北师大版初二数学上册《应用二元一次方程组—增收节支》精选练习
- 格式:doc
- 大小:143.00 KB
- 文档页数:5
北师大版八年级数学第五章《4.应用二元一次方程组—增收节支》课时练习题(含答案)一、单选题1.“市长杯”青少年校园足球联赛的比赛规则是:胜一场得3分,平一场得1分,负一场得0分.某校足球队在第一轮比赛中赛了9场,只负了2场,共得17分.那么该队胜了几场,平了几场?设该队胜了x场,平了y场,根据题意可列方程组为()A.7317x yx y+=⎧⎨+=⎩B.9317x yx y+=⎧⎨+=⎩C.7317x yx y+=⎧⎨+=⎩D.9317x yx y+=⎧⎨+=⎩2.从甲地到乙地有一段长x km的上坡与一段长y km的平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.根据题意,可列方程组为()A.34545442x yx y+=⎧⎨+=⎩B.34425454x yx y+=⎧⎨+=⎩C.543460425460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩D.423460545460x yx y⎧+=⎪⎪⎨⎪+=⎪⎩3.甲、乙两个工人按计划一个月应生产680个零件,结果甲超额完成计划的20%,乙超额完成计划的15%,两人一共多生产118个零件,则原计划甲、乙各生产零件数为()A.320,360 B.360,320 C.300,380 D.380,3804.某城市规定:出租车起步价所包含的路程为03km,超过3km的部分按每千米另收费(不足1km的按1km计算).甲说“我乘这种出租车走了9.3km,付了19元.”乙说:“我乘这种出租车走了15.8千米,付了31元.”问:出租车的起步价和超过3km后的每千米的收费标准分别是()A.5元、3元B.4元、3元C.4元、2元D.5元、2元5.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9 B.10 C.11 D.126.某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有()A.4种B.3种C.2种D.1种7.某商场2020年的总利润为100万元,2021年的总收入比2020年增加10%,总支出比2020年减少5%,2021年的总利润为140万元,则2020年的总收入和总支出分别是()A.300万元,210万元B.300万元,200万元C.400万元,300万元D.410万元,310万元8.小明去文具店购买了笔和本子共5件,已知两种文具的单价均为正整数且本子的单价比笔的单价贵.在付账时,小明问是不是27元,但收银员却说一共48元,小明仔细看了看后发现自己将两种商品的单价记反了.小明实际的购买情况是()A.1支笔,4本本子B.2支笔,3本本子C.3支笔,2本本子D.4支笔,1本本子二、填空题9.某种商品的进价为18元,标价为x元,由于该商品积压,商店准备按标价的8折销售,可保证利润率达到20%,则标价为_____.10.有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货___________吨.11.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?”译文是:今有甲、乙两人持钱不知道各有多少,甲若得到乙所有钱的12,则甲有50钱,乙若得到甲所有钱的23,则乙也有50钱,问甲、乙各持钱多少?设甲持钱数为x钱,乙持钱数为y钱,列出关于x,y的二元一次方程组是______.12.小明家准备装修一套新房,若甲、乙两家装修公司合作需6周完成,装修费用为5.2万元;若甲公司单独做4周,剩下的由乙公司做,还需9周完成,此时装修费用为4.8万元.若小明只选甲公司单独完成,则他需要付给甲公司装修费用________万元.13.汽车从甲地到乙地,如果每小时行驶35千米,就要迟到2小时,如果每小时行驶50千米,则可提前1小时到达,则甲、乙两地相距_____________千米.14.如图,用8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),则每块地砖的长为________cm.三、解决问题15.我县境内的某段铁路桥长2200m,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用30s,整列高铁在桥上的时间是25s,试求此列高铁的车速和车长.16.一张方桌由1个桌面,4条桌腿组成,如果1m3木料可以做方桌的桌面50个或做桌腿300条,现有10m3木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?17.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.18.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A型车a辆,B 型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.19.为了做好学校疫情防控工作,某中学开学前需备足防疫物资,准备购买N95口罩(单位:只)和医用外科口罩(单位:包)若干.根据标价,已知购买10只N95口罩和9包医用外科口罩共需236元,购买一只N95口罩的费用是购买一包医用外科口罩费用的5倍.(1)求一只N95口罩和一包医用外科口罩的标价各是多少元?(2)市场上现有甲、乙两所医疗机构对该中学的采购给出如下的优惠方案:甲医疗机构:购买的口罩按标价结算,但每购买一只N95口罩赠送一包医用外科口罩;乙医疗机构:购买的口罩全部按标价打九折结算.若该中学准备购买1000只N95口罩和6000包医用外科口罩,考虑配送成本等其他因素,只能一次性从其中一家采购,问选择哪所医疗机构更省钱?20.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小王与小张各自乘坐滴滴快车,在同一地点约见,已知到达约见地点,他们的实际行车里程分别为6千米与8.5千米,两人付给滴滴快车的乘车费相同(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算两人各自的实际乘车时间。
北师大版八年级数学上册《5.4应用二元一次方程组—增收节支》练习题-带答案一、单选题1.为安置100名中考女生入住,需要同时租用6人间和4人间两种客房,若每个房间都住满,则租房方案共有( )A .8种B .9种C .16种D .17种2.一支部队第一天行军4h ,第二天行军5h ,两天共行军98km ,第一天比第二天少走2km .设第一天和第二天行军的平均速度分别是km /h x 、km /h y 根据题意列方程组正确的是( )A .4598542x y y x +=⎧⎨-=⎩B .4598452x y x y +=⎧⎨-=⎩C .4598542y x y x +=⎧⎨-=⎩D .4598452y x x y +=⎧⎨-=⎩3.为丰富儿童们的体育活动,“向阳花”幼儿园拿出480元钱全部用于购买儿童感统训练球和儿童不倒翁充气沙包球两种活动用品(两种都购买),其中儿童感统训练球每个24元,儿童不倒翁充气沙包球每个36元.则购买方案有( )A .5种B .6种C .7种D .8种4.小亮去文化用品商店购买笔和本,已知本每个3元,笔每支5元,购买笔和本共花费48元,并且本的数量不少于笔的数量,则小亮的购买方案共有 ( )A .1种B .2种C .3种D .4种5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.“践行垃圾分类・助力双碳目标”主题班会结束后,米乐和琪琪一起收集了一些废电池,米乐说:“我比你多收集了7节废电池”琪琪说:“如果你给我8节废电池,我的废电池数量就是你的2倍.”如果他们说的都是真的,设米乐收集了x 节废电池,琪琪收集了y 节废电池,根据题意可列方程组为( )A .()7288x y x y -=⎧⎨-=+⎩B .782(8)x y x y -=⎧⎨-=+⎩C .72(8)x y x y -=⎧⎨-=⎩D .782(8)y x x y -=⎧⎨+=-⎩7.羊城某工程公司下属的甲工程队、乙工程队分别承包了白云区人和镇的A 工程、B 工程,甲工程队晴天需要14天完成,雨天工作效率下降30%;乙工程队晴天需15天完成,雨天工作效率下降20%,实际上两个工程队同时开工,同时完工,两个工程队各工作了( )天.A .15B .16C .17D .188.小明去文具店购买了笔和本子共5件,已知两种文具的单价均为正整数且本子的单价比笔的单价贵.在付账时,小明问是不是27元,但收银员却说一共48元,小明仔细看了看后发现自己将两种商品的单价记反了.小明实际的购买情况是( )A .1支笔,4本本子B .2支笔,3本本子C .3支笔,2本本子D .4支笔,1本本子9.我国古典文学名著《西游记》讲述了孙悟空、猪八戒、沙和尚保护唐僧西天取经,沿途降妖除魔,历经九九八十一难,到达西天取得真经修成正果的故事.现请你欣赏下列描述孙悟空追妖精的数学诗:悟空顺风探妖踪,千里只行四分钟,归时四分行六百,风速多少才称雄?解释:孙悟空顺风去查妖精的行踪,4分钟就飞跃1000里,逆风返回时4分钟走了600里,问风速是多少?( ).A .50里/分B .150里/分C .200里/分D .250里/分10.根据所给信息,请你求出每只玩具小猫和玩具小狗的价格(单位:元)分别为( )A .20,10B .15,20C .10,30D .8,26二、填空题11.某商店原有5袋大米,每袋大米为xkg,上午卖出3袋,下午又购进同样包装的大米4袋,进货后这个商店有大米千克?12.某商场为迎接店庆进行促销,羊绒衫每件按标价的八折出售,每件将赚70元,后因库存太多,每件羊绒衫按标价的六折出售,每件将亏损110元,则该商场每件羊绒衫的进价为元,标价为元.13.为了鼓励更多学生参与科艺节的“数独”游戏,数学组决定购买某款笔记本和圆珠笔作为奖品,请你根据图中所给的该款笔记本和圆珠笔的价格信息,求出该款笔记本的单价是元.14.一水池有一个进水管和三个完全相同的出水管,现水池中有一定量的水,打开进水管(注水速度一致),若只打开一个出水管,则1小时正好能把水池中的水放完;若打开两个出水管,则20分钟正好能把水池中的水放完;问若打开三个出水管,则需要分钟恰好能把水池中的水放完.,两种型号的盒子,单15.小石的妈妈需要购买盒子存放15升的食物,且要求每个盒子要装满.现有A B个盒子的容量和价格如下表.型号A B单个盒子容量(升)23单价(元)1315(1)写出一种购买方案,可以为;(2)恰逢五一假期,A型号盒子正在做促销活动,即购买三个及三个以上可一次性返现金10元,则购买盒子所需要的最少费用为元.16.甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地.已知甲、乙、丙每小时分别能植树8棵,6棵,10棵.若乙在A地植树10小时后立即转到B 地,则两块地同时开始同时结束;若要两块地同时开始,但A地比B地早9小时完成,则乙应在A地植树小时后立即转到B地.三、解答题17.某工厂第一季度生产甲、乙两种机器共480台.改进生产技术后,计划第二季度生产这两种机器共554台,其中甲种机器产量要比第一季度增产10 % ,乙种机器产量要比第一季度增产20 % .该厂第一季度生产甲、乙两种机器各多少台?18.赤峰市正在打造生态文化旅游,某公司向旅游景点捐资购买了一批物资120吨,计划运往景区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如表所示(假设每辆车均满载).车型甲乙丙汽车运载量(吨/辆)5810汽车运费(元/辆)400500600(1)全部物资可用乙型车5辆,丙型车4辆,还需甲型车多少辆来运送?(2)若全部物资都用甲、丙两种车型来运送,需运费8200元,问分别需甲、丙两种车型各几辆?(3)若公司决定用甲、乙、丙三种车共16辆同时均参与运送,你有哪几种安排方案刚好运完?哪种方案运费最省?19.某公司有火车皮和货车可供租用.货主准备租用火车车皮和货车运输一批物资.已知用这种火车车皮6节和货车15辆运货360吨;用火车车皮8节和货车10辆运货440吨.(1)每节火车车皮和每辆货车平均各装物资多少吨?(2)若货主共有300吨货,计划租用该公司的火车车皮或货车正好(每节车皮和每辆货车都满载)把这批货运完,该公司共有哪几种运货方案?写出所有的方案.20.某班为准备半期考表彰的奖品,计划从友谊超市购买笔记本和水笔共40件.在获知某网店有“双十一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.求从网店购买这些奖品可节省多少元.品名商店笔记本(元/件)水笔(元/件)友谊超市 2.42网店2 1.8参考答案1.A2.A3.B4.B5.B6.A7.C8.A9.A10.C11.6x12.650 90013.1514.1215.购买方案为3个A型号,3个B型号7416.18.17.第一季度生产甲种机器220台,乙种机器260台.18.(1)8辆(2)10辆甲型车,7辆丙型车(3)2种安排方案(方案一:6辆甲型车,5辆乙型车,5辆丙型车;方案二:4辆甲型车,10辆乙型车,2辆丙型车);方案二运费最省19.(1)每节火车车皮平均装物资50吨,每辆货车平均装物资4吨(2)四种20.从网店购买这些奖品可节省13元。
5.4 应用二元一次方程组-—增收节支1。
某人以两种形式储蓄了800元,一种储蓄的年利率为10%,另一种储蓄的年利率为11%,一年到期时去提取,他共得到利息85元5角,问两种储蓄他共存了多少钱?解:设两种储蓄各存了x 元、y 元,则⎩⎨⎧=+=+5.85%11%10800y x y x 解得⎩⎨⎧==550250y x 所以两种储蓄各存了250元,550元。
2.小明去某批零兼营的文具商店,为学校美术活动小组的30名同学购买铅笔和橡皮,按商店规定,若给全组每人各买2枝铅笔和1块橡皮,则必须按零售价计算,需支付39元;若给全组每人各买3枝铅笔和2块橡皮,则可以按批发价计算,需支付42元.已知每枝铅笔的批发价比零售价低0.1元,每块橡皮的批发价比零售价低0.25元,求这家商店每支铅笔和每块橡皮的批发价各为多少元?解:设每支铅笔批发价x 元,每块橡皮批发价y 元,可列方程组为⎩⎨⎧=+⨯=+++⨯42)23(3039)]25.0()1.0(2[30y x y x 解得⎩⎨⎧==25.03.0y x 所以每支铅笔、每块橡皮的批发价为0。
3元、0.25元.3。
1995年全国足球甲A 联赛共22轮(即每个队均需参赛22场),全国冠军上海申花队共积46分(胜一场3分,平一场得1分,负一场得0分),并知申花队胜的场数比负的场数的3倍还多2,问申花队胜、平、负各几场?解:设申花队胜、平、负的场数为x 场、y 场、z 场,列方程组得⎪⎩⎪⎨⎧+==+=++2346322z x y x z y x 解得⎪⎩⎪⎨⎧===4414z y x所以申花队胜14场、平4场、负4场。
尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
5.4 《应用二元一次方程组-增收节支》同步练习1.甲、乙两人同时绕400米的环形跑道行走,如果他们同时从同一起点背向而行,2.5分钟可以相遇;如果他们同时从同一点同向而行,12.5分钟甲能追上乙.求甲、乙每人每分钟各走多少米?2.从A 城到B 城,水路比陆路近40千米,上午11时,一只轮船以每小时24千米的速度从A 城向B 城行驶,下午2时,一辆汽车以每小时40千米的速度从A 城向B 城行驶,轮船和汽车同时到达B 城,求A 城到B 城的水路和陆路各多长?3.车间有90名工人,每人平均每天加工轴杆15根或轴承12套,问应该分配多少工人加工轴杆,多少人加工轴承,才能使轴杆和轴承配套.4.汽车往返于A 、B 两地,途经高地C (A 至C 是上坡,C 至B 是下坡),汽车上坡时的速度为25千米/时,下坡速度为50千米/时,汽车从A 到B 需213小时,从B 到A 需4小时,求A 、C 间及C 、B 间的距离.5.一长方形的周长是106cm ,长比宽的3倍多1cm ,求长方形的面积.6.把含盐4%的食盐水和含盐9%的食盐水混合制成含盐5%的食盐水800克,应取前两种食盐水各多少?7.某同学将500元积蓄存入储蓄所,分活期与一年期两种方式存入,活期储蓄年利率为0.99%,一年期年利率为2.25%,一年后共得利息8.73元,求该同学两种储蓄的钱款.参考答案1.甲每分钟走96米,乙每分钟走64米.提示:设甲每分钟走x 米,乙每分钟走y 米,则 ⎩⎨⎧=-=+.4005.125.12,4005.25.2y x y x2.水陆240千米,陆路280千米.3.应该分配40人加工轴杆,50人加工轴承.4.A 、C 间路程为50千米,B 、C 间路程为75千米.5.长方形的长为40cm ,宽为13cm ,面积为5202cm .6.应取4%的食盐水640克,9%的食盐水160克.7.活期储蓄200元,一年期定期存入300元.。
应用二元一次方程组——增收节支1.邵华同学准备用6元钱买大小练习本若干本,已知大,小练习本单价分别为1元,0.5元,若任意选择一种方案购买,则恰好买到8本的概率是()A. B. C. D.2.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8.6.5个店铺,且每组至少有两人,则学生分组方案有()A.6种B.5种C.4种D.3种3.今年校团委举办了“中国梦,我的梦”歌咏比赛,张老师为鼓励同学们,带了50元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本5元,每种笔记本至少买3本,则张老师购买笔记本的方案共有()A.3种B.4种C.5种D.6种4.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种5.某天,一蔬菜经营户60元钱从蔬菜批发市场批了西红柿和豆角共40千克到菜场去卖,西红柿和豆角这天的批发价与零售价如下表所示。
问:他当天卖完这些西红柿和豆角能赚多少钱?6.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?7.甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价的九折出售,这样商店共获利157元,求两件服装的成本各是多少元?8.今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.9.张华到银行以两种形式分别存了2000元和1000元,一年后全部取出,扣除利息所得税后可得到利息43.92元,已知这两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:利息所得税=利息全额×20%)。
北师大新版八年级上学期《5.4 应用二元一次方程组--增收节支》同步练习卷一.选择题(共38小题)1.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x 与y的方程组为()A.B.C.D.2.某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少30个,一个生手工与两个熟手工每天共可制造180个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作x个零件,一个熟手工每天能制造y个零件,根据题意可列方程组为()A.B.C.D.3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.4.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.B.C.D.5.用白铁皮做罐头盒,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?①设用x张制盒身,可得方程2×25x=40(36﹣x);②设用x张制盒身,可得方程25x=2×40(36﹣x);③设用x张制盒身,y张制盒底,可得方程组;④设用x张制盒身,y张制盒底,可得方程组;其中正确的是()A.①④B.②③C.②④D.①③6.购买物品,每人出8元,还余3元,每人出7元,还差4元,人数和价格各是多少?若设有x人,物品价格是y元,则所列方程组正确的是()A.B.C.D.7.某年级学生共有300人,其中男生人数y比女生人数x的2倍少2人,则下面方程组中符合题意的是()A.B.C.D.8.根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装大小两种产品多少瓶?设应该分装大小瓶两种产品x瓶、y瓶,则可列方程组为()A.B.C.D.9.初一1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.10.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y的方程组是()A.B.C.D.11.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x 人,生产螺帽y人,由题意列方程组()A.B.C.D.12.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍.若购1副羽毛球拍和1副乒乓球拍共需70元,小强一共用540元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.B.C.D.13.某校七年级共有学生412人,已知女生人数比男生人数的2倍少62人,设男生,女生的人数分别为x,y人,有题意的方程组()A.B.C.D.14.某文具商店搞促销活动,同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元已知书包标价比文具盒标价的3倍多15元,若设文具盒的标价是x元,书包的标价为y元,可列方程组为()A.B.C.D.15.小程、小芳两人相距10km,小程骑自行车、小芳步行,若两人同时出发相向而行,则1h后相遇;若两人同时出发同向而行,则小程2h可追上小芳,设小程骑自行车的平均速度为xkm/h,小芳步行的平均速度为ykm/h,则可列方程组为()A.B.C.D.16.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是()A.B.C.D.17.在一次献爱心活动中,某学校捐给山区一学校初一年级一批图书,如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本,设这批图书共有y本,该年级共有x 名学生,列出方程组为()A.B.C.D.18.为了绿化校园,甲、乙两班共植树苗30棵,已知甲班植树数量是乙班的1.5倍,设甲班植树x棵,乙班植树y棵根据题意,所列方程组正确的是()A.B.C.D.19.某车间有100名工人生产木材包装箱,已知1名工人每天可以生产200块侧面或150块底面,4块侧面和2块底面正好可以钉成一个包装箱,应如何分配工人生产侧面或底面,才能使生产成的侧面和底面正好配套?若设安排x名工人生产侧面,y名工人生产底面,则可列方程组()A.B.C.D.20.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x张制作盒身、y张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是()A.B.C.D.21.3月12日植树节,某校七年级1班参加义务植树活动,规则是女生每2人用1根竹杠挑1棵树,男生每人用1根竹杠挑2棵树,现有竹杠30根,树种50棵.如果设有x个女生,y个男生,则可列方程组是()A.B.C.D.22.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.23.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.24.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为()A.B.C.D.25.某厂第二车间的人数比第一车间的人数的少30人.如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的.问这两个车间原来各有多少人?设第一车间原来有x人,第二车间原来有y人,依题意可得()A.B.C.D.26.有48支队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队12人,每名运动员只能参加一项比赛.篮球、排球队各有多少支参赛?若设x支篮球队和y 支排球队参赛,根据题意可列二元一次方程组得()A.B.C.D.27.某校准备在国庆节期间组织学生到泰山进行研学旅行,已知老师与学生一共25人参加此次研学旅行,购买门票共花费1700元,门票费用如表格所示,求参加研学旅行的老师和学生各有多少人?设老师有x人,学生有y人,则可列方程组为()A.B.C.D.28.甲、乙两地相距880千米,小轿车从甲地出发2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x 千米,小轿车每小时行y千米,则可列方程组为()A.B.C.D.29.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时,那么在乙出发后经4小时甲追上乙,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.30.从A地到B地有一段上坡路和一段平路,如果车辆保持上坡每小时行驶30km,平路每小时行驶50km,下坡每小时行驶60km,那么车辆从A地到B地需要48分钟,从B地到A地需要27分钟,问A,B两地之间的坡路和平路各有多少千米?若设A,B两地之间的坡路为xkm,平路为ykm,根据题意可列方程组为()A.B.C.D.31.小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为x元,支出为y元,则可列方程组为()A.B.C.D.32.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x 米和y米,则可列方程组为()A.B.C.D.33.若一个三位数与一个两位数的差是100,在三位数的左边写上这个两位数,得到一个五位数;在三位数的右边写上这个两位数,也得到一个五位数,已知前一个五位数比后一个五位数大12600,求这两个数,设两位数为x,三位数为y,根据题意可得方程组()A.B.C.D.34.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时,那么在乙出发后经4小时甲追上乙,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.35.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追击乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.36.永川到成都路程全长288km,一辆小汽车和一辆客车同时从永川、成都两地相向而行,经过1小时50分钟相遇,相遇时小汽车比客车多行驶40km.设小汽车和客车的平均速度为x km/h和y km/h,则下列方程组正确的是()A.B.C.D.37.已知一个两位数,它的十位上的数字x比个位上的数字y大1,若对调个位与十位上的数字,得到的新数比原数小9,求这个两位数,所列方程组正确的是()A.B.C.D.38.甲,乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x米/秒,乙的速度为y米/秒,则下列方程组中正确的是()A.B.C.D.二.填空题(共6小题)39.某地突发地震期间,为了紧急安置房屋倒塌的30名灾民,需要搭建可容纳6人或4人的帐篷若干个,若所搭建的帐篷恰好(既不多也不少)能容纳这30名灾民,则不同的搭建方案有种.40.以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺,绳长,井深各几何若设绳长x尺,井深y尺,则可列方程组为.41.某家具厂有22名工人,每名工人每天可加工3张桌子或10把椅子,1张桌子与4把椅子配成一套,现要求工人每天做的桌子和椅子完整配套而没有剩余,若设安排x名工人加工桌子,y名工人加工椅子,则列出的方程组为.42.已知一个两位数,个位数字与十位数字的和是5,将个位数字和十位数字对调后,新得的两位数比原来的两位数大9,设原来的两位数个位数字为x,十位数字为y,则可列方程组.43.一条船顺流航行每小时行40km,逆流航行每小时行32km,设该船在静水中的速度为每小时xkm,水流速度为每小时ykm,则可列方程组为.44.一条船顺流航行,每小时航行20千米;逆流航行,每小时航行16千米.设这条轮船在静水中的速度是x千米/时,水流速度是y千米/时,根据题意,得方程组:.北师大新版八年级上学期《5.4 应用二元一次方程组--增收节支》2019年同步练习卷参考答案与试题解析一.选择题(共38小题)1.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y人,由题意列出关于x 与y的方程组为()A.B.C.D.【分析】设进2个球的有x人,进3个球的有y人,根据20人共进49个球,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设进2个球的有x人,进3个球的有y人,根据题意得:,即.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.2.某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少30个,一个生手工与两个熟手工每天共可制造180个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作x个零件,一个熟手工每天能制造y个零件,根据题意可列方程组为()A.B.C.D.【分析】找到两个等量关系列出方程组即可.【解答】解:设一个生手工每天能制作x个零件,一个熟手工每天能制造y个零件,根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够根据题意找到两个等量关系,这是列方程的依据.3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设大马有x匹,小马有y匹,根据大马与小马的总匹数是100,1匹大马能拉3片瓦,3匹小马能拉1片瓦共拉100匹瓦,列出方程组,此题得解.【解答】解:设大马有x匹,小马有y匹,根据题意得:.故选:D.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.为了美化校园,学校计划购买甲、乙两种花木共200棵进行绿化,其中甲种花木每棵80元,乙种花木每棵100元,若购买甲、乙两种花木共花费17600元,求学校购买甲、乙两种花木各多少棵?设购买甲种花木x棵、乙种花木y棵,根据题意列出的方程组正确的是()A.B.C.D.【分析】设购买甲种花木x棵、乙种花木y棵,根据总价=单价×数量结合购买两种树苗共200棵,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设购买甲种花木x棵、乙种花木y棵,根据题意得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.用白铁皮做罐头盒,每张铁皮可做盒身25个,或做盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?①设用x张制盒身,可得方程2×25x=40(36﹣x);②设用x张制盒身,可得方程25x=2×40(36﹣x);③设用x张制盒身,y张制盒底,可得方程组;④设用x张制盒身,y张制盒底,可得方程组;其中正确的是()A.①④B.②③C.②④D.①③【分析】根据题意可知,本题中的相等关系是:(1)盒身的个数×2=盒底的个数;(2)制作盒身的白铁皮张数+制作盒底的白铁皮张数=36,再列出方程(组)即可.【解答】解:设用x张制盒身,可得方程2×25x=40(36﹣x);故①正确;②错误;设用x张制盒身,y张制盒底,可得方程组;故③正确;④错误;故选:D.【点评】此题考查从实际问题中抽出二元一次方程组,根据题目给出的条件,找出合适的等量关系注意运用本题中隐含的一个相等关系:“一个盒身与两个盒底配成一套盒”.6.购买物品,每人出8元,还余3元,每人出7元,还差4元,人数和价格各是多少?若设有x人,物品价格是y元,则所列方程组正确的是()A.B.C.D.【分析】设有x人,物品价格是y元,根据“每人出8元,还余3元,每人出7元,还差4元”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设有x人,物品价格是y元,根据题意得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.7.某年级学生共有300人,其中男生人数y比女生人数x的2倍少2人,则下面方程组中符合题意的是()A.B.C.D.【分析】此题中的等量关系有:①某年级学生共有300人,则x+y=300;②男生人数y比女生人数x的2倍少2人,则2x=y+2.【解答】解:根据某年级学生共有300人,则x+y=300;②男生人数y比女生人数x的2倍少2人,则y=2x﹣2.可列方程组.故选:C.【点评】考查了由实际问题抽象出二元一次方程组.找准等量关系是解决应用题的关键,注意代数式的正确书写,字母要写在数字的前面.8.根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比为2:5.已知每天生产这种消毒液22.5吨,这些消毒液应该分装大小两种产品多少瓶?设应该分装大小瓶两种产品x瓶、y瓶,则可列方程组为()A.B.C.D.【分析】设应该分装大小瓶两种产品x瓶、y瓶,根据大瓶和小瓶的销售数量比为2:5及每天生产这种消毒液22.5吨,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设应该分装大小瓶两种产品x瓶、y瓶,根据题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.初一1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.【分析】设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,根据题意得:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y的方程组是()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.11.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x 人,生产螺帽y人,由题意列方程组()A.B.C.D.【分析】等量关系为:生产螺栓的工人数+生产螺帽的工人数=90;螺栓总数×2=螺帽总数,把相关数值代入即可.【解答】解:设生产螺栓x人,生产螺帽y人,根据总人数可得方程x+y=90;根据生产的零件个数可得方程2×15x=24y,可得方程组:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.12.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍.若购1副羽毛球拍和1副乒乓球拍共需70元,小强一共用540元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.B.C.D.【分析】设每副羽毛球拍为x元,每副乒乓球拍为y元,利用购1副羽毛球拍和1副乒乓球拍共需70元,小强一共用540元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,分别得出等式求出答案.【解答】解:设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得:.故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,分别得出等量关系是解题关键.13.某校七年级共有学生412人,已知女生人数比男生人数的2倍少62人,设男生,女生的人数分别为x,y人,有题意的方程组()A.B.C.D.【分析】关系式为:女生人数=2×男生人数﹣4;七年级共有学生412人,把相关数值代入即可求解.【解答】解:女生人数比男生人数的2倍少62人,可列方程为y=2x﹣62,七年级共有学生412人,可列方程为x+y=412,故可列方程组是:.故选:A.【点评】此题主要考查了由实际问题抽象出二元一次方程组,分别得出等量关系是解题关键.14.某文具商店搞促销活动,同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元已知书包标价比文具盒标价的3倍多15元,若设文具盒的标价是x元,书包的标价为y元,可列方程组为()A.B.C.D.【分析】如果设文具盒的标价是x元,书包的标价为y元,根据同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元,以及书包标价比文具盒标价的3倍多15元列出方程组即可.【解答】解:设文具盒的标价是x元,书包的标价为y元,根据题意,得.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.15.小程、小芳两人相距10km,小程骑自行车、小芳步行,若两人同时出发相向而行,则1h后相遇;若两人同时出发同向而行,则小程2h可追上小芳,设小程骑自行车的平均速度为xkm/h,小芳步行的平均速度为ykm/h,则可列方程组为()A.B.C.D.【分析】设小程骑自行车的平均速度为xkm/h,小芳步行的平均速度为ykm/h,根据两人相距10km,两人同时出发相向而行,1h后相遇;同时出发同向而行小程2h可追上小芳,可列方程组求解.【解答】解:设小程骑自行车的平均速度为xkm/h,小芳步行的平均速度为ykm/h,依题意有.故选:C.【点评】本题主要考查了二元一次方程组的应用问题﹣行程问题,根据相遇和追及两种情况列出方程组求解,正确理解题意,找到等量关系是解决问题的关键.16.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是()A.B.C.D.【分析】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组.【解答】解:设一个大桶盛酒x斛,一个小桶盛酒y斛,根据题意得:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x、y的二元一次方程组是解题的关键.17.在一次献爱心活动中,某学校捐给山区一学校初一年级一批图书,如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本,设这批图书共有y本,该年级共有x 名学生,列出方程组为()A.B.C.D.【分析】设这批图书共有y本,该年级共有x名学生,根据“如果该年级每个学生分5本还差3本,如果每个学生分4本则多出3本”,即可列出关于x和y的二元一次方程组.【解答】解:∵该年级每个学生分5本还差3本,∴5x﹣y=3,∵如果每个学生分4本则多出3本,∴y﹣4x=3,两式联立,得:,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,正确找出等量关系,列出二元一次方程组是解题的关键.18.为了绿化校园,甲、乙两班共植树苗30棵,已知甲班植树数量是乙班的1.5倍,设甲班植树x棵,乙班植树y棵根据题意,所列方程组正确的是()A.B.C.D.【分析】根据“甲、乙两班共植树苗30棵,甲班植树数量是乙班的1.5倍”即可得.【解答】解:设甲班植树x棵,乙班植树y棵根据题意,所列方程组为,故选:B.。
5.4 应用二元一次方程组——增收节支一、选择题1.某种商品进价为a 元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以8折(即售价的80%)的价格开展促销活动.这时一件商品的售价为( )A. a 元B. a 8.0元C. a 04.1元D. a 92.0元二、填空题2.为了拓展销路,商店对某种照相机的售价了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,则该照相机的原售价为 元.3.已知乙组人数是甲组人数的一半,若将乙组人数的31调入甲组,则甲组比乙组多15人,设甲组人数为x 人,乙组人数为y 人,根据题意,列出方程组:三、解答题4.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?5.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?6.某人以两种形式储蓄了800元,一种储蓄的年利率为10%,另一种储蓄的年利率为11%,一年到期时去提取,他共得到利息85元5角,问两种储蓄他共存了多少钱?参考答案1.C2.17103.⎪⎪⎩⎪⎪⎨⎧+=+=15323121y y x xy4.解:设这个市现在的城镇人口x 万人,农村人口y 万人, 依题意得: ⎩⎨⎧⨯=+=+%142%1.1%8.042y x y x解得:⎩⎨⎧==2014y x答:这个市现在的城镇人口14万人,农村人口20万人。
5.解:设预定期限是x 天,计划生产y 辆汽车,依题意得:⎩⎨⎧=-=+y x yx 20401035解得:⎩⎨⎧==2206y x答:预定期限是6天,计划生产220辆汽车。
6.解:设一种储蓄他存了x 元,另一种储蓄他存了y 元, 依题意得:⎩⎨⎧=+=+5.85%11%10800y x y x解得:⎩⎨⎧==550250y x答:一种储蓄他存了250元,另一种储蓄他存了550元。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第5单元二元一次方程组应用二元一次方程组——增收节支一、选择题1.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A.+=5300200+150=30 B.+=5300150+200=30C.+=30200+150=5300D.+=30150+200=53002.已知甲、乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为元,年支出为元,则可列方程组为()A.−=400+74=400B.=+400−47=400C.−=400−47=400D.−=400−74=4003.小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材斤,乙种药材斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?()A.20+60=280−=2B.60+20=280−=2C.20+60=280−=2D.60+20=280−=24.某商店将某种碳酸饮料每瓶的价格下调了10%.将某种果汁饮料每瓶的价格上调了5%,已知调价前买这两种饮料各一瓶共花费8元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费19.8元,若设上述碳酸饮料、果汁饮料在调价前每瓶分别为元和元,则可列方程组为()A.+=83×0.9+2×1.05=19.8B.+=83×1.1+2×0.95=19.8C.+=83×1.05+2×0.9=19.8 D.+=83×0.95+2×1.1=19.85.甲、乙两人在环形跑道上匀速跑步,他们同时从同一地点出发,当两人往相反方向跑步时,每隔48秒相遇一次;当两人往相同方向跑步时,每隔8分钟相遇一次.已知甲比乙每分钟快60米.则甲的速度为米/秒.()A.4B. 4.5C.5D. 5.56.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A.12人,15人B.14人,13人C.15人,12人D.13人,14人7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1、11B.7、53C.7、61D.6、508.某出租车起步价所包含的路程为0∼2,超过2的部分按每千米另收费.津津乘坐这种出租车走了7,付了16元;盼盼乘坐这种出租车走了13,付了28元.设这种出租车的起步价为元,超过2后每千米收费元,则下列方程正确的是()A.+7=16+13=28 B.+(7−2)=16+13=28C.+7=16+(13−2)=28 D.+(7−2)=16+(13−2)=289.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:每月用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2019年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()代收电费收据2019年9月电表号1205户名张磊月份9月用电量220度金额112元代收电费收据2019年10月电表号1205户名张磊月份10月用电量265度金额139元A.0.5元,0.6元B.0.4元,0.5元C.0.3元,0.4元D.0.6元,0.7元二、填空题10.某商场新购进一种服装,每套售价1000元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价比原来提高了2%,则调价前上衣的单价是______元.11.为了合理使用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(如表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了千瓦时,“谷电”用了千瓦时,根据题意可列方程组______.用电时间段收费标准峰电08:00~22:000.56元/千瓦时谷电22:00~08:000.28元/千瓦时三、解答题12.某公司存入银行甲、乙两种不同性质的存款共20万元.甲种存款的年利率为1.4%,乙种存款的年利率为3.7%,该公司一年共得利息6250元.求该公司存入银行的甲、乙两种存款分别为多少万元.13.小明家种植水果,去年收支相抵后,结余1200元;今年因为改进了种植技术,他家水果获得丰收,收入比去年增加5%,支出比去年减少15%,今年比去年多结余1140元.如果设小明家去年收入为元,支出为元,那么:(1)将有关的数据填写在下表中:项目收入/元支出/元结余去年1200今年(2)根据表格列方程组为,解得.14.小明作业本中有一页被墨水污染了,已知他所列的方程组是正确的.写出题中被墨水污染的条件,并求解这道应用题.应用题:小东在某商场看中的一台电视和一台空调在“五一”前共需要5 500元.由于该商场开展“五一”促销活动,同样的电视打八折销售,同,于是小东在促销期间购买了同样的电视一台、空调两台,共花费7200元.求“五一”前同样的电视和空调每台各多少元.解:设“五一”前同样的电视每台元,空调每台元,根据题意,得15.某冬奥会纪念品专卖店计划同时购进“冰墩墩”和“雪容融”两种毛绒玩具.据了解,8只“冰墩墩”和10只“雪容融”的进价共计2000元;10只“冰墩墩”和20只“雪容融”的进价共计3100元.(1)求“冰墩墩”和“雪容融”两种毛绒玩具每只进价分别是多少元.(2)该专卖店计划恰好用3500元购进“冰墩墩”和“雪容融”两种毛绒玩具(两种均购买),求专卖店共有几种采购方案.(3)若“冰墩墩”和“雪容融”两种毛绒玩具每只的售价分别是200元,100元,则在(2)的条件下,请选出利润最大的采购方案,并求出最大利润.16.某中学杨老师为学校购买运动会的奖品后,回学校向总务处童老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1200元,现在交还余下的118元.”童老师算了一下,说:“你肯定搞错了.”(1)童老师为什么说他搞错了?请您用已学过的方程知识帮童老师向杨老师解释清楚;(2)杨老师连忙清点购买的物品,发现还买了一个笔记本,但笔记本的单价已模糊不清,只能辨认出应为小于10的整数,那么笔记本的单价可能为多少元?答案CCAADCBDA10.80011.+=950.56+0.28=43.412.解:设该公司存入银行的甲种存款为万元,乙种存款为万元.6250元=0.625万元.根据题意得+=20,1.4%+3.7%=0.625,+=20,1.4%+3.7%=0.625,解得=5,=15.答:该公司存入银行的甲种存款为5万元,乙种存款为15万元.13.解:(1)表格中的数据从左到右依次为:(1+5%);(1−15%);2340;(2)−=12001.05−0.85=2340;=6600=5400.14.解:(1)被墨水污染的条件为:同样的空调每台优惠400元,(2)“五一”前同样的电视每台2500元,空调每台3000元.15.解:(1)设冰墩墩和雪容融两种毛绒玩具每只进价分别是,元,由题意,得8+10=2000 10+20=3100解得=150 =80答:冰墩墩和“雪容融”两种毛绒玩具每只进价分别是150元,80元;(2)设计划购进只“冰墩墩”,只“雪容融”毛绒玩具,由题意,得150+80=3500,即15+8=350∵,均为正整数∴满足条件的,的解是=2,=40或=10,=25或=18,=10.即专卖店共有以下三种采购方案.方案一:买2只”冰墩墩”,40只“雪容融”毛绒玩具.方案二:买10只“冰墩墩”,25只“雪容融”毛绒玩具.方案三:买18只“冰墩墩”,10只“雪容融”毛绒玩具.(3)由题意,得每只“冰墩墩”的利润是200−150=50元.每只“雪容融”的利润是100−80=20元.方案一的利润为2×50+40×20=100+800=900元.方案二的利润为10×50+25×20=500+500=1000元.方案三的利润为18×50+10×20=900+200=1100元.所以采购方案三的利润最大,最大利润为1100元.16.解:(1)设单价为8元的书买了本,单价为12元的书买了本,根据题意得+=1058+12=1200−118,解这个方程组,得=44.5=60.5(不符合题意).所以杨老师肯定搞错了.(2)设笔记本的单价为元,依题意得8+12(105−)=1200−118−,所以178+=4,∵、都是整数,∴178+要能被4整除,∴为偶数.∵为小于10的整数,∴可能为2,4,6,8.当=2时,4=180,=45,符合题意;当=4时,4=182,=45.5,不符合题意;当=6时,4=184,=46,符合题意;当=8时,4=186,=46.5,不符合题意.∴笔记本的单价可能是2元或6元.。
第五章 二元一次方程组4 应用二元一次方程组——增收节支基础过关全练知识点 列方程组解决增收节支问题1.(2022辽宁葫芦岛连山二模)某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,设该农场去年实际生产玉米x吨、小麦y吨,则所列方程组正确的是( ) A.x+y=200(1+5%)x+(1+15%)y=225B.x+y=225(1―5%)x+(1―15%)y=200200y1―15%=225225y1+15%=2002.(2022四川成都郫都月考)小红善于理财,她用两种方式共储蓄1 000元.一种储蓄的年利率为3%,另一种储蓄的年利率为4%,一年后本息和为1 035元(不考虑利息税),则两种储蓄的存款分别为( )A.400元,600元B.500元,500元C.300元,700元D.800元,200元3.【一题多解】【教材变式·P119T4】为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林还草”,其补偿政策如表1.某农户积极响应国家号召,承包了一片山坡地种树、种草,所得到的国家的补偿如表2.种树、种草每亩每年补粮、补钱情况表(表1) 种植名称补偿内容 种树种草补粮150千克100千克补钱200元150元种树、种草亩数及补偿通知单(表2)种树、种草补粮补钱30亩 4 000千克 5 500元问该农户种树、种草各多少亩?()能力提升全练4.【主题教育·生命安全与健康】(2021辽宁本溪期末,10,★★☆)为了研究吸烟与患肺癌之间的关系,某研究机构随机调查了8 000人,并进行统计分析.结果显示:吸烟者中患肺癌的比例是3%,不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多33.在这8 000人中,设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,下面列出的方程组正确的是( )A.x―y=33x×3%+y×0.5%=8000B.x+y=8000x×3%―y×0.5%=33y=33+y0.5%=8000y=8000―y0.5%=335.(2022安徽中考,17,★★☆)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填写下表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y52020211.25x1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元.6.(2022江西中考,17,★★☆)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本,需花费19元;小艺要买7支笔芯,1本笔记本,需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,那么只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品?请通过计算说明.素养探究全练7.【模型观念】为准备趣味跳绳比赛,王老师花100元买了若干条跳绳,已知商店里的跳绳规格与价格如下表:规格A型B型C型跳绳长度(米)4812价格(元/条)469 (1)若王老师购买了三种跳绳,其中B型跳绳和C型跳绳的条数同样多,且所有跳绳的总长度为120米,求购买A型跳绳的条数;(2)若购买的A型跳绳有13条,则购买的所有跳绳的总长度为多少米?答案全解全析基础过关全练1.D225,+y1+15%=200,故选D.2.B 设年利率为3%的储蓄存了x 元,年利率为4%的储蓄存了y 元.依题意得x +y =1000,(1+3%)x +(1+4%)y =1035,解得x =500,y =500.故选B.3.解析 解法一:设该农户种树x 亩,则种草(30-x )亩,则150x +(30-x )×100=4 000,解得x =20,则30-x =10.答:该农户种树20亩,种草10亩.解法二:设该农户种树x 亩,种草y 亩,则x +y =30,200x +150y =5500,解得x =20,y =10.答:该农户种树20亩,种草10亩.能力提升全练4.C 因为吸烟者中患肺癌的比例是3%,即吸烟者患肺癌的人数吸烟者的人数×100%=3%,所以8 000人中,吸烟者的人数为x3%.同理,不吸烟者的人数为y0.5%,故可列y =33,+y 0.5%=8000,故选C.5.解析 (1)年份进口额/亿元出口额/亿元进出口总额/亿元2020x y52020211.25x1.3y1.25x+1.3y故答案为1.25x+1.3y.(2)根据题意得1.25x+1.3y=520+140,∴可列方程组为x+y=520,1.25x+1.3y=520+140,解得x=320,y=200,∴1.25x=1.25×320=400亿元,1.3y=1.3×200=260亿元.故2021年进口额是400亿元,出口额是260亿元.6.解析 (1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元.依题意,得2x+3y=19,x+7y=26,解得x=5,y=3.答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺共有19+2+26=47(元).两人合在一起购买文具所需费用为5×(2+1)+(3-0.5)×(3+7)=40(元).∵47-40=7(元),3×2=6(元),7>6,∴他们合在一起购买笔芯,才能既买到各自的文具,又都买到小工艺品.素养探究全练7.解析 (1)设购买的A型跳绳有x条,B型跳绳和C型跳绳分别有y条,由题意得4x+6y+9y=100,4x+8y+12y=120,解得x=10,y=4.答:购买A型跳绳的条数为10.(2)设购买的B型跳绳和C型跳绳的条数分别为b,c,由题意可得4×13+6b+9c=100,∴6b+9c=48,∴2b+3c=16,∴购买的所有跳绳的总长度为4×13+8b+12c=52+4(2b+3c)=116(米).。
5.4 应用二元一次方程组——增收节支1.某人以两种形式储蓄了800元,一种储蓄的年利率为10%,另一种储蓄的年利率为11%,一年到期时去提取,他共得到利息85元5角,问两种储蓄他共存了多少钱? 解:设两种储蓄各存了x 元、y 元,则⎩⎨⎧=+=+5.85%11%10800y x y x 解得⎩⎨⎧==550250y x 所以两种储蓄各存了250元,550元.2.小明去某批零兼营的文具商店,为学校美术活动小组的30名同学购买铅笔和橡皮,按商店规定,若给全组每人各买2枝铅笔和1块橡皮,则必须按零售价计算,需支付39元;若给全组每人各买3枝铅笔和2块橡皮,则可以按批发价计算,需支付42元.已知每枝铅笔的批发价比零售价低0.1元,每块橡皮的批发价比零售价低0.25元,求这家商店每支铅笔和每块橡皮的批发价各为多少元?解:设每支铅笔批发价x 元,每块橡皮批发价y 元,可列方程组为⎩⎨⎧=+⨯=+++⨯42)23(3039)]25.0()1.0(2[30y x y x 解得⎩⎨⎧==25.03.0y x 所以每支铅笔、每块橡皮的批发价为0.3元、0.25元.3.1995年全国足球甲A 联赛共22轮(即每个队均需参赛22场),全国冠军上海申花队共积46分(胜一场3分,平一场得1分,负一场得0分),并知申花队胜的场数比负的场数的3倍还多2,问申花队胜、平、负各几场?解:设申花队胜、平、负的场数为x 场、y 场、z 场,列方程组得⎪⎩⎪⎨⎧+==+=++2346322z x y x z y x解得⎪⎩⎪⎨⎧===4414z y x所以申花队胜14场、平4场、负4场.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分)1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分)11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
北师版数学八年级上册第5章二元一次方程组5.4 应用二元一次方程组——增收节支一.选择题(本大题共10小题,每小题3分,共30分)1.小明的妈妈给他爸爸买了一件上衣和一条裤子,共用306元,其中上衣按标价打七折,裤子按标价打八折.若上衣和裤子的标价共计420元,求上衣和裤子的标价分别为多少元?设上衣标价为x 元,裤子标价为y 元,则可列出的方程组为( )A.⎩⎪⎨⎪⎧x +y =3060.7x +0.8y =420B.⎩⎪⎨⎪⎧x +y =3060.8x +0.7y =420 C.⎩⎪⎨⎪⎧x +y =4200.7x +0.8y =306 D.⎩⎪⎨⎪⎧x +y =4200.8x +0.7y =306 2.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10 000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10 000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A.⎩⎪⎨⎪⎧x -y =22x×2.5%+y×0.5%=10 000 B.⎩⎪⎨⎪⎧x -y =22x 2.5%+y 0.5%=10 000C.⎩⎪⎨⎪⎧x +y =10 000x×2.5%-y×0.5%=22 D.⎩⎪⎨⎪⎧x +y =10 000x 2.5%-y 0.5%=22 3.小丽以两种储蓄方式共存了1000元,一种储蓄方式年利率为2.5%,另一种储蓄方式年利率为3%,一年到期后本息和为1028.8元,则两种储蓄方式分别存了( )A .220元,780元B .240元,760元C .260元,740元D .280元,720元4. 某高速公路全长约126 km ,一辆小汽车、一辆货车同时从巴中、广元两地相向开出,经过45分钟相遇.相遇时小汽车比货车多行6 km.设小汽车和货车的速度分别为x km/h ,y km/h ,则下列方程组正确的是( )A.⎩⎪⎨⎪⎧45(x +y )=12645(x -y )=6 B.⎩⎪⎨⎪⎧0.75(x +y )=126x -y =6 C.⎩⎪⎨⎪⎧0.75(x +y )=12645(x -y )=6 D.⎩⎪⎨⎪⎧0.75(x +y )=1260.75(x -y )=6 5.已知甲、乙两人年收入比为5∶3,年支出比为9∶5,年终时两人各结余300元,若设甲的年收入为x 元,年支出为y 元,则可列方程组为( )A.⎩⎪⎨⎪⎧x -y =30035x -59y =300 B.⎩⎪⎨⎪⎧x -y =30035x +95y =300C.⎩⎪⎨⎪⎧x =300+y 53x -59y =300 D.⎩⎪⎨⎪⎧x -y =30053x -95y =300 6.一条船顺流航行,每小时行驶18 km ;逆流航行,每小时行驶16 km.若设船在静水中的速度为x km/h ,水流速度为y km/h ,则列出的方程组为( )A.⎩⎪⎨⎪⎧x +y =18y -x =16B.⎩⎪⎨⎪⎧x +y =18x -y =16 C.⎩⎪⎨⎪⎧x +2y =18x -2y =16 D.⎩⎪⎨⎪⎧x +y =182x -y =16 7. 某城市现有人口42万人,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口增加1%,则现在这个城市现有城镇人口和农村人口分别是( )A .28万,14万B .14万,28万C .24万,18万D .18万,24万8. 某商场以每件a 元购进一批服装,如果规定以每件b 元出售,平均每天卖出15件,30天共可获利22 500元.为了尽快回收资金,商场决定将每件服装降价20%出售,结果平均每天比降价前多卖出10件,这样30天仍可获利22 500元,则a ,b 的值为( )A.⎩⎪⎨⎪⎧a =100,b =80B.⎩⎪⎨⎪⎧a =150,b =100 C.⎩⎪⎨⎪⎧a =100,b =50 D.⎩⎪⎨⎪⎧a =50,b =100 9.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟,他家离学校的距离是2900米.如果他骑车和步行的时间分别为x ,y 分钟,列出的方程是( )A.⎩⎪⎨⎪⎧x +y =0.25250x +80y =2900 B.⎩⎪⎨⎪⎧x +y =1580x +250y =2900 C.⎩⎪⎨⎪⎧x +y =0.2580x +250y =2900 D.⎩⎪⎨⎪⎧x +y =15250x +80y =2900 10.开学后书店向学校推销两种素质类教育书籍,如果原价买这两种书共需880元.书店推销时第一种书打了八折,第二种书打了七五折,结果两种书共少用了200元.则原来这两种书需要的钱数分别为( )A .400元,480元B .480元,400元C .360元,300元D .300元,360元二.填空题(共8小题,3*8=24)11. 某市有60万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%.设现有城镇人口x 万人,农村人口y 万人,依题意可列方程组__________________________.12.某校七(1)、七(2)班共95人,体育达标率为60%,若七(1)班体育达标率为40%,七(2)班体育达标率为78%,则七(1)班共有________人,七(2)班共有________人.13. 某公司用30000元购进两种货物,货物卖出后,一种货物的利润是10%,另一种货物的利润是11%,共获得利润3150元.设两种货物的进货价分别为x 元,y 元,根据题意列方程组为___________________.14.随着2018世界杯的到来,某体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元,则该款运动服和运动鞋的标价分别是_______________.15.一件衣服,其成本为80元,商场标价为160元,小明打8折购买,商场卖这件衣服获得利润是___________.16.甲、乙二人练习跑步,如果甲让乙先跑10米,甲跑5秒就追上乙,如果甲让乙先跑2秒,那么甲跑4秒就追上乙,则甲、乙两人的速度分别是__________________.17. 一笔贷款,分两次贷出,一份年利率为10%,另一份年利率为8%,一年时间共得利息4 400元.如果把两份的利率交换,那么利息一年可增加200元,问这笔贷款共_____________元?18. 《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文.甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是___________________.三.解答题(共7小题,46分)19.(6分) 甲、乙两件服装的成本共500元,商店老板为了获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客的要求,两件服装均按9折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元?20.(6分) 某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两种颜色的文化衫共140件,进行手绘设计后再出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利1860元,黑白两种文化衫各多少件?21.(6分) 夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?22.(6分)甲、乙二人都以不变的速度在环形跑道上跑步,如果同时同地出发,反向而行,每隔2 min 相遇一次;如果同时同地出发,同向而行,每隔6 min相遇一次.已知甲比乙跑得快,甲、乙二人每分各跑多少圈?23.(6分)某学校在对口援助边远山区学校活动中,原计划赠书3000册,由于学生的积极响应,实际赠书3780册,其中初中部比原计划多赠了20%,高中部比原计划多赠了30%,问:该校初、高中部原计划各赠书多少册?24.(8分) 为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1,2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线、2号线每千米的平均造价分别是多少亿元?(2)除1,2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网.据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?25.(8分) 小林在某商店购买商品A ,B 共三次,只有一次购买时,商品A ,B 同时打折,其余两次均按标价购买.三次购买商品A ,B 的数量和费用如下表:(1)小林以折扣价购买商品A ,B 是第____次购物;(2)求商品A ,B 的标价;(3)若商品A ,B 的折扣相同,问商店是打几折出售这两种商品的?参考答案:1-5CBBDA 6-10BBDDA11. ⎩⎪⎨⎪⎧x +y =600.8%x +1.1%y =60×1%2. 45,5013. ⎩⎪⎨⎪⎧x +y =3000010%x +11%y =3150 14. 300元,180元15. 48元16. 6米/秒,4米/秒17. 50 00018. ⎩⎨⎧x +12y =4823x +y =4819. 解:设甲、乙成本分别为x 元,y 元,则⎩⎪⎨⎪⎧x +y =500,[(1+50%)x·0.9-x]+[(1+40%)y·0.9-y]=157, 解得⎩⎪⎨⎪⎧x =300,y =200.答:甲、乙成本分别为300元,200元 20. 解:设黑色文化衫x 件,白色文化衫y 件,依题意得⎩⎪⎨⎪⎧x +y =140,(25-10)x +(20-8)y =1860, 解得⎩⎪⎨⎪⎧x =60,y =80. 答:黑色文化衫60件,白色文化衫80件21. 解:设这两种饮料在调价前每瓶分别为x 元、y 元,根据题意得⎩⎪⎨⎪⎧x +y =7,3(1+10%)x +2(1-5%)y =17.5. 解得⎩⎪⎨⎪⎧x =3,y =4. 答:调价前这种碳酸饮料每瓶的价格为3元,这种果汁饮料每瓶的价格为4元22. 解:设甲、乙二人每分分别跑x ,y 圈,则有⎩⎪⎨⎪⎧2(x +y )=1,6(x -y )=1,解得⎩⎨⎧x =13y =16答:甲、乙二人每分各跑13、16圈 23. 解:设原计划初中部赠书x 册,高中部赠书y 册, 则有⎩⎪⎨⎪⎧x +y =3000,x (1+20%)+y (1+30%)=3780, 解得⎩⎪⎨⎪⎧x =1200,y =1800. 答:初,高中部各赠书1200册,1800册24. 解:(1)设1号线、2号线每千米的平均造价分别是x 亿元、y 亿元,由题意得⎩⎪⎨⎪⎧24x +22y =265,x -y =0.5. 解得⎩⎪⎨⎪⎧x =6,y =5.5. 答:1号线、2号线每千米的平均造价分别是6亿元和5.5亿元(2)91.8×6×1.2=660.96(亿元).答:还需投资660.96亿元25. 解:(1)三(2)设A ,B 两种商品的标价分别为x 元,y 元.根据题意,可得⎩⎪⎨⎪⎧6x +5y =1140,3x +7y =1110,解得⎩⎪⎨⎪⎧x =90,y =120. 答:A ,B 两种商品的标价分别为90元,120元(3)设商店是打a 折出售这两种商品的,则a 10(90×9+8×120)=1062, 解得a =6.答:商店是6折出售这两种商品的。
北师大版八年级数学测试卷(考试题)5.4 应用二元一次方程组——增收节支1.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?设城镇人口是x万,农村人口是y万,根据题意填写下表,并列出方程组求x、y的值.城镇农村全市现有人数(万人)x y42一年后增加人口(万人)2.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?若设预定期限为x天,计划生产y辆汽车,请你根据题意填空,并列出方程组求x与y 的值.(1)若每天生产35辆,在预定期限x天内可生产__________辆,比计划产量y辆汽车__________(“多”或“少”)生产10辆,则可得二元一次方程______________________.(2)若每天生产40辆,在预定期限x天内可生产__________辆,比计划产量y__________(填“多”或“少”)生产20辆,则可列二元一次方程_________________________.(3)列方程组_________________________,并解得________.3.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?如图1:图1若设快车每秒钟行x米,慢车每秒行y米.根据题意填空:(1)若同向而行,经过20秒快车行驶路程比慢车行驶路程多____米,可列方程_________.(2)若相向而行,两车4秒钟共行驶__________米,可列方程__________________.(3)由以上可得方程组__________________,解得________.4.想一想:一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:第一次第二次甲种货车辆数(辆) 2 5乙种货车辆数(辆) 3 6累计运货吨数(吨)15.5 35现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?测验评价结果:________;对自己想说的一句话是:__________________。
北师大新版八年级上学期《5.4 应用二元一次方程组--增收节支》同步练习卷一.选择题(共16小题)1.一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x 角,大瓶为y角,可列方程为()A.B.C.D.2.2018年足球世界杯正在俄罗斯进行,这项起源于我国“蹴鞠”的运动项目近年来在我国中小学校园得到大力推广,某次校园足球比赛规定:胜一场得3分,平一场得1分,负一场得0分,某足球队共进行了8场比赛,得了12分,该队获胜的场数不可能是()A.2B.3C.4D.53.某年级学生共有300人,其中男生人数y比女生人数x的2倍少2人,则下面方程组中符合题意的是()A.B.C.D.4.甲、乙两个公共汽车站相向发车,一人在街上行走,他发现每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车,如果车站发车的间隔时间相同,各车的速度相同,那两车站发车的间隔时间为()A.18分钟B.10分钟C.12分钟D.16分钟5.某实验中学收到李老师捐赠的足球、篮球、排球共30个,总价值为440元;这三种球的价格分别是:足球每个60元,篮球每个30元,排球每个10元,那么其中篮球有()个.A.2B.4C.8D.126.今年,小丽爷爷的年龄是小丽的5倍.小丽发现,12年之后,爷爷的年龄是小丽的3倍,设今年小丽、爷爷的年龄分别是x岁、y岁,可列方程组()A.B.C.D.7.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种8.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y 的方程组是()A.B.C.D.9.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱:每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.B.C.D.10.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.B.C.D.11.为推进课改,王老师把班级里60名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4B.3C.2D.112.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍.若购1副羽毛球拍和1副乒乓球拍共需70元,小强一共用540元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.B.C.D.13.某校七年级共有学生412人,已知女生人数比男生人数的2倍少62人,设男生,女生的人数分别为x,y人,有题意的方程组()A.B.C.D.14.《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两,y两,列方程组为()A.B.C.D.15.某校组织学生进行了禁毒知识竞赛,竞赛结束后,青青和红红两个人的对话如下:青青:这次考试有40道题,题型为单选和多选题,每种题型我各错了一道题.红红:单选2分一道,多选3分一道,那你可以得95分.根据以上信息,设单选题有x道,多选题有y道,则可列方程为()A.B.C.D.16.某文具商店搞促销活动,同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元已知书包标价比文具盒标价的3倍多15元,若设文具盒的标价是x元,书包的标价为y元,可列方程组为()A.B.C.D.二.填空题(共1小题)17.小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有种.三.解答题(共23小题)18.甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.19.本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生多观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?20.甲种电影票每张20元,乙种电影票每张15元,若购买甲、乙两种电影票共40张,恰好用去720元,求甲、乙两种电影票各买了多少张?21.有黑白两种小球各若干个,且同色小球质量均相等,在如图所示的两次称量的天平恰好平衡,如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?22.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元(1)两种笔记本各销售了多少?(2)所得销售款可能是660元吗?为什么?23.甲、乙两种笔的单价分别为7元、3元,某学校用78元钱买这两种笔作为数学竞赛一二等奖奖品,钱恰好用完,若买下的乙种笔是甲种笔的两倍,请问两种笔各买了几支?24.某旅行社组织280名游客外出旅游,计划租乘大巴车和小巴车赴旅游景点,其中大巴车每辆可乘80人,小巴车每辆可乘40人,要求租用的车子不留空位,同时也不能超载.(1)请你写出所有的租车方案;(2)若大巴车的租金是350元/天,小巴车的租金是200元/天,请你设计出费用最少的租车方案,并算出最少的费用是多少?.25.《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文.甲、乙两人原来各有多少钱?26.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.27.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?28.为了解决农民工子女入学难的问题.我市建立了一套进城农民工子女就学保障机制,其中一项就是免交“借读费”.据统计,2017年秋季有5000名农民工子女进入主城区中小学学习,预测2018年秋季进入主城区中小学学习的农民工子女将比2017年有所增加,其中小学增加20%,中学增加30%,这样,2018年秋季将新增1200名农民工子女在主城区中小学学习.(1)2017年秋季农民工子女进入主城区中小学学习的小学生、中学生各有多少名?(2)如果按小学每生每年收“借读费“600元,中学每生每年收“借读费”800元计算,求2018年新增的1200名中小学生共免收多少“借读费”?(3)如果小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2018年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?29.小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A 种图书每本1元,B种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.30.“全民阅读”深入人心,好读书,读好书,让人终身受益.我校上月举办了“读书节”活动.为了表彰优秀,主办单位王老师负责购买奖品.他发现:若以2支钢笔和3本笔记本为一份奖品,则可买60份奖品;若以2支钢笔和6本笔记本为一份奖品,则可以买40份奖品.设钢笔单价为x元/支,笔记本单价为y元/本.(1)请用x的代数式表示y.(2)若用这钱全部购买笔记本,总共可以买几本?(3)若王老师用这钱恰好买30份同样的奖品,可以选择a支钢笔和b本笔记本作为一份奖品(两种奖品都要有),请求出所有可能的a、b值.31.某地区住宅用电之电费计算规则如下:每月每户不超过50度时,每度以4元收费;超过50度的部分,每度以5元收费,并规定用电按整数度计算(小数部份无条件舍去).(1)下表给出了今年3月份A,B两用户的部分用电数据,请将表格数据补充完整,(2)若假定某月份C用户比D用户多缴电费38元,求C用户该月可能缴的电费为多少?32.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,准备一次运完,且恰好每辆车都载满货物.已知:每辆A型车载满货物一次可运货3吨,每辆B型车载满货物一次可运货4吨.(1)请你帮该物流公司设计租车方案;(2)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.33.某市农机公司筹集到资金130万元,用于一次性购进A、B两种型号的收割机共30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价见表:设公司计划购进A种型号的收割机台x,收割机全部销售后公司获得的利润为y 元.(1)试列出关于x与y的二元一次方程.(2)市农机公司有哪几种购进收割机的方案可供选择?哪种方案获利最多?请说明理由.34.七年级某班为了奖励学习进步的学生,花费35元购买笔记本和钢笔两种奖品,其中笔记本的单价为3元/本,钢笔单价为5元/支,问有几种购买方案?35.某物流公司现有31吨货物运往某地,计划同时租用A型车a辆,B型车b 辆,使每辆车都装满货物恰好一次运完.已知每种型号车的载重量和租金如表:(1)请你帮该物流公司设计租车方案;(2)请选出最省钱的租车方案,并求出最少租车费.36.某协会组织会员旅游,如果单独租用45座客车若干辆,则刚好坐满;如果单独租用60座客车,则可少租2辆,并且剩余15个座位.(1)求参加旅游的人数;(2)若采用混租两种客车,使每辆车都不空位,有几种租车方案.37.某汽车专卖店销售A、B两种型号的新能源汽车,上周售出1辆A型车和3辆B型车,销售额96万元,本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各是多少?(2)随着汽车限购限号政策的推行,预计下周起A,B两种型号的汽车价格在原有的基础上均有上涨,若A型汽车价格上涨m%,B型汽车价格上涨3m%,则同时购买一台A型车和一台B型车的费用比涨价前多12%,求m的值.38.甲、乙、丙三种车型的汽车按运载量运载货物,它们的运载量如表:(1)甲种车型的汽车3辆,乙种车型的汽车a辆,丙种车型的汽车2a辆,它们一次性能运载吨货物(可用含a的代数式表示)(2)甲、乙、丙三种车型的汽车共12辆,刚好能一次性运载物资共82吨,甲、乙、丙三种车型的汽车各有多少辆?39.口袋里有若干个大小相同的红球和黄球,从中任摸出1个球,摸到黄球得2分,摸到红球得3分,某人摸到x个黄球,y个红球,共得12分,试列出关于x、y的方程,并写出这个方程中所有符合题意的解.40.某校为了做好大课间活动,计划用400元购买10件体育用品,备选体育用品及单价如下表(单位:元)(1)若400元全部用来购买篮球和羽毛球拍共10件,问篮球和羽毛球拍各购买多少件?(2)若400元全部用来购买篮球、排球和羽毛球拍三种共10件,能实现吗?若能,求出篮球、排球、羽毛球拍各购买多少件;若不能,请说明理由.北师大新版八年级上学期《5.4 应用二元一次方程组--增收节支》同步练习卷参考答案与试题解析一.选择题(共16小题)1.一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x 角,大瓶为y角,可列方程为()A.B.C.D.【分析】设设小瓶单价为x角,大瓶为y角,根据题意列出二元一次方程组,求出方程组的解即可.【解答】解:设小瓶单价为x角,大瓶为y角,可列方程为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题关键.2.2018年足球世界杯正在俄罗斯进行,这项起源于我国“蹴鞠”的运动项目近年来在我国中小学校园得到大力推广,某次校园足球比赛规定:胜一场得3分,平一场得1分,负一场得0分,某足球队共进行了8场比赛,得了12分,该队获胜的场数不可能是()A.2B.3C.4D.5【分析】设该队获胜x场,踢平y场,则负了(8﹣x﹣y)场,根据得分=3×获胜场数+踢平场数结合该队得了12分,即可得出关于x,y的二元一次方程,由x,y,8﹣x﹣y均为整数即可得出结论.【解答】解:设该队获胜x场,踢平y场,则负了(8﹣x﹣y)场,根据题意得:3x+y=12,∴y=12﹣3x.当x=1时,y=9,8﹣x﹣y=﹣2,舍去;当x=2时,y=6,8﹣x﹣y=0;当x=3时,y=3,8﹣x﹣y=2;当x=4时,y=0,8﹣x﹣y=4.综上所述,获胜的场数可能为2,3,4.故选:D.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.3.某年级学生共有300人,其中男生人数y比女生人数x的2倍少2人,则下面方程组中符合题意的是()A.B.C.D.【分析】此题中的等量关系有:①某年级学生共有300人,则x+y=300;②男生人数y比女生人数x的2倍少2人,则2x=y+2.【解答】解:根据某年级学生共有300人,则x+y=300;②男生人数y比女生人数x的2倍少2人,则y=2x﹣2.可列方程组.故选:C.【点评】考查了由实际问题抽象出二元一次方程组.找准等量关系是解决应用题的关键,注意代数式的正确书写,字母要写在数字的前面.4.甲、乙两个公共汽车站相向发车,一人在街上行走,他发现每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车,如果车站发车的间隔时间相同,各车的速度相同,那两车站发车的间隔时间为()A.18分钟B.10分钟C.12分钟D.16分钟【分析】设公交车的速度为x米/分钟,人步行速度为y米/分钟,由路程=速度×时间结合“每隔8分钟就迎面开来一辆公交车,每隔24分种从背后开来一辆公交车”,即可得出关于x、y的二元一次方程,解之即可得出x=2y,再利用时间=路程÷速度即可求出两车站发车的间隔时间.【解答】解:设公交车的速度为x米/分钟,人步行速度为y米/分钟,根据题意得:8x+8y=24x﹣24y,解得:x=2y,∴==12.故选:C.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.5.某实验中学收到李老师捐赠的足球、篮球、排球共30个,总价值为440元;这三种球的价格分别是:足球每个60元,篮球每个30元,排球每个10元,那么其中篮球有()个.A.2B.4C.8D.12【分析】设其中有篮球x个,足球有y个,则排球有(30﹣x﹣y)个,根据总价=单价×数量结合30个球的总价值为440元,即可得出关于x、y的二元一次方程,再由x、y均为正整数,即可求出结论.【解答】解:设其中有篮球x个,足球有y个,则排球有(30﹣x﹣y)个,根据题意得:30x+60y+10(30﹣x﹣y)=440,∴x=7﹣y.∵x、y为正整数,∴y=2,x=2.故选:A.【点评】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.今年,小丽爷爷的年龄是小丽的5倍.小丽发现,12年之后,爷爷的年龄是小丽的3倍,设今年小丽、爷爷的年龄分别是x岁、y岁,可列方程组()A.B.C.D.【分析】根据题意可得等量关系:①小丽爷爷的年龄=小丽的年龄×5;②小丽爷爷的年龄+12=(小丽的年龄+12)×3,根据等量关系列出方程组即可.【解答】解:设今年小丽、爷爷的年龄分别是x岁、y岁,依题意有.故选:D.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,再列出方程组.7.学校举办“创建文明城”演讲比赛,张老师拿出90元钱全部购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本15元,乙种笔记本每本5元,且乙种笔记本的数量是甲种笔记本的整数倍,则购买笔记本的方案有()A.2种B.3种C.4种D.5种【分析】设甲种笔记本购买了x本,乙种笔记本y本,就可以得出15x+5y=90,根据解不定方程的方法求出其解即可.【解答】解:设甲种笔记本购买了x本,乙种笔记本y本,由题意,得15x+5y=90整理,得3x+y=18因为y是x的整数倍,所以当x=1时,y=15.当x=2时,y=12.当x=3时,y=9.综上所述,共有3种购买方案.故选:B.【点评】本题考查了列二元一次不等式解实际问题的运用,分类讨论思想在解实际问题中的运用,解答时根据条件建立不等式是关键,合理运用分类是难点.8.某山区有一种土特产品,若加工后出售,单价可提高20%,但重量会减少10%.现有该种土特产品300千克,全部加工后可以比不加工多卖240元,设加工前单价是x元/kg,加工后的单价是y元/kg,由题意,可列出关于x,y 的方程组是()A.B.C.D.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.9.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱:每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是()A.B.C.D.【分析】设合伙人数为x人,物价为y钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x人,物价为y钱,根据题意,可列方程组:,故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.10.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.B.C.D.【分析】等量关系为:生产螺栓的工人数+生产螺帽的工人数=90;螺栓总数×2=螺帽总数,把相关数值代入即可.【解答】解:设生产螺栓x人,生产螺帽y人,根据总人数可得方程x+y=90;根据生产的零件个数可得方程2×15x=24y,可得方程组:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.11.为推进课改,王老师把班级里60名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4B.3C.2D.1【分析】根据题意设5人一组的有x个,6人一组的有y个,利用把班级里60名学生分成若干小组,进而得出等式求出即可.【解答】解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=60,y=,当x=0,y=6符合题意,当x=1,则y=(不合题意);当x=2,则y=;(不合题意);当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=5当x=7,则y=(不合题意);当x=8,则y=(不合题意);当x=9,则y=(不合题意);当x=10,则y=(不合题意);当x=11,则y=(不合题意);当x=12,则y=0故有3种分组方案.故选:B.【点评】此题主要考查了二元一次方程组的应用,根据题意分情况讨论得出是解题关键.12.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍.若购1副羽毛球拍和1副乒乓球拍共需70元,小强一共用540元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.B.C.D.【分析】设每副羽毛球拍为x元,每副乒乓球拍为y元,利用购1副羽毛球拍和1副乒乓球拍共需70元,小强一共用540元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,分别得出等式求出答案.【解答】解:设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得:.故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组,分别得出等量关系是解题关键.13.某校七年级共有学生412人,已知女生人数比男生人数的2倍少62人,设男生,女生的人数分别为x,y人,有题意的方程组()A.B.C.D.【分析】关系式为:女生人数=2×男生人数﹣4;七年级共有学生412人,把相关数值代入即可求解.【解答】解:女生人数比男生人数的2倍少62人,可列方程为y=2x﹣62,七年级共有学生412人,可列方程为x+y=412,故可列方程组是:.故选:A.【点评】此题主要考查了由实际问题抽象出二元一次方程组,分别得出等量关系是解题关键.14.《九章算术》中的方程问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻.互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”设每只雀、燕的重量各为x两,y两,列方程组为()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,,故选:C.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程.15.某校组织学生进行了禁毒知识竞赛,竞赛结束后,青青和红红两个人的对话如下:青青:这次考试有40道题,题型为单选和多选题,每种题型我各错了一道题.红红:单选2分一道,多选3分一道,那你可以得95分.根据以上信息,设单选题有x道,多选题有y道,则可列方程为()A.B.C.D.【分析】直接利用已知分别得出方程组成方程组进而得出答案.【解答】解:设单选题有x道,多选题有y道,则可列方程为:.故选:A.【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等式方程是解题关键.16.某文具商店搞促销活动,同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元已知书包标价比文具盒标价的3倍多15元,若设文具盒的标价是x元,书包的标价为y元,可列方程组为()A.B.C.D.【分析】如果设文具盒的标价是x元,书包的标价为y元,根据同时购买一个书包和一个文具盒可以打八折,能比标价省19.8元,以及书包标价比文具盒标价的3倍多15元列出方程组即可.【解答】解:设文具盒的标价是x元,书包的标价为y元,根据题意,得.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.二.填空题(共1小题)17.小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元,。
应用二元一次方程组—增收节支练习一、选择题1. 甲、乙两人在环形跑道上匀速跑步,他们同时从同一地点出发,当两人往相反方向跑步时,每隔48秒相遇一次;当两人往相同方向跑步时,每隔8分钟相遇一次.已知甲比乙每分钟快60米.则甲的速度为( )米/秒.A. 4B. 4.5C. 5D. 5.52. 通讯员要在规定时间内到达某地,他每小时走15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( )A. {x15−15=y x12+12=yB. {x15+15=y x12−12=yC. {x15−2460=yx 12−1560=yD. {x15+2460=yx 12−1560=y3. 夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( )A. {x +y =5300200x +150y =30 B. {x +y =5300150x +200y =30 C. {x +y =30200x +150y =5300D. {x +y =30150x +200y =53004. 某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有x 名同学,捐款8元的有y 名同学,根据题意,可得方程组( )A. {x +y =298x +6y =226B. {x +y =296x +8y =226C. {x +y =296x +8y =320D. {x +y =298x +6y =3205.某工程队共有27人,每天每人可挖土4方,或运土5方,为使挖出的土及时运走,应分配挖土和运土的人分别是()A. 12人,15人B. 14人,13人C. 15人,12人D. 13人,14人6.甲、乙两药品仓库共存药品45t,为共同抗击“H7N9禽流感”,现从甲仓库调出库存药品的60%,从乙仓库调出库存药品的40%支援疫区.结果乙仓库所余药品比甲仓库所余药品多3t,那么,甲、乙仓库原来所存药品分别为()A. 15t,30tB. 30t,15tC. 21t,24tD. 24t,21t7.如图所示,在一圆形跑道上,甲从点A、乙从点B同时出发,反向而行,8min后两人相遇,再过6min甲到点B,又过10min两人再次相遇,则甲环行一周需要的时间是()A. 26minB. 28minC. 30minD. 32min8.下表是某校七∼九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同(八年级每个课外小组活动次数不低于0次且不超过4次)下面有四个推断,其中合理的是:①文艺小组每次活动时间大于2小时②科技小组每次活动时间小于2小时③八年级文艺与科技小组活动次数的安排有1种可能④八年级文艺与科技小组活动次数的安排有2种可能A. ①③B. ①④C. ②③D. ②④9. 甲、乙两人练习跑步,如果乙先跑10米,则甲跑5秒就可追上乙;如果乙先跑2秒,则甲跑4秒就可追上乙,若设甲的速度为x 米/秒,乙的速度为y 米/秒,则下列方程组中正确的是( )A. {x =5y +104x =4y +2yB. {5x −5y =104x −2y =4yC. {5x +10=5y 4x −4y =2D. {x −5y =104x −2y =4y 10. 某校准备在国庆期间组织学生到泰山进行研学旅行,已知老师与学生一共25人参加此次研学旅行,购买门票共花费1700元,门票费用如表格所示,求参加研学旅行的老师和学生各有多少人⋅设老师有x 人,学生有y 人,则可列方程组为( )A. {100x +62.5y =1700B. {80x +50y =1700C. {x +y =25100x +50y =1700D. {x +y =2580x +62.5y =170011. 国家为九年义务教育期间的学生实行“两免一补”政策,某中学七、八年级国家免费提供教科书补助的部分情况如下表所示:设七年级的学生人数为x ,八年级的学生人数为y ,根据题意列出的方程组为 ( )A. {110x +90y =220,x +y =22200B. {x +y =220,90x +110y =22200 C. {x +y =220,x +y =22200D. {x +y =220,110x +90y =2220012. 已知甲、乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,则可列方程组为( )A. {x −y =40023x +74y =400B. {x =y +40032x −47y =400C. {x −y =40023x −47y =400D. {x −y =40032x −74y =40013. 为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:每月用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2019年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度( ) 代收电费收据 2019年9月代收电费收据2019年10月A. 0.5元,0.6元B. 0.4元,0.5元C. 0.3元,0.4元D. 0.6元,0.7元答案和解析1.【答案】D【解答】解:设乙的速度为xm/s ,则甲的速度为(x +1)m/s ,跑道长度为y , 由题意得,{(x +x +1)×48=y(x +1−x)×480=y , 解得:{x =4.5y =480 , 即可得甲的速度为5.5m/s ,乙的速度为4.5m/s . 故选D .2.【答案】D【解答】解:设通讯员到达某地的路程是x 千米,原定的时间为y 小时,由题意得:{x15+2460=y x12−1560=y,故选:D .3.【答案】C【解答】解:设A 型风扇销售了x 台,B 型风扇销售了y 台, 则根据题意列出方程组为:{x +y =30200x +150y =5300 故选:C .4.【答案】B【解答】解:设捐款6元的有x 名同学,捐款8元的有y 名同学, 由题意得,{x +y +6+7=4224+6x +8y +70=320,即{x +y =296x +8y =226.故选:B .5.【答案】C【解答】解:设分配挖土x 人,运土y 人, 则{x +y =274x =5y , 解得{x =15y =12.∴应分配挖土15人,运土12人. 故选C .6.【答案】D【解答】解:设甲仓库原来存放药品xt ,乙仓库原来存放药品yt , {x +y =45(1−60%)x +3=(1−40%)y , 解得{x =24y =21,∴甲仓库原来存放药品24t ,乙仓库原来存放药品21t ; 故选D .7.【答案】B【解答】解:方法一:设甲、乙的速度分别为x 、y ,一圈的路程为S , 由题意得,{6x =8y(6+10)(x +y)=S 消掉y 得,28x =S , 所以,Sx =28,所以,甲环行一周需要的时间是28分钟;方法二:由题意得,第一次相遇后6+10=16分钟两人第二次相遇, ∵反向出发8分钟后两人第一次相遇, ∴A 、B 两点相距816=12圈,∵甲从A 到B 的时间为8+6=14分钟, ∴甲环行一周需要的时间是14÷12=28分钟.8.【答案】D【解答】解:设文艺小组每次活动的时间为xh ,科技小组每次活动的时间为yh , 依题意列方程组:{4x +3y =12.52x +3y =8.5, 解得:{x =2y =1.5,∴文艺小组每次活动的时间为2h ,科技小组每次活动的时间为1.5ℎ, ∴科技小组每次活动时间小于2小时,结论②正确;设八年级文艺小组活动次数为m 次,八年级科技小组活动次数为n 次,依题意列方程:2m +1.5n =10.5, 解得:{m =0n =7或{m =3n =3, 9.【答案】B【解答】解:根据乙先跑10米,则甲跑5秒就可以追上乙,得方程5x −5y =10; 根据乙先跑2秒,则甲跑4秒就可追上乙,得方程4x −2y =4y . 可得方程组 {5x −5y =104x −2y =4y .故选B .10.【答案】A【解答】解:设老师有x 人,学生有y 人,依题意有 {x +y =25125×0.8x +125×0.5y =1700, 即{x +y =25100x +62.5y =1700. 故选A .11.【答案】D【解答】解:根据题意列出方程组为{x +y =220110x +90y =22200.故选D .12.【答案】C【解答】解:设甲的年收入为x 元,年支出为y 元,∵甲、乙两人的年收入之比为3:2,年支出之比为7:4, ∴乙的收入为23x ,乙的支出为47y ,根据题意列出方程组得:{x −y =40023x −47y =400. 故选:C .13.【答案】A【解答】解:设第一阶梯电价每度x 元,第二阶梯电价每度y 元, 由题意可得,{200x +20y =112200x +65y =139,解得{x =0.5y =0.6.即:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.。
评测练习
5.4.增收节支
班级:________ 姓名:________ 1.某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?
设城镇人口是x万,农村人口是y万,根据题意填写下表,并列出方程组求x、y的值.
2.某汽车制造厂接受了在预定期限内生产一批汽车的任务,如果每天生产35辆,则差10辆才能完成任务;如果每天生产40辆,则可超额生产20辆.试求预定期限是多少天?计划生产多少辆汽车?
若设预定期限为x天,计划生产y辆汽车,请你根据题意填空,并列出方程组求x与y的值.
(1)若每天生产35辆,在预定期限x天内可生产__________辆,比计划产量y辆汽车__________(“多”或“少”)生产10辆,则可得二元一次方程______________________.
(2)若每天生产40辆,在预定期限x天内可生产__________辆,比计划产量y__________(填“多”或“少”)生产20辆,则可列二元一次方程_________________________.
(3)列方程组_________________________,并解得________.
3.一列快车长70米,慢车长80米,若两车同向而行,快车从追上慢车到完全离开慢车所用时间为20秒.若两车相向而行,则两车从相遇到离开时间为4秒,求两车每秒钟各行多少米?
如图1:
图1
若设快车每秒钟行x米,慢车每秒行y米.
根据题意填空:
(1)若同向而行,经过20秒快车行驶路程比慢车行驶路程多____米,可列方程_________.
(2)若相向而行,两车4秒钟共行驶__________米,可列方程__________________.
(3)由以上可得方程组__________________,解得________.
4.想一想:
一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车.已知过去两次租用这两种货车的情况如下表:
现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,问货主应付运费多少元?
5.某人以两种形式储蓄了800元,一种储蓄的年利率为10%,另一种储蓄的年利率为11%,一年到期时去提取,他共得到利息85元5角,问两种储蓄他共存了多少钱?
6.小明去某批零兼营的文具商店,为学校美术活动小组的30名同学购买铅笔和橡皮,按商店规定,若给全组每人各买2枝铅笔和1块橡皮,则必须按零售价计算,需支付39元;若给全组每人各买3枝铅笔和2块橡皮,则可以按批发价计算,需支付42元.已知每枝铅笔的批发价比零售价低0.1元,每块橡皮的批发价比零售价低0.25元,求这家商店每支铅笔和每块橡皮的批发价各为多少元?
测验评价结果:________;对自己想说的一句话是:__________________。
参考答案
1.⎩⎨⎧⨯=+=+%142%1.1%8.042x y x ,解得⎩
⎨⎧==2814y x 填表略 2.(1)35x 少 35x +10=y
(2)40x 多 40x -20=y
(3)⎩⎨⎧=-=+y x y x 20401035, ⎩
⎨⎧==2206y x 3.(1)150米 20x -20y =150
(2)150 4x +4y =150
(3)⎩⎨⎧=+=-150441502020y x y x , ⎩
⎨⎧==155.22y x 4.分析:应先求出这批货共有多少吨,即3辆甲种货车和5辆乙种货车共装多少吨货.
设甲、乙两种货车载重量分别为x 吨、y 吨.
根据题意得⎩⎨⎧=+=+35655.1532y x y x ,解得⎩
⎨⎧==5.24y x ∴30(3x +5y )=30(3×4+5×2.5)=735
答:货主应付运费735元.
5 解:设两种储蓄各存了x 元、y 元,则
⎩
⎨⎧=+=+5.85%11%10800y x y x 解得⎩
⎨⎧==550250y x 所以两种储蓄各存了250元,550元.
6 解:设每支铅笔批发价x 元,每块橡皮批发价y 元,可列方程
组为
⎩
⎨⎧=+⨯=+++⨯42)23(3039)]25.0()1.0(2[30y x y x 解得⎩
⎨⎧==25.03.0y x 所以每支铅笔、每块橡皮的批发价为0.3元、0.25元.。