f x '>且越来越小;对于③,函数值减少得越来越快,()0f x '<且越来越小,绝对值越来越大; 对于④,函数值减少得越来越慢,()0f x '<且越来越大,绝对值越来越小.1,A B C D2.已知定义在R 上的函数()f x ,其导函数()f x '的大致图象如下图所示,则下列叙述正确的是A .()()()f f c b f d >>B .()()()f b f a f e >>C .()()()f c f b f a >>D .()()()f c f e f d >>_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练14 讨论含参函数的单调性高考频度:★★★☆☆ 难易程度:★★★☆☆已知函数()()22ln f x x x a x a =-+∈R .(1)若函数在1x =处的切线与直线420x y --=垂直,求实数a 的值; (2)当0a >时,讨论函数的单调性.(i)当0∆≤即12a ≥时,()0f x '≥,函数()f x 在()0,+∞上单调递增;(ii)当0∆>即12a <时,令()0f x '=,又0a >,故210x x >>.当()()120,,x x x ∈+∞ 时,()0f x '>,函数()f x 单调递增, 当()12,x x x ∈时,()0f x '<,函数()f x 单调递减. 综上所述,当12a ≥时,函数()f x 在()0,+∞上单调递增; 当12a <时,函数()f x 在()()120,,,x x +∞上单调递增,在()12,x x 上单调递减. 【名师点睛】讨论含有参数的函数的单调性,通常归结为求含参不等式的解集问题,而对含有参数的不等式要针对具体情况进行讨论,但要始终注意定义域对单调性的影响以及分类讨论的标准.1.已知函数f (x )=2x 3-6ax+1,a ≠0,则函数f (x )的单调递减区间为A .(-∞,+∞)B .+∞)C .(-∞,)∪+∞)D .(2.已知函数()()21e 2xf x x a x x a ⎛⎫=-+∈⎪⎝⎭R (1)若0a =,求曲线()y f x =在点()1,e 处的切线方程;(2)当0a >时,讨论函数()f x 的单调性._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练15 已知函数的单调性求参数的取值范围高考频度:★★★☆☆ 难易程度:★★★☆☆已知函数()32143f x x ax x =-+.(1)若曲线()()()11y f x f =在点,a 的值; (2)若函数()102y f x ⎛⎫= ⎪⎝⎭在区间,上单调递增,求实数a 的取值范围. 【参考答案】(1)2a =;(2)174a ≤. 【试题解析】(1()224f x x ax =-+',又π(1)tan14f '==,则可得1241a -+=,则2a =.【名师点睛】已知函数的单调性求参数的值或取值范围问题,是一类非常重要的题型,其基本解法是利用分离参数法,将()0f x '≥或()0f x '≤的参数分离,转化为求函数的最值问题.1.设函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是 A .(]1,2 B .()1,3 C .()1,2D .(]1,32.已知()2e 1xf x ax=+, 其中a 为正实数. 若()f x 为实数集R 上的单调函数, 求实数a 的取值范围._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________答案及解析训练01 求函数的平均变化率【参考答案】训练02 平均变化率的应用【参考答案】1.【答案】D【解析】第一个10 s 内V 的平均变化率为()()0.1100.1055100Δ52522Δ1001010V V V t -⨯-⨯--⨯-⨯===-30.25 cm /s =-,选D .训练03 求函数在定点处的导数【参考答案】【易错辨析】在导数的定义()()()0000'limx f x x f x f x x∆→+∆-∆=中,x ∆是()0f x x +∆与()0f x 中的两个自变量的差,即()00x x x +∆-.初学者在求解此类问题时容易忽略分子与分母相应的符号的一致性. 2.【答案】【解析】∵33223000000()3Δ3(Δ)(Δ()())y f x x f x x x x x x x x x +-+-=++∆=∆=∆,∴2200Δ33Δ(Δ)Δy x x x x x++=, ∴2220000Δ0lim[3()3Δ(Δ)3]x f 'x x x x x x →+=+=.由0()6f 'x =得2036x =,则0x =训练04 瞬时速度的应用【参考答案】1.【答案】t =2【解析】Δs =-4(t+Δt )2+16(t+Δt )-(-4t 2+16t )=16Δt-8t ·Δt-4(Δt )2, 因为某时刻瞬时速度为零,所以当Δt 趋于0时-8t-4Δt =0,即16-8t =0,解得t =2.训练05 导数的实际意义【参考答案】2.【解析】(1)当x 从1 h 变到4 h 时,生产的产品的重量y 从f (1)=8120变到f (4)=445, 故所求平均变化率为()()4481411952041312f f --==-(g/h),它表示从第1 h 到第4 h 这段时间内,该工人平均每小时生产1912g 产品. (2)因为()()00Δ0Δlimlimx x f x x f x x→→+∆-=∆=Δ0lim x →(110x 0+Δ20x110x 0所以f '(1)=110×12110=(g/h),它表示该工人上班后工作1 h 的时候,其生产速度为2110g/h. f '(4) =110×475= (g/h), 它表示该工人上班后工作4 h 的时候,其生产速度为75g/h.训练06 导数的几何意义【参考答案】2.【解析】()()()Δ0Δ011ΔΔΔlim lim ΔΔx x a x x ax ax x x x x x x x y x x x x x →→⎡⎤⎛⎫+∆+-+ ⎪⎢⎥⋅⋅+-+∆⎣⎦⎝⎭'==∆⋅⋅+ =()()Δ0·Δ1lim ·Δx ax x x x x x →+-+=221ax x-=a -21x . ∵函数y =ax +1x 图象上各点处的切线斜率均小于1,∴a -21x<1, 即a <1+21x 对于非零实数x 恒成立. ∵对于非零实数x ,都有1+21x >1,∴a ≤1, 故实数a 的取值范围是(-∞,1].训练07 导数几何意义的实际应用【参考答案】1.【答案】D【解析】函数的定义域为[0,+∞),当x∈[0,2]时,在单位长度改变量Δx内面积改变量ΔS越来越大,即斜率f'(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度改变量Δx内面积改变量ΔS越来越小,即斜率f'(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度改变量Δx内面积改变量ΔS为0,即斜率f'(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.训练08 利用导数公式及运算法则求函数导数【参考答案】训练09 导数的几何意义的应用【参考答案】1.【答案】C【解析】设切点为(,则011x y ⎧=⎪⎨⎪=⎩2.【解析】(1)由f (x )=x 3-3x 得,f ′(x )=3x 2-3. 过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0, ∴所求切线方程为y =-2.训练10 函数与导数图象之间的关系【参考答案】2.【解析】∵22(3)f x ax bx c =+'+,且 )0(1f '=,)0(2f '=,5(1)f =,∴32012405a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得2912a b c =⎧⎪=-⎨⎪=⎩. ∴322912()f x x x x =-+.训练11 复合函数的导数【参考答案】且1ππ·222ϕ+=,则π4ϕ=, 则()1ππ4sin π24f ⎛⎫=+=⎪⎝⎭故选B .训练12 函数的单调性与导数【参考答案】②当0a <时,在()0,e 上()0f x '<;在()e,+∞上()0f x '>,()f x ∴的单调递增区间为()e,+∞;单调递减区间为()0,e .训练13 函数与导函数图象之间的关系【参考答案】训练14 讨论含参函数的单调性【参考答案】1.【答案】D【解析】f '(x )=6x 2-6a =6(x 2-a ),当a <0时,对x ∈R ,有f '(x )>0;当a >0时,由f '(x )<0解得x所以当a >0时,f (x )的单调递减区间为().故选D .(2)()()()1e xf x x a =+-',令()0f x '=,得1x =-或ln x a =,①当1e a =时,()0f x '≥,所以()f x 在R 上单调递增; ②当10ea <<时,ln 1a <-,由()0f x '>,得ln x a <或1x >-;由()0f x '<,得ln 1a x <<-,所以单调递增区间为()(),ln ,1,a -∞-+∞,单调递减区间为()ln ,1a -; ③当1ea >时,ln 1a >-,由()0f x '>,得1x <-或ln x a >;由()0f x '<,得1ln x a -<<, 所以单调递增区间为()(),1,ln ,a -∞-+∞,单调递减区间为()1,ln a -. 综上所述,当1ea =时,()f x 在R 上单调递增; 当10ea <<时,单调递增区间为()(),ln ,1,a -∞-+∞,单调递减区间为()ln ,1a -; 当1ea >时,单调递增区间为()(),1,ln ,a -∞-+∞,单调递减区间为()1,ln a -.训练15 已知函数的单调性求参数的取值范围【参考答案】2.【解析】()22221()e 1xax ax f x ax -+'=⋅+,若()f x 为R 上的单调函数, 则()f x '在R 上不变号,又0a >,2210ax ax ∴-+≥在R 上恒成立,即()2044410a a a a a ∆>⎧⎪⎨=-=-≤⎪⎩01a ⇒<≤. 则实数a 的取值范围是(0,1].。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业6 理1.和x 轴相切,且与圆x 2+y 2=1外切的圆的圆心的轨迹方程是 ( )A .x 2=2y +1 B .x 2=-2y +1 C .x 2=2y -1 D .x 2=2|y|+1 【解析】:2.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA|=2|PB|,则点P 的轨迹所包围的图形的面积等于 ( )A .πB .4πC .8πD .9π 【解析】:3.设直线0132=++y x 和圆03222=--+x y x 相交于点A 、B ,则弦AB 的垂直平分线方程是. 【解析】:4.设直线ax -y +3=0与圆(x -1)2+(y -2)2=4有两个不同的交点A ,B ,且弦AB 的长为2 3 ,则a 等于. 【解析】:5、设圆上点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为2 2 ,求圆的方程.【解析】:6、已知与曲线C:x2+y2-2x-2y+1=0相切的直线l叫x轴,y轴于A,B两点,|OA|=a,|OB|=b(a >2,b>2).(1)求证:(a-2)(b-2)=2;(2)求线段AB中点的轨迹方程;(3)求△AOB面积的最小值.【解析】:7、已知点A,B的坐标为(-3,0),(3,0),C为线段AB上的任意一点,P,Q是分别以AC,BC 为直径的两圆O1,O2的外公切线的切点,求PQ中点的轨迹方程.【解析】:8.由动点P引圆x2+y2=10的两条切线PA,PB,直线PA,PB的斜率分别为k1,k2.(1)若k1+k2+k1k2=-1,求动点P的轨迹方程;(2)若点P在直线x+y=m上,且PA⊥PB,求实数m的取值范围.【解析】:9.已知P是直线3x+4y+8=0上的动点,PA、PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.(1)求四边形PACB面积的最小值;(2)直线上是否存在点P,使∠BPA=60°,若存在,求出P点的坐标;若不存在,说明理由.【解析】:10.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m取什么数,直线l与圆C恒交于两点;(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.【解析】:11.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2, 0)的动直线l与圆A相交于M,N两点,Q是MN的中点.(1)求圆的方程;(2)当|MN|=219时,求直线l的方程.【解析】:12.如图,已知圆O :x 2+y 2=1和定点A (2,1),由圆O 外一点P (a ,b )向圆O 引切线PQ ,切点为Q ,且有|PQ |=|PA |.(1)求a 、b 间关系;(2)求|PQ |的最小值;(3)以P 为圆心作圆,使它与圆O 有公共点,试在其中求出半径最 小的圆的方程. 【解析】:答案1.D .提示:设圆心(x,y)||1y =+2.B .提示:直接将动点坐标代如等式,求得点的轨迹是一个以(2,0)为圆心,2为半径的圆. 3.0323=--y x .提示:弦的垂直平分线过圆心. 4.0.提示:依据半径、弦长、弦心距的关系求解.5、解析:设圆的方程为(x -a)2+(y -b)2=r 2, 点A (2,3)关于直线x +2y=0的对称点仍在圆上,说明圆心在直线x +2y=0上,a +2b=0,又(2-a)2+(3-b) 2=r 2,而圆与直线x -y +1=0相交的弦长为2 2 ,,故r 2-2=2,依据上述方程解得:{b1=-3a1=6r12=52或{b2=-7a2=14r22=244∴所求圆的方程为(x -6)2+(y +3)2=52,或(x -14)2+(y +7)2=224. 6、解析:(1)设出直线方程的截距式,用点到直线的距离等于1,化减即得;(2)设AB 中点M(x,y),则a=2x,b=2y,代入(a -2)(b -2)=2,得(x -1)(y -1)=12 (x >1,y >1);(3)由(a -2)(b -2)=2得ab +2=2(a +b)≥4ab ,解得ab ≥2+ 2 (ab ≤2- 2 不合,舍去),当且仅当a=b 时,ab 取最小值6+4 2 ,△AOB 面积的最小值是3+2 2 .7.作MC ⊥AB 交PQ 于M ,则MC 是两圆的公切线.|MC|=|MQ|=|MP|,M 为PQ 的中点.设M (x,y),则点C ,O 1,O 2的坐标分别为(x,0),(-3+x 2 ,0), ( 3+x 2 ,0)连O 1M ,O 2M ,由平面几何知识知∠O 1MO 2=90°.∴|O 1M|2+|O 2M|2=|O 1O 2|2,代入坐标化简得:x 2+4y 2=9(-3<x <3) 8.(1)由题意设P (x 0,y 0)在圆外,切线l :y -y 0=k(x -x 0)=∴(x 02-10)k 2-2x 0·y 0k +y 02-10=0由k 1+k 2+k 1k 2=-1得点P 的轨迹方程是x +y±2 5 =0.(2)∵P (x 0,y 0)在直线x +y=m 上,∴y 0=m -x 0,又PA ⊥PB ,∴k 1k 2=-1,202010110y x -=--,即:x 02+y 02=20,将y 0=m -x 0代入化简得,2x 02-2mx 0+m 2-20=0∵△≥0,∴-210 ≤m ≤210 ,又∵x 02+y 02>10恒成立,∴m >2,或m <-2 5 ∴m 的取值范围是[-210 ,-2 5 ]∪(2 5 ,210 ]9.解 (1)如图,连接PC ,由P 点在直线3x +4y +8=0上,可设P 点坐标为(x ,-2-34x ).圆的方程可化为(x -1)2+(y -1)2=1,所以S 四边形PACB =2S △PAC =2×12×|AP |×|AC |=|AP |.因为|AP |2=|PC |2-|CA |2=|PC |2-1, 所以当|PC |2最小时,|AP |最小.因为|PC |2=(1-x )2+(1+2+34x )2=(54x +1)2+9.所以当x =-45时,|PC |2m in =9.所以|AP |min =9-1=2 2.即四边形PACB 面积的最小值为2 2. (2)假设直线上存在点P 满足题意. 因为∠APB =60°,|AC |=1,所以|PC |=2.设P (x ,y ),则有⎩⎪⎨⎪⎧-+-=4,3x +4y +8=0.整理可得25x 2+40x +96=0,所以Δ=402-4×25×96<0.所以这样的点P 是不存在的.10.(1)证明 ∵直线l 的方程可化为(2x +y -7)m +(x +y -4)=0(m ∈R ).∴l 过⎩⎪⎨⎪⎧2x +y -7=0x +y -4=0的交点M (3,1).又∵M 到圆心C (1,2)的距离为d =-+-=5<5,∴点M (3,1)在圆内,∴过点M (3,1)的直线l 与圆C 恒交于两点.(2)解 ∵过点M (3,1)的所有弦中,弦心距d ≤5,弦心距、半弦长和半径r 构成直角三角形,∴当d 2=5时,半弦长的平方的最小值为25-5=20. ∴弦长AB 的最小值|AB |min =4 5.此时,k CM =-12,k l =-2m +1m +1.∵l ⊥CM ,∴12·2m +1m +1=-1,解得m =-34.∴当m =-34时,取到最短弦长为4 5.11 [解析] (1)设圆A 的半径为r ,∵圆A 与直线l 1:x +2y +7=0相切,∴r =|-1+4+7|5=25,∴圆A 的方程为(x +1)2+(y -2)2=20.(2)当直线l 与x 轴垂直时,则直线l 的方程为x =-2, 此时有|MN |=219,即x =-2符合题意. 当直线l 与x 轴不垂直时,设直线l 的斜率为k , 则直线l 的方程为y =k (x +2),即kx -y +2k =0, ∵Q 是MN 的中点,∴AQ ⊥MN ,∴|AQ |2+(12|MN |)2=r 2.又∵|MN |=219,r =25,∴|AQ |=20-19=1, 解方程|AQ |=|k -2|k2+1=1,得k =34,∴此时直线l 的方程为y -0=34(x +2),即3x -4y +6=0.综上所得,直线l 的方程为x =-2或3x -4y +6=0.12.解 (1)连接OQ 、OP ,则△OQP 为直角三角形,又|PQ |=|PA |,所以|OP |2=|OQ |2+|PQ |2=1+|PA |2,所以a 2+b 2=1+(a -2)2+(b -1)2,故2a +b -3=0. (2)由|PQ |2=|OP |2-1=a 2+b 2-1=a 2+9-12a +4a 2-1=5a 2-12a +8=5(a -1.2)2+0.8, 得|PQ |min =255.(3)以P 为圆心的圆与圆O 有公共点,半径最小时为与圆O 相切的情形,而这些半径的最小值为圆O 到直线l 的距离减去圆O 的半径,圆心P 为过原点且与l 垂直的直线l ′与l 的交点P 0,所以r =322+12-1=355-1,又l ′:x -2y =0,联立l :2x +y -3=0得P 0(65,35).所以所求圆的方程为(x -65)2+(y -35)2=(355-1)2.。
云南省峨山彝族自治县2017-2018学年高二数学上学期寒假作业4 理 一,选择题:1、下列命题正确的是 ( )A 、若→a ∥→b ,且→b ∥→c ,则→a ∥→c 。
B 、两个有共同起点且相等的向量,其终点可能不同。
C 、向量的长度与向量的长度相等 ,D 、若非零向量AB 与是共线向量,则A 、B 、C 、D 四点共线。
2、已知向量(),1m =a ,若,=2,则 m = ( )A .1 B. C. D.3、在ABC ∆中,若=+,则ABC ∆一定是 ( ) A .钝角三角形 B .锐角三角形 C .直角三角形 D .不能确定4、已知向量,,a b c 满足||1,||2,,a b c a b c a ===+⊥,则a b 与的夹角等于 ( )A .0120BCD二、填空题:(5分×4=20分)5、已知向量、满足==1,3-=3,则 +3 =6、已知向量=(4,2),向量=(,3),且//,则=7、已知 三点A(1,0),B(0,1),C(2,5),求cos ∠BAC =8、.把函数742++=x x y 的图像按向量经过一次平移以后得到2x y =的图像, 则平移向量是(用坐标表示)三,解答题:9、设),6,2(),3,4(21--P P 且在21P P =,,则求点 的坐标10、已知两向量),1,1(,),31,,31(--=-+=b a 求与所成角的大小,11、已知向量=(6,2),=(-3,k ),当k 为何值时,有(1)∥ ? (2)⊥ ? (3)与所成角θ是钝角 ?12、设点A (2,2),B (5,4),O 为原点,点P 满足=+t ,(t 为实数);(1)当点P 在x 轴上时,求实数t 的值;(2)四边形OABP 能否是平行四边形?若是,求实数t 的值 ;若否,说明理由,13、已知向量=(3, -4), =(6, -3),=(5-m, -3-m ),(1)若点A 、B 、C 能构成三角形,求实数m 应满足的条件;(2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值.14、已知向量.1,43),1,1(-=⋅=且的夹角为与向量向量π (1)求向量; (2)设向量)sin ,,(cos ),0,1(x x b a ==向量,其中R x ∈, 若0=⋅,试求||+的取值范围.平面向量单元测试题答案:一,选择题: C D C A二,填空题: 5,2; 5,6; 7,13132 8,)3,2(- 三,解答题:9,解法一: 设分点P (x,y ),∵P P 1=―22PP ,=―2 ∴ (x ―4,y+3)=―2(―2―x,6―y),x ―4=2x+4, y+3=2y ―12, ∴ x=―8,y=15, ∴ P (―8,15) 解法二:设分点P (x,y ),∵P P 1=―22PP ,=―2 ∴ x=21)2(24---=―8,y=21623-⨯--=15, ∴ P(―8,15) 解法三:设分点P (x,y )=∴―2=24x +, x=―8, 6=23y +-, y=15, ∴ P(―8,15) 10=2, = , cos <,>=―21, ∴<,>= 1200, 11,解:(1),k=-1; (2), k=9; (3), k <9, k ≠-1 12,解:(1),设点P (x ,0), =(3,2), ∵=+t ,∴ (x,0)=(2,2)+t(3,2),⎩⎨⎧+=+=,22032,t t x 则由∴⎩⎨⎧-=-=,11t x 即 (2),设点P (x,y ),假设四边形OABP 是平行四边形,则有∥, y=x ―1,OP ∥AB 2y=3x ∴⎩⎨⎧-=-=32y x 即……①,又由=+t ,(x,y)=(2,2)+ t(3,2), 得 ∴⎩⎨⎧+=+=ty t x 2223即……②,由①代入②得:⎪⎪⎩⎪⎪⎨⎧-=-=2534t t , 矛盾,∴假设是错误的, ∴四边形OABP 不是平行四边形。
云南省 2017-2018学年高二数学上学期寒假作业7 理
1.已知双曲线x 2a 2-y 2
b 2=1的一条渐近线方程为y =43
x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )32
【解析】:
2.若抛物线22y px =的焦点与椭圆2
2
162x y +=的右焦点重合,则p 的值为(
) A .2- B .2 C .4- D .4
【解析】:
3双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。
【解析】:
4.已知抛物线关于y 轴对称,它的顶点在坐标原点,并且经过点M (32,3-),求它的标准方程。
【解析】:
5.当a 为何值时,直线1+=ax y 与抛物线x y 82=只有一个公共点? 【解析】:
6.中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且13221=F F ,椭圆的长半轴与双曲线的半实轴之差为4,离心率之比为3:7。
求这两条曲线的方程。
【解析】:
7.求与双曲线14
162
2=-y x 共焦点,且过点)2,23(的双曲线方程。
【解析】:
8、已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设点11,2A ⎛⎫ ⎪⎝⎭
.
(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程;
(3)过原点O 的直线交椭圆于点,B C ,求ABC ∆面积的最大值。
9、设12F F 是椭圆2222:1(0)x y E a b a b
+=>>的左、右焦点,P 为直线32a x =上一点,∆21F PF 是底角为30 的等腰三角形,求离心率
【解析】
10、设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A C ∈,已知以F 为圆心, FA 为半径的圆F 交l 于,B D 两点;
(1)若090=∠BFD ,ABD ∆的面积为24;求p 的值及圆F 的方程;
(2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点, 求坐标原点到,m n 距离的比值.
【解析】。