电源基本拓扑讲义形式介绍
- 格式:ppt
- 大小:2.09 MB
- 文档页数:45
干货图文列举具有代表性的开关电源拓扑结构1、基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:2、Buck降压■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续 (斩波)。
■输出电流平滑。
3、Boost升压■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续 (斩波)。
4、Buck-Boost降压-升压■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续 (斩波)。
■输出电流也不连续 (斩波)。
■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
5、Flyback反激■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
6、Forward正激■降压电路的变压器耦合形式。
■不连续的输入电流,平滑的输出电流。
■因为采用变压器,输出可以大于或小于输入,可以是任何极性。
■增加次级绕组和电路可以获得多个输出。
■在每个开关周期中必须对变压器磁芯去磁。
常用的做法是增加一个与初级绕组匝数相同的绕组。
■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。
7、Two-Transistor Forward双晶体管正激■两个开关同时工作。
■开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。
■主要优点:■每个开关上的电压永远不会超过输入电压。
■无需对绕组磁道复位。
8、Push-Pull推挽■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。
拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。
通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。
拓扑学对于研究对象的长短、大小面积、体积等度量性质和数量关系都无关。
即不考虑图形的大小形状,仅考虑点和线的个数。
实质上拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。
电路的拓扑结构就是指电路中节点、支路、回路的数量,这些都反映了电路中各部分连接的实质状况。
同一个拓扑结构可以画成几何形状不同的电路图拓扑电路非常适用于DC-DC变换器。
每种拓扑都有其自身的特点和适用场合。
因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。
DC/DC电源变换器的拓扑类型主要有以下13种:(1)Buck Converter降压式变换器;(2)Boost Conyerter升压式变换器;(3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器;(4)Cuk Converter升压,升压串联式变换器;(5)SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器;(6)F1yback Converter反激式(亦称回扫式)变换器;(7)Eorward Converter正激式变换器:(8)Double Switches Forward Converter双开关正激式变换器;(9)Active Clamp Forward Converter有源箝位(0)Half Bridge Converter半桥式变换器;(11)Full Bridge Converter全桥式变换器;(12)Push—pall Convener推挽式变换器:(13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。
DC-DC电源拓扑及其工作模式讲解一、DC-DC电源基本拓扑分类:开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。
如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。
如果电感连接到输出端,就构成了降压变换器。
基本拓扑图如下:1.Buck2.Boost3.Buck-Boost二、DC-DC复杂拓扑结构1.反激隔离电源(FlyBack)另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。
2.Buck+Boost拓扑本质是用一个降压“加上”一个升压,来实现升降压。
SEPIC拓扑:集成了Boost和Flyback拓扑结构3.Cuk、Sepic、Zeta拓扑通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。
Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。
但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极串联拓扑节省了复用的器件。
通过这样串联和演进,产生了新的三个电源拓扑。
同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。
4.四开关Buck-Boost拓扑同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑5.反激、正激、推挽拓扑的演进利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。
可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。
将两个正激变换器进行并联,可以形成推挽拓扑。
正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。
25种开关电源拓扑电路结构与连接原理与及特点选择与设计方法开关电源是一种将交流电转换为直流电的电源装置,其常见的拓扑电路结构包括单端(Buck)、反相(Boost)和反相-反相(Buck-Boost)等。
下面将详细介绍这些拓扑电路的连接、原理与特点,并给出选择与设计方法。
1.单端拓扑电路结构与连接:单端拓扑电路主要由功率开关器件、电感元件和输出滤波电容组成。
它的连接方式为输入电压接到开关电源的输入端,输出电压则输出到输出端。
单端拓扑电路常用于输出电压比输入电压更低的应用场景。
2.反相拓扑电路结构与连接:反相拓扑电路也是由功率开关器件、电感元件和输出滤波电容组成。
不同之处在于它的连接方式,输入电压通过开关电源的输入端接到电感上,输出电压则从电感上接出。
反相拓扑电路适用于输出电压比输入电压更高的应用场景。
3.反相-反相拓扑电路结构与连接:反相-反相拓扑电路结构是将单端拓扑与反相拓扑结合起来的一种结构,它可以实现输入电压和输出电压的翻转。
输入电压通过开关电源的输入端接到电感上,输出电压同样从电感上输出。
这种拓扑电路可以根据输入输出电压的差异实现升压或降压功能。
这些拓扑电路的原理与特点如下:1.单端拓扑电路原理与特点:单端拓扑电路使用开关器件以一定的频率开关电源输入,通过电感和输出滤波电容将开关输出的方波转换为稳定的直流电。
这种电路的特点是简单、成本较低,但效率较低,适用于输出电压较低的场景。
2.反相拓扑电路原理与特点:反相拓扑电路通过控制开关器件的导通和截止来改变电感中的电流,从而改变输出电压。
与单端拓扑电路相比,它的效率较高,但成本较高。
反相拓扑电路适用于输出电压较高的场景。
3.反相-反相拓扑电路原理与特点:反相-反相拓扑电路通过将输入电压先升压或降压至一个中间电压,再通过反向变换输出所需的电压。
这种电路可以实现较大范围的升压和降压功能,但需要多个开关器件和电感,因此成本和复杂度较高。
在选择与设计开关电源的方法上,应注意以下几点:1.根据实际需求确定输出电压和电流的要求,然后选择适合的拓扑电路结构。
电源常用拓扑结构特点及波形基本名词电源常见的拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:1、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续(斩波)。
■输出电流平滑。
2、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续(斩波)。
3、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续(斩波)。
■输出电流也不连续(斩波)。
■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
5、Forward正激■降压电路的变压器耦合形式■不连续的输入电流,平滑的■因为采用变压器,输出可以■增加次级绕组和电路可以获■在每个开关周期中必须对变绕组。
■在开关接通阶段存储在初级6、Two-Transistor Fo 特点■两个开关同时工作。
■开关断开时,存储在变压器■主要优点:■每个开关上的电压永远不会■无需对绕组磁道复位。
1、基本名词常见的基本拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥■SEPIC■C’uk基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:2、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续 (斩波)。
■输出电流平滑。
3、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续 (斩波)。
4、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续 (斩波)。
■输出电流也不连续 (斩波)。
■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。
■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
5、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
6、Forward正激特点■降压电路的变压器耦合形式。
■不连续的输入电流,平滑的输出电流。
■因为采用变压器,输出可以大于或小于输入,可以是任何极性。
■增加次级绕组和电路可以获得多个输出。
■在每个开关周期中必须对变压器磁芯去磁。
常用的做法是增加一个与初级绕组匝数相同的绕组。
■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。
1、根本名词常见的根本拓扑结构■Buck降压■Boost升压■Buck-Boost降压-升压■Flyback反激■Forward正激■Two-Transistor Forward双晶体管正激■Push-Pull推挽■Half Bridge半桥■Full Bridge全桥■SEPIC■C’uk根本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
根本的脉冲宽度调制波形定义如下:2、Buck降压特点■把输入降至一个较低的电压。
■可能是最简单的电路。
■电感/电容滤波器滤平开关后的方波。
■输出总是小于或等于输入。
■输入电流不连续(斩波)。
■输出电流平滑。
3、Boost升压特点■把输入升至一个较高的电压。
■与降压一样,但重新安排了电感、开关和二极管。
■输出总是比大于或等于输入(忽略二极管的正向压降)。
■输入电流平滑。
■输出电流不连续(斩波)。
4、Buck-Boost降压-升压特点■电感、开关和二极管的另一种安排方法。
■结合了降压和升压电路的缺点。
■输入电流不连续(斩波)。
■输出电流也不连续(斩波)。
■输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
■“反激〞变换器实际是降压-升压电路隔离〔变压器耦合〕形式。
5、Flyback反激特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
■输出可以为正或为负,由线圈和二极管的极性决定。
■输出电压可以大于或小于输入电压,由变压器的匝数比决定。
■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。
6、Forward正激特点■降压电路的变压器耦合形式。
■不连续的输入电流,平滑的输出电流。
■因为采用变压器,输出可以大于或小于输入,可以是任何极性。
■增加次级绕组和电路可以获得多个输出。
■在每个开关周期中必须对变压器磁芯去磁。
常用的做法是增加一个与初级绕组匝数相同的绕组。
■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。