经济数学模型
- 格式:ppt
- 大小:1.01 MB
- 文档页数:85
经济数学模型大体上可分为机制分析模型、数据分析模型和实验仿真模型三大类,
第一类机制分析模型是对经济现象进行简化、抽象, 从某些假定出发, 通过严格的逻辑推理, 揭示经济现象的规律。
这一类模型并不直接处理实际的经济数据, 着重点在于逻辑推导过程的严密性。
如果推导没有错误, 只要假设是正确的, 它的结论就是可以。
第二类是数据分析模型。
这类模型利用现实的经济数据, 在一定经济理论框架下进行计算, 得出结论。
其中最有代表性的是经济计量模型。
经济计量学, 按其创立者弗里希所说, 是经济理论、统计学和数学的结合, “所有三者的统一才是强有力的, 而这种统一就构成经济计量学。
”与机制研究模型相比, 经济计量模型直接处理现实数据, 给人一种结合实际的感觉,因此更容易为经济学家和社会大众所接受。
第三类是实验仿真模型。
仿真模型也称为模拟模型。
这里主要指计算机仿真模型, 就是
在计算机上通过特殊平台再现真实的经济系统, 在其中进行有关实验得到相应结论。
它可用于直接进行经济模拟实验, 例如模拟股市交易等, 也可以用于检验某种经济理论。
仿真模型可以从相对简单的微观个体活动导出宏观层面的复杂行为, 可用于探讨一些未知规律, 关于复杂系统的仿真研究已成为有力的研究工具。
经济学中的数学模型一、引言经济学作为一门社会科学,致力于研究资源的分配和利用,以及人们在面对稀缺资源时的决策行为。
在经济学的发展过程中,数学模型的应用逐渐成为一种重要的工具。
本文将介绍经济学中的数学模型,并探讨其在经济学研究中的应用和意义。
二、数学模型在经济学中的应用1. 边际分析模型边际分析是经济学中的一个重要概念,通过数学模型可以对边际效应进行量化分析。
例如,在生产理论中,通过建立边际生产力模型,可以帮助企业确定最优生产要素的配置,从而实现生产效率的最大化。
2. 供需模型供需关系是经济学研究中的基本概念,通过供需模型可以对市场行为进行建模。
例如,通过供给曲线和需求曲线的交叉点确定市场均衡价格和数量,进而分析价格变动对供求关系的影响。
3. 游戏论模型游戏论是经济学中的一个重要分支,通过数学模型可以对博弈情景进行建模分析。
例如,在竞争市场中,通过建立博弈论模型,可以研究企业之间的策略选择和市场均衡问题,为市场参与者提供决策依据。
4. 成长模型经济增长是经济学中的一个核心问题,通过数学模型可以对经济增长进行研究和预测。
例如,通过建立可持续增长模型,可以分析投资、技术创新等因素对经济增长的影响,为国家和企业的发展提供政策建议。
三、数学模型在经济学研究中的意义1. 精确度提高数学模型可以将抽象的概念和关系具体化,通过具体的数值计算和推导,提高了研究的精确性。
经济学研究需要考虑大量的变量和因素,数学模型的运用可以帮助经济学家更好地理解和解释经济现象。
2. 预测和决策支持数学模型可以通过模拟和预测,为决策者提供科学的决策依据。
例如,通过建立宏观经济模型,可以对政府政策的实施效果进行预测,为政策制定和调整提供参考。
3. 研究交叉学科经济学和数学之间存在着密切的联系,通过数学模型的应用,可以促进经济学与其他学科的交叉研究。
例如,通过运用数学模型研究经济与环境、经济与心理学等领域的关系,可以拓宽经济学的研究领域。
经济学中的数学模型经济学作为一门社会科学,以研究人类的经济行为及其影响为主要对象。
为了更准确地描述和预测经济现象,经济学中引入了数学模型作为分析工具。
数学模型在经济学研究中起到了至关重要的作用,本文将探讨经济学中的数学模型以及其应用。
一、数学模型的定义和意义在介绍数学模型之前,我们首先需要了解数学模型的定义和意义。
数学模型是对于研究对象内部运行机理和相互关系的数学化描述。
它通过建立一组方程或不等式来表达经济变量之间的关系,从而对经济现象进行定量分析。
数学模型在经济学中具有重要的意义。
首先,数学模型可以提供精细的定量分析,帮助经济学家理解经济现象的本质。
其次,数学模型可以用于预测经济走势和制定政策,为决策者提供科学的依据。
最后,数学模型还可以简化复杂的经济问题,使经济学研究变得更加系统和可行。
二、经济学中的常见数学模型在经济学中有许多不同类型的数学模型,下面我们将介绍其中的几个常见类型。
1. 需求与供给模型需求与供给模型是研究市场供求关系的经典模型。
通过需求曲线和供给曲线的交叉点,可以确定商品的均衡价格和数量。
这个模型对于研究市场变动和政策调控具有指导意义。
2. 资本积累模型资本积累模型是用来研究经济增长和投资决策的模型。
它通过考虑储蓄率、投资回报率等因素来分析不同经济体的发展走势,并可用于评估政策对经济增长的影响。
3. 产出模型产出模型是用来研究经济总产出和经济增长的模型。
其中最著名的是凯恩斯的总产出模型,即凯恩斯经济学的基础。
产出模型通过考虑消费、投资、政府支出等因素来分析经济活动和经济波动。
4. 游戏论模型游戏论模型是用来研究决策者之间相互作用和博弈行为的模型。
它通过建立数学规则和策略分析来预测决策者的行为和决策结果。
游戏论模型主要应用于研究市场竞争、合作与冲突等问题。
三、数学模型的应用案例数学模型在经济学中有广泛的应用,下面我们将介绍几个经典的应用案例。
1. 宏观经济政策分析数学模型可以用于分析宏观经济政策对经济增长、就业率和通货膨胀率等变量的影响。
数学模型在经济中的应用数学模型是指用数学语言和数学符号来描述现实问题和规律的工具。
在经济学领域,数学模型被广泛应用于经济分析、预测和决策等方面,起到了重要的作用。
本文将探讨数学模型在经济中的应用,并介绍一些常见的数学模型。
一、供求模型供求模型是经济学中应用最广泛的数学模型之一。
它通过建立供给曲线和需求曲线来描述市场上商品的供求关系。
供求模型可以用来分析价格变动对市场的影响,如价格上升会导致需求下降,供给增加等。
供求模型也可以预测市场均衡价格和数量,为政府部门和企业提供决策依据。
二、成本效益模型在经济中,企业需要对不同的投资决策进行评估,而成本效益模型可以帮助企业进行经济分析。
成本效益模型可以将投资成本和预期收益进行量化,从而评估不同项目的可行性和优先级。
通过使用成本效益模型,企业可以更加科学地进行投资决策,提高资源的利用效率。
三、风险模型风险模型是用于评估风险和不确定性的数学模型。
在经济中,风险是无法避免的,但可以通过建立风险模型来进行评估和控制。
风险模型可以根据历史数据和概率理论来计算风险的可能性和影响程度,从而帮助企业和个人制定风险管理策略。
四、优化模型优化模型是在经济中常用的数学模型之一。
优化模型可以帮助企业和个人在有限的资源下,寻找最优的决策方案。
在生产计划、供应链管理等领域,优化模型可以帮助企业确定最佳的生产数量、配送方案等,从而提高效率和降低成本。
五、经济增长模型经济增长模型是用来描述经济发展和增长的数学模型。
通过对经济各要素和参数的建模,经济增长模型可以预测经济的长期趋势和发展方向。
经济增长模型对于政府决策和宏观经济政策的制定具有重要意义,可以帮助政府制定合理的产业政策和税收政策,促进经济的可持续发展。
综上所述,数学模型在经济中发挥了重要的作用。
供求模型、成本效益模型、风险模型、优化模型和经济增长模型等,都为经济分析、预测和决策提供了有力工具。
通过合理应用数学模型,可以提高经济管理的科学性和有效性,促进经济的发展和进步。
数学模型在经济学领域的应用在经济学领域,数学模型被广泛应用于研究和解决各种经济问题。
数学模型是通过数学符号和公式来表示在现实世界中的经济行为、经济关系和经济现象,并利用适当的数学方法进行解决的理论体系。
数学模型可以不受现实世界中诸如成本、人情、情感等因素的影响,由此获得一个比较理性化的理论体系,因而在经济学研究中发挥着不可替代的作用。
一、宏观经济数学模型宏观经济数学模型是由家庭、企业和政府这三个主要经济活动主体进行的表示宏观经济关系和宏观经济现象的模型。
这些模型通常包括物价水平、通货膨胀、失业、经济增长和物资供应等重要宏观经济指标。
使用数学模型进行研究可以更准确地预测和评估宏观经济变化的趋势和规律,辅助政府有效地制定政策。
例如,宏观经济学常用的圆流模型就是一个简单而常用的模型,它描述了市场中的产品交换和资本流动。
这个模型中,家庭是雇佣劳动力与支付工资的劳动力供给者,而企业则是生产商品和服务的主要供应者。
它描述了一个三者之间的流动循环系统,涉及到收入和支出的交换。
圆流模型可以用数学方程式进行建模,方便研究人员和政府制定宏观经济政策,以促进全国经济的持续稳定发展。
二、管理学数学模型管理学数学模型是针对企业或组织内部问题而设计的经济研究应用中的数学模型。
这些模型旨在帮助经理更好地将资源配置进行最优化并实现并优化企业效益。
这些模型通常包括库存管理、生产计划、运输问题、人力资源分配等问题。
例如,库存模型被广泛应用于管理学领域。
在生产和销售方面,公司面临着需要持有特定数量的物品和货物的问题。
库存模型可以帮助公司在不浪费资金或过多的货物积压的情况下,找到最合适的库存水平。
数学模型的使用可以更准确地预测销售和生产的水平,降低运营成本和不良资产的损失。
三、金融学数学模型金融学数学模型主要围绕欧洲期权、亚式期权、触限期权、二元期权和普通期权等进行建模的一档数学分析技术。
金融数学模型的应用可以改善金融体系的效率,同时可以降低风险,并提高收益。
经济学数学模型引言经济学是一门研究资源配置和决策制定的学科,而数学作为一种强有力的工具,在经济学中扮演着重要的角色。
经济学数学模型是指利用数学方法来形式化经济学理论和分析经济现象的模型。
通过建立数学模型,经济学家可以更好地理解经济系统的运作规律,预测经济发展趋势,并为政策制定提供科学依据。
本文将介绍几种常见的经济学数学模型。
需求-供给模型需求-供给模型是经济学中最常用的数学模型之一,用于研究市场上商品的价格和数量的决定。
该模型基于以下假设:需求曲线表示消费者对商品的需求,供给曲线表示生产者对商品的供给。
需求曲线下降,表示消费者对商品的需求随价格上升而减少;供给曲线上升,表示生产者对商品的供给随价格上升而增加。
需求-供给模型的基本思想是,在市场上,当需求与供给相等时,价格与数量达到均衡水平。
需求-供给模型的数学表达式可以用以下方程表示:需求曲线:Qd = a - bP供给曲线:Qs = c + dP其中,Qd表示需求数量,Qs表示供给数量,P表示价格,a、b、c和d是模型中的常数。
通过求解需求曲线与供给曲线的交点,可以找到均衡价格和数量。
边际效用理论边际效用理论是微观经济学中的一种数学模型,用于解释人们做出经济决策的依据。
该模型基于以下假设:人们在追求满足需求时,会将有限的资源用于不同的选择;人们会根据每个选择给予的满足度来做出决策。
边际效用是指每增加一单位资源所带来的满足度增加量。
边际效用理论的数学表达式可以用以下方程表示:边际效用:MU = ΔU / ΔQ其中,MU表示边际效用,U表示总效用,Q表示消费数量,Δ表示增量。
通过计算每个选择的边际效用,人们可以选择满足度最大化的组合。
生产函数模型生产函数模型用于描述生产过程中产出与投入之间的关系。
该模型基于以下假设:生产过程中,生产要素(如劳动力和资本)经过组合和转化,可以产生特定数量的产品。
生产函数模型可以反映生产要素与产出之间的数量关系。
生产函数模型的数学表达式可以用以下方程表示:产出:Y = f(K, L)其中,Y表示产出,K表示资本,L表示劳动力,f表示生产函数。
九个基本经济数学模型:1、边际分析模型:边际成本:设成本函数为:C=C(q) (q是产量)则边际成本:表示产量为q时生产1个单位产品所花费的成本。
边际收益:设需求函数为P=P(q) (q是产量,P是价格)则收益函数为:R=R(q)=q﹒p(q)边际收益为:表示销售量为q时销售1个单位产品所增加的收入。
边际利润:设利润函数L=L(q)=R (q)-C(q) 则边际利润ML=L’(q)= 边际利润ML=L’(q)表示销售量为q时销售点1个单位产品的所增加的利润。
2、弹性分析模型:需求价格弹性:设需求函数q=q(p),q是需求量,P是价格。
则需求价格弹性:当价格上升百分之一时,需求量减少百分之一;当价格下降百分之一时,需求量上升百分之一需求收入弹性:需求量是收入的(单增)函数,q=q(R),q是需求量,R是收入,则需求收入弹性当收入增加百分之一时,需求量增加百分之;当收入减少百分之一时,需求量减少百分之3、最大利润模型:设总利润L=L(q)=R(q)-C(q)L(q)取得最大利润的必要条件:L(q)取得最大利润的充分条件:4、最优批量模型:(其中:T总成本,Q为每批产量,S为产品的调整准备成本,A为全年产量)得5、线性回归方程:模型设变量x与y存在线性关系,y=ax+b,对n 项实验得n对数据(x1、y1), (x2、y2),………(xn、yn)。
可求出则y=ax+b6、线性规划数学模型:1 2 1式称为目标函数,2式称为约束条件x1、x2………, xn称为决策变量,满足2式的一组变量值称为线性规划问题的可行解,使1式达到最大(小)值的可行解称为最大解。
7、投入产出数学模型:投入产出表(略)产出分配平衡方程:(i=1,2,…...,n)投入构成平衡方程:(j=1,2,…...,n)是直接消耗系数设则投入产出数学模型完全消耗系数: 有:8、风险型决策数学模型:1期望值准则如果用A表示各行动方案的集合,N表示各自然状态的集合,P是各状态出现的概率向量,M 是益损值的矩阵,即这时,则决策实质就是求向量E(A)的最大元或最小元对应的行动方案。
经济学模型分析经济学模型是经济学研究的基础和工具之一,通过对不同因素的定量分析和模拟,可以帮助我们更好地理解经济运行的规律和机制。
在本文中,我们将深入探讨几种常见的经济学模型,并分析它们在解释经济现象和预测经济走势中的应用。
一、供求模型供求模型是最基本的经济学模型之一,它描述了市场上商品和劳动力的供给和需求之间的关系。
供给曲线表示在不同价格下生产者愿意提供的数量,需求曲线表示在不同价格下消费者愿意购买的数量。
通过供求曲线的相交点,我们可以得出市场的均衡价格和数量,进而预测市场的供需状况和价格波动。
二、投资-储蓄模型投资-储蓄模型是描述国民经济中资本形成和储蓄投资决策的模型。
通过这个模型,我们可以分析国民收入、利率、投资支出和资本形成之间的关系,揭示储蓄和投资对经济增长、通货膨胀和利率水平的影响。
这对政府决策、企业战略和个人理财都有着重要的指导作用。
三、货币政策模型货币政策模型是分析中央银行货币政策对经济的影响的模型,常用的有IS-LM模型和AD-AS模型等。
IS-LM模型描述了货币政策对利率和收入的影响,AD-AS模型则分析了货币政策对总需求和总供给的调控效果。
这些模型有助于我们预测通货膨胀、失业和利率等宏观经济指标的变化,为货币政策的制定提供理论支持。
四、经济增长模型经济增长模型是研究长期经济增长的模型,代表性的有哈罗德-多马模型和所罗门-斯旺模型。
这些模型主要分析了劳动力、资本积累和技术进步对经济增长的作用机制,揭示了经济转型、产出率提高和收入分配等方面的规律。
通过经济增长模型的分析,我们可以预测不同国家和地区未来的经济增长趋势和动力来源。
综上所述,经济学模型在分析经济现象、预测经济走势和指导政策制定中具有不可替代的作用。
不同的经济学模型适用于不同的问题和场景,在实际应用中我们可以根据具体情况选择合适的模型进行分析和研究,以更好地理解和应对经济运行中的各种挑战和机遇。
希望本文对您有所帮助,谢谢阅读。
经济数学模型经济数学模型(economic mathematical model)经济数学模型:经济活动中数量关系的简化的数学表达。
[编辑]经济数学模型的种类反映经济数量关系复杂变化的经济数学模型,可按不同的标准分类。
(一)、按经济数量关系,一般分为三种:经济计量模型、投入产出模型、最优规划模型1、经济计量模型反映经济结构关系,用来分析经济波动的原因和规律,是一种社会再生产模型。
2、投入产出模型反映部门、地区或产品之间的平衡关系,用来研究生产技术联系,以协调经济活动。
3、最优规划模型反映经济活动中的条件极值问题,是一种特殊的均衡模型,用来选取最优方案。
(二)按经济范围的大小,模型可分为:企业的、部门的、地区的、国家的和世界的五种。
1、企业模型一般称为微观模型,它反映企业的经济活动情况,对改善企业的经营管理有重大意义。
2、部门模型与地区模型是连结企业模型和国家模型的中间环节。
3、国家模型一般称为宏观模型,综合反映一国经济活动中总量指标之间的相互关系。
4、世界模型反映国际经济关系的相互影响和作用。
(三)按数学形式的不同,模型一般分为线性和非线性两种。
1、线性模型是指模型中包含的方程都是一次方程。
2、非线性模型是指模型中有两次以上的高次方程。
3、有时非线性模型可化为线性模型来求解,如把指数模型转换为对数模型来处理。
(四)按时间状态分,模型有静态与动态两种:1、静态模型反映某一时点的经济数量关系;2、动态模型反映一个时期的经济发展过程,含有时间延滞因素。
(五)按应用的目的,有理论模型与应用模型之分,是否利用具体的统计资料,是这两种模型的差别所在。
(六)按模型的用途,还可分为结构分析模型、预测模型、政策模型、计划模型。
此外,还有随机模型(含有随机误差的项目)与确定性模型(不考虑随机因素)等等分类。
这些分类互有联系,有时还可结合起来进行考察,如动态非线性模型、随机动态模型等等。
[编辑]经济数学模型的建立和应用建立和应用的步骤有:①理论和资料的准备。
经济学中的数学模型与应用在现代经济学中,数学模型是研究的核心工具之一。
它们用于解释现象、预测未来和优化决策。
经济学中的数学模型可以分为数理经济学和计量经济学两类。
在这篇文章中,我们将对这两种类型的模型进行详细的介绍。
一、数理经济学模型1.经济学家的思考数理经济学模型的发展可以追溯到19世纪初,当时经济学家经常在分析经济模型的时候使用代数符号来表达各种关系,这种方法有助于更好地理解经济模型和理论。
这种方法逐渐被经济学家们所采用,并且得到了持续的发展和完善。
2.微观经济学微观经济学是研究单个经济主体行为的经济学,涉及的主要内容包括产者和消费者的行为、市场机制、价格理论等。
微观经济学中的数学模型包括供需模型、生产函数、消费函数、边际效用等等。
这些模型为经济学家提供了一种分析市场行为的有效工具,并为政策制定者提供了有关市场干预的意见。
3.宏观经济学宏观经济学是研究整个经济体制的经济学,主要涉及经济增长、通货膨胀、失业、货币政策等问题。
宏观经济学中的数学模型包括总需求和总供给模型、经济增长模型、通货膨胀预测模型、IS-LM模型等等。
这些模型为政策制定者提供了用于分析经济体制的工具,可以用于预测经济数据并指导宏观经济政策的制定。
二、计量经济学模型1.计量经济学的方法计量经济学是经济学的一个分支,使用统计和计量工具来分析经济学问题。
近年来,计量经济学得到了快速发展,并且在研究区域经济、劳动力市场、商业周期和金融市场等领域中广泛应用。
计量经济学的基本方法包括可行性分析、回归分析、时间序列分析、统计推断和实验经济学等。
2.计量经济学模型计量经济学中的数学模型主要包括回归分析、时间序列模型和面板数据模型等。
回归分析是用于描述因变量如何受到一系列自变量的影响的方法。
时间序列模型的目的是通过对时间序列数据进行建模来预测未来值。
面板数据模型可以将截面数据和时间序列数据结合起来进行分析。
总之,经济学中的数学模型是不断发展和完善的,它们已经成为解决经济问题和对经济现象进行分析的重要工具。
经济理论中的数学模型和公式经济学作为一门社会科学,常常采用数学模型和公式来描述和解释经济现象和规律。
数学模型和公式的运用使经济理论更加具体化,有助于经济学家进行定量分析和预测,提供决策依据和政策建议。
本文将介绍经济理论中常见的数学模型和公式,并探讨其应用。
一、供需模型供需模型是经济学中最基本的模型之一,用来描述市场上商品的供给与需求之间的关系。
在供需模型中,供给和需求函数通常用数学的方式表示,形成供需曲线。
供给曲线表示商品在不同价格下,供给数量的关系。
一般来说,供给数量与商品价格呈正相关关系,即价格上升,供给数量增加;价格下降,供给数量减少。
需求曲线表示消费者在不同价格下,需求数量的关系。
一般来说,需求数量与价格呈负相关关系,即价格上升,需求数量减少;价格下降,需求数量增加。
供需曲线的交点即为市场均衡点,决定了商品的价格和数量。
供需模型可以用来分析价格变动对市场的影响,以及政府政策对市场的调节作用。
二、边际效用理论边际效用理论是微观经济学中的重要理论之一,用来解释消费者决策行为和需求选择。
边际效用是指消费者多消费或少消费一单位产品所带来的额外满足感。
边际效用的数学表达通常使用微分形式,即边际效用等于消费者对该单位产品的偏微分。
边际效用递减的原理指出,随着消费数量的增加,每单位产品的边际效用逐渐下降。
边际效用理论可以应用于消费者的最优选择问题。
消费者追求的是在有限的预算约束下,使得边际效用与商品价格的比值最大化。
通过求解边际效用的一阶导数等于价格比率,可以确定消费者的最优消费组合。
三、生产函数与成本函数生产函数描述了输入要素对产出数量的影响关系。
在数学上,生产函数通常以关于输入要素的函数形式表示,例如,Y = f(K, L),其中Y 表示产出数量,K表示资本输入,L表示劳动输入。
成本函数描述了企业在生产过程中产生的成本数量。
成本函数和生产函数之间存在一种数学关系,即两者是通过边际效用平等的方式相连的。
经济学中的数学模型和优化方法经济学从古至今一直是研究人类生产、分配和消费等经济现象的学科。
为了更准确地描述和研究这些现象,经济学家引入了数学模型和优化方法。
本文将探讨经济学中的数学模型以及优化方法的应用。
一、数学模型在经济学中的应用1.1 需求和供给模型需求和供给模型是经济学中最常见的数学模型之一。
需求和供给曲线的交点表示市场均衡价格和数量。
这些曲线可以使用数学方程来表示,例如,需求曲线可以表示为Qd = a - bP,其中Qd表示需求量,P 表示价格,a和b为常数。
1.2 边际效用模型边际效用模型是描述消费者在有限预算下如何选择最优消费组合的模型。
该模型基于消费者边际效用相等的原理,即每单位货币所带来的额外满足感相等。
利用微积分和约束条件,可以通过求解最大化总满足感的问题来得到最优消费组合。
1.3 成本函数和生产函数成本函数和生产函数是描述企业生产和成本结构的数学模型。
生产函数表示产出与投入之间的关系,可以使用方程Q = f(K, L)表示,其中Q表示产出,K表示资本投入,L表示劳动投入。
成本函数表示成本与产出之间的关系,例如,TC = wL + rK,其中TC表示总成本,w表示单位劳动成本,r表示单位资本成本。
二、优化方法在经济学中的应用2.1 线性规划线性规划是经济学中常用的优化方法之一。
在线性规划中,通过线性目标函数和线性约束条件来寻找目标函数取得最大或最小值的最优解。
在经济学中,线性规划可以用于优化资源配置、生产计划和供应链管理等问题。
2.2 最优化理论最优化理论是研究如何寻找目标函数的最优解的数学理论。
在经济学中,最优化理论可以用于求解成本最小化、收益最大化和效用最大化等问题。
最优化方法包括梯度下降法、牛顿法和拉格朗日乘子法等。
2.3 动态规划动态规划是一种通过将复杂问题分解为一系列子问题来求解最优解的方法。
在经济学中,动态规划可以用于决策问题和经济增长模型等。
例如,动态规划可以用于求解投资决策问题,以确定在不同时间段投资的最优策略。
数学模型及经济数学论文一、经济数学模型的内涵经济数学模型可以发挥明晰思路、整理信息、检验理论、计算解答、剖析与处理经济问题的价值。
对范围宽广、彼此联系、极为繁杂的经济数学关系做出剖析探究,离不了经济数学模型的协同合作。
在该模型里面,牵涉的数量极为广泛,包含线性规划、极值定律、概率原理、最大值理论等等。
二、经济数学模型的各项归类反馈经济数学关系繁杂变迁的经济数学模型,能够依照各种准则来归类。
1.依照经济数学关系,普遍分成三类:经济计算模型、投资回报模型、最佳规划模型。
(1)经济计算模型说明的是经济架构关系,以此来剖析经济变动的原因与运动定律,是一项社会重新投产的模型。
(2)投资生产模型说明的是组织、地域或商品彼此间的对等关系,以此来探究生产技艺关联,进而调节经济运动态势。
(3)最佳规划模型说明的是经济项目中的条件最值问题,是一项独特的对等模型,以此来挑选最佳方案。
2.依照经济范畴的宽窄,模型能够分成五类:单位、机构、区域、国家与国际。
(1)单位模型普遍称作微型模型,其说明的是经济单位的经济运作情况,对完善单位的运营管理有很大的价值。
(2)机构模型和区域模型是联接单位模型与国家模型的中部桥梁。
(3)国家模型普遍称作整体模型,整体反映一个国家的经济运作中整体要素之间的彼此关联性。
(4)国家模型说明的是国际经济关联的彼此影响与制约。
3.依照数学样式的不同,模型普遍分成线性与非线性两大项。
(1)线性模型意指模型里面含有的关系式均是一次关系式。
(2)非线性模型意指模型里面含有对于二次的高次方程。
4.依据时间情况,模型分成静止和运动两大类型。
(1)静止模型说明的是某个时间上的经济数学关系。
(2)运动模型说明的是一段时间的经济运行进程,包含时间延长滞后的要素。
5.依据运用的目的,分成原理模型和运用模型两大类,是否运用详细的统计数据,是区分两大模型的根本所在。
6.依据模型的使用归宿,仍能够分成架构剖析模型、可预见模型、政治模型、规划模型。