方程组与不等式模块练习
- 格式:doc
- 大小:87.50 KB
- 文档页数:3
一元一次方程与二元一次方程组1、理解并掌握不等式的性质,理解它们与等式性质的区别。
2、能用数形结合的思想理解一元一次不等式(组)解集的含义。
3、正确熟练地解一元一次不等式(组),并会求其特殊解。
4、会利用一元一次不等式(组)解综合题、应用题。
1.(宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x 顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是( )A . 4150048000x y x y +=⎧⎨+=⎩B .4150068000x y x y +=⎧⎨+=⎩ C .1500468000x y x y +=⎧⎨+=⎩ D .1500648000x y x y +=⎧⎨+=⎩ 2.(随州)我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,中央、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是( )A .80元B .95元C .135元D .270元8.(黑龙江)今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱取购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有( )A .3种B .4种C .5种D .6种3.(南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )学习目标课前检测A.19 B.18 C.16 D.154.(泰安,)一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式。
2020年中考数学总复习《方程(组)与不等式(组)》单元测试卷(总分:120分)一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是( )A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是( )A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是( )A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是( )A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠0 7.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是( )A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为( )A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B⎩⎪⎨⎪⎧x +y =3016x +12y =400 C.⎩⎪⎨⎪⎧12x +16y =400x +y =400 D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为( )A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64 二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为 . 12.不等式2-2x <x -4的解集为 .13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为 . 14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为 .15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则 2 020-a -b 的值是 .16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为 . 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②18.(6分)解方程:x 2+1=2(x +1).19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.答案解析一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是(D)A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是(A)A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为(B)A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是(D)A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是(A)A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是(D)A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠07.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是(C)A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为(C)A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是(B)A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B.⎩⎪⎨⎪⎧x +y =3016x +12y =400C.⎩⎪⎨⎪⎧12x +16y =400x +y =400D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为(A)A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为1. 12.不等式2-2x <x -4的解集为x >2.13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为12.14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为5.15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则2 020-a -b 的值是2__025.16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为8. 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②解:①-②×2,得 -7y =7,∴y =-1.③ 将③代入②,得x =0.∴原方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.18.(6分)解方程:x 2+1=2(x +1).解:x 2-2x -1=0. (x -1)2=2.∴x 1=1+2,x 2=1- 2.19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来. 解:不等式组的解集为-32<x ≤1.在数轴上表示不等式组的解集如图所示.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.解:(1)设甲、乙工程队单独完成此项工程各需x 天,2x 天,根据题意,得 1x +12x =110. 解得x =15,2x =30.答:甲、乙工程队单独完成此项工程各需15天,30天. (2)分三种情况讨论:①甲单独做费用:4.5×15=67.5(万元); ②乙单独做费用:2.5×30=75(万元);③甲、乙合作完成费用:(4.5+2.5)×10=70(万元). ∵75>70>67.5,∴甲工程队单独做既能使工程按时完工,又能使工程费用最小,为67.5万元.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?解:(1)设每千克核桃应降价x 元,依题意,得 (60-40-x)(100+x2·20)=2 240,解得x =4或x =6.答:每千克核桃应降价4元或6元.(2)由(1)可知,每千克核桃应降价4元或6元, 为了尽可能让利于顾客,每千克核桃应降价6元, 此时售价为60-6=54(元),5460×100%=90%.答:该店应按原售价的九折出售.22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?解:(1)设每个篮球x 元,每个足球y 元,由题意,得⎩⎪⎨⎪⎧2x +3y =310,5x +2y =500,解得⎩⎪⎨⎪⎧x =80,y =50. 答:每个篮球80元,每个足球50元. (2)设购买z 个篮球,由题意,得 80z +50(60-z)≤4 000,解得z ≤3313.∵z 为整数, ∴z 最大取33.答:最多可以购买33个篮球.23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?解:(1)⎩⎪⎨⎪⎧x -y =4,①3x +y =-8,②②+①,得4x =-4.解得x =-1.把x =-1代入①,得-1-y =4.解得y =-5. ∴方程组的解是⎩⎪⎨⎪⎧x =-1,y =-5.(2)设“□”为a ,∵x ,y 是一对相反数,∴把x =-y 代入x -y =4,得-y -y =4. 解得y =-2.∴x =2. ∴方程组的解是⎩⎪⎨⎪⎧x =2,y =-2.代入ax +y =-8,得2a -2=-8.解得a =-3.∴原题中“□”是-3.24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW 公司计划2020年生产的手机全部使用自主研发的“QL ”系列芯片.从2019年起逐年扩大“QL ”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW 公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m 的值.解:(1)设2018年甲类芯片的产量为x 万块,由题意,得 x +2x +(x +2x)+400=2 800. 解得x =400.答:2018年甲类芯片的产量为400万块.(2)2018年丙类芯片的产量为3x +400=1 600(万块),设丙类芯片的产量每年增加的数量为y 万块,则1 600+1 600+y +1 600+2y =14 400. 解得y =3 200.∴丙类芯片2020年的产量为1 600+2×3 200=8 000(万块).2018年HW 公司手机产量为2 800÷10%=28 000(万部).根据题意,得400(1+m%)2+2×400(1+m%-1)2+8 000=28 000×(1+10%),设m%=t ,化简,得3t 2+2t -56=0.解得t =4或t =-143(舍去). ∴m%=4.∴m =400.答:丙类芯片2020年的产量为8 000万块,m =400.。
初二数学方程组与不等式组试题1.(1)解方程:(2)解不等式组:【答案】(1)6(2)3<x≤10【解析】解:(1)由原方程,得2(x+3)=3x,∴x=6.经检验,x=6是原方程的解,∴原方程的解是x=6(2)由①,得x>3.由②,得x≤10.∴原不等式的解集为3<x≤10.2.函数y =+中自变量x的取值范围是A.x≤2B.x=3C.x<2且x ≠3D.x ≤2且x≠3【答案】A【解析】2-x≥0,x-3≠0解得:x≤2,所以选A.3.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是()A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等实数解【答案】C【解析】当k=0时,方程变为x-1=0,所以x=1,因此A错误;当k≠0时,,所以当k=-1时,方程有两个相等的实数解,故选:C.【考点】一元二次方程根的判别式.4.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行20千米,求两车的速度各为多少?设货车的速度为千米/小时,依题意列方程正确的是A.B.C.D.【答案】C.【解析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.试题解析:根据题意,得故选C.【考点】由实际问题抽象出分式方程.5.某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔,毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支,钢笔、毛笔的单价分别为多少元?【答案】钢笔、毛笔的单价分别为10元,15元.【解析】首先设钢笔单价x元/支,则毛笔单价1.5x元/支,根据题意可得:1500元购买的钢笔数量-1800元购买的毛笔数量=30支,根据等量关系列出方程,再解即可.试题解析:设钢笔单价x元/支,由题意得:解得:x=10,经检验:x=10是原分式方程的解,1.5x=1.5×10=15.答:钢笔、毛笔的单价分别为10元,15元.【考点】分式方程的应用.6.下列各数中,是不等式2x﹣3>0的解的是()A.﹣1B.0C.﹣2D.2【答案】D【解析】首先求出不等式的解决,然后判断各个选项是否是不等式的整数解即可.【考点】一元一次不等式的整数解7.(6分)解方程:= ﹣1.【答案】x=-2【解析】按照分式方程的解法,先把分式方程化为整式方程,解整式方程,经验,得出分式方程的解.试题解析:解:方程两边同乘以2(x-2)得2(1-x)=x-2(x-2)解方程得x=-2把x=-2代入2(x-2)=-8≠0,所以x=-2是原方程的根.【考点】解分式方程8.(本题5分,共10分)解方程:(1)3x2-7x=0 ;(2)(用配方法).【答案】(1),;(2),【解析】(1)应用因式分解法解方程,得到两个x的值;(2)先把常数项移到等号右边,对左边进行配方,得到,解得x的值.试题解析:解:(1) 3x2-7x=0,x(3x-7)=0,x=0或3x-7=0,所以,;(2),,,,,,所以,.【考点】因式分解法解一元二次方程;配方法解一元二次方程.9.(本题10分)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?【答案】80.【解析】首先根据题意判断该校购买树苗超过60棵,设该校共购买了X棵树苗,由题意得,解得x值,根据每棵树苗最低售价不得少于100元决定x值的取舍.试题解析:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵.设该校共购买了X棵树苗,由题意得,解得.当时,,∴不合题意,舍去;当时,,∴,答:该校共购买了80棵树苗.【考点】列一元二次方程解应用题.10.(每小题4分,共8分)解方程(1)(2)(x-2)(x-5)=-3【答案】(1)x=-4;x=1;(2)无实根.【解析】(1)用因式分解法解方程即可;(2)整理成一般形式后用公式法解方程即可.试题解析:(1)x+4=0或x-1=0∴x=-4;x=1(x-2)(x-5)=-3a=1,b=-7,c=13,△=49-52=-3<0,∴原方程无解.【考点】一元二次方程的解法.11.已知是关于x的一元二次方程,则m的取值范围是.【答案】.【解析】根据一元二次方程的定义可知,m-2≠0,所以m≠2.故答案为:m≠2.【考点】一元二次方程的定义.12.(6分)某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.【答案】方案(3)比较省钱【解析】根据方案(1)的叙述可知:甲工程队单独完成时的时间=工期;由方案(2)可得:乙工程队单独完成这项工程时,所用的天数﹣5天=工期;可以设出工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数,即可表示出各自的工作效率,根据方案(3)即可列方程求得工期,进而计算方案(1)(3)各自需要的工程款,即可作出比较.试题解析:解:设工期是x天,即可表示出甲、乙单独完成这项工程时所需要的天数是x天,(x+5)天.根据题意得:4(+)+=1,解得:x=20,经检验x=20是原方程的解.则甲、乙单独完成这项工程时所需要的天数是20天,25天.则方案(1)的工程款是:20×1.5=30万元;方案(3)的工程款是:1.5×4+1.1×20=28(万元).综上所述,可知在保证正常完工的前提下,应选择第三种方案:甲、乙两队合作4天,剩下的工程由乙队独做.答:方案(3)比较省钱.【考点】分式方程的应用13.已知不等式2x-a<0的正整数解只有2个,则a的取值范围是.【答案】4<a≤6.【解析】由2x-a<0可得x<,又因不等式的正整数解只有2个,所以2<≤3,即4<a≤6.【考点】不等式的整数解.14.不等式的解集在数轴上表示正确的是()【答案】A.【解析】由不等式可得x>3,根据在数轴上表示不等式解集的方法可得x>3在数轴表示为,故答案选A.【考点】在数轴上表示不等式解集的方法15.(本题满分6分)解不等式组,并把不等式组的解集在数轴上表示出来。
初二数学方程组与不等式组试题1.对于实数a,b,定义运算“*”:a*b=例如:4*2,因为4>2,所以4*2=42-4×2=8,若是一元二次方程x2-5x+6=0的两个根,则 = .【答案】±3【解析】解方程x2-5x+6=0得x=2,x=3,当时,,当时,,所以 =±3.【考点】一元二次方程的根.2.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.【答案】B【解析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画.<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示.“<”,“>”要用空心圆圈表示.解不等式①,得x>﹣1,解不等式②,得x≤1,所以不等式组的解集是﹣1<x≤1.【考点】解一元一次不等式组;在数轴上表示不等式的解集.3.(6分)已知y1=2x﹣3,y2=﹣x+3,当x取何值时,(1)y1≤y2;(2)y1>y2.【答案】(1)x≤2;(2)x>2.【解析】根据题意得出关于x的不等式,然后根据不等式的解法求出x的取值.试题解析:(1)∵y1=2x﹣3,y2=﹣x+3,y1≤y2,∴2x﹣3≤﹣x+3,解得x≤2;(2)∵y1=2x﹣3,y2=﹣x+3,y1>y2,∴2x﹣3>﹣x+3,解得x>2.【考点】解一元一次不等式.4.已知不等式2x-a<0的正整数解只有2个,则a的取值范围是.【答案】4<a≤6.【解析】由2x-a<0可得x<,又因不等式的正整数解只有2个,所以2<≤3,即4<a≤6.【考点】不等式的整数解.5.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?【答案】甲工厂每天加工40件产品,乙工厂每天加工60件产品.【解析】设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品.根据题目中的等量关系“甲工厂单独加工完成这批产品的天数﹣乙工厂单独加工完成这批产品的天数=10”,列出方程解方程即可.试题解析:解:设甲工厂每天加工x件产品,则乙工厂每天加工1.5x件产品,依题意得,解得:x=40.经检验:x=40是原方程的根,且符合题意.所以1.5x=60.答:甲工厂每天加工40件产品,乙工厂每天加工60件产品.【考点】分式方程的应用.6.解一元二次方程:3x2+2x﹣5=0.【答案】x1=﹣,x2=1【解析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.试题解析:解:3x2+2x﹣5=0,(3x+5)(x﹣1)=0,3x+5=0,x﹣1=0,x 1=﹣,x2=1.【考点】解一元二次方程-因式分解法7.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【答案】A【解析】本题考查了在数轴上表示不等式组的解集,解一元一次不等式(组)的应用,关键是能正确在数轴上表示不等式组的解集.求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为:1<x≤2,在数轴上表示不等式组的解集为:故选A.【考点】1.在数轴上表示不等式的解集;2.解一元一次不等式组.8.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为米.【答案】1.【解析】设小道进出口的宽度为x米,依题意得(30-2x)(20-x)=532,整理,得x2-35x+34=0.解得,x1=1,x2=34.∵34>30(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.【考点】一元二次方程的应用.9.解不等式,并把解集在数轴上表示出来.【答案】x<3.【解析】按照解不等式的步骤逐步计算求解,再表示解集.试题解析:去分母,得 2x﹣4<x﹣1移项,合并同类项,得 x<3.在数轴上表示解集为:【考点】1.解一元一次不等式;2.在数轴上表示不等式的解集.10.解分式方程:.【答案】原分式方程无解.【解析】观察可得2﹣x=﹣(x﹣2),所以方程的最简公分母为:(x﹣2),去分母将分式方程化为整式方程后再求解,注意检验.试题解析:方程两边同乘(x﹣2),得:1=﹣(1﹣x)﹣3(x﹣2)整理得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,∴原分式方程无解.【考点】解分式方程.11.(3分)某单位购买甲、乙两种纯净水公用180元,其中甲种水每桶8元,乙种水每桶6元,甲乙两种纯净水共25桶,设买甲种水x桶,乙种水y桶,则可列方程组是______________.【答案】【解析】设买甲种水x桶,乙种水y桶,根据“甲种水每桶8元,乙种水每桶6元,共用180元;甲乙两种纯净水共25桶”列出方程组.【考点】由实际问题抽象出二元一次方程组.12.设x1,x2是一元二次方程x2-3x-2=0的两个实数根,则x12+3x1x2+x22的值为.【答案】7.【解析】由题意,得:x1+x2=3,x1x2=-2;原式=(x1+x2)2+x1x2=9-2=7.【考点】根与系数的关系.13.(6分)暑假期间,小明到父亲经营的小超市参加社会实践活动.一天小明随父亲从银行换回来58张人民币,共计200元的零钞用于顾客付款时找零.细心的小明清理了一下,发现其中面值为1元的有20张,面值为10元的有7张,剩下的均为2元和5元的钞票.你能否用所学的数学方法算出2元和5元的钞票各有多少张吗?【答案】15;16【解析】根据题意设2元的有x张,5元的有y张,则可由总张数为58张,和总钱数为200元列方程组解答即可.试题解析:解:设面值为2元的有x张,设面值为5元的有y张.依题意得:解得答:面值为2元的有15张,面值为5元的有16张.【考点】列二元一次方程组解实际问题14.若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为 .【答案】【解析】先用含k的代数式表示x、y,即解关于x,y的方程组,再代入2x+3y=6中可得.根据题意得,消元得.【考点】解三元一次方程组.15.解方程组:(1)(2).【答案】(1);(2).【解析】两方程组利用加减消元法求出解即可.试题解析:(1),①+②得:3x=18,即x=6,把x=6代入①得:y=3,则方程组的解为;(2),①×2+②×3得:11x=22,即x=2,把x=2代入②得:y=-1,则方程组的解为.【考点】解二元一次方程组.16.解下列方程组.【答案】【解析】把第一个方程乘以3,第二个方程乘以2,利用减法消元先消去x,求出y的值,再把y 的值代入第一个方程求出x的值,即可得解.试题解析:①×3得,6x+9y=36③,②×2得,6x+8y=34④,③-④得,y=2,把y=2代入①得,2x+3×2=12,解得x=3,所以,方程组的解是.【考点】解二元一次方程组.17.若a>b,则下列式子正确的是()A.-2015a>-2015b B.2015a<2015b C.2015-a>2015-b D.a-2015>b-2015【答案】D.【解析】试题解析:∵a>b,∴-2015a<-2015b,∴选项A不正确;∵a>b,∴2015a>2015b,∴选项B不正确;∵a>b,∴2015-a<2015-b,∴选项C不正确;∵a>b,∴a-2015>b-2015,∴选项D正确.故选D.【考点】不等式的性质.18.若成立,则下列不等式成立的是()A.B.C.D.【答案】C.【解析】选项A,根据不等式的性质3和性质1,可得,选项A错误;选项B,根据不等式的性质2可得,选项B错误;选项C,根据不等式的性质1可得,选项C 正确;选项D,根据不等式的性质3,可得,选项D错误,故答案选C.【考点】不等式的性质.19.解方程(每题4分,共8分)(1)8x3+125=0(2)64(x+1)2-25=0【答案】(1)x=-;(2)【解析】根据平方根和立方根的计算法则进行计算.试题解析:(1)解得:x=-(2)x+1=±解得:【考点】解方程20.解方程.(1)(2)【答案】(1)无解(2)【解析】根据分式方程的解法步骤,先把分式方程化为整式方程,解整式方程,检验,写结论即可.解题关键是确定最简公分母.试题解析:解:(1)方程两边同乘以x-2得2(x-2)+1=3-x解得检验:把x=2代入x-2=0,所以x=2是原方程的增根,原分式方程无解.(2)方程两边同乘以3x得3(2x+1)+1=3x解得把x=代入3x≠0,因此x=是原分式方程的解.【考点】解分式方程21.一批宿舍,若每间住1人,则有10人无法安排;若每间住3人,则有10间无人住.这批宿舍的间数为()A.20B.15C.10D.12【答案】A.【解析】试题解析:设这批宿舍的间数为x,则x+10=3(x-10),解得:x=20.故选A.【考点】一元一次方程的应用.22.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×2【答案】D【解析】使用加减消元法时,要消去那个字母,则必须是这个字母的系数相同或互为相反数.【考点】加减消元法23.运动会上某班啦啦队买了两种价格的雪糕,其中甲种雪糕共花费40元;乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根,每根乙种雪糕的价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元/根,根据题意可列方程为()A.-=20B.-=20C.-=20D.-=20【答案】B.【解析】试题解析:设甲种雪糕的价格为x元,则甲种雪糕的根数:;乙种雪糕的根数:.可得方程:-=20.故选B.【考点】由实际问题抽象出分式方程.24.若关于x的方程无解,则m=__________.【答案】1.【解析】试题解析:原方程可化为x-3=-m,∴x=3-m,由已知得:3-m=2,∴m=1.【考点】分式方程的解.25.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次多20千克,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)求第一次水果的进价是每千克多少元?(2)该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?【答案】(1)6;(2)赚了388元【解析】(1)首先设第一次的单价为x元,则第二次单价为1.1x,根据数量=总价÷单价分别求出两次的数量,然后根据第二次的数量比第一次数量多20千克列出分式方程进行求解,最后进行验根;(2)分别求出两次的盈亏情况,然后进行合并计算.试题解析:(1)设第一次购买的单价为x元,则第二次的单价为1.1x元,根据题意得:=20,解得:x=6,经检验,x=6是原方程的解,(2)第一次购水果1200÷6=200(千克).第二次购水果200+20=220(千克).第一次赚钱为200×(8﹣6)=400(元).第二次赚钱为100×(9﹣6.6)+120×(9×0.5﹣6×1.1)=﹣12(元).所以两次共赚钱400﹣12=388(元),答:第一次水果的进价为每千克6元,该老板两次卖水果总体上是赚钱了,共赚了388元.【考点】分式方程的应用26.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的,两根铁棒长度之和为220cm,此时木桶中水的深度是 cm.【答案】80cm.【解析】试题解析:设水的深度为xcm,由题意得x+x=220,解得:x=80,即水深80cm.【考点】一元一次方程的应用.27.(2014春•惠山区校级期末)甲、乙两位同学在解方程组时,甲看错了第一个方程,解得,乙看错了第二个方程,解得.求a、b的值.【答案】【解析】甲看错了第一个方程,把他解的答案代入第二个方程,乙看错了第二个方程把他解得答案代入第一个方程,把两个方程组成方程组,求a、b的值.解:由题意得,解得.【考点】二元一次方程组的解.28.不等式组:的解集在数轴上可表示为()【答案】D【解析】试题解析:两个不等式的公共部分是在数轴上,5以及5右边的部分,因而解集可表示为:故选D.【考点】在数轴上表示不等式的解集.29.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降。
数学解方程与不等式的基础练习题一、一元一次方程1. 解下列一元一次方程:(1)3x + 4 = 7(2)2(x - 5) = 3 - (x + 2)(3)4 - (3x + 2) = 92. 解下列一元一次方程组:(1)2x + 3y = 7x - 2y = -1(2)3x - 2y = 46x + 3y = 15二、一元二次方程1. 求解下列一元二次方程:(1)x^2 + 3x + 2 = 0(2)2x^2 - 5x + 2 = 0(3)3x^2 + 5 = 02. 求解下列一元二次方程组:(1)x^2 + y^2 = 25x - y = 3(2)x^2 + 2xy + y^2 = 10 2x - y = 4三、不等式1. 解下列一元一次不等式:(1)2x - 5 > 1(2)3x + 2 ≥ 7(3)4 - 2x < 92. 解下列一元二次不等式:(1)x^2 - 3x + 2 > 0(2)3x^2 + 2x - 8 < 0(3)2x^2 + 5x - 3 ≥ 0四、综合练习1. 解下列方程和不等式:(1)3(x + 2) - 2(x - 4) = 7(2)(x - 2)(x + 3) = 0(3)4 - 2(3x - 1) > x + 52. 解下列方程组和不等式组:(1)2x + y = 10x - y = 2(2)x^2 + y^2 = 25x - y = 3以上是基础的数学解方程与不等式的练习题。
根据题目的要求,我们分为一元一次方程、一元二次方程、不等式和综合练习四个部分进行了相关的练习。
希望通过这些练习能够帮助你加深对解方程与不等式的理解,并提高解题能力。
1、解不等式组
513(1)131722
x x x x ->+⎧⎪⎨-≤-⎪⎩ 3(2)41214
x x x x --≤⎧⎪⎨-<-⎪⎩
2、已知方程组⎩
⎨⎧-=++=+12123m y x m y x ,当m 为何值时,y x >?
3、关于x ,y 的方程组322441
x y k x y k +=+⎧⎨
+=-⎩的解x ,y 满足x y >,求k 的取值范围.
4、解方程组 ()()34412
6x y x y x y x y +--=⎧⎪⎨+-+=⎪⎩ ⎪⎩⎪⎨⎧+=-=-1
)1(33132y x y x
5、已知关于x ,y 的二元一次方程组⎩⎨
⎧-=-=-a
y x a y x 4522的解满足x<y ,试求a 的取值范围。
6、小明和小东各有课外书若干本,小明课外读物的数量是小东的2倍,小明送给小东10本后,小东课外读物的数量是小明剩余数量的3倍,求小明和小东原来各有课外读物有多少本?
7、为了奖励学习进步和成绩优秀的学生,班主任买了同样的笔记本和同种型号的钢笔。
其中笔记本和钢笔的数量总共为18,笔记本每本5元,钢笔每只6元。
一共花了100元。
问买了几本笔记本和几只钢笔。
二元一次方程组⑴1、下列方程:①xy+3x-y=5②3x+2=x-y ③y=5x ④x+y 1=3⑤xy=2⑥x 2-y 2=1⑦x+y+z=1中,二元一次方程有 (填序号).2、已知x a+b -3y a-1=2是关于x 、y 的二元一次方程,则a= ,b= . 3、已知x 、y 的值:①⎩⎨⎧==22x y ②⎩⎨⎧==23y x ③⎩⎨⎧-==21x y ④⎩⎨⎧-=-=23y x ,其中是二元一次方程2x-y=4的解是 (填序号).4、已知⎩⎨⎧==12x y 是方程3x+ay=4的一个解,则a= .5、方程5x-2y=1,当x= -2时,y= ;当y= -3时,x= .6、若方程x-ky=6的一个解是⎩⎨⎧==32y x ,则k 的值是 .7、若⎩⎨⎧-=-=121m y mx ,则x 与y 的关系是8、把下列方程化成用含x 的式子表示y 的形式:(1)x+3y=4 (2)3x-5y=29、判断⎩⎨⎧==13y x 是否是方程组⎩⎨⎧=-=+43252y x y x 的解?为什么?1、在下列二元一次方程中,有无数个正整数的解的是( )A 、x+3y=2008B 、x-y=3C 、2x+4y=7D 、x+2y=12、方程x-my=y+3是关于x 、y 的二元一次方程,则m 的取值范围是( )A 、m ≠0B 、m ≠1C 、m ≠-1D 、m ≠33、下列方程组中不是二元一次方程组的是( )A 、⎩⎨⎧==32y xB 、⎩⎨⎧=-=+21y x y xC 、⎩⎨⎧==+15xy y xD 、⎩⎨⎧=-=12y x x y 4、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、⎩⎨⎧-=-=21y xB 、⎩⎨⎧==12y xC 、⎩⎨⎧-==12y xD 、⎩⎨⎧==21y x 5、在方程3x+4y=6中,如果2y=3,那么x= .6、某人只带了面值2元和5元的两种货币,他要买一件27元的商品,则他在不需要找钱的情况下可以有几种付款方式.7、解方程组(1)⎩⎨⎧=+=-74823y x y x (2)⎩⎨⎧=+-=-33225y x y x1、已知方程12(x+1)=7(y-1),写出用x 表示y 的式子得 ,当x=2时,y= .2、将x=23-y-1代入方程4x-9y=8中,可得到一元一次方程的解是 . 3、若方程3x+y=51的一个解中的两个数互为相反数,则这个解是 . 4、用代入法解方程组⎩⎨⎧=-=+1472x y x y 由②得y= ③,把③代入①, 得 ,解得x= ,再把求得的x 值代入③得,y= ;所以方程组的解为 .5、已知⎩⎨⎧==32x y 是方程组⎩⎨⎧=-=-7253ny x y mx 的解,则2m+3n= .6、解方程组(1)⎩⎨⎧=--=52332b a b a (2)⎩⎨⎧=+=-15255s 3t s t7、已知关于x 、y 的方程mx+ny=8的两个解分别为⎩⎨⎧-==13y x 和⎩⎨⎧=-=21y x ,求m 、n 的值.二元一次方程组⑷1、若(2x-3y+5)2+︱x+y-2︱=0,则x= ,y= .2、已知3x 3m+5n+9+9y 4m-2n+3=5是二元一次方程,则n m 的值是 . 3、如果x+y=-4,x-y=8,那么多项式x 2-y 2的值是 .4、已知方程组⎩⎨⎧=+=-24by ax by ax 的解为⎩⎨⎧==12y x 则2a-3b= . 5、已知⎩⎨⎧=-=+32423t y t x ,则x 与y 之间的关系式是 .6、解方程组(1)⎩⎨⎧=+=-924523n m n m (2)⎩⎨⎧=+=-524753y x y x7、已知(3x-2y+1)2与︱4x-3y-3︱互为相反数,求x-y 的值.1、某电视机厂第一季度和第二季度共生产液晶电视机144000台,已知第一季度的产量是第二季度的80%,设第一季度的产量为x 台,第二季度的产量为y 台,则列出方程组是 .2、一艘轮船顺水航行104km,需要2h ;逆水航行3h 的路程为96km ;则轮船在静水中航2h 的路程是多少千米.可采取间接设的方法.设轮船在静水中航行的速度为xkm/h ,水流速度为ykm/h ,则列出方程组为 .3、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?4、甲乙二人从相距20千米的两地同时出发,若同向而行甲5小时可追上乙;若相向而行35小时相遇,求甲乙二人的速度各是多少.5、已知甲、乙两种商品的原价和为200元.因市场变化,甲商品降价10%,乙商品提价10%,调价后甲、乙两种商品的单价和比原单价和提高了5%.求甲、乙两种商品的原单价各是多少元.1、要把一张面值为10元的人民币换成零钱,现在只有面值1元和5元的人民币,数量足够多,那么不同的换法共有种.2、某校运动员进行分组训练,若每组5人,则余2人;若每组6人,则缺少3人;设运动员人数共有x人,组数为y人,则列出方程组为 .3、某文具商店星期一共售出毛笔和签字笔200支,其中毛笔的数量是签字笔数量的3倍多8支,设售出毛笔x支,售出签字笔y支,则列出方程组为 .4、10年前,母亲的年龄是儿子年龄的6倍;10年后,母亲的年龄是儿子年龄的2倍,求母亲现在的年龄和儿子现在的年龄各是多少岁?5、已知一艘轮船载重量是500吨,容积是1000立方米.现有甲乙两种货物等待装运,甲种货物每吨体积是7立方米,乙种货物每吨体积是2立方米,求怎样装货才能最大限度的利用船的载重量和体积?6、用白铁皮制作罐头盒,每张铁皮可制盒身16个,或盒底48个,一个盒身与两个盒底配成一个罐头盒,现有150张铁皮,用多少张铁皮制作盒身,用多少张铁皮制作盒底,正好全部配套.1、小明和小亮分别从相距20千米的甲、乙两地相向而行,经过2小时两人相遇,相遇后小明立即返回甲地,小亮继续向甲地前进,小明返回到甲地时,小亮离甲地还有2千米.请求出两人的速度.2、一张方桌是由一个桌面和四条桌腿组成,如果1立方米木料可制作方桌桌面50个,或制作桌腿300条.现有5立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好制成方桌多少张?3、加工某种产品需要经过两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件.现有7位工人加工这种产品,问应怎样安排人力,才能使每天第一道工序、第二道工序所完成的产品件数相等?不等式⑴1、用不等式表示:(1) x 是负数;___________ (2) x 是非负数;____________(3) x 的一半小于-1;__________ (4) x 与4的和大于0.5;_________(5)a 与1的和是正数;__________ (6)x 的21与y 的31的差是非负数;__________ 2、当实数a <0时,6+a 6-a (填“<”或“>”).3、不等式2x ﹣1>3的解集为 .4、不等式2x+9≥3(x+2)的正整数解是 .5、下列各式中,是一元一次不等式的是( ).A.5+4>8 B.12-x C.x 2+3≤5D.x y 3-≥06、下列命题中正确的是( ).A.若m ≠n,则|m|≠|n| B.若a+b=0,则ab >0C.若ab <0,且a <b,则|a|<|b| D.互为倒数的两数之积必为正.7、无论x 取什么数,下列不等式总成立的是( ).A.x+5>0; B.x+5<0; C.-(x+5)2<0; D. (x-5)2≥0.8、若,a a -则a 必为( ).A 、负整数 B、 正整数 C、负数 D、正数9、下列说法,错误的是( ).A.33- x 的解集是1- x B.-10是102- x 的解C.2 x 的整数解有无数多个 D.2 x 的负整数解只有有限多个 10、下列按要求列出的不等式中正确的是 ( ).A.a 不是负数,则a>0B.b 是不大于0的数,则b<0C.m 不小于-1,则m>-1D.a+b 是负数,则a+b<011、不等式2-x<1的解集是( ).A.x>1B.x>-1C.x<1D.x<-1不等式⑵1、不等式6(x +1)-3x >3x +3的解集为( ).A .x >1B .无解C .x >-1D .任意数2、不等式4x -7≥5(x -1)的解集是( ).A .x ≥ 2B .x ≥-2C .x ≤-2D .x ≤23、若不等式(m -2)x >n 的解集为x <1,则m ,n 满足的条件是( ).A .m=n -2且m >2B .m=n -2且m <2C .n=m -2且m >2D .n=m -2且m <24、当k _____时,3k 与k 的差小于1. 5、不等式0823≤--x 的解集是____________. 6、解下列不等式,并把它们得解集在数轴上表示出来.(1) 7x+5>8x+6 (2)2x-1>5x+5(3)3(x +2)-1>8-2(x -1) (4)2[x -3(x -1)]≥5x不等式⑶1、若∣x -2∣=2-x ,则x 应满足( ).A .x ≥ 2B .x >2C .x <2D .x ≤22、如果不等式3x -m ≤0的正整数解为1,2,3,那么m 的取值范围是( ).A .9 ≤m <12B .9 <m ≤12C .m <12D .m ≥ 93、不等式3x -k ≤0的正整数解是1,2,那么k 的取值范围是___________.4、不等式3x -2≥4(x -1)的所有非负整数解的和等于___________.5、关于x 的不等式3x -2a ≤-2的解集是x ≤1,则a 的值是_________.6、若不等式-3x +n >0的解集是x <2,则不等式-3x +n <0的解集是________.7、解不等式,并在数轴表示不等式的解集.(1))4(410--x ≤1)-x (2 (2)145261≥--+y y(3)612131-≥--+x x x (4)12162312----+x x x >不等式⑷1、代数式1-m的值大于-1,又不大于3,则m的取值范围是( )..13.31.22.22 A m B m C m D m-<≤-≤<-≤<-<≤2、满足-1<x≤2的数在数轴上表示为().3、不等式45111x-<的正整数解为( ).A.1个B.3个C.4个D.5个4、已知不等式组2113xx m-⎧>⎪⎨⎪>⎩的解集为2x>,则m满足条件为( )..2.2.2.2 A m B m C m D m><=≤5、(1)不等式组21xx>-⎧⎨>⎩的解集是(2)不等式组12xx<⎧⎨>-⎩的解集是;6、解下列不等式组:(1)()4321213x xxx-<-⎧⎪⎨++>⎪⎩(2)()2 1.55261x xx x≤+⎧⎪⎨->-⎪⎩不等式⑸7、在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个正确,要求学生把正确答案选出,每道题选对的4分,不选或错选倒扣2分,如果一个学生在本次竞赛中的得分不低于60分,那么他至少选对多少道题?8、某商店要选购甲、乙两种零件,若购进甲种零件10件,乙种12件,共需要2100元,若购进甲种零件5件,乙种零件8件,共需要1250元.(1)求甲、乙两种零件每件分别为多少元?(2)若每件甲种零件的销售价格为108元,每件乙种销售价格为140元,根据市场需求,商店决定,购进甲种零件的数量比购进乙种的数量3倍多2件,这样零件的全部售出后,要是总获利超过976元,至少应购进乙种零件多少件?1、用不等式表示图中的解集,其中正确的是 ( )A. x≥-2B. x >-2C. x <-2D. x≤-22、不等式2-x>1的解集是____________3、方程2x +3y =10中,当3x -6=0时,y =_________4、若方程组⎩⎨⎧-=-=+323a y x y x 的解x 、y 都是正数,求a 的取值范围.5、某商店欲购进A,B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元,若购进A 种商品6件和B 种商品8件共需440元;(1)求A,B 两种商品每件的进价分别为多少元?(2)若该商品每销售1件A 种商品可获利8元,每销售1件B 种商品可获利6元,且商店将购进A,B 共50件的商品全部售出后,要获得的利润超过348元,问A 种商品至少购进多少件?1、下列方程中的二元一次方程组的是()A.32141x yy z-=⎧⎨=+⎩B.3232ab a=⎧⎨-=⎩C.13124yxxy⎧+=⎪⎪⎨⎪+=⎪⎩D.13mnm n=-⎧⎨+=⎩2、不等式4(x-2)>2(3x + 5)的非负整数解的个数为( )A.0个B.1个C.2个D.3个3、庐城出租车的收费标准:起步价4元(即行使距离不超过3千米都须付4元车费),超过3千米以后,每增加1千米,加收2元(不足1千米按1千米计).某人乘出租车从甲地到乙地共付车费18元,那么甲地到乙地路程是( )A.9.5千米B.10千米C.至多10千米D.至少9千米4、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x表示他的速度(单位:米/分),则x的取值范围为.5、某校为了鼓励在数学竞赛中获奖的学生,准备买若干本课外读物送给他们,如果每人送3本,则还剩8本;如果每人送5本,则最后一人得到的课外读物不足3本,求该校的获奖人数及所买的课外读物的本数?6、小颖家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立方米,则每立方米收费1. 8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小颖家每月用水量至少是多少?。
初中数学方程组与不等式组试题1. 方程组(1) 解下列方程组:(a) 2x + y = 53x - 2y = 4(b) 3x - y = -12x + 4y = 10(c) 5x + 3y = 122x - y = 12. 不等式组(1) 解下列不等式组,并用图解法表示解集:(a) x + y ≥ 3x - y ≤ 1(b) 2x + 3y < 6(c) 3x - 2y ≤ 52x + y > 1解析与解答:1. 方程组(a) 解下列方程组:2x + y = 5 --(1)3x - 2y = 4 --(2)首先,我们可以通过消元法来解这个方程组。
将方程(1)乘以2,得到4x +2y = 10。
然后,将方程(2)与新得到的方程相加,可以消去y的变量。
4x + 2y = 10 --(3)3x - 2y = 4 --(2)-----------------解得 x = 2。
代入方程(1),得到2(2) + y = 5,简化得 y = 1。
因此,方程组的解为 x = 2,y = 1。
(b) 解下列方程组:3x - y = -1 --(1)2x + 4y = 10 --(2)我们可以通过消元法来解这个方程组。
将方程(1)乘以2,得到6x - 2y = -2。
然后,将方程(2)与新得到的方程相加。
6x - 2y = -2 --(3)2x + 4y = 10 --(2)-----------------8x = 8解得 x = 1。
代入方程(1),得到3(1) - y = -1,简化得 y = 4。
因此,方程组的解为 x = 1,y = 4。
(c) 解下列方程组:5x + 3y = 12 --(1)2x - y = 1 --(2)我们可以通过消元法来解这个方程组。
将方程(2)乘以3,得到6x - 3y = 3。
然后,将方程(1)与新得到的方程相加。
5x + 3y = 12 --(1)6x - 3y = 3 --(3)-----------------11x = 15解得 x = 15/11。
函数方程不等式练习题一、函数部分1. 求函数 $f(x) = 2x^3 3x^2 + 4x 5$ 在区间 $[1, 2]$ 上的最大值和最小值。
2. 判断函数 $f(x) = \frac{1}{x1}$ 的奇偶性。
3. 计算函数 $f(x) = \sqrt{x^2 5x + 6}$ 的定义域。
4. 已知函数 $f(x) = \log_2(x3)$,求 $f^{1}(x)$。
5. 讨论函数 $f(x) = x^2 4x + 3$ 在区间 $(0, +\infty)$ 上的单调性。
二、方程部分1. 解方程 $2x^3 3x^2 + x 1 = 0$。
2. 求方程组 $\begin{cases} 2x + 3y = 7 \\ 4x 5y = 1\end{cases}$ 的解。
3. 解分式方程 $\frac{1}{x1} + \frac{2}{x+2} = 3$。
4. 已知方程 $x^2 (a+2)x + a + 1 = 0$ 有两个实数根,求实数 $a$ 的取值范围。
5. 解方程组 $\begin{cases} x + y = 5 \\ xy = 6\end{cases}$。
三、不等式部分1. 解不等式 $3x 7 > 2x + 1$。
2. 已知不等式 $x^2 4x + 3 > 0$,求 $x$ 的取值范围。
3. 解不等式组 $\begin{cases} 2x 3y > 6 \\ x + 4y \leq 8 \end{cases}$。
4. 讨论不等式 $x^2 (a+2)x + a + 1 > 0$ 在实数集上的解集。
5. 已知不等式 $|x 3| < 2$,求 $x$ 的取值范围。
四、综合应用题1. 已知函数 $f(x) = x^2 2x + 1$,求证:对于任意实数 $x$,都有 $f(x) \geq 0$。
2. 设函数 $g(x) = \frac{1}{x2}$,求解不等式 $g(x) < 0$。
2020-1六下双基训练300题方程与不等式六年级·寒假·学生版九层之台,起于累土【练习1.1】 简单的一元一次方程1. ()()43206711y y y y --=--2. ()254(3)2(1)x x x --+=-3. 37(1)32(3)x x x --=-+4. 12(1)4()2x x x --=-5. 4(4)35(72)y y +=--6. 7 2.5 2.536x x -=⨯+7. 12(23)3(21)a a -+=-+ 8. 93(1)6x x --=9. 63(32)6(2)x x x --=-+ 10. 7104(0.5)x x -=-+方程与不等式补充材料千里之行,始于足下11. 3(8)64(11)y y y -=-- 12. 13(8)2(152)x x --=-13. 2(10)52(1)x x x x -+=+- 14.223046m m +--=15. 43(20)67(9)x x x x --=-- 16. 2(21)2(1)3(3)x x x -=+++17. 43(23)12(4)x x x +-=-- 18. ()()335225x x -=--19. ()()()243563221x x x --=--+ 20. ()()()321531152x x x --+=+六年级·寒假·学生版九层之台,起于累土【练习1.2】 一元一次方程——去分母21. 21101211364x x x --+-=- 22. 212153x x +--=23. 3157146y y ---= 24. 212134y y -+-=-25. 341125x x -+-= 26. 1112222x x x ⎡⎤⎛⎫---= ⎪⎢⎥⎝⎭⎣⎦27. 12233xx -=-+ 28.13216222x x x ⎛⎫--=+ ⎪⎝⎭方程与不等式补充材料千里之行,始于足下29. 21101136x x ++-= 30.211135x x +-=- 31. 121224x x+--=+ 32.42571510x x +--= 33. 124123x x ---= 34.213124x x--=- 35. 2123134x x ---= 36.3141136x x x ---=-六年级·寒假·学生版九层之台,起于累土37. 211135x x +-=- 38.+4122523x x x -+-=- 39. 25316412x x x ---+= 40. 2523163x x x +--=- 41. 431432x x -+-= 42.()()11212223x x x ⎡⎤--=+⎢⎥⎣⎦ 43. 141123x x --=- 44.5415513412y y y +--+=-方程与不等式补充材料千里之行,始于足下45. 121225x x ++-=- 46.()10532327x x x -++--=47. 7151322324x x x -++-=- 48.34113843242x x ⎧⎫⎡⎤⎛⎫--=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭ 49. 248539x x -=- 50.3121134x x -+-= 51. 1122254x x x++--=+ 52.1328237x x x-+---=六年级·寒假·学生版九层之台,起于累土53. 248236x x ---=- 54.31322322105x x x +-+-=- 55. 225353x x x ---=- 56. 1212323x x x --+=- 57. 12136x x x -+-=- 58.3157146y y ---= 59. 131224x x+--=- 60.21101211364x x x -++-=-方程与不等式补充材料千里之行,始于足下61. 211011412x x x ++-=- 62.()()142113233x x x ⎡⎤+-=-+⎢⎥⎣⎦ 63. 312423(1)32x x x -+-+=- 64.49325532x x x ++--= 65. 4115(2)13212x x x +--+=-66. 113(23)(32)5(32)(23)32x x x x ---=-+-六年级·寒假·学生版九层之台,起于累土67. 22(31)253y y -=- 68.31242233x x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦69. 21101211364x x x -++-=- 70.3213(1)(32)(1)45102x x x --+=-- 71. 431261345x ⎡⎤⎛⎫--= ⎪⎢⎥⎝⎭⎣⎦72.121146x x ++-= 73. 211011412x x x ++-=- 74.111(15)(7)523x x +=--方程与不等式补充材料75. 2110121123644x x x-++-=-76.2383236x x x-+-=-77. 1010210147x x+--=78. ()()137464722x x-=+-79.12223x xx-+-=-80.3221211245x x x+-+-=-81. 13533236524x x⎛⎫⎛⎫---=⎪ ⎪⎝⎭⎝⎭82.112132152yy-+-=六年级·寒假·学生版83. 343111243242x x⎡⎤⎛⎫--=+⎪⎢⎥⎝⎭⎣⎦84.111116412345x⎧⎫⎡⎤⎛⎫--+=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭85.43254xxx x---=【练习1.3】一元一次方程——去分子、分母中的小数86. 0.10.20.710.30.4x x---=87.1.5 1.51.50.30.1x x--=88.2130.20.5x x-+-=89.0.30.2 1.5570.20.5x x--+=方程与不等式补充材料90. 0.20.10.010.0150.30.04x x---=91.0.010.030.40.110.020.5x x-+-=92.30.412.50.20.5x x+--=-93.341.60.50.2x x-+-=94. 2 1.633180.30.63x x x-+-=95.341.650.2y y-+-=96. 4 1.550.8 1.230.50.20.1x x x----=+97.1.5210.30.2x x--=六年级·寒假·学生版98. 3 1.50.20.1840.20.09x xx--+=+99.0.12230.30.6x xx-+-=100.341.60.50.2x x-+-=101.10.2110.40.7x x+--=102.0.230.210.50.03x x--=103.3 1.140.20.160.70.40.30.06x x x----=104. 1.510.530.6x x--=105.0.10.020.10.10.30.0020.05x x-+-=方程与不等式补充材料106. 0.030.010.170.050.10.020.070.030.09x x x +-+-=107. 0.10.20.0226.57.50.010.02x x---=-108.30.70.310.80.4x xx+-=-109. 0.40.50.20.5110.060.232x xx+-⎛⎫-=+⎪⎝⎭110.2651430.030.30.02x x-+-=【练习1.4】一元一次方程——巧算(整体法、拆括号、裂项、凑分子)111. 11311377325235x x⎛⎫⎛⎫--=--⎪ ⎪⎝⎭⎝⎭112. ()()15201520153411131717x x x---+=六年级·寒假·学生版113. ()()()()1131121132x x x x +--=--+ 114. 31333447167x x x x ⎡⎤⎛⎫⎛⎫---=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 115. ()()1123233211191313x x x -+-+=116. ()()()()1120181120191120182019x x x x +--=--+ 117. 111123452345x x x x +++=+++方程与不等式补充材料118. ()()()()1111123201620162342017x x x x ++++++++= 119. 111133312222y ⎧⎫⎡⎤⎛⎫---=⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭120.111246819753x ⎧⎫⎡⎤+⎛⎫+++=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭121. 2016122320162017x xx +++=⨯⨯⨯ 122. 1122320192020x xx+++=⨯⨯⨯123. 200613352003200520052007x x x x++++=⨯⨯⨯⨯六年级·寒假·学生版124.11 123234201720182019201820192020220192020 x x x x++++=-⨯⨯⨯⨯⨯⨯⨯⨯⨯125.3213201520162017x x x---++=126.201013201920092007x x x---++=127.2017130 1008620162014x x x---++=128.20181614125 357911x x x x x-----++++=方程与不等式补充材料129. 3x a b x b c x c ac a b------++= ()000a b c >>>、、 130.4x a b c x b c d x c d a x d a bd a b c------------+++= () a b c d 、、、均为正数【练习2.1】 较简单的二元一次方程131. 27325x y x y -=⎧⎨+=⎩132. 85765476x y x y +=⎧⎨-=⎩133. 293x y x y -=-⎧⎨+=⎩134. 53702370x y x y --=⎧⎨+-=⎩六年级·寒假·学生版135.5120311120x yy x-=⎧⎨-=⎩136.245x yx y+=⎧⎨-=⎩137.5210x yx y+=⎧⎨+=⎩138.25342x yx y-=⎧⎨+=⎩139.7423624x yx y+=⎧⎨-=⎩140.892317674x yx y+=⎧⎨-=⎩141.()()()()31445135y xx y⎧-=-⎪⎨-=+⎪⎩142.32222m nm n+=⎧⎨-=-⎩方程与不等式补充材料143.372513x yx y-=⎧⎨+=⎩144.25342x yx y-=⎧⎨+=⎩145.30327xx y-=⎧⎨-=⎩146.633594x yx y-=-⎧⎨-=⎩147.2114327x yx y+=⎧⎨+=⎩148.3(1)4(4)5(1)3(5)y xx y-=-⎧⎨-=+⎩149.()()()()4395211x y x yx y x y⎧+--=⎪⎨-++=⎪⎩150.()()()()337242233228x yx y⎧+=-+⎪⎨-+-=⎪⎩六年级·寒假·学生版【练习2.2】较复杂的二元一次方程组151.1234x yx y+=⎧⎪⎨+=⎪⎩152.1640.30.4 1.7x yx y⎧+=⎪⎨⎪+=⎩153.2320.40.7 2.8x yx y⎧+=⎪⎨⎪+=⎩154.35723423235x yx y++⎧+=⎪⎪⎨--⎪+=⎪⎩155.2()1346()4(2)16x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩156.2344143m n n mnm+-⎧-=⎪⎪⎨⎪+=⎪⎩方程与不等式补充材料157. 2153224111466x y x y ⎧+=-⎪⎪⎨⎪-=-⎪⎩158. 32212453231045x y x y --⎧+=⎪⎪⎨++⎪-=⎪⎩159. 252234m nm n ⎧-=⎪⎨⎪+=⎩160. ()()35724310413x y y x x y x y -+⎧+=-⎪⎪⎨---⎪=⎪⎩161. ()()()54723187323x y x y x y x y ⎧+-+=⎪⎪⎨⎪+--=⎪⎩162. 2164622372y x y x y x x y++⎧-=-⎪⎨⎪+=--⎩六年级·寒假·学生版163.1115212355x yyx+-⎧-=-⎪⎪⎨⎪+=-⎪⎩164.3223132x y x y-+==165.()5111562347 896x y y x x y---+++==【练习2.3】普通的三元一次方程组166.321x y zx y zx y-+=-⎧⎪+-=⎨⎪+=⎩167.324230140x yx zx y z=-⎧⎪-=⎨⎪++=⎩方程与不等式补充材料168.153241341013x y zx y zz-+=⎧⎪+-=-⎨⎪=⎩169.1225224x y zx y zx y++=⎧⎪++=⎨⎪=⎩170.3232443210x y zx y zx y z-+=⎧⎪+-=⎨⎪++=-⎩171. 235532z x yx y zx y z=+⎧⎪-+=⎨⎪+-=⎩172.52621212x yy zx z-=⎧⎪-=-⎨⎪+=⎩173.12232a b ca b ca b c++=⎧⎪+-=⎨⎪-+=⎩六年级·寒假·学生版174.3123325x y zx y zx y z+-=⎧⎪-+=⎨⎪+-=⎩175.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩176.102317328x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩177.42314235x y zx y zx y z--=⎧⎪++=⎨⎪+-=⎩178.4329253456218x y zx y zx y z-+=⎧⎪+-=⎨⎪+-=⎩179.24+393251156713x y zx y zx y z+=⎧⎪-+=⎨⎪-+=⎩方程与不等式补充材料180.232623343239x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩181.3213272312x y zx y zx y z++=⎧⎪++=⎨⎪+-=⎩182.4239328a b ca b ca b c++=⎧⎪++=⎨⎪++=⎩183.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩184.56812412345x y zx y zx y z+-=⎧⎪+-=-⎨⎪+-=⎩185.24393251156713x y zx y zx y z++=⎧⎪-+=⎨⎪-+=⎩六年级·寒假·学生版186.9202325x y zx y zx y z-+=⎧⎪++=⎨⎪--=⎩187.261218x y zx yx y z++=⎧⎪-=⎨⎪-+=⎩188.231332163510x y zx y zx y z++=⎧⎪+-=⎨⎪+-=⎩189.3423126x y zx y zx y z-+=⎧⎪+-=⎨⎪++=⎩190.275323342y xx y zx z=-⎧⎪++=⎨⎪-=⎩191.344635511x y zx y zy z++=⎧⎪-+=-⎨⎪+=⎩方程与不等式补充材料192.42325560x y zx y zx y z-+=⎧⎪++=⎨⎪++=⎩193.52574313x yy zz x+=⎧⎪-=-⎨⎪+=⎩194.42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩195.2343327231a b ca b ca b c-+=⎧⎪-+=⎨⎪+-=⎩【练习2.4】有技巧的多元一次方程组196.78388737x yx y+=⎧⎨+=⎩197.231763172357x yx y+=⎧⎨+=⎩六年级·寒假·学生版198.199519975989199719955987x yx y+=⎧⎨+=⎩199.354x yy zx z+=⎧⎪+=⎨⎪+=⎩200.222426x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩201.1131x y zy z xz x y+-=⎧⎪+-=⎨⎪+-=⎩202.512x yy zz x+=⎧⎪+=-⎨⎪+=-⎩203. 2345238x y zx y z⎧==⎪⎨⎪+-=⎩方程与不等式补充材料204.::z1:2:32318x yx y z=⎧⎨-+=⎩205.:3:2:5:466x yy zx y z=⎧⎪=⎨⎪++=⎩206.323232y z x az x y bx y z c+-=⎧⎪+-=⎨⎪+-=⎩207.252821126x yy zz uu x+=⎧⎪+=⎪⎨+=⎪⎪+=⎩208.12323434545151212345x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=⎨⎪++=⎪⎪++=⎩209.12323434545151251532x x xx x xx x xx x xx x x++=⎧⎪++=⎪⎪++=-⎨⎪++=-⎪⎪++=⎩六年级·寒假·学生版210. 220240280+216023202640a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f a b c d e f +++++=⎧⎪+++++=⎪⎪+++++=⎪⎨++++=⎪⎪+++++=⎪+++++=⎪⎩【练习3.1】 一元一次不等式 211. ()25321x x --≥ 212. 8156x x -≥-213. ()()3129x x -≤+ 214. ()()32232x x x x ⎡--⎤>--⎣⎦215. 3(2)152(2)x x -+-<-- 216.121123x x -++<方程与不等式补充材料217. 21433x x -≥-- 218. 3453172y y y --≤-219. 6721251423x x x --+-+>+- 220.121180.50.25x x -++>221. 124816x x x xx ++++> 222.12123x x +-≥223. 2354124463x x x ---+->+ 224. ()()52186117x x -+<-+六年级·寒假·学生版225. ()332524y y +≤- 226.()311212423x ⎡⎤--≥⎢⎥⎣⎦227. 11111112332x x ⎛⎫⎛⎫-≥-- ⎪ ⎪⎝⎭⎝⎭228. ()21035127x x x ---≥-229. 531132x x +--< 230. 22252y y y ---≤- 231. 123x x-< 232.2352x x -≥+方程与不等式补充材料233. 212(12)13x x --≥- 234.8111122x x x ++-≤-235. 422(2)x x -≥+ 236.3122123x x---≤237. 214432x x -+-< 238. 3(2)12(1)x x +>---239. 111(2)(3)248x x ->-+ 240. 533(2)x x +≤+六年级·寒假·学生版241. 14232x x -+->- 242.2432x x -≥- 243. 11132x x --≥ 244. 7(4)2(43)4x x x ---<245. 5(2)86(1)7x x -+<-+ 246.1132x x --< 247. 21211362x x x +--->- 248.3(1)5182x x x +-->-方程与不等式补充材料249.18136x xx+-+≤-250. 15(31)10(42)6(63)39x x x---≥--251. 0.40.210.20.5x x+->-252. 51531x x+>-253. 22123x x+-≥254.2(1)12xx---<255. 2152246x x-+-≥-256.3(1)12384x x+-+<-六年级·寒假·学生版257.121133x xx-+-≤+258.0.2 1.20.120.130.30.05x x---≤-259.()0.20.10.2 0.030.010.70.310.030.50.15x x x-+--<+260. 0.40.90.030.0250.50.032x x x++-->【练习3.2】一元一次不等式组261.3312183(1)xxx x-⎧+≥+⎪⎨⎪+<+-⎩262.253(2)12135x xx+≤+⎧⎪-⎨+>⎪⎩方程与不等式补充材料263. 22531323213x xx x--⎧-≤⎪⎨⎪->-⎩264. 3(1)954x x +≤⎧⎨+>⎩265. 3(1)702423x x x -->⎧⎪-⎨>⎪⎩266. 2362523x x x x +≤+⎧⎪+⎨<+⎪⎩267. 21390x x >-⎧⎨-+≥⎩268. 33(3)21123x x x x +≤+⎧⎪-+⎨>-⎪⎩269. ()()1032561x x x +⎧>⎪⎨⎪+≥-⎩270. 3150728x x x ->⎧⎨-<⎩六年级·寒假·学生版271.312342x xx x-≤-⎧⎨-+>-⎩272.1232(3)3(2)6x xx x⎧->-⎪⎨⎪--->-⎩273.593(1)311122x xx x-<-⎧⎪⎨-≤-⎪⎩274.328212xx-<⎧⎨->⎩275.523(4)131722x xx x-≤+⎧⎪⎨-<-⎪⎩276.328654x--≤--<-277.2632145x xx x-≤-⎧⎪+⎨->⎪⎩278.121233(2)54x xx x--⎧≤⎪⎨⎪+>+⎩方程与不等式补充材料千里之行,始于足下279. ()32421152x x x x ⎧--≥⎪⎨-+≤⎪⎩280. 513(1)23722x x x x ->+⎧⎪⎨-≤-⎪⎩281. 2132(1)5x x +⎧<⎪⎨⎪-≤⎩282. 312128x x x -≤+⎧⎨-<⎩283. 222212x x x x+⎧≥⎪⎨⎪-<-⎩284. 313112123x x x x +<-⎧⎪++⎨≤+⎪⎩285. 521262(3)4x x x x -⎧->⎪⎨⎪-≤-⎩ 286. 2153712x x x ->⎧⎪⎨-+≤⎪⎩六年级·寒假·学生版九层之台,起于累土287. 2(21)342151132x x x x -≤+⎧⎪-+⎨-≤⎪⎩288. 3(2)8143x x x x +>+⎧⎪-⎨≥⎪⎩289. 267442152x x x x +>-⎧⎪+-⎨≥⎪⎩290. 43213(1)6x x x x-⎧+≥⎪⎨⎪--<-⎩291. ()()35223141x x x x -⎧≤-⎪⎨⎪-<+⎩292. 543132(32)3x x x ->⎧⎨--≤⎩293. 2153112x x x ->⎧⎪⎨+-≥⎪⎩294. 253259837(4)2(43)4x x x x x x x +≤+⎧⎪->+⎨⎪---<⎩方程与不等式补充材料千里之行,始于足下295. ()1231121286432x x x x x x +>+-⎧⎪⎪+≥+⎨-<-⎪⎪⎩296. 8156212(12)133(2)152(2)x x x x x x -≥-⎧⎪-⎪-≥-⎨⎪-+-<--⎪⎩297. 36451322253522x x x x x x +>+-⎧⎪⎪+>+⎨<-⎪⎪⎩298. 18136212113620.40.210.20.5x x x x x x x x +-⎧+≤-⎪⎪+--⎪->-⎨⎪+-⎪>-⎪⎩299. 427323653453x x x x x x ⎧⎪+>++≥+≤-⎨-⎪⎩300. ()()32232217223x x x x x x ⎧⎪->++≤+≥+⎨-⎪⎩。
解方程及不等式的练习题在数学中,解方程与不等式是基础的概念和技能。
通过解方程和不等式,我们可以找到变量的值,使等式或不等式成立。
下面是一些解方程和不等式的练习题,帮助我们加深对这些概念的理解和应用。
1. 方程求解练习题1.1 一元一次方程例题1:解方程 3x + 5 = 14 - 2x解:将方程中的某个变量归纳到一侧,得到:3x + 2x = 14 - 55x = 9x = 9/5例题2:解方程 2(x + 3) = 4 - x解:展开方程并移项,得到:2x + 6 = 4 - x3x = -2x = -2/31.2 一元二次方程例题3:解方程 x^2 + 5x + 6 = 0解:使用因式分解或配方法,得到:(x + 2)(x + 3) = 0x = -2 或 x = -3例题4:解方程 2x^2 - 5x = 3解:将方程移项并化简,得到:2x^2 - 5x - 3 = 0使用因式分解或配方法,得到:(2x + 1)(x - 3) = 0x = -1/2 或 x = 32. 不等式求解练习题2.1 一元一次不等式例题5:解不等式 2x + 3 < 7 - x 解:将不等式移项并化简,得到:3x < 4x < 4/3例题6:解不等式 5 - 2x ≥ 3x + 2解:将不等式移项并化简,得到:5 - 2x - 3x ≥ 2-5x ≥ -3x ≤ 3/52.2 一元二次不等式例题7:解不等式 x^2 - 4x > 3解:将不等式移项并化简,得到:x^2 - 4x - 3 > 0使用因式分解或配方法,得到:(x + 1)(x - 3) > 0解得 -1 < x < 3例题8:解不等式x^2 + 5x ≥ 6解:将不等式移项并化简,得到:x^2 + 5x - 6 ≥ 0使用因式分解或配方法,得到:(x + 6)(x - 1) ≥ 0解得x ≤ -6 或x ≥ 1综上所述,解方程及不等式是数学中重要的内容。
方程(组)与不等式(组)单元检测试题一、填空题深邃1.若代数式13x x +-的值等于13,则x = .2.方程x x 21)32(2-=-与方程)1(28+=-x a x (a 是常数)有相同的解,则a 的值是 .3.已知二元一次方程组 23,32x y x y +=-=的解满足21x my -=-,则m 的值为 .4.满足不等式)1(3x -≤)9(2+x 的负整数解是 .5.已知3=x 是方程122-=--x a x 的解,那么不等式31)52(<x a -的解集是 .6.若二次三项式5)1(222+++-k x k x 是一个完全平方式,则k = .7.已知方程0242=--k x x 的一个根为α,比另一根β小4,则βα、、k 的值分别为 .8.若a 、b 、c 是△ABC 的三条边长,那么方程04)(2=+++c x b a cx 的根的情况是 .9.某种商品经过两次降价,使价格降低了19%,则平均每次降价的百分数为 .10.若代数式224x x +的值为4,则x 的取值是 . 11.已知菱形ABCD 的边长是5,两条对角线交于O ,且AO 、BO 的长分别是关于x 的方03)12(22=++-+m x m x 的两根,则m 等于 .12.某市收取水费按以下规定:若每月每户用水不超过20立方米,则每立方米水价按1.2元收费;若超过20立方米,则超过的部分每立方米按2元收费. 如果某户居民在某月所交水费的平均价为每立方米1.5元,那么这户居民这个月共用了 立方米的水.二、选择题1.与方程232x x +=-有相同解的方程是( )A .2311x +=B .321x -+=C .213x -=D .211233x x +=-2.若2,1x y =-⎧⎨=⎩是方程组1,7ax by bx ay +=⎧⎨+=⎩的解,则))((b a b a -+的值为( )A .335-B .335C .16-D .16 3.如果关于x 的方程5432b x a x +=+的解不是负值,则a 、b 的关系是( )A .a >b 53B .b ≥a 35C .5a ≥3bD .5a =3b4.已知三角形两边长分别为4和7,第三边的长是方程066172=+-x x 的根,则第三边的长为( )A .6B .11C .6或11D .75.关于x 的方程20x mx n ++=的一个根为0,一个根不为0,则m ,n 满足( )A .0,0m n ==B .0,0m n ≠≠C .0,0m n ≠=D .0,0m n =≠6.以1- )A .2220x x --=B .2320x x +-=C .2220y y -+=D .2320y y -+=7.关于方程21233x x x -=---的解,下列判断正确的是( )A .有无数个解B .有两个解C .有唯一解D .无解8.要把一张面值为10元的人民币换成零钱,现有足够的面值为2元、1元的人民币,那么共有换法为( )A .4种B .6种C .8种D .10种9.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,则这种服装每件成本价是( )A .120元B .125元C .135元D .140元10.某村有一块面积为58公顷的土地,现计划将其中的41土地开辟为茶园,其余的土地种粮食和蔬菜.已知种粮食的土地面积是种蔬菜的土地面积的4倍,若设种粮食x 公顷,种蔬菜y 公顷,则下列方程中正确的是( )A .4,1584x y x y =⎧⎪⎨+=-⎪⎩B .4,1584x y x y =⎧⎪⎨+=-⎪⎩C .4,3584x y x y =⎧⎪⎨+=⨯⎪⎩D .4,3584x y x y =⎧⎪⎨+=⨯⎪⎩ 三、解答题1.解方程(1)11()1322x x ++=; (2) 2)1(3122=+-+x x x x .2.解不等式(组),并把解集在数轴上表示出来.(1)231123x x ++->; (2)3(1)42,1.23x x x x ++⎧⎪-⎨⎪⎩>>3.关于x 的方程121532-=--+m x m x 的解是非负数,求m 的取值范围.4.已知关于x 的方程01)12(22=+-+x k x k 有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)是否存在实数k ,使方程的两个实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由5.(1)已知,如下表所示,方程1,方程2,方程3,……是按照一定规律排列的一列方程.解方程1,并将它的解填在表中的空白处:(2)若方程11=--bxxa(a>b)的解是61=x,102=x,求a、b的值.该方程是不是(1)中所给出的一列方程中一个方程?如果是,它是第几个方程?(3)请求出这列方程中的第n个方程和它的解,并验证所写出的解适合第n 个方程.6.为了庆祝我国足球队首次进入世界杯,曙光体育器材厂赠送一批足球给希望小学足球队,若足球队每人领一个,则少6个球,每两人领一个,则余6个球.问这批足球共有多少个?小明领到足球后十分高兴,就仔细的研究足球上的黑白块,结果发现,黑块呈五边形,白块呈六边形,黑白相间在球体上,黑块共12块,问白块共有多少块?7.某校组织甲、乙两班学生参加“美化校园”的义务劳动.若甲班做2小时,乙班做3小时,则恰好完成全部工作的一半;若甲班先做2小时后另有任务,剩下工作有乙班单独完成,则以班所用时间恰好比甲班单独完成全部工作的时间多1小时.问单独完成这项工作,甲、乙两班各需多少时间?8.个人发表文章、出版图书所得稿费的纳税计算方法是:(1)稿费不高于800元的不纳税;(2)稿费高于800元而不高于4000元,缴纳超过800元部分稿费的14%;(3)稿费超过4000元的,缴纳全部稿费的11%.张老师得到一笔稿费,缴纳个人所得税420元,问张老师的这笔稿费是多少元?9.我市向民族地区的某县赠送一批计算机,首批270台将于近期启运,经与某物资公司联系,得知用A 型汽车若干辆刚好装完,用B 型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满.(1)已知B 型汽车比A 型汽车每辆车可多装15台,求A 、B 两种型号的汽车各装计算机多少台?(2)已知A 型汽车的运费是每辆350元,B 型汽车的运费是每辆400元,若运送这批计算机同时用这两种型号的汽车,其中B 型汽车比A 型汽车多用1辆,所用运费比单独用任何一种型号的汽车都要节省,按这种方案需A 、B 两种型号的汽车各多少辆?运费多少元?方程(组)与不等式(组)单元检测试题答案:一.1.1; 2.74; 3.3; 4.-3,-2,-1; 5.19x <; 6.2; 7.0,4,0;8.有两个不相等的实数根;9.10%; 10. 11.-3; 12.32. 二.1.B ;2.C ;3.C ;4.A ;5.C ;6.A ;7.D ;8.B ;9.B ;10.D . 三.1.(1)x =1; (2)32,3221-=+=x x .2.(1)14x >-;(2)12<<x -.解集在数轴上表示略. 3.解:∵121532-=--+m x m x ,∴9411m x -=.∵x ≥0,∴9411m -≥0,即94m ≤.4.(1)k <41且k ≠0;(2)不存在.若存在,则由原方程两个实数根互为相反数可得:0122=--k k ,解得21=k .此时k 的值不满足△>0的条件,所以不存在这样的k 值.5.(1)3,4,8;(2)a =12,b =5;该方程是(1)中所给出的一列方程中的第4个方程;(3)第n 个方程为:1)1(1)2(2=+--+n x x n ,它的解为22,221+=+=n x n x .6.(1)设这批足球共有x 个,根据题意,得 )6(26-=+x x ,解得x =18.(2)设白皮共有x 块,则白皮共有6x 条边,因为每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边,所以5123⨯=x ,解得:20=x .7.解:设单独完成这项工作,甲班需要x 小时,乙班需要y 小时,根据题意,得: ⎪⎪⎩⎪⎪⎨⎧=++=+.112,2132y x x y x 整理得0892=+-x x .解得 1,821==x x ,∴8,12.x y =⎧⎨=⎩或1,2.x y =⎧⎨=-⎩(不合题意,舍去).答:单独完成这项工作,甲班需要8小时,乙班需要12小时.8.解:∵(4000-800)×14%=448>420.∴ 设张老师的这笔稿费为x 元,则800<x <4000.根据题意,得(x -800)×14%=420. 解得 x =3800.∴ 张老师的这笔稿费为3800元.9.(1)设A 型汽车每辆可装计算机x 台,则B 型汽车每辆可装计算机(x +15)台,根据题意得:11530270270+++=x x ,解得:90,4521-==x x (不合题意,舍去).∴A 型汽车每辆可装计算机45台, B 型汽车每辆可装计算机60台.(2)由(1)知,若单独用A 型汽车,需车6辆,运费为2100元;若单独用B 型汽车,需车5辆,运费为2000元.若按题设要求同时使用A 、B 两种型号的汽车运送,设需用 A 型汽车y 辆,则需B 型汽车(y +1)辆.根据题意,得不等式:)1(400350++y y <2000.解这个不等式得 y <1532.因汽车辆数为正整数,所以y =1或2.当y =1时,y +1=2,则45×1+60×2=165(台)<270(台),不合题意;当y =2时,y +1=3,则45×2+60×3=270,此时运费为1900元.方程思想在解决实际问题中的作用方程和方程组是解决实际问题的重要工具.在实际问题中,只要有等量关系存在,我们就可以用方程的思想加以解决.在我们的生活中,只要我们善于用数学知识去观察和分析问题,就能随时随地都看到方程的影子,体会到数学的价值.因此,近几年在各省市的中考试题中,考查学生用方程思想解决实际问题能力的试题都占到了相当大的比例.下面结合2004年中考试题进行说明.一、发生在自己身边的问题例1 (2004浙江绍兴中考题)初三(2)班的一个综合实践活动小组去A ,B 两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景.根据他们的对话,请你分别求出A 、B 两个超市今年“五一节”期间的销售额.分析:本例考查学生从图表中搜集数据和运用方程解决实际问题的能力. 解:设A 、B 两个超市去年“五一节”期间的销售额分别为x 万元和y 万元,根据图表信息知,A 、B 两个超市今年 “五一节”期间的销售额分别为(1+15%)x 万元和(1+10%)y 万元,根据题意,得150,(115%)(110%)170.x y x y +=⎧⎨+++=⎩ 解得100,50.x y =⎧⎨=⎩∴(1+15%)x =115,1+10%)y =55.答:A 、B 两个超市去年“五一节”期间的销售额分别为115万元和55万元. 评析:本题以学生对话的方式,把我们日常生活中经常光顾的超市的经营情况,以图文框的形式呈现给大家,彻底改变了传统的列方程(组)解应用题的说教模式,给学生以亲切、自然之感,体现了新课标的基本理念.同步链接:请同学们尝试完成下面问题:1.2004江苏南京中考题某商店以2400元购进某种盒装茶叶,第一个月每盒按进价增加20%作为售价,售出50盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶.在整个买卖过程中盈利350元,求每盒茶叶的进价.2.2004陕西中考题足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分.一支足球队在某个赛季中共需比赛14场,现已比赛了8场,输了1场,得17分.请问:(1)前8场比赛中,这支球队共胜了多少场?(2)这支球队打满14场比赛,最高能得多少分?(3)通过对比赛情况的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标.请你分析一下,在后面的6场比赛中,这支球队至少要胜几场才能达到预期目标?提示:1.每盒茶叶的进价为40元.2.(1)设这个球队胜x场,则平了(8-1-x)场.根据题意,得3x+(8-1-x)=17.解得x=5.所以前8场比赛中,这个球队共胜了5场.(2)打满14场比赛,最高能得17+(14-8)×3=35分.(3)由题意知,以后的6场比赛中,只要得分不低于12分即可.∴胜不少于4场,一定达到预期目标,而胜3场、平3场,正好达到预期目标.∴在以后的比赛中这个球队至要胜3场.二、涉及国计民生的政策性问题例2(2004湖北郴州中考题)今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小红家有4人,明年小红家减少多少农业税?(3)小红所在的乡约有16000农民,问该乡农民明年减少多少农业税?解:(1)设降低的百分率为x,则今年后的第一年人均上缴农业税为25(1-x)元,第二年人均上缴农业税为25(1-x)-25(1-x)x=225(1)x-元,根据题意,得2-=16.解得x25(1)x=0.2=20%,x2 =1.8(舍去).1(2)明年小红全家少上缴的农业税为 25×20%×4=20(元).(3)明年全乡少上缴的农业税为 16000×25×20%=80000(元).评析:本题以我国政府关于减轻农民负担的政策为依据,结合具体实例提出问题.既起到了宣传国家政策方针的目的,又培养了学生应用方程思想解决实际问题的能力.此类问题是今后中考命题的发展方向之一.同步链接:请同学们尝试完成下面问题:1.2004江苏徐州中考题我市某乡规定:种粮的农户均按每亩年产量750公斤、每公斤售价1.1元来计算每亩的年产值.年产值乘农业税的税率就是应缴的农业税,另外还要按农业税的20%上缴“农业税附加”(“农业税附加”主要用于村级组织的正常运转需要).(1)去年我市农业税的税率为7%,王老汉一家种了10亩水稻,他一共要上缴多少元?(2)今年,国家为了减轻农民负担,鼓励种粮,降低了农业税税率,并且每亩水稻由国家直接补贴20元(可抵缴税款).王老汉今年仍种10亩水稻,他掰着手指一算,高兴地说:“这样一减一补,今年可以比去年少缴497元.”请你求出今年我市的农业税的税率是多少?(要有解题过程)2.2004山东青岛中考题某市今年1月1日起调整居民用水价格,每立方米水费上涨25%.小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6m3,求该市今年居民用水的价格.提示:1.(1)693元;(2)4%.2.可设该市去年居民用水的价格为x元/m3,则今年用水价格为(1+25%)x元/m 3,根据题意,得36186(125%)x x -=+. 解得:x =1.8.经检验:x =1.8是原方程的解. (125%) 2.25x ∴+=.三、优选方案类问题例3 (2004湖北武汉中考题)某公路上一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标.竞标资料上显示:若由两对合作,6天可以完成,共需工程费用10200元;若单独完成此项工程,甲队比乙队少用5天,但甲队每天的工程费用比乙队多300元.工程指挥部决定从这两个队中选一个队单独完成此项工程,从节省资金的角度考虑,应选择哪个工程队?为什么?解:设甲队单独完成此项工程需x 天,则乙队单独完成此项工程需(x +5)天,根据题意,得 11156x x +=+.化简,得27300x x --=.解得x 1=10,x 2=-3(不合题意,舍去).∴甲队单独完成此项工程需10天,则乙队单独完成此项工程需15天.设甲队每天的工程费用为a 元,乙队每天的工程费用为b 元,根据题意,得6610200,300.a b a b +=⎧⎨-=⎩ 解得1000,700.a b =⎧⎨=⎩∴ 甲队单独完成此项工程的费用为:1000×10=10000(元);乙队单独完成此项工程的费用为:700×15=10500(元).∵10000<10500,∴从节省资金的角度考虑,应选择甲工程队.例4 (2004哈尔滨中考题)“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买.(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,请你求出商场每种型号手机的购买数量.解:(1)设甲种型号手机要购买x 部,乙种型号手机购买y 部,丙种型号手机购买z 部,根据题意,得40,180060060000.x y x y +=⎧⎨+=⎩ 解得 30,10;x y =⎧⎨=⎩或40,1800120060000.x z x z +=⎧⎨+=⎩ 解得 20,20;x z =⎧⎨=⎩或40,600120060000.y z y z +=⎧⎨+=⎩ 解得 20,60.y z =-⎧⎨=⎩(不合题意,舍去).答:有两种购买方法:甲种手机购买30部,乙种手机购买10部;或甲种手机购买20部,丙种手机购买20部.(2)根据题意,得 40,1800600120060000,68.x y z x y z y ++=⎧⎪++=⎨⎪≤≤⎩解得 26,6,8;x y z =⎧⎪=⎨⎪=⎩ 或27,7,6;x y z =⎧⎪=⎨⎪=⎩或28,8,4.x y z =⎧⎪=⎨⎪=⎩答:若甲种型号手机购买26部手,则乙种型号手机购买6部,丙种型号手机购买8部;若甲种型号手机购买27部手,则乙种型号手机购买7部,丙种型号手机购买6部;若甲种型号手机购买28部手,则乙种型号手机购买8部,丙种型号手机购买4部.评析:单纯列方程解应用题的试题在各省市中考试卷中越来越少,但是,运用方程思想,结合其他数学知识,设计优选方案的问题却屡见不鲜.此两道例题几乎涉及到了初中阶段所有方程的类型,是综合运用各种方程(组)的知识解决经济类的综合性试题,比较好地考查了学生灵活运用方程思想解决实际问题的能力.同步链接:请同学们尝试完成下面问题:2004山东潍坊中考题 甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?提示:设甲、乙两件服装的成本分别是x 元和y 元,则甲服装的定价为(1+50%)x =1.5x 元,乙服装的定价为(1+40%)y =1.4y 元,根据题意,得500,0.9(1.5 1.4)500157.x y x y +=⎧⎨+=+⎩ 解得300,200.x y =⎧⎨=⎩所以甲、乙两件服装的成本分别是300元和200元.。
初二数学方程组与不等式组试题1.下列不等式解法正确的是()A.如果,那么.B.如果,那么.C.如果,那么.D.如果,那么.【答案】D【解析】解:A、根据不等式的基本性质,不等式的两边同时乘以-2,不等号的方向改变,得x<-4,故本选项错误;B、根据不等式的基本性质1,不等式的两边同时加上x,不等号的方向不变,故本选项错误;C、根据不等式的基本性质2,不等式x-y<0的两边同时乘以,不等号的方向不变,故本选项错误;D、根据不等式的基本性质1,不等式x-y<0的两边同时加上y,不等号的方向不变,正确.故选D.点评:本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为().A.x(x+1)=1035B.x(x-1)=1035×2C.x(x-1)=1035D.2x(x+1)=1035【答案】C.【解析】每人要送出(x-1)张照片,x名同学送出x(x-1)张照片,据此列等式得x(x-1)=1035.故选:C.【考点】一元二次方程的应用.3.(本题共10分)水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?(3)现需按毛利润的10%交纳各种税费,人工费每日按销售量每千克支出0.9元,水电房租费每日102元,若剩下的每天总纯利润要达到5100元,则每千克涨价应为多少?【答案】(1)6120元;(2)5元;(3)8元.【解析】(1)根据总毛利润=每千克能盈利18元×卖出的数量即可计算出结果;(2)设涨价x 元,则日销售量为500-20x,根据总毛利润=每千克能盈利×卖出的数量即可列方程求解;(2))每千克涨价应为y元,,根据每天总纯利润=每天的总毛利润—毛利润的10%交纳各种税费—人工费—水电房租费即可列方程求解.试题解析:解:(1)6120元.设涨价x元,则日销售量为500-20x,根据题意得:,(10+x)(500-20x)="6000"解得x=10或5,为了使顾客得到实惠,每千克应涨价5元.答:为了使顾客得到实惠,每千克应涨价5元.(3)每千克涨价应为y元,(10+y)(500-20y)(1-10%)-0.9(500-20y)-102=5100(y-8)²=0y=8答:每千克应涨价8元.【考点】一元二次方程的应用.4.(5分)解方程:.【答案】x=﹣【解析】根据解分式方程的基本思想是“转化思想”,先把分式方程去分母转化为整式方程,再求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:解:去分母得:4x+2x+6=5,移项合并得:6x=﹣1,解得:x=﹣,经检验x=﹣是分式方程的解.【考点】解分式方程5.(3分)对于非零的两个实数a、b,规定a⊕b=,若2⊕(2x﹣1)=1,则x的值为.【答案】【解析】先根据规定运算把方程转化为一般形式,即2⊕(2x﹣1)=1可化为﹣=1,然后把分式方程转化为整式方程,即方程两边都乘以2(2x﹣1)得,2﹣(2x﹣1)=2(2x﹣1),解得x=,再进行检验:当x=时,2(2x﹣1)=2(2×﹣1)=≠0,所以,x=是原分式方程的解,即x的值为.【考点】解分式方程6.(9分)某文具店第一次用400元购进胶皮笔记本若干个,第二次又用400元购进该种型号的笔记本,但这次每个的进价是第一次进价的1.25倍,购进数量比第一次少了20个.(1)求第一次每个笔记本的进价是多少?(2)若要求这两次购进的笔记本按同一价格全部销售完毕后后获利不低于460元,问每个笔记本至少是多少元?【答案】(1)4元(2)7元【解析】(1)设第一次每个笔记本的进价为x元,然后根据第二次又用400元购进该种型号的笔记本数量比第一次少20个列方程求解即可;(2)设每个笔记本售价为y元,然后根据全部销售完毕后后获利不低于460元列不等式求解即可.试题解析:解:(1)设第一次每个笔记本的进价为x元.依据题可得,解这个方程得:x=4.经检验,x=4是原方程的解.故第一次每个笔记本的进价为4元.(2)设每个笔记本售价为y元.根据题意得:,解得:y≥7.所以每个笔记本得最低售价是7元.【考点】分式方程的应用;一元一次不等式的应用7.一艘轮船在两个码头之间航行,顺水航行60千米所需时间与逆水航行48千米所需时间相同,已知水流速度是2千米/小时,则轮船在静水中航行的速度为.【答案】18千米/时.【解析】设船在静水中的速度是x千米/时,则顺水速度为x+2千米/时,逆水速度为x—2千米/时,根据“轮船顺水航行60千米所需要的时间=逆水航行48千米所用的时间”可得出方程,解得x=18,经检:x=18是原方程的解,所以船在静水中的速度是18千米/时.【考点】分式方程的应用.8.某工艺品厂的手工编织车间有工人20名,每人每天可编织5个座垫或4个挂毯.在这20名工人中,如果派x人编织座垫,其余的编织挂毯.已知每个座垫可获利16元,每个挂毯可获利24元.(1)写出该车间每天生产这两种工艺品所获得的利润y(元)与x(人)之间的函数关系式;(2)若使车间每天所获利润不小于1800元,最多安排多少人编织座垫?【答案】(1) y=﹣16x+1920;(2) 最多安排7人编织座垫.【解析】生产这两种工艺品所获得的利润=生产座垫的利润+生产挂毯的利润.然后将所得的式子化简得出关系式;再根据函数的性质和“每天所获利润不小于1800元”,来判断出合适的方案.试题解析:(1)y=16×5x+24×4(20﹣x),即y=﹣16x+1920;(2)根据题意,得﹣16x+1920≥1800,解得x≤7.5.x取整数,所以x=7.答:若使车间每天所获利润不小于1800元,最多安排7人编织座垫.【考点】一次函数的应用.9.要使分式的值为,则x的值为.【答案】x=1.【解析】题意列方程得:,去分母得:3(1+x)=5+x,解得x=1.经检验是原方程的解.∴原方程的解为x=1.【考点】解分式方程.10.若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为 .【答案】【解析】先用含k的代数式表示x、y,即解关于x,y的方程组,再代入2x+3y=6中可得.根据题意得,消元得.【考点】解三元一次方程组.11.下列各组数值是二元一次方程x-3y=4的解的是()A.B.C.D.【答案】A【解析】A、将x=1,y=-1代入方程左边得:x-3y=1+3=4,右边为4,本选项正确;B、将x=2,y=1代入方程左边得:x-3y=2-3=-1,右边为4,本选项错误;C、将x=-1,y=-2代入方程左边得:x-3y=-1+6=5,右边为4,本选项错误;D、将x=4,y=-1代入方程左边得:x-3y=4+3=7,右边为4,本选项错误.故选A【考点】二元一次方程的解.12.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.【答案】(1)2;(2)k=3或4,△ABC的周长为14或16.【解析】(1)根据题意得出AB、AC的长,再由根与系数的关系得出k的值;(2)根据等腰三角形的性质,分三种情况讨论:①AB=AC,②AB=BC,③BC=AC;后两种情况相同,则可有另种情况,再由根与系数的关系得出k的值.试题解析: (1)∵△ABC是以BC为斜边的直角三角形,BC=5,∴AB2+AC2=25,∵AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,∴AB+AC=2k+3,AB•AC=k2+3k+2,∴AB2+AC2=(AB+AC)2-2AB•AC,即(2k+3)2-2(k2+3k+2)=25,解得k=2或-5(不合题意舍去);(2)∵△ABC是等腰三角形;∴当AB=AC时,△=b2-4ac=0,∴(2k+3)2-4(k2+3k+2)=0解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6∴△ABC的周长为14或16.【考点】1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.勾股定理的逆定理.13.不等式组的解集在数轴上表示为().A.B.C.D.【答案】A.【解析】由①解得x>1,由②解得x≤2,把解集表示在数轴上,如图A所示.故选:A.【考点】不等式组的解法.14.(本题12分)已知实数m满足m2-3m+1=0.(1)m+= .(2)求m2+的值.(3)求m-的值.【答案】(1)3;(2)7;(3)±【解析】本题根据完全平方公式进行计算,得出答案.试题解析:(1)∵-3m+1=0 ∴+1=3m 两边同除以m得:m+=3.∵ m+=3 ∴(m+)2=9 ∴ m2+2+=9 ∴m2+="7"∵ m2+=7 ∴m2-2m•+=5 ∴(m-)2=5 ∴m-=【考点】完全平方公式15.求满足下列等式中的x的值:(1)(2)【答案】(1)-;(2)x=-4或6.【解析】(1)两边除以64,再开立方即可;(2)直接开平方即可.试题解析:(1)∵∴x=∴x=-;(2)∵∴x-1=±5即:x=-4或6.【考点】1.立方根;2.平方根.16.(1)计算:(2)求的值:【答案】(1)-1;(2)x=4或-2【解析】(1)先将所给的各式求值,然后加减计算即可;(2)利用平方根的意义可求出x的值.试题解析:(1)=-2-1+2=-1;(2)因为,,所以,所以,所以x=4或-2.【考点】实数的计算、平方根.17.解方程.(1)(2)【答案】(1)无解(2)【解析】根据分式方程的解法步骤,先把分式方程化为整式方程,解整式方程,检验,写结论即可.解题关键是确定最简公分母.试题解析:解:(1)方程两边同乘以x-2得2(x-2)+1=3-x解得检验:把x=2代入x-2=0,所以x=2是原方程的增根,原分式方程无解.(2)方程两边同乘以3x得3(2x+1)+1=3x解得把x=代入3x≠0,因此x=是原分式方程的解.【考点】解分式方程18.如图是测量一颗玻璃球体积的过程:(1)将300ml的水倒进一个容量为500ml的杯子中;(2)将四颗相同的玻璃球放入水中,结果水没有满;(3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A.20cm3以上,30cm3以下B.30cm3以上,40cm3以下C.40cm3以上,50cm3以下D.50cm3以上,60cm3以下【答案】C.【解析】设玻璃球的体积为x,根据题意可得不等式组,解得40<x<50,所以一颗玻璃球的体积在40cm3以上,50cm3以下.故答案选C.【考点】一元一次不等式组的应用.19.三角形两边长分别是3和4,第三边的长是一元二次方程的一个实数根,则该三角形的面积是___________.【答案】6或.【解析】先解方程:x2-8x+15=0,即(x-5)(x-3)=0,解得:x1=3,x2=5.当x1=3时,与另两边组成等腰三角形,可求得底边4上的高AD=,所以该三角形的面积是4×÷2=;当x2=5时,与另两边组成直角三角形,即3,4,5符合直角三角形三边关系,∴该三角形的面积=3×4÷2=6.综上所述,该三角形的面积是6或.【考点】1.解一元二次方程;2.三角形三边关系;3.求三角形面积.20.解分式方程:.【答案】x=9.【解析】方程两边都乘以最简公分母x(x﹣3),将分式方程转化为一元一次方程即可.试题解析:去分母,得:2x=3(x﹣3),去括号,移项,合并,得:x=9,经检验x=9是原方程的根.【考点】解分式方程.21.若x=-1,y=1适合方程2x+3my=1,则m=________.【答案】1.【解析】试题解析:∵x=-1,y=1适合方程2x+3my=1,∴2×(-1)+3m×1=1则m=1【考点】二元一次方程的解.22.张明与李强共同清点一批图书,已知张明清点完200本图书所用时间与李强清点完300本图书所用时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.【答案】20本.【解析】设张明每分钟清点图书x本,则李强每分钟清点图书(x+10)本,根据张明清点完200本图书所用时间与李强清点完300本图书所用时间相同列方程,解得x的值,最后进行检验x值是否符合题意.试题解析:设张明每分钟清点图书x本,则李强每分钟清点图书(x+10)本,依题意得:,解得:x=20,经检验:x=20是原方程的解.答:张明平均每分钟清点图书20本.【考点】列分式方程解应用题.23.(2015秋•宁远县期末)计算.(1)解方程:(2).【答案】(1)原方程的解为x=1.(2)【解析】(1)因为3﹣x=﹣(x﹣3),所以可确定方程最简公分母为:x﹣3,去分母时要注意符号变化.(2)第一项非零数0次幂、第二项根据负指数幂计算、第三项先利用根式性质化简再去绝对值、第四项用乘方法则可计算.解:(1)去分母得:1﹣x﹣2=x﹣3,移项、合并同类项得:﹣2x=﹣2,系数化为1得:x=1;经检验x=1是方程的根,∴原方程的解为x=1.(2)解:原式=1+4﹣||﹣1﹣=5﹣(6﹣)﹣1﹣=5﹣6+=【考点】解分式方程;实数的运算;零指数幂;负整数指数幂.24.(2015秋•端州区期末)(1)解方程:=﹣3(2)计算:(2m﹣1n﹣2)﹣2•(﹣)÷(﹣)【答案】(1)原方程无解;(2).【解析】(1)先把分式方程化为整式方程,再求出x的值,代入公分母进行检验即可;(2)从左到右依次计算即可.解:(1)去分母得,1=﹣(1﹣x)﹣3(x﹣2),去括号得,1=﹣1+x﹣3x+6,移项,合并同类项得,2x=4,系数化为1得,x=2,检验:当x=2时,x﹣2=0,故原方程无解;(2)原式=m2n4•(﹣)•(﹣)=﹣•(﹣)=.【考点】分式的混合运算;解分式方程.25.(2015秋•端州区期末)有一项工作需要在规定日期内完成,如果甲单独做,刚好如期完成;如果乙单独做,就要超过规定日期3天.现在由甲、乙两人合做2天,剩下的工作由乙单独做,刚好如期完成,问规定日期是几天?【答案】6天【解析】求的是原计划的工效,工作时间明显,一定是根据工作总量来列等量关系.等量关系为:甲乙合作2天的工作量+乙(规定日期﹣2)天的工作量=1.解:设规定日期是x天,则甲独做需x天完成,乙独做需(x+3)天完成.依题意列方程:.解得:x=6.经检验:x=6是原方程的解.答:规定日期是6天.【考点】分式方程的应用.26.已知a<b,则下列不等式一定成立的是()A.a+3>b+3B.2a>2b C.﹣b>﹣a D.b﹣a>0【答案】D【解析】根据不等式的基本性质:不等式的两边同时加上或减去同一个不为0的数,不等号的方向不变;不等式的两边同时乘以或除以同一个正数,不等号的不变;不等式的两边同时乘以或除以同一个负数,不等号的方向改变.因此可知a+3<b+3,2a<2b,-a>-b,b-a>0.故选D【考点】不等式的基本性质27.(2013•贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?【答案】(1)篮球和足球的单价各是100元,60元;(2)有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【解析】(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意得:100m+60n=1000,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【考点】分式方程的应用;二元一次方程的应用.28.(2015•营口)若关于x的分式方程+=2有增根,则m的值是()A.m=﹣1B.m=0C.m=3D.m=0或m=3【答案】A【解析】方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=3,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.【考点】分式方程的增根.29.(2015•赤峰)李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.(1)求李老师步行的平均速度;(2)请你判断李老师能否按时上班,并说明理由.【答案】(1)李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分;(2)李老师能按时上班.【解析】(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,根据题意可得,骑电瓶车走1900米所用的时间比步行少20分钟,据此列方程求解;(2)计算出李老师从步行回家到骑车回到学校所用的总时间,然后和23进行比较即可.解:(1)设李老师步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,由题意得,﹣=20,解得:x=76,经检验,x=76是原分式方程的解,且符合题意,则5x=76×5=380,答:李老师步行的平均速度为76m/分钟,骑电瓶车的平均速度为380m/分;(2)由(1)得,李老师走回家需要的时间为:=12.5(分钟),骑车走到学校的时间为:=5,则李老师走到学校所用的时间为:12.5+5+4=21.5<23,答:李老师能按时上班.【考点】分式方程的应用.30.(2013•新疆)解不等式组.【答案】1≤x<6.5.【解析】先求出两个不等式的解集,再求其公共解.解:,解不等式①得,x≥1,解不等式②得,x<6.5,所以,不等式组的解集是1≤x<6.5.【考点】解一元一次不等式组.31.在彩虹读书活动中,某校决定为八年级学生购买同等数量的《钢铁是怎样炼成的》和《居里夫人自传》,供学生借阅.其中《居里夫人自传》的单价比《钢铁是怎样炼成的》的单价多8元.若学校购买《居里夫人自传》用了1 000元,购买《钢铁是怎样炼成的》用了600元,请问两种书的单价各是多少元?【答案】《居里夫人自传》的单价为10元,《钢铁是怎样炼成的》的单价为12元.【解析】首先表示出两种书的价格,进而利用购买同等数量的书籍,进而得出等式求出答案.解:设《居里夫人自传》的单价为x元,则《钢铁是怎样炼成的》的单价为:(x﹣8)元,根据题意可得:=,解得:x=20,检验:当x=20时,x(x﹣8)≠0,故x=20是原方程的根,则x﹣8=12.答:《居里夫人自传》的单价为10元,《钢铁是怎样炼成的》的单价为12元.【考点】分式方程的应用.32.(2012•鄂尔多斯)若关于x的分式方程无解,则m的值是.【答案】3【解析】先把分式方程化为整式方程得到x=m﹣2,由于关于x的分式方程无解,则最简公分母x﹣1=0,求得x=1,进而得到m=3.解:去分母,得m﹣3=x﹣1,x=m﹣2.∵关于x的分式方程无解,∴最简公分母x﹣1=0,∴x=1,当x=1时,得m=3,即m的值为3.故答案为3.【考点】分式方程的解.33.(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.【答案】(1)见解析;(2)正整数m的值为1或2.【解析】(1)先计算判别式的值得到△=(m+2)2﹣4m×2=(m﹣2)2,再根据非负数的值得到△≥0,然后根据判别式的意义得到方程总有两个实数根;(2)利用因式分解法解方程得到x1=1,x2=,然后利用整数的整除性确定正整数m的值.(1)证明:∵m≠0,△=(m+2)2﹣4m×2=m2﹣4m+4=(m﹣2)2,而(m﹣2)2≥0,即△≥0,∴方程总有两个实数根;(2)解:(x﹣1)(mx﹣2)=0,x﹣1=0或mx﹣2=0,∴x1=1,x2=,当m为正整数1或2时,x2为整数,即方程的两个实数根都是整数,∴正整数m的值为1或2.【考点】根的判别式.34.(2010•南京)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?【答案】(1)见解析;(2)70元.【解析】(1)根据题意直接用含x的代数式表示即可;(2)利用“获利9000元”,即销售额﹣进价=利润,作为相等关系列方程,解方程求解后要代入实际问题中检验是否符合题意,进行值的取舍.解:(1)80﹣x,200+10x,800﹣200﹣(200+10x)(2)根据题意,得80×200+(80﹣x)(200+10x)+40[800﹣200﹣(200+10x)]﹣50×800=9000整理得10x2﹣200x+1000=0,即x2﹣20x+100=0,解得x1=x2=10当x=10时,80﹣x=70>50答:第二个月的单价应是70元.【考点】一元二次方程的应用.35.(2015秋•芜湖期末)若分式方程﹣1=无解,则m=()A.0和3B.1C.1和﹣2D.3【答案】A【解析】方程两边同时乘以(x﹣1)(x+2)即可化成整式方程,然后把能使方程的分母等于0的x的值代入求得m的值即可.解:方程两边同时乘以(x﹣1)(x+2)得x(x+2)﹣(x﹣1)(x+2)=m.当x=1时,代入x(x+2)﹣(x﹣1)(x+2)=m得m=3;把x=﹣2代入x(x+2)﹣(x﹣1)(x+2)=m得:m=0.总之,m的值是0或3.故选A.【考点】分式方程的解.36.某工厂去年的利润(总产值﹣总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值为万元,总支出是万元.【答案】2000,1800.【解析】设去年的总产值为x万元,总支出为y万元,表示出今年总产值和总支出,根据两个关系列方程组求解.解:设去年的总产值为x万元,总支出为y万元,则有根据题意得:,解得:.答:去年的总产值为2000万元,总支出为1800万元.故答案为:2000,1800.【考点】二元一次方程组的应用.37.某校暑假准备组织该校的“三好学生”参加夏令营,由1名老师带队.甲旅行社说:“若老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内都6折优惠”若全票价是1200元,则:(1)设三好学生人数为x人,则参加甲旅行社的费用是元;参加乙旅行社的费用是元.(2)当学生人数取何值时,选择参加甲旅行社比较合算?【答案】(1)1200+600x,720(x+1).(2)当学生人数多于4人时,选择参加甲旅行社比较合算.【解析】(1)假设三好学生人数为x人,对甲旅行社:“若老师买全票一张,则学生可享受半价优惠”.则参加甲旅行社的费用为1200+1200×0.5×x;对乙旅行社:“包括老师在内都6折优惠”.则参加乙旅行社的费用为1200×0.6×(x+1);(2)若使参加甲旅行社比较合算,也就是说:甲旅行社的费用﹣乙旅行社的费用<0,解不等式即可知学生人数取何值时合算.解:(1)设三好学生人数为x人由题意得,参加甲旅行社的费用是1200+1200×0.5×x=1200+600x;参加乙旅行社的费用是1200×0.6×(x+1)=720(x+1).(2)由题意得 1200+600x﹣720(x+1)<0解不等式得 x>4答:(1)1200+600x,720(x+1).(2)当学生人数多于4人时,选择参加甲旅行社比较合算.【考点】一元一次不等式的应用.38.解方程:+=.【答案】此方程无解【解析】把各分母进行因式分解,可得到最简公分母是x(x+1)(x﹣1),方程两边都乘最简公分母,可把分式方程转换为整式方程求解.解:方程两边都乘x(x+1)(x﹣1),得7(x﹣1)+3(x+1)=6x,解得x=1.经检验:x=1是增根.∴此方程无解.【考点】解分式方程.39.若关于x的分式方程无解,则m的值为.【答案】3或0.5【解析】首先进行去分母可得:x-2m(x-3)=m,解得:x=,因为分式方程无解,则1-2m=0或者x=3,即m=0.5或=3,解得:m=0.5或m=3.【考点】解分式方程40.解分式方程:+=3.【答案】x=【解析】首先在方程的左右两边同时乘以(x-1)将分母去掉,然后解出一元一次方程,最后需要进行验根得出方程的解.试题解析:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.【考点】解分式方程.41.已知关于的分式方程的解是非负数,则的取值范围是___.【答案】m≥2且m≠3【解析】两边同乘以x-1可得:m-3=x-1,解得:x=m-2,根据解为非负数可得:x≥0且x≠1,即m-2≥0且m-2≠1,解得:m≥2且m≠3.【考点】解分式方程.42.若a<b,则下列各式中一定成立的是()A.a+2>b+2B.a-2>b-2C.-2a>-2b D.>【答案】C.【解析】试题解析:A、不等式的两边都加2,不等号的方向不变,故A错误;B、不等式的两边都减2,不等号的方向不变,故B错误;C、不等式的两边都乘以-2,不等号的方向改变,故C正确;D、不等式的两边都除以2,不等号的方向不变,故D错误;故选C.【考点】不等式的性质.43.方程(x﹣2)(x+3)=0的解是()A.x=2B.x=﹣3C.x1=﹣2,x2=3D.x1=2,x2=﹣3【答案】D.【解析】根据已知得出两个一元一次方程,求出方程的解即可.解:(x﹣2)(x+3)=0,x﹣2=0,x+3=0,x 1=2,x2=﹣3,故选D.【考点】解一元二次方程-因式分解法.44.某公司生产的甲、乙两种商品分别赢利400万元、300万元,已知两种商品的总产量超过20吨,且生产的甲种商品比乙种商品的产量多1吨,生产的甲种商品比乙种商品的赢利每吨多5万元.求该公司生产的甲种商品的产量.【答案】16吨【解析】试题分析:设该公司生产的甲种商品的产量为x吨,则乙种商品的产量为(x﹣1)吨,根据“生产的甲种商品比乙种商品的赢利每吨多5万元”建立方程,求解即可.解:设该公司生产的甲种商品的产量为x吨,则乙种商品的产量为(x﹣1)吨,根据题意得﹣=5,解得:x1=16,x2=5.经检验,x1=16,x2=5都是原方程的解,但是x2=5不合题意舍去,所以x=16.答:该公司生产的甲种商品的产量为16吨.【考点】分式方程的应用.45.已知关于x的方程=3的解是正数,则m的取值范围为.【答案】m>﹣且m≠﹣【解析】分式方程去分母转化为整式方程,表示出x,根据x为正数列出关于m的不等式,求出不等式的解集即可确定出m的范围.解:分式方程去分母得:2m+3=3(x﹣2),解得:x=(2m+3)+2,根据题意得:(2m+3)+2>0,且(2m+3)+2≠2,去分母得:2m+3+6>0,解得:m>﹣,且m≠﹣,故答案为:m>﹣且m≠﹣【考点】分式方程的解.46.当方程(m+1)x﹣2=0是一元二次方程时,m的值为.【答案】-1;【解析】根据一元二次方程的定义,列方程和不等式解答.解:因为原式是关于x的一元二次方程,所以m2+1=2,解得m=±1.又因为m﹣1≠0,所以m≠1,于是m=﹣1.故答案为:﹣1.【考点】一元二次方程的定义.47.关于x的方程mx2+x﹣m+1=0,有以下三个结论:①当m=0时,方程只有一个实数解;②当m≠0时,方程有两个不等的实数解;③无论m取何值,方程都有一个负数解,其中正确的是(填序号).【答案】①③【解析】分别讨论m=0和m≠0时方程mx2+x﹣m+1=0根的情况,进而填空.解:当m=0时,x=﹣1,方程只有一个解,①正确;当m≠0时,方程mx2+x﹣m+1=0是一元二次方程,△=1﹣4m(1﹣m)=1﹣4m+4m2=(2m﹣1)2≥0,方程有两个实数解,②错误;把mx2+x﹣m+1=0分解为(x+1)(mx﹣m+1)=0,当x=﹣1时,m﹣1﹣m+1=0,即x=﹣1是方程mx2+x﹣m+1=0的根,③正确;故答案为①③.【考点】根的判别式;一元一次方程的解.48.用适当的方法解下列方程:(1)(2x+1)2=(x﹣1)2(2).【答案】(1)x1=0,x2=2;(2)x1=﹣10,x2=8【解析】(1)先移项得到(2x+1)2﹣(x﹣1)2=0,然后利用因式分解法解方程;(2)先把方程化为整式方程x2+2x﹣80=0,再解整式方程,然后进行检验确定原方程的解.解:(1)(2x+1)2﹣(x﹣1)2=0,(2x+1+x﹣1)(2x+1﹣x+1)=0,2x+1+x﹣1=0或2x+1﹣x+1=0,所以x1=0,x2=2;(2)去分母得120(x+2)﹣120x=3x(x+2),整理得x2+2x﹣80=0,(x+10)(x﹣8)=0,解得x1=﹣10,x2=8,检验:当x=﹣10,x(x+2)≠0;当x=8,x(x+2)≠0,则x1=﹣10,x2=8是原方程的解,所以原方程的解为x1=﹣10,x2=8.【考点】解一元二次方程-因式分解法;解分式方程.49.解方程:【答案】无解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:去分母得:x(x+1)-x2+1=2,去括号得:x2+x-x2+1=2,解得:x=1,经检验x=1是增根,分式方程无解.【考点】解分式方程.50.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x+4)2=9B.(x﹣4)2=9C.(x﹣8)2=16D.(x+8)2="57"【答案】A【解析】x2+8x+7=0,x2+8x=-7,x2+8x+16=16-7,(x+4)2=9,故选:A.【考点】配方法51.用你发现的规律解答下列问题.。
《方程(组)与不等式相结合的解集问题》专题姓名:__________________ 班级:______________ 得分:_________________ 1.(2020春•常熟市期末)已知关于x、y的方程组(m是常数).(1)若x+y=1,求m的值;(2)若1≤x﹣y≤15.求m的取值范围;(3)在(2)的条件下,化简:|2m+1|﹣|m﹣7|=.2.(2020春•鼓楼区期末)已知4x+y=1.(1)y=.(用含x的代数式表示)(2)当y为非负数时,x的取值范围是.(3)当﹣1<y≤2时,求x的取值范围.3.(2020春•仪征市期末)已知关于x、y的方程组.(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足x<0,y>0,求a的取值范围.4.(2020春•张家港市期末)已知关于x、y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解满足x≤0,y<0,且m是正整数,求m的值.5.(2020春•相城区期末)已知方程组的解x、y的值均大于零.(1)求a的取值范围;(2)化简:|2a+2|﹣2|a﹣3|.6.(2020春•汕尾期末)已知关于x,y的二元一次方程组(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.7.(2020春•东丽区期末)已知方程组的解x,y满足x+y<1,且m为非负数,求m的取值范围.8.(2020春•高州市期末)已知关于x,y的二元一次方程组的解满足不等式x+y为非负数,求实数m的取值范围.9.(2020春•定襄县期末)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.10.(2019春•三门县期末)已知关于x,y的二元一次方程组.(1)当a=2时,求方程组的解;(2)当a为何值时,y≥0?11.(2020春•张家港市校级月考)已知关于x,y的方程组.(1)求方程组的解(用含a的代数式表示);(2)若方程组的解满足xy<0,求a的取值范围.12.(2018春•开福区校级期中)已知关于x、y的方程组的解满足不等式x+y <3.(1)求实数a的取值范围;(2)在(1)的条件下,解关于a的方程|a﹣1|2.13.(2019春•新野县期中)已知关于x的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用k的代数式表示).(2)若方程组的解满足x+y>5,求k的取值范围.14.(2018春•宽城区期中)感知:解方程组,下列给出的两种方法中,最佳的方法是(A)由①,得x代入②,先消去x,求出y,再代入求解;(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:利用最佳的方法解方程组应用:若关于x、y的二元一次方程组的解中x的值是正数,则a的取值范围为.15.(2019春•房山区期中)关于x,y的二元一次方程组的解满足x+y >5.求m的取值范围.16.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.17.(2019春•雁江区期末)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解集为x>1.18.(2020春•南关区月考)感知:解方程组,下列给出的两种方法中,方法简单的是.(A)由①,得x,代入②,先消去x,求出y,再代入求解.(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:解方程组.应用:若关于x,y的二元一次方程组的解中的x是正数,则a的取值范围为.19.(2020春•荔城区校级月考)已知关于x、y的方程组.(1)若此方程组的解是二元一次方程2x+3y=16的一组解,求m的值;(2)若此方程组的解满足不等式x+3y>6,求m的取值范围.20.(2020春•宝应县期末)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.21.(2020春•万州区期末)已知方程组的解满足x﹣2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2﹣m+1)﹣3(m2+2m﹣5)的值.22.(2020春•叙州区期末)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:;当k=3时,不等式组的解集是:(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.24.(2020春•海淀区校级期中)已知关于x,y的方程组的解满足x<y,求p的取值范围?25.(2020春•沭阳县期末)关于x、y的方程组的解满足x+y.(1)求k的取值范围;(2)化简:|5k﹣1|﹣|4﹣5k|.1.(2020春•常熟市期末)已知关于x、y的方程组(m是常数).(1)若x+y=1,求m的值;(2)若1≤x﹣y≤15.求m的取值范围;(3)在(2)的条件下,化简:|2m+1|﹣|m﹣7|=3m﹣6.【分析】(1)①+②,化简得出x+y,由x+y=1列出关于m的方程,解之可得答案;(2)①﹣②,得:x﹣y=2m+2,结合1≤x﹣y≤15得出关于m的不等式组,解之可得;(3)利用绝对值的性质去绝对值符号,再去括号、合并即可得.【解析】(1),①+②,得:3x+3y=8m﹣2,则x+y,∵x+y=1,∴1,解得m;(2)①﹣②,得:x﹣y=2m+2,∵1≤x﹣y≤15,∴1≤2m+2≤15,解得2m+2≥1,得:m≥﹣0.5,解2m+2≤15,得m≤6.5,则﹣0.5≤m≤6.5;(3)∵﹣0.5≤m≤6.5,∴2m+1≥0,m﹣7≤﹣0.5,则原式=2m+1﹣(7﹣m)=2m+1﹣7+m=3m﹣6,故答案为:3m﹣6.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集和等式、不等式的基本性质、绝对值的性质是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.(2020春•鼓楼区期末)已知4x+y=1.(1)y=1﹣4x.(用含x的代数式表示)(2)当y为非负数时,x的取值范围是x.(3)当﹣1<y≤2时,求x的取值范围.【分析】(1)根据等式的性质移项即可;(2)根据题意得出不等式,求出不等式的解集即可;(3)根据题意得出不等式组,求出不等式组的解集即可.【解析】(1)4x+y=1,移项得:y=1﹣4x,故答案为:1﹣4x;(2)∵y为非负数,∴y=1﹣4x≥0,解得:x,故答案为:x;(3)∵﹣1<y≤2,∴﹣1<﹣4x+1≤2,∴﹣2<﹣4x≤1,∴x,即x的取值范围是:x.【点评】本题考查了解二元一次方程,解一元一次不等式,解一元一次不等式组等知识点,能根据等式的性质进行变形是解(1)的关键,能得出不等式或不等式组是进而(2)(3)的关键.3.(2020春•仪征市期末)已知关于x、y的方程组.(1)求该方程组的解(用含a的代数式表示);(2)若方程组的解满足x<0,y>0,求a的取值范围.【分析】(1)利用加减消元法求解可得;(2)根据题意列出关于a的不等式组,解之可得.【解析】(1),②﹣①,得:x=﹣2a+1,将x=﹣2a+1代入①,得:﹣2a+1﹣y=﹣a﹣1,解得y=﹣a+2,所以方程组的解为;(2)根据题意知,解不等式﹣2a+1<0,得,解不等式﹣a+2>0,得a<2,解得:.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(2020春•张家港市期末)已知关于x、y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解满足x≤0,y<0,且m是正整数,求m的值.【分析】(1)利用加减消元法求解可得;(2)根据题意列出不等式组,解之求出m的取值范围,从而得出答案.【解析】(1),由①,得2x+2y=2m﹣18.③,由②+③,得5x=10m﹣20,x=2m﹣4;将x=2m﹣4代入①,得y=﹣m﹣5,∴原方程组的解为;(2)∵,∴,解得﹣5<m≤2,且m是正整数,∴m=1或m=2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2020春•相城区期末)已知方程组的解x、y的值均大于零.(1)求a的取值范围;(2)化简:|2a+2|﹣2|a﹣3|.【分析】(1)把a看做已知数表示出方程组的解,根据x与y同号求出a的范围即可;(2)由a的范围判断绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解析】(1),①+②得:5x=15﹣5a,即x=3﹣a,代入①得:y=2+2a,根据题意得:解得﹣1<a<3;(2)∵﹣1<a<3,∴|2a+2|﹣2|a﹣3|=2a+2+2a﹣6=4a﹣4.【点评】此题考查了二元一次方程组的解,解一元一次不等式组,绝对值的性质,是基础题,难度不大.6.(2020春•汕尾期末)已知关于x,y的二元一次方程组(1)用含有m的代数式表示方程组的解;(2)如果方程组的解x,y满足x+y>0,求m的取值范围.【分析】(1)将m看做已知数求出方程组的解即可;(2)根据已知不等式求出m的范围即可.【解析】(1)①﹣②,得3y=12﹣3m,解得y=4﹣m.将y=4﹣m代入②,得x﹣(4﹣m)=3m,解得x=2m+4.故方程组的解可表示为;(2)∵x+y>0,∴2m+4+4﹣m>0,解得m>﹣8.故m的取值范围是m>﹣8.【点评】此题考查了解一元一次不等式,二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.7.(2020春•东丽区期末)已知方程组的解x,y满足x+y<1,且m为非负数,求m的取值范围.【分析】根据消元法,得出x、y的值,再根据x+y<1,且m为非负数,可得答案.【解析】,①+②,得:3x+3y=2+2m,∴x+y,∵x+y<1,即1,解得,m,又∵m≥0,∴.【点评】本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求出m的取值范围.8.(2020春•高州市期末)已知关于x,y的二元一次方程组的解满足不等式x+y为非负数,求实数m的取值范围.【分析】解此题时可以解出二元一次方程组中x,y关于a的式子,代入x+y>0,然后解出a的取值范围.【解析】方程组中两个方程相加得3x+3y=3+m,即x+y=1m,又x+y≥0,即1m≥0,解一元一次不等式得m≥﹣3.【点评】本题是综合考查了二元一次方程组和一元一次不等式的综合运用,灵活运用二元一次方程组的解法是解决本题的关键.9.(2020春•定襄县期末)已知关于x、y的方程组.(1)若a=2,求方程组的解;(2)若方程组的解x、y满足x>y,求a的取值范围.【分析】(1)将a=2代入,解利用加减消元法求解可得;(2)解方程组得出x、y,再根据x>y得出关于a的不等式,解之可得.【解析】(1)当a=2时,,①﹣②,得:3y=6,y=2,将y=2代入①,得:x+2=11,x=9,则方程组的解为;(2)解方程组得,∵x>y,∴,解得a.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.10.(2019春•三门县期末)已知关于x,y的二元一次方程组.(1)当a=2时,求方程组的解;(2)当a为何值时,y≥0?【分析】(1)用加减消元法求解即可;(2)解出二元一次方程组中y关于a的式子,然后即可解出a的范围.【解析】(1)当a=2时,方程组为,②×3﹣①×2得,17y=17,解得y=1,把y=1代入①得,3x﹣4=2,解得x=2,所以,方程组的解是;(2)①×2﹣②×3得,﹣17y=5a﹣27,即y,解0,得,a,∴当a时,y≥0.【点评】此题考查的是二元一次方程组和解一元一次不等式,明确解题步骤是关键.11.(2020春•张家港市校级月考)已知关于x,y的方程组.(1)求方程组的解(用含a的代数式表示);(2)若方程组的解满足xy<0,求a的取值范围.【分析】(1)利用加减消元法解之可得;(2)根据xy<0得出关于a的不等式组,解之可得.【解析】(1)两个方程相加,得:3x=6a+3,解得x=2a+1,将x=2a+1代入2x+y=5a,得:4a+2+y=5a,解得y=a﹣2,∴方程组的解为;(2)根据题意,得:或,解得a<2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.(2018春•开福区校级期中)已知关于x、y的方程组的解满足不等式x+y <3.(1)求实数a的取值范围;(2)在(1)的条件下,解关于a的方程|a﹣1|2.【分析】(1)先用a表示出x、y的值,再代入不等式x+y<3即可得出关于a的不等式,进而得出a的取值范围.(2)先取绝对值,再解一元一次方程即可求解.【解析】,①+②得3x=6a+3,解得x=2a+1;把x=2a+1代入①得2a+1﹣y=3,解得y=2a﹣2,∵x+y<3,∴2a+1+2a﹣2<3,解得a<1.故实数a的取值范围为a<1;(2)∵a<1,∴|a﹣1|2可以变形为﹣a+12,解得a.【点评】本题考查的是解二元一次方程组及一元一次不等式,先根据题意用a表示出x、y的值是解答此题的关键.13.(2019春•新野县期中)已知关于x的二元一次方程组(k为常数).(1)求这个二元一次方程组的解(用k的代数式表示).(2)若方程组的解满足x+y>5,求k的取值范围.【分析】(1)利用加减消元法求解可得;(2)由方程组的解满足x+y>5,得5,解之可得.【解析】(1)①+②得4x=2k﹣1,∴,代入①得,所以方程组的解为;(2)方程组的解满足x+y>5,所以5,∴.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.(2018春•宽城区期中)感知:解方程组,下列给出的两种方法中,最佳的方法是(B)(A)由①,得x代入②,先消去x,求出y,再代入求解;(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:利用最佳的方法解方程组应用:若关于x、y的二元一次方程组的解中x的值是正数,则a的取值范围为a>4.【分析】感知:根据题目中的解答过程可知(B)种方法简答;探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a的代数式表示出x,再根据方程组的解中x是正数,从而可以求得a的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B),故答案为:(B);探究:,将①代入②,得2×2018﹣5y=3951,解得,y=17,将y=17代入①,得x=2001,故原方程组的解是;应用:,将①代入②,得,解得,x,∵关于x、y的二元一次方程组的解中x的值是正数,∴0,解得,a>4,故答案为:a>4.【点评】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.15.(2019春•房山区期中)关于x,y的二元一次方程组的解满足x+y >5.求m的取值范围.【分析】将两个方程相加得出3x+3y=﹣2m+2,结合x+y>5知3x+3y>15,据此列出关于m的不等式,解之可得.【解析】两个方程相加可得3x+3y=﹣2m+2,∵x+y>5,∴3x+3y>15,则﹣2m+2>15,解得m.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.(2016春•衡阳县校级期末)已知x=1满足不等式组,求a的取值范围.【分析】首先对不等式组进行化简,根据不等式的解集的确定方法,就可以得出a的范围.【解析】将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a.不等式组解集是a≤1,a的取值范围是a≤1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(2019春•雁江区期末)已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解集为x>1.【分析】首先对方程组进行化简,根据方程的解满足x为非正数,y为负数,就可以得出m的范围,然后再化简(2),最后求得m的值.【解析】(1)解原方程组得:,∵x≤0,y<0,∴,解得﹣2<m≤3;(2)|m﹣3|﹣|m+2|=3﹣m﹣m﹣2=1﹣2m;(3)解不等式2mx+x<2m+1得(2m+1)x<2m+1,∵x>1,∴2m+1<0,∴m,∴﹣2<m,∴m=﹣1.【点评】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(2020春•南关区月考)感知:解方程组,下列给出的两种方法中,方法简单的是B.(A)由①,得x,代入②,先消去x,求出y,再代入求解.(B)将①代入②,得4×7﹣y=27,解得y=1,再代入求解.探究:解方程组.应用:若关于x,y的二元一次方程组的解中的x是正数,则a的取值范围为a>4.【分析】感知:根据题目中的解答过程可知(B)种方法简答;探究:根据感知中的解答方法可以解答此方程组;应用:根据感知中的方法,可以用含a的代数式表示出x,再根据方程组的解中x是正数,从而可以求得a的取值范围.【解析】感知:由题目中的解答过程可知,最佳的方法是(B),故答案为:(B);探究:,将①代入②,得1009﹣5y=1094,解得,y=﹣17,将y=﹣17代入①,得x=2035,故原方程组的解是;应用:,将①代入②,得,解得,x,∵关于x,y的二元一次方程组的解中的x是正数,∴0,解得,a>4,故答案为:a>4.【点评】本题考查解一元一次不等式、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.19.(2020春•荔城区校级月考)已知关于x、y的方程组.(1)若此方程组的解是二元一次方程2x+3y=16的一组解,求m的值;(2)若此方程组的解满足不等式x+3y>6,求m的取值范围.【分析】(1)根据方程组的解法解答即可;(2)根据不等式的解法解答即可.【解析】(1),①﹣②得:3y=﹣6m,解得:y=﹣2m,①+②×2得:3x=21m,解得:x=7m,将x=7m,y=﹣2m代入2x+3y=16得:14m﹣6m=16,解得m=2;(2)由(1)知:x=7m,y=﹣2m,代入x+3y>6,得(﹣6m)>6,∴m.【点评】此题考查解一元一次不等式问题,关键是根据一元一次不等式的解法解答.20.(2020春•宝应县期末)已知关于x,y的二元一次方程组.(1)若满足方程x﹣2y=k,请求出此时这个方程组的解;(2)若该方程组的解满足x>y,求k的取值范围.【分析】(1)把x与y的值代入已知方程求出k的值,进而求出方程组的解即可;(2)表示出方程组的解,根据x>y,求出k的范围即可.【解析】(1)把代入x﹣2y=k得:k=3+4=7,方程组为,①﹣②×2得:y=﹣9,把y=﹣9代入①得:x=﹣11,则方程组的解为;(2),①﹣②得:x﹣y=5﹣k,∵x>y,即x﹣y>0,∴5﹣k>0,解得:k<5.【点评】此题考查了解一元一次不等式,解二元一次方程组,熟练掌握各自的解法是解本题的关键.21.(2020春•万州区期末)已知方程组的解满足x﹣2y<8.(1)求m的取值范围;(2)当m为正整数时,求代数式2(m2﹣m+1)﹣3(m2+2m﹣5)的值.【分析】(1)解方程组得出x=2m+1,y=1﹣2m,代入不等式x﹣2y<8,可求出m的取值范围;(2)根据题意求出m=1,化简原式即可得出答案.【解析】(1)解方程组得,,∵x﹣2y<8,∴2m+1﹣2(1﹣2m)<8,解得,m.(2)∵m,m为正整数,∴m=1,∴原式=2m2﹣2m+2﹣3m2﹣6m+15=﹣m2﹣8m+17.当m=1时,原式=﹣1﹣8+17=8.【点评】本题考查了解二元一次方程组和一元一次不等式的解法,熟练掌握二元一次方程组的解法是解题的关键.22.(2020春•叙州区期末)若关于x、y的二元一次方程组.(1)若方程组的解满足x﹣y=1,求k的值;(2)若x+y≤﹣1,求k的取值范围.【分析】(1)先利用加减消元法解方程组得到,则利用x﹣y=1得到﹣17k﹣15﹣(9k+10)=1,然后解关于k的方程即可;(2)利用x+y≤﹣1得到﹣17k﹣15+9k+10≤﹣1,然后解关于k的不等式即可.【解析】(1)解方程组得,∵x﹣y=1,∴﹣17k﹣15﹣(9k+10)=1,∴k=﹣1;(2)∵x+y≤﹣1,∴﹣17k﹣15+9k+10≤﹣1,∴k.【点评】本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.也考查了解二元一次方程组.23.(2014春•福清市校级期末)已知不等式组(1)当k=﹣2时,不等式组的解集是:﹣1<x<1;当k=3时,不等式组的解集是:无解(2)由(1)可知,不等式组的解集随k的值变化而变化,若不等式组有解,求k的取值范围并求出解集.【分析】(1)把k=﹣2和k=3分别代入已知不等式组,分别求得三个不等式的解集,取其交集即为该不等式组的解集;(2)当k为任意有理数时,要分1﹣k<﹣1,1﹣k>1,﹣1<1﹣k<1三种情况分别求出不等式组的解集.【解析】(1)把k=﹣2代入,得,解得﹣1<x<1;把k=3代入,得,无解.故答案是:﹣1<x<1;无解;(2)若k为任意实数,不等式组的解集分以下三种情况:当1﹣k≤﹣1即k≥2时,原不等式组可化为,故原不等式组的解集为无解;当1﹣k≥1即k≤0时,原不等式组可化为,故原不等式组的解集为﹣1<x<1;当﹣1<1﹣k<1即0<k<2时,原不等式组可化为,故原不等式组的解集为﹣1<x<1﹣k.【点评】本题考查的是不等式的解集,特别注意在解(2)时要分三种情况求不等式组的解集.24.(2020春•海淀区校级期中)已知关于x,y的方程组的解满足x<y,求p的取值范围?【分析】解不等式组求出,再根据x<y得出关于p的不等式,解之可得答案.【解析】解方程组,得:,∵x<y,∴p+5<﹣p﹣7,解得p<﹣6.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.25.(2020春•沭阳县期末)关于x、y的方程组的解满足x+y.(1)求k的取值范围;(2)化简:|5k﹣1|﹣|4﹣5k|.【分析】(1)两方程相加、化简得出x+y,结合x+y知,解之可得答案;(2)根据绝对值的性质去绝对值符号,再去括号、合并即可得.【解析】(1)将两个方程相加可得3x+3y=k+1,则x+y,∵x+y,∴,解得k;(2)原式=5k﹣1﹣(5k﹣4)=5k﹣1﹣5k+4=3.【点评】本题主要考查解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.。
方程与不等式习题(2016.3.13)
一.选择题(共15小题)
1.已知关于x的方程(2a+b)x﹣1=0无解,那么ab 的值是()
A.负数 B.正数 C.非负数D.非正数
2.某商场将一款品牌时装按标价打九折出售,可获利80%;若按标价打七折出售,可获利()A.30% B.40% C.50% D.56%
3.已知等式3a=2b+5,则下列等式中不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6
C.3ac=2bc+5 D.a=
4.下列等式变形正确的是()
A.由a=b ,得=
B.由﹣3x=﹣3y,得x=﹣y
C .由=1,得x=
D.由x=y ,得=
5.如图所示,两个天平都平衡,
则三个球体的重量等于()
个正方体的重量.
A.2 B.3 C.4 D.5
6.已知,且x﹣y<0,则m的取值范围为()
A.m B.m C.m D.m
7.如图,在矩形ABCD中,AB=4,
BC=5,点E、F、G、H分别在
已知矩形的四条边上,且四边形
EFGH也是矩形,GF=2EF.若设
AE=a,AF=b,则a与b满足的
关系为()
A .
B .
C .
D .
8.若关于x 的分式方程=2的解为非负数,则m
的取值范围是()
A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1
9.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()
A .
B .
C .+4=9
D .
10.若关于x 的方程有增根,则m的值为()A.0 B.1 C.﹣1 D.2
11.若不等式组无解,则实数a的取
值范围是()
A.a≥﹣1 B.a<﹣1 C.a≤1 D.a≤﹣1 12.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()
A .
B .
C .
D .
13.若不等式组恰有两个整数解,则m
的取值范围是()
A﹣1≤m<0B﹣1<m≤0 C﹣1≤m≤0 D﹣1<m<0
判断关于x的方程ax+bx+c=0(a≠0)的一个解x的范围是()
A .x <3.24 B.3.24<x<3.25
C.3.25<x<3.26 D.3.25<x<3.28
15.已知锐角A满足关系式:(2sinA+1)(3sinA ﹣1)=0,则sinA=()
A .﹣或
B .﹣C.D.30°
16.若关于x的方程k2x2﹣(2k+1)x+1=0有实数根,则k的取值范围是()
A.﹣B.C.D.k≥﹣且k≠0 二.填空题
第1页(共3页)
17.关于x的方程x2﹣4x+3=0与
=有一个解
相同,则a=.
18.若关于x 的方程=+1无解,则a的值是.
19.我们定义=ad﹣bc ,例如=2×5﹣3×4=10﹣12=﹣2,若x,y均为整数,且满足1<<3,则x+y的值是.
20..关于x的反比例函数y=
的图象如图,A、P为该图象上
的点,且关于原点成中心对
称.△PAB中,PB∥y轴,AB∥x
轴,PB与AB相交于点B.若
△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是.
21.如果m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣
mn+2m+2015=.
三.解答题(共3小题)
22某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?
23某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5
台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?24保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A 型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
25、2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.
(1)求平均每年下调的百分率;
(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)
26、关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.
(1)求实数k的取值范围.
(2)若方程两实根x1,x2满足|x1|+|x2|=x1•x2,求k的值.
第2页(共3页)
方程与不等式习题(2016.3.10)
参考答案
一.选择题(共15小题)
1.D;2.B;3.C;4.A;5.D;6.D;
7.C;8.A;9.B;10.D; 11.A;
12.C; 13.D; 14.A; 15.A;
二.填空题(共4小题)
16.1;17.1或;18.±3;19.a>b>c;
三.解答题(共3小题)
20.;21.;22.;
第3页(共3页)。