生物化学超全复习资料
- 格式:doc
- 大小:170.50 KB
- 文档页数:45
生物化学复习资料第二章糖类化学1.糖的概念:糖类物质是多羟基的醇类或醛累化合物及其他们的衍生物或聚合物。
2.糖的种类可以分为:单糖寡糖多糖结合唐糖的衍生物。
3.根据旋光性分类,可以将自然界中的糖分为D型和L型。
规定,已距醛基或酮基最远的的不对称性碳原子为准,羟基在右的为D型,羟基在左的为L型.4.还原性二糖:由一分子糖的的半缩醛羟基与另一分子的糖的醇羟基缩合而成。
5.非还原性二糖:由二分子糖的半缩醛羟基脱水而成。
6.淀粉、糖原、和纤维素的基本结构单元是葡萄糖。
7.凡是能被费林试剂还原的糖都称为还原糖。
8.糖类的生物学功能:提供能量,细胞间的碳骨架,细胞间的的骨架,细胞间识别和生物分子识别。
第三章蛋白质1.蛋白质的基本结构单元是氨基酸。
2.大多数蛋白质的含氮量接近16%3.蛋白质的一级结构是多肽链中氨基酸的排列顺序。
4.氨基酸:分子中含有氨基的羧酸称为氨基酸。
5.氨基酸为两性电解质,当PH等于PI时,氨基酸为兼性离子。
6.肽键是蛋白质中的主要共价键,也称为主键。
7.必需氨基酸:人体中不能合成的,必须从食物中摄取的氨基酸称为必须氨基酸。
8.必需氨基酸包括:赖氨酸、蛋氨酸、亮氨酸、异亮氨酸、苏氨酸、缬氨酸、色氨酸、苯丙氨酸。
9.极中性氨基酸包括:丝氨酸、酪氨酸、苏氨酸、谷氨酰胺、半胱氨酸、天冬酰胺。
10.酸性氨基酸包括:天冬氨酸、谷氨酸11.碱性氨基酸包括:组氨酸、赖氨酸、精氨酸12.氨基酸的等电点(PI):在一定PH值得溶液中,氨基酸所带的正负电荷相等,净电荷为零,此时溶液的PH值称为氨基酸的等电点。
(当PH>PI,氨基酸带净负电荷,在电场中向正极移动;当PH<PI,氨基酸带净正电荷,在电场中向负极移动。
)13.蛋白质的二级结构主要靠氢键维持其稳定性。
14.蛋白质的三级结构主要靠次级键维持其稳定性。
次级键包括:氢键,离子键,疏水作用,二硫键。
15.蛋白质颗粒表面的电荷和水化膜是维持蛋白质胶体的重要因素。
生物化学复习资料1、氨基酸属于酸性氨基酸的是谷氨酸2、维系蛋白质二级结构的主要化学键是肽键3、蛋白质对紫外线的最大吸收峰在哪一波长附近280nm4、变性蛋白质的主要特点是生物学活性丧失5、核酸的基本组成单位是核苷酸6、tRNA的二级结构为三叶草形7、DNA变性是指互补碱基之间氢键断裂8、维持DNA双螺旋结构稳定,在横向上的作用力是氢键9、酶能加速化学反应的进行是因为降低反应的活化能10、竞争性抑制剂的酶促反应动力学特点是K m值增高,V max不变11、饥饿时,肝脏内糖异生途径的酶活性增强12、糖分解产生ATP的主要方式是有氧氧化13、糖异生最重要的生理意义是饥饿时维持血糖浓度的相对恒定14、蚕豆病是由于体内缺乏葡萄糖-6-磷酸脱氢酶所引起15、酮体和胆固醇合成的共同原料是乙酰CoA16、脂蛋白中含胆固醇最多的是LDL17、合成甘油三酯能力最强的场所是肝脏18、能抑制脂肪动员的激素是胰岛素19、呼吸链中不具有质子泵功能的是复合体Ⅱ20、体内产生ATP的最主要方式是氧化磷酸化21、蛋白质的营养价值取决于必需氨基酸的种类、数量和比例22、转氨酶催化氨基酸脱氨基作用中氨基的载体是磷酸吡哆醛23、哺乳类动物体内氨的主要去路是在肝中合成尿素24、体内转运一碳单位的载体是四氢叶酸25、肝脏进行生物转化时葡萄糖醛酸的活性供体是UDPGA26、血浆游离胆红素主要是与血浆中何种物质结合转运到肝脏的清蛋白27、体内胆红素主要来源是血红蛋白28、属于游离胆汁酸的是鹅脱氧胆酸29、人体内嘌呤碱分解的终产物是尿酸30、别嘌醇治疗痛风的机制是能够抑制黄嘌呤氧化酶31、为氨基酸编码的密码子具有简并性是指一个氨基酸可以有多个密码子32、紫外线照射引起的DNA损伤,最常见的是嘧啶二聚体的形成33、DNA复制时,不需要的是限制性内切酶34、下列是密码子的特点,例外的是间断性35、维生素A缺乏时可能发生夜盲症36、冈崎片段是指随从链上合成的DNA片段37、不对称转录指的是基因中只有一条DNA链是模板链38、真核生物复制和转录的叙述,正确的是都在细胞核内进行。
生物化学复习资料生物化学是研究生物体内各种化学成分及其相互关系的一门学科。
它是生物学和化学两门学科的交叉领域,通过对生物体内的化学物质进行分析和研究,揭示生命现象的基本原理和机制。
以下是关于生物化学的复习资料,希望能够帮助同学们温故知新。
一、生物大分子的结构与功能1. 蛋白质:蛋白质是生物体内最重要的物质之一,由氨基酸组成,具有结构和功能多样性。
了解蛋白质的结构层次(一级结构、二级结构、三级结构和四级结构)、功能和分类是生物化学的基础。
例如,酶是一类重要的蛋白质,它可以催化生物体内的化学反应。
2. 核酸:核酸是构成生物体遗传信息的基本单位,包括DNA和RNA。
DNA是遗传信息的存储介质,RNA参与蛋白质的合成。
了解核酸的结构、功能和生物合成是理解遗传信息传递的关键。
3. 多糖:多糖是一类碳水化合物,由单糖分子通过糖苷键结合而成。
多糖在生物体内具有能量储存和结构支持的功能。
了解多糖的种类、结构和生物功能对于了解生物体内的能量代谢和细胞结构具有重要意义。
二、代谢与能量1. 代谢途径:代谢是生物体内的化学反应过程,包括物质的合成、降解和转化。
了解代谢途径(如糖酵解、脂肪酸合成、氨基酸代谢等)和相关酶的作用是理解生物体内化学反应的基本原理。
2. 能量产生与转化:生物体内的能量主要来自ATP(三磷酸腺苷)的合成和分解。
了解ATP的结构、合成途径和参与的能量转化过程是理解生物体内能量代谢的关键。
三、酶的性质与调节1. 酶的性质:酶是生物体内催化化学反应的蛋白质,具有高度的专一性和催化效率。
了解酶的底物特异性、酶促反应的速率和酶的催化机制是理解酶学的基础。
2. 酶的调节:生物体内的酶活性可以通过多种方式进行调节,如底物浓度、温度、pH值的变化以及酶的共价修饰等。
了解酶的调节机制对研究生物体内代谢的调控具有重要意义。
四、生物体内的信号传导1. 细胞膜受体:细胞膜受体是生物体内信号传导的重要组成部分,包括离子通道和酶联受体等。
第一章蛋白质第一节蛋白质概论1、①蛋白质的概念:蛋白质是由20种左右L-α氨基酸通过肽键相互连接而成的一类具有特定的空间构象和生物学活性的复杂高分子含氮化合物。
特点:构造复杂、功能多样、分子量大、平均含氮量为16%、具有胶体性质和两性性质②蛋白质的分类:•按分子外形的不对称程度分两类:球状蛋白——如血红蛋白、酶等纤维状蛋白——如角蛋白、血纤维蛋白原等•按组成分成两类:简单蛋白质——分子中只有氨基酸结合蛋白质——简单蛋白质+辅基构成主要有色蛋白、金属蛋白、磷蛋白、核蛋白、脂蛋白、糖蛋白• 按溶解度分清蛋白(白蛋白)如血清清蛋白、球蛋白(拟球蛋白和优球蛋白)、组蛋白、精蛋白、醇溶蛋白、硬蛋白、谷蛋白•按营养价值不同分两类:完全蛋白质不完全蛋白质•按蛋白质的功能分两类:活性蛋白质和非活性蛋白质③蛋白质的生物学功能• 催化功能----酶或辅酶如淀粉酶、蛋白酶•调节功能----激素蛋白调节体内新陈代谢如胰岛素•结构成分或支持功能----结构蛋白如胶原蛋白、a-角蛋白、丝纤蛋白等•运输功能----运输小分子和离子如血红蛋白、色素蛋白、血清蛋白•免疫防御功能----保护自身生命活动如免疫球蛋白、血纤维蛋白原及干扰素•收缩或运动功能----鞭毛运动和肌肉收缩如肌动蛋白和肌球蛋白•营养和贮存功能----为机体提供养料如醇溶蛋白、卵清蛋白、酪蛋白•生物膜受体功能----接受和传递调节信息如激素受体蛋白和感觉蛋白(味蛋白)•毒素蛋白----如细菌毒素、蛇毒等•控制生长、分化和遗传功能----如组蛋白、阻遏蛋白、表皮生长因子、DNA蛋白等(蛋白质是生命现象的体现者)第二节氨基酸的结构分类及性质一.氨基酸的结构特点1.结构特征---氨基酸是含有NH2的有机酸(1)都是α-氨基酸;(2)具有酸性的-COOH基及碱性的-NH2基,为两性电解质;(3)除甘氨酸(R基是H原子)外,都是L-型氨基酸,具有旋光性;二.氨基酸的种类及其结构(1)常见氨基酸(编码氨基酸)甘氨酸Gly(G) 丙氨酸Ala(A) 缬氨酸Val(V)亮氨酸Leu(L) 异亮氨酸Ile(I) 苯丙氨酸Phe(F)酪氨酸Tyr(Y) 色氨酸Try,Trp(W) 丝氨酸Ser(S)苏氨酸Thr(T) 半胱氨酸Cys(C) 甲硫氨酸Met(M)精氨酸Arg(R) 赖氨酸Lys(K) 组氨酸His(H)天冬氨酸Asp(D) 谷氨酸Glu(E)天冬酰胺Asn(N) 谷氨酰胺Gln(Q) 脯氨Pro(P)(2)稀有氨基酸:羟脯氨酸(Hyp) 羟赖氨酸(Hyly) 胱氨酸(Cys)根据R基团的结构或性质特点,巧记20种氨基酸的口诀:•甘、丙、缬、亮、异、脂链,(脂肪链R基团的5种)•丝、苏、半、蛋、羟硫添。
⽣物化学复习资料第六章⽣物氧化与氧化磷酸化(⼀)名词解释1、⽣物氧化(biological oxidation):有机物质在⽣物体内氧化分解⽣成⼆氧化碳和⽔并释放能量的过程。
2、电⼦传递链⼜称呼吸链(electron transter chain ETC):指存在于线粒体内膜(原核⽣物存在于质膜)上的⼀系列氢传递体和电⼦递体,按⼀定的顺序组成了从供氢体到氧之间传递电⼦的链。
3、氧化磷酸化作⽤(oxidative phosphorylation):指电⼦在电⼦传递链上传递和ATP形成相互偶联的过程。
即与⽣物氧化作⽤相伴⽽⽣的磷酸化作⽤。
4、磷氧⽐(P/O ratio):指在⽣物氧化中,每消耗⼀个氧原⼦所⽣成的ATP分⼦数,或每消耗⼀摩尔原⼦氧⽣成的ATP摩尔数。
(⼆)问答题1、何谓⽣物氧化?它有何特点?其作⽤的关键是什么?⽣物氧化的⽅式?①见名词解释“⽣物氧化”;②特点:A、活细胞内,反应条件温和;B、⼀系列酶的催化下逐步进⾏;C、能量逐步释放,部分能量可被利⽤,利⽤效率较⾼;③作⽤的关键;⼀是代谢物分⼦中的氢如何脱出,⼆是脱出的氢如何与分⼦氧结合成⽔并释放能量;④⽅式:通常为三种氧化⽅式A:加氧:在⼀种物质分⼦上直接加氧NH3-CH2-COOH+1/2O2→O=CHCOOH+NH4+H2O -2HB:脱氢:加⽔脱氢:CH3CHO——→CH3 – CH – OH——→CH3COOH|OH-2H直接脱氢:HOOC—CH2—CH2—COOH——→HOOC—CH=CH—COOHC:脱电⼦:-eCyt(Fe2+)——→Cyt(Fe3+)2、举例说明⾼能化合物可分为哪⼏种键型。
(1)磷氧键型,如1,3—⼆磷酸⽢油酸、ATP、磷酸烯醇式丙酮酸;(2)磷氮键型,如磷酸肌酸;(3)硫脂键型,如⼄酰CoA;(4)甲硫键型,如S—腺苷甲硫氨酸;(5)碳氧键型,如氨酰——tRNA。
3、电⼦传递链上有哪⼏类电⼦传递体?各如何作⽤?(1)烟酰胺核苷酸类。
⽣物化学复习资料⽣物化学复习题⼀、基本概念1、离⼦泵(K-Na泵和功能):(P49)由ATP酶驱动使膜内ATP⽔解并产⽣阴离⼦ADP-和阳离⼦H+。
H+释放到膜外,ADP-留在膜内,因⽽产⽣跨膜的质⼦梯度和电位差⽽引起对其他离⼦的吸收。
Na-K泵存在于动、植物细胞质膜上,它有⼤⼩两个亚基,⼤亚基催化ATP⽔解,⼩亚基是⼀个糖蛋⽩。
⼤亚基以亲Na+态结合Na+后,触发⽔解ATP。
每⽔解⼀个ATP释放的能量输送3个Na+到胞外,同时摄取2个K+⼊胞,造成跨膜梯度和电位差,这对神经冲动传导尤其重要,Na+-K+泵造成的膜电位差约占整个神经膜电压的80%。
2、新陈代谢:(P1)营养物质在⽣物体内所经历的由酶催化的⼀切化学变化的总称为新陈代谢,代谢特点:①连续的⼀系列单元反应组成②⽣化反应具体过程(TCA)③特定部位,特定终产物④包括物质代谢和能量代谢3、亲核反应:有机反应的⼀类,电负性⾼的亲核基团向反应底物中的带正电的部分进攻⽽使反应发⽣,这种反应为亲核反应。
与之相对的为亲电反应。
4、半保留复制与半不连续复制:半保留复制是双链DNA 的复制⽅式,其中亲代链分离,每⼀⼦代DNA 分⼦由⼀条亲代链和⼀条新合成的链组成。
(P407)半不连续复制是指DNA复制时,前导链上DNA的合成是连续的,后滞链上是不连续的,故称为半不连续复制5、异构化反应:(P11)⽣物化学中的异构化反应指的是⼀个氢原⼦在分⼦内迁移,即质⼦从⼀个碳原⼦脱离,转移到另⼀个碳原⼦上,由此发⽣了双键位置的改变。
代谢中最多的是醛糖-酮糖异构化互变反应6、分⼦重排反应:(P11)重排是C-C键断裂,⼜重新形成的反应。
其结果碳⾻架发⽣了变化。
7、克莱森酯缩合反应:(P13)克莱森(酯)缩合反应是含有α-活泼氢的酯类在醇钠、三苯甲基钠等碱性试剂的作⽤下,发⽣缩合反应形成β-酮酸酯类化合物,称为克莱森(脂)缩合反应,反应可在不同的酯之间进⾏,称为交叉酯缩合8、标准⽣成⾃由能:(P30)由标准状态下的稳定单质⽣成标准状态下1mol的化合物所引起的⾃由能的改变称为该化合物的标准摩尔⽣成吉布斯⾃由能。
第一章绪论生物化学:简单来讲,研究生物体内物质组成(化学本质)和化学变化规律的学科。
生物化学的研究内容:生物分子的结构及功能(静态生化);物质代谢及其调节(动态生化);生命物质的结构及功能的关系及环境对机体代谢的影响(功能生化)。
第二章糖类化学一、糖的定义及分类糖类是一类多羟基醛(或酮),或通过水解能产生这些多羟基醛或多羟基酮的物质。
糖类分类:(大体分为简单糖和复合糖)单糖:基本单位,自身不能被水解成更简单的糖类物质。
最简单的多羟基醛或多羟基酮的化合物。
Eg:半乳糖寡糖:2~10个单糖分子缩合而成,水解后可得到几分子单糖。
Eg:乳糖多糖:由许多单糖分子缩合而成。
如果单糖分子相同就称为同聚多糖或均一多糖;由不同种类单糖缩合而成的多糖为杂多糖或不均一多糖。
复合糖:是指糖和非糖物质共价结合而成的复合物,分布广泛,功能多样,具有代表性的有糖蛋白或蛋白聚糖,糖脂或脂多糖。
二单糖1、单糖的构型:在糖的化学中,采用D/L法标记单糖的构型。
单糖构型的确定以甘油醛为标准。
距羰基最远的手性碳及D-(+)-甘油醛的手性碳构型相同时,为D型;及L-(-)-甘油醛构型相同时,为L型。
2、对映异构体:互为镜像的旋光异构体。
如:D-Glu及L-Glu3、旋光异构现象:不对称分子中原子或原子团在空间的不同排布对平面偏振光的偏正面发生不同影响所引起的异构现象。
4、差向异构体:具有两个以上不对称碳原子的的分子中仅一个不对称碳原子上的羟基排布方式不同。
如:葡萄糖及甘露糖;葡萄糖及半乳糖。
5、环状结构异构体的规定:根据半缩醛羟基及决定直链DL构型的手性碳上羟基处于同侧为α,异侧为β。
(只在羰基碳原子上构型不同的同分异构体)6、还原糖:能还原Fehling试剂或Tollens试剂的糖叫还原糖。
分子结构中含有还原性基团(如游离醛基半缩醛羟基或游离羰基)的糖,还原糖是指具有还原性的糖类,叫还原糖。
1)单糖和寡糖的游离羰基,有还原性。
2)以开链结构存在的单糖中除了二羟丙酮外均具有游离羰基。
第三章糖类的化学(1)P18 旋光性是指某些物质能使平面偏振面旋转的性质(2)P19 单糖:凡羟基在右边的,为D-型;凡羟基在左边的,为L-型L-甘油醛 D-甘油醛对于含3个碳原子以上的糖,由于存在不止1个不对称碳原子,在规定其构型时以距醛基或酮基最远的不对称碳原子为准,羟基在右的为D-型羟基在左的为L-型。
(3)P30 寡糖分子中都存在不对称碳原子,因而都有旋光性(4)P33 多糖有旋光性,但无变旋现象4、脂类和生物膜化学1、P47 酸败的化学本质:一方面是油脂中不饱和脂肪酸的双键在空气中氧的作用下成为过氧化物,过氧化物继续分解生成有臭味的低级醛、酮、羧酸和醛、酮的衍生物;另一个原因是霉菌或脂酸将油脂水解成低级脂肪酸,脂肪酸再经过β-氧化过程生成β-酮酸,β-酮酸脱羧生成低级酮类。
第五章蛋白质化学(一)P61 氨基酸的结构通式:(二)P62 构成蛋白质的氨基酸(英文符号)除了甘氨酸(gly)外,构成蛋白质的氨基酸都是L-构型4、P73 谷胱甘肽:是由L-谷氨酸,L-半胱氨酸和甘氨酸组成(谷氨酸由γ-羧基生成肽键,而在其他肽和蛋白质分子中谷氨酸由α-羧基生产肽键)。
谷胱甘肽中因含有-SH,故通常简写为GSH5、P76一级结构:特指肽链中的氨基酸排列顺序。
维系一级结构的主要化学键是肽键。
蛋白质的一级结构的测定:1.肽链末端分析:(1)N-末端端测定:A. 二硝基氟苯法B. 苯异硫氰酯(PITC)法C.二甲基氨基萘磺酰氯法(DNS法);(2)C-末端端测定:肼解法、羧肽酶法;2、二硫键的拆开和肽链的分离;3、肽链的部分水解和肽段的分离:化学裂解法、酶解法4、测定每一段的氨基酸顺序5. 由重叠片段推断肽链顺序6、P82 二级结构:它是指肽链主链骨架原子的相对空间位置,维系二级结构的化学键主要是氢键。
蛋白质二级结构的主要形式:α-螺旋、β-折叠、β-转角、无规卷曲、π-螺旋等7、P91 分子病:由于基因结构改变,蛋白质一级结构中的关键氨基酸发生改变,从而导致蛋白质功能障碍,出现相应的临床症状,这类遗传性疾病称为分子病。
生物化学复习重点第一章蛋白质1.蛋白质的元素组成:C、H、O、N、S及其他微量元素,N为特征性元素2.氨基酸通式特点:α-L -氨基酸,只有甘氨酸没有手性(旋光性),脯氨酸为亚氨基酸。
3.氨基酸分类:(1)、酸性氨基酸:一氨基二羧基氨基酸,有天冬氨酸、谷氨酸,带负电荷(2)、碱性氨基酸:二氨基一羧基氨基酸,有赖氨酸、精氨酸、组氨酸,带正电荷(3)、中性氨基酸:一氨基一羧基氨基酸,有甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、甲硫氨酸、半胱氨酸、苯丙氨酸、色氨酸、酪氨酸、脯氨酸、天冬酰胺、谷氨酰胺、丝氨酸、苏氨酸。
不带电荷。
4.两性解离:氨基酸是两性电解质是指在溶液中既可以给出H+而表现酸性,其氨基可以结合H+而表现碱性。
在一定条件下,氨基酸是一种既带正电荷,又带负电荷的离子,这种离子称为兼性离子。
5.等电点:在某一pH值条件下,氨基酸解离成阳离子和阴离子的程度相等,溶液中的氨基酸以兼性离子的形式存在,且净电荷为0 此时溶液的pH值称为该氨基酸的等电点。
肽键:存在于蛋白质和肽分子中,是由一个氨基酸的α羧基与另一个氨基酸的α氨基缩合形成的化学键。
肽键:一个氨基酸的a-COOH 和相邻的另一个氨基酸的a-NH2脱水形成共价键。
氨基酸通过钛键连接成肽,根据所含氨基酸的多少分为寡肽和多肽;根据结构功能分为生物活性肽和蛋白质。
肽键结构的六个原子构成一个钛单元,六个原子处于同一个平面上称为肽平面pI=(pK1,+pK2,)/25.氨基酸紫外吸收:280nm,苯丙氨酸、色氨酸、酪氨酸有紫外吸收6.蛋白质的一级结构(Primary structure):它是指蛋白质中的氨基酸按照特定的排列顺序通过肽键连接起来的多肽链结构。
7.蛋白质二级结构的概念:是指蛋白质多肽链局部片段的构象该片段的氨基酸序列是连续的,而主链构象通常是规则的的基础上,按照一定的方式有规律的旋转或折叠形成的空间构象。
其实质是多肽链在空间的排列方式蛋白质二级结构主要类型有:a-螺旋、β-折叠、β-转角维持二级结构的作用力:氢键a-螺旋(a-Helix):是指蛋白质多肽通过肽平面旋转盘绕形成的一种右手螺旋结构。
(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。
它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。
生物化学的研究对于理解生命的机理和病理过程具有重要意义。
2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。
蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。
蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。
3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。
RNA是单链结构,由磷酸二酯键连接的核苷酸组成。
核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。
4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。
合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。
能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。
生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。
5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。
酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。
酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。
6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。
信号传导包括外部信号的接受、内部信号的传递和效应的产生。
细胞间的信号传导有兴奋性传导和化学信号传导两种方式。
7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。
一。
核酸的结构和功能脱氧核糖核酸(deoxyribonucleicacid,DNA):遗传信息的贮存和携带者,生物的主要遗传物质。
在真核细胞中,DNA主要集中在细胞核内,线粒体和叶绿体中均有各自的DNA。
原核细胞没有明显的细胞核结构,DNA 存在于称为类核的结构区。
核糖核酸(ribonucleicacid,RNA):主要参与遗传信息的传递和表达过程,细胞内的RNA主要存在于细胞质中,少量存在于细胞核中。
DNA分子中各脱氧核苷酸之间的连接方式(3′-5′磷酸二酯键)和排列顺序叫做DNA的一级结构,简称为DNA旋相互盘绕而形成。
?—C配对(碱基配对原则,?结构每隔隔为DNA?氢键??DNADNA构.?RNA类别:?信使RNA(messengerRNA,mRNA):在蛋白质合成中起模板作用;?核糖体RNA(ribosoalRNA,rRNA):与蛋白质结合构成核糖体(ribosome),核糖体是蛋白质合成的场所;?转移RNA(transforRNA,tRNA):在蛋白质合成时起着携带活化氨基酸的作用。
rRNA的分子结构特征:?单链,螺旋化程度较tRNA低?与蛋白质组成核糖体后方能发挥其功能mRNA的分子结构原核生物mRNA特征:先导区+翻译区(多顺反子)+末端序列真核生物mRNA特征:5′-“帽子”(m7G-5′ppp5′-Nmp)+单顺反子+“尾巴”(PolyA)-3′核酸的变性、复性和杂交变性:在物理、化学因素影响下,DNA碱基对间的氢键断裂,双螺旋解开,这是一个是跃变过程,伴有A260增加(增色效应),DNA的功能丧失。
复性:在一定条件下,变性DNA单链间碱基重新配对恢复双螺旋结构,伴有A260减小(减色效应),DNA的功能恢复。
不同来源的DNA单链间或单链DNA与RNA之间只要有碱基配对的区域,在复性时可形成局部双螺旋区,称核酸分子杂交Tm:熔解温度DNA的熔6、计算(1)分子量为3?105的双股DNA分子的长度;(2)这种DNA一分子占有的体积;(3)这种DNA一分子占有的螺旋圈数。
生物化学重点知识归纳第一章绪论1.生物化学的发展过程大致分为三阶段:叙述生物化学、动态生物化学和机能生物化学。
2.生物化学研究的内容大体分为三部分:①生物体的物质组成及生物分子的结构与功能②代谢及其调节③基因表达及其调控第二章糖类化学1.糖类通常根据能否水解以及水解产物情况分为单糖、寡糖和多糖。
2.单糖的分类:①按所含C原子的数目分为:丙糖、丁糖......②按所含羰基的特点分为:醛糖和酮糖。
3.葡萄糖既是生物体内最丰富的单糖,又是许多寡糖和多糖的组成成分。
4.甘油醛是最简单的单糖。
5.两种环式结构的葡萄糖:6.核糖和脱氧核糖的环式结构:(见下图)7.单糖的重要反应有成苷反应、成酯反应、氧化反应、还原反应和异构反应。
8.蔗糖是自然界分布最广的二糖。
9.多糖根据成分为:同多糖和杂多糖。
同多糖又称均多糖,重要的同多糖有淀粉、糖原、纤维素等;杂多糖以糖胺聚糖最为重要。
10.淀粉包括直链淀粉和支链淀粉。
糖原分为肝糖原和肌糖原。
11.糖胺聚糖包括透明质酸、硫酸软骨素和肝素。
第三章脂类化学1. 亚油酸、α亚麻酸和花生四烯酸是维持人和动物正常生命活动所必必需的脂肪酸,是必需脂肪酸。
2. 类花生酸是花生四烯酸的衍生物,包括前列腺素、血栓素和白三烯。
3. 脂肪又称甘油三酯。
下图是甘油三酯、甘油和脂肪酸的结构式:1. 皂化值:水解1克脂肪所消耗KOH的毫克数。
皂化值越大,表示脂肪中脂肪酸的平均分子量越小。
6.磷脂根据所含醇的不同分为甘油磷脂和鞘磷脂。
7.糖脂包括甘油糖脂和鞘糖脂。
8.类固醇是胆固醇及其衍生物,包括胆固醇、胆固醇脂、维生素D、胆汁酸和类固醇激素等。
9.胆汁酸有游离胆汁酸和结合胆汁酸两种形式。
10.类固醇激素包括肾上腺皮质激素(如醛固酮、皮质酮和皮质醇)和性激素(雄激素、雌激素和孕激素)。
11.肾上腺皮质激素具有升高血糖浓度和促进肾脏保钠排钾的作用。
其中皮质醇对血糖的调节作用较强,而对肾脏保钠排钾的作用很弱,所以称为糖皮质激素;醛固酮对水盐平衡的调节作用较强,所以称为盐皮质激素。
生物化学复习资料生物化学复习资料生物化学是研究生物体内化学成分及其相互作用的科学。
它涉及到许多重要的生物分子,如蛋白质、核酸、碳水化合物和脂质,以及与它们相关的代谢途径和能量转化。
在这篇文章中,我们将探讨一些生物化学的重要概念和知识点,以帮助你复习这门学科。
1. 蛋白质:蛋白质是生物体内最重要的分子之一,它们由氨基酸组成。
氨基酸是一种含有氨基和羧基的有机分子,它们通过肽键连接在一起形成多肽链,进而形成蛋白质。
蛋白质在生物体内担任多种功能,包括酶催化、结构支持和信号传导等。
2. 核酸:核酸是生物体内存储和传递遗传信息的分子。
它们由核苷酸组成,核苷酸由糖分子、碱基和磷酸组成。
DNA是一种双链核酸,它包含了生物体的遗传信息。
RNA是一种单链核酸,它在蛋白质合成中起着重要的作用。
3. 碳水化合物:碳水化合物是生物体内最常见的有机分子之一,它们由碳、氢和氧原子组成。
碳水化合物可分为单糖、双糖和多糖三种类型。
单糖包括葡萄糖和果糖,它们是生物体内能量的重要来源。
多糖包括淀粉和纤维素,它们在能量存储和结构支持方面起着重要的作用。
4. 脂质:脂质是生物体内的另一类重要有机分子,它们主要由碳、氢和氧原子组成。
脂质可分为甘油三酯、磷脂和固醇三种类型。
甘油三酯是脂肪的主要组成部分,它们在能量存储和绝缘保护方面起着重要的作用。
磷脂是细胞膜的主要组成部分,它们在细胞结构和信号传导中起着重要的作用。
固醇包括胆固醇和激素,它们在细胞膜的稳定性和调节生理功能方面起着重要的作用。
5. 代谢途径:代谢途径是生物体内化学反应的连续序列,用于合成和分解生物分子以及能量转化。
其中最重要的代谢途径包括糖酵解、脂肪酸氧化和氧化磷酸化。
糖酵解是将葡萄糖分解为乳酸或乙酸,并产生少量ATP的过程。
脂肪酸氧化是将脂肪酸分解为乙酰辅酶A,并产生大量ATP的过程。
氧化磷酸化是将ATP合成反应与氧化还原反应相结合,产生大量ATP的过程。
6. 能量转化:能量转化是生物体内能量的转化和利用过程。
生化复习资料(一)1、糖蛋白:由糖同蛋白质以共价键连接而成的结合蛋白质。
2、糖胺聚糖:含己糖胺和糖醛酸的杂多糖,是由多个二糖单位形成的长链多聚糖。
3、糖苷键:一个单糖或糖链还原端半缩醛上的羟基与另一个分子的羟基、胺基或巯基之间缩合形成的缩醛键或缩酮键。
4、等电点:在适当的酸碱度时,氨基酸的氨基和羧基的解离度可能完全相等。
净电荷为零,在电场中既不向阳极移动,也不向阴极移动,成为两性离子。
这时氨基酸所处溶液中的PH就称为该氨基酸的等电点。
8、酶活性中心:酶分子中能同底物结合并起催化反应的空间部位。
由自由部位和催化部位组成。
9、核酶:是具有催化功能的RNA分子,是生物催化剂.10、辅酶:作为酶的辅因子的有机分子,本身无催化作用,但一般在酶促反应中有传递电子、原子或某些功能基团的作用。
11、辅基:酶的辅因子或结合蛋白质的非蛋白部分。
12、糖异生:非糖物质转变成葡萄糖或糖原的过程。
13、氧化磷酸化:指生物氧化的过程中伴随着ADP磷化成ATP的作用。
有代物连接的磷酸化和呼吸链连接的磷酸化两种类型。
14、底物水平磷酸化:(也称代物连接的氧化磷酸化)代物脱氢后,分子部能量重新分布,使无机磷酸酯化。
15、顺反子:通过顺反试验所确定的遗传单元,本质上与一个基因相同,可编码一种多肽链。
16、信号假说:分泌蛋白质N端系列作为信号肽,指导分泌性蛋白质到质网膜上合成,在蛋白质合成结束之前被切除。
17、化学渗透学说:在呼吸链电子传递过程中,质子在线粒体膜外两侧的浓度梯度所产生的化学电位差是合成ATP的基本动力。
18、酶原激活:有的酶在分泌时是无活性的酶原,需要经某种酶或酸将其分子作适当的改变或切去一部分才能呈现活性。
21.转录:转录(Transcription)是遗传信息从DNA到RNA的转移。
即以双链DNA中的一条链为模板,A、U、G、C4种核苷三磷酸为原料,在RNA聚合酶催化下合成RNA的过程。
22.酶原激活:某些酶在细胞合成或初分泌时没有活性,这些没有活性的酶的前身称为酶原(zymogen),使酶原转变为有活性酶的作用称为酶原激活23.酶的活性中心:酶分子中能与底物结合并起催化作用的空间部位,酶活性部位是由结合部位和催化部位所组成。
生物化学知识点生化知识点概述1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级、二级、三级和四级结构、蛋白质折叠、功能域。
- 核酸:DNA和RNA的结构、碱基配对、双螺旋、RNA的多样性(mRNA, tRNA, rRNA等)。
- 糖类:单糖、多糖、糖蛋白、糖脂。
- 脂质:甘油三酯、磷脂、甾体化合物。
2. 酶学- 酶的定义、特性、命名。
- 酶促反应动力学:米氏方程、酶抑制、酶激活。
- 酶的结构与机制:活性位点、催化机制、酶的调控。
3. 代谢途径- 糖酵解:步骤、调节、能量产出。
- 柠檬酸循环(TCA循环):反应、关键酶、调节。
- 电子传递链与氧化磷酸化:电子载体、质子梯度、ATP合成。
- 脂肪酸代谢:β-氧化、脂肪酸合成、脂肪酸氧化。
- 氨基酸代谢:脱氨基作用、转氨作用、氨基酸的降解和合成。
- 核苷酸代谢:碱基合成、核苷酸合成与降解。
4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。
- 第二信使:cAMP、IP3、DAG、Ca2+。
- 信号传导途径:MAPK通路、PI3K/Akt通路、Wnt/β-catenin通路。
5. 基因表达与调控- DNA复制:复制机制、DNA聚合酶、复制起始点。
- 转录:RNA聚合酶、启动子、增强子、沉默子。
- 翻译:核糖体结构、tRNA作用、蛋白质合成过程。
- 基因调控:表观遗传学、非编码RNA、转录因子。
6. 分子生物学技术- 克隆技术:限制性内切酶、连接酶、载体、转化。
- PCR技术:原理、引物设计、扩增程序。
- 基因编辑:CRISPR-Cas9、TALENs、ZFNs。
- 蛋白质组学:质谱分析、蛋白质芯片、蛋白质互作。
7. 细胞结构与功能- 细胞膜:脂质双层、膜蛋白、膜流动性。
- 细胞器:线粒体、内质网、高尔基体、溶酶体。
- 细胞骨架:微丝、中间丝、微管。
- 细胞周期:G1、S、G2、M期、细胞凋亡。
8. 生物化学疾病- 代谢疾病:苯丙酮尿症、糖原贮积病。
生物化学复习资料生物化学复习资料生物化学是生物学和化学的交叉学科,研究生物体内的化学成分、结构和功能,以及生物体内的化学反应和代谢过程。
对于学习生物化学的学生来说,复习资料是非常重要的辅助工具。
本文将为大家提供一些生物化学复习资料,帮助大家更好地掌握这门学科。
一、基础知识回顾1. 生物大分子:生物大分子是生物体内的重要组成部分,包括蛋白质、核酸、多糖和脂质。
复习时,可以重点关注它们的结构和功能,以及与生物体内其他分子的相互作用。
2. 酶:酶是生物体内的催化剂,可以加速化学反应的进行。
复习时,可以重点关注酶的分类、酶的活性调节机制以及酶与底物之间的相互作用。
3. 代谢途径:代谢途径是生物体内化学反应的网络,包括糖代谢、脂肪代谢和蛋白质代谢等。
复习时,可以重点关注每个代谢途径的关键酶和反应,以及这些代谢途径的调节机制。
二、实验技术回顾1. 分离技术:在生物化学实验中,分离技术是非常重要的一环。
复习时,可以回顾凝胶电泳、层析技术和离心技术等常用的分离技术,了解它们的原理和应用。
2. 光谱技术:光谱技术在生物化学研究中有广泛的应用,包括紫外-可见吸收光谱、红外光谱和核磁共振光谱等。
复习时,可以回顾这些光谱技术的原理和解读方法。
3. 基因工程技术:基因工程技术是生物化学领域的前沿技术之一,可以用于改造和利用生物体内的基因。
复习时,可以回顾基因工程技术的基本原理和常用的实验方法。
三、应用领域探讨1. 药物研发:生物化学在药物研发中起着重要的作用。
复习时,可以了解药物的发现和设计过程,以及生物化学在药物研发中的应用。
2. 食品工业:生物化学在食品工业中也有广泛的应用,包括食品的加工、储存和保鲜等。
复习时,可以了解食品工业中常用的生物化学技术和方法。
3. 疾病诊断:生物化学在疾病诊断中有重要的应用,例如生物标志物的检测和分析。
复习时,可以了解生物标志物的种类和检测方法,以及它们在疾病诊断中的应用。
四、案例分析为了更好地理解生物化学的理论知识和实验技术,可以通过案例分析来加深对生物化学的理解。
生物化学复习资料生物化学一、名词解释1.蛋白质变性与复性:蛋白质分子在变性因素的作用下,高级构象发生变化,理化性质改变,失去生物活性的现象称为蛋白质的变性作用。
变性蛋白质在除去变性因素后,可缓慢地重新自发折叠成原来构象,并恢复原有的理化性质和生物活性,这种现象称为蛋白质的复性。
2.盐析与盐溶:在蛋白质的水溶液中,加入大量高浓度的强电解质如硫酸铵、氯化钠、硝酸铵等,使蛋白质凝聚而从溶液中析出的现象叫盐析。
在蛋白质的水溶液中,加入低浓度的盐离子,会使蛋白质分子散开,溶解性增大的现象叫盐溶。
3.激素与受体:激素是指机体内一部分细胞产生,通过扩散、体液运送至另一部分细胞,并起代谢调节控制作用的一类微量化学信息分子。
受体是指细胞中能识别特异配体(神经递质、激素、细胞因子)并与其结合,从而引起各种生物效应的分子,其化学本质为蛋白质。
4.增色效应与减色效应:增色效应是指DNA变性后,溶液紫外吸收作用增强的效应。
减色效应是指DNA复性过程中,溶液紫外吸收作用减小的效应。
5.辅酶与辅基:根据辅因子与酶蛋白结合的紧密程度分为辅酶和辅基,与酶蛋白结合较松、用透析法可以除去的辅助因子称辅酶。
与酶蛋白结合较紧、用透析法不易除去的辅因子称辅基。
6.构型与构象:构型是指一个分子由于其中各原子特有的固定空间排布,使该分子所具有的特定的立体化学形式。
构象是指分子中,不改变共价键结构,仅单键周围的原子旋转所产生的空间排布。
即分子中原子的三维空间排列称为构象。
7.α-螺旋与β-折叠:α-螺旋是指多肽链的主链原子沿一中心轴盘绕,借助链内氢键维持的右手螺旋的稳定构象。
β-折叠是指两条或多条几乎完全伸展的多肽链(或同一肽链的不同肽段)侧向聚集在一起,相邻肽链主链上的NH和C=0之间形成氢链,这样的多肽构象即β-折叠。
8.超二级结构与结构域:超二级结构是指蛋白质中相邻的二级结构单位(α-螺旋、β-折叠、β-转角及无规卷曲)组合在一起,形成有规则的在空间上能辩认的二级结构组合体。
第一章蛋白质的结构与功能1.20种基本氨基酸中,除甘氨酸外,其余都是L-α-氨基酸.2.支链氨基酸(人体不能合成:从食物中摄取):缬氨酸亮氨酸异亮氨酸3.两个特殊的氨基酸:脯氨酸:唯一一个亚氨基酸甘氨酸:分子量最小,α-C原子不是手性C原子,无旋光性.4.色氨酸:分子量最大5.酸性氨基酸:天冬氨酸和谷氨酸碱性氨基酸:赖氨酸、精氨酸和组氨酸6.侧链基团含有苯环:苯丙氨酸、酪氨酸和色氨酸7.含有—OH的氨基酸:丝氨酸、苏氨酸和酪氨酸8.含有—S的氨基酸:蛋氨酸和半胱氨酸9.在近紫外区(220—300mm)有吸收光能力的氨基酸:酪氨酸、苯丙氨酸、色氨酸10.肽键是由一个氨基酸的α—羧基与另一个氨基酸的α—氨基脱水缩合形成的酰胺键11.肽键平面:肽键的特点是N原子上的孤对电子与碳基具有明显的共轭作用。
使肽键中的C-N键具有部分双键性质,不能自由旋转,因此。
将C、H、O、N原子与两个相邻的α-C 原子固定在同一平面上,这一平面称为肽键平面12.合成蛋白质的20种氨基酸的结构上的共同特点:氨基都接在与羧基相邻的α—原子上13.是天然氨基酸组成的是:羟脯氨酸、羟赖氨酸,但两者都不是编码氨基酸14.蛋白质二级结构的主要形式:①α—螺旋②β—折叠片层③β—转角④无规卷曲。
α—螺旋特点:以肽键平面为单位,α—C为转轴,形成右手螺旋,每3.6个氨基酸残基螺旋上升一圈,螺径为0.54nm,维持α-螺旋的主要作用力是氢键15.举例说明蛋白质结构与功能的关系①蛋白质的一级结构决定它的高级结构②以血红蛋白为例说明蛋白质结构与功能的关系:镰状红细胞性贫血患者血红蛋白中有一个氨基酸残基发生了改变。
可见一个氨基酸的变异(一级结构的改变),能引起空间结构改变,进而影响血红蛋白的正常功能。
但一级结构的改变并不一定引起功能的改变。
③以蛋白质的别构效应和变性作用为例说明蛋白质结构与功能的关系:a.别构效应,某物质与蛋白质结合,引起蛋白质构象改变,导致功能改变。
协同作用,一个亚基的别构效应导致另一个亚基的别构效应。
氧分子与Hb一个亚基结合后引起亚基构象变化的现象即为Hb的别构(变构)效应。
蛋白质空间结构改变随其功能的变化,构象决定功能。
b.变性作用,在某些物理或者化学因素的作用下,蛋白质特定的空间构象被破坏本质:破坏非共价键和二硫键,不改变一级结构以酶原激活为例说明蛋白质结构与功能的关系④Anfinsen实验:可逆抑制剂以非共价键与酶或酶—底物复合物的特殊区域可逆结合成复合物,并使酶活性暂时降低或消失;采用透析或超滤将未结合抑制剂除去,则抑制剂和酶蛋白复合物解离,同时酶活性逐步恢复⑤综上,一级结构决定蛋白质的构象,构象决定功能,若一级结构改变并不引起构象改变,则功能不变,若一级结构改变引起构象改变,则功能改变。
16.蛋白质一级结构:氨基酸序列,化学键:肽键、二硫键蛋白质二级结构:蛋白质分子中局部肽段主链原子的相对空间位置,化学键:氢键蛋白质三级结构:在二级结构和模体等结构层次的基础上,由于侧链R基团的相互作用,整条肽链进行范围广泛的折叠和盘曲,化学键:疏水键、离子键、氢键、范德华力蛋白质四级结构:蛋白质分子中各个亚基的空间排布及亚基接触部位的布局,化学键:疏水键、氢键、离子键17.在某一pH下,氨基酸解离成阴离子和阳离子的趋势及程度相同,成为兼性离子,成电中性,此时的pH值为该氨基酸的等电点。
18.蛋白质胶体稳定的因素:①颗粒表面电荷②水化膜19、蛋白质的分离和纯化1、沉淀,见六、22、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。
根据支撑物不同,有薄膜电泳、凝胶电泳等。
3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。
4、层析:a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。
如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。
b.分子筛,又称凝胶过滤。
小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。
5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。
不同蛋白质其密度与形态各不相同而分开。
第二章核酸的结构与功能核酸的分子组成:基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。
两类核酸:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。
核糖核酸(RNA),存在于细胞质和细胞核内。
1、碱基:NH2 NH2 O CH3 O OO O O NH2胞嘧啶胸腺嘧啶尿嘧啶鸟嘌呤腺嘌呤嘌呤和嘧啶环中均含有共轭双键,因此对波长260nm左右的紫外光有较强吸收,这一重要的理化性质被用于对核酸、核苷酸、核苷及碱基进行定性定量分析。
2、戊糖:DNA分子的核苷酸的糖是β-D-2-脱氧核糖,RNA中为β-D-核糖。
3、磷酸:生物体内多数核苷酸的磷酸基团位于核糖的第五位碳原子上。
核酸的一级结构核苷酸在多肽链上的排列顺序为核酸的一级结构,核苷酸之间通过3′,5′磷酸二酯键连接。
1.DNA主要存在与细胞核内,是遗传信息的携带者;RNA主要分布在细胞质中,主要参与蛋白质的合成.核酸的基本组成单位是核苷酸,核苷酸由碱基、戊糖、磷酸组成。
DNA碱基:A G C T,RNA碱基:A G C U 腺苷酸(AMP)鸟苷酸(GMP)胞苷酸(CMP)尿苷酸(UMP)脱氧腺苷酸(dAMP)脱氧鸟苷酸(dGMP)脱氧胞苷酸(dCMP)脱氧胸苷酸(dTMP)NMP:一磷酸NDP:二磷酸NTP:三磷酸2.核苷(脱氧核苷)中戊糖的自由羟基与磷酸通过磷酸酯键连接成核苷酸,核苷酸之间以磷酸二酯键连接形成核酸3.核酸的一级结构:核苷酸的排列顺序DNA的二级结构:❤DNA的双螺旋结构①DNA两条链反向平行,形成右手螺旋结构②磷酸核糖链在螺旋外部,碱基在螺旋内部③螺旋形成大小沟,相间排列④碱基平面与螺旋中心轴垂直A=T,G≡C配对,每10个碱基对,螺旋上升一圈,螺距为3.4nm❤氢键维持双螺旋横向稳定性,碱基堆积力维持双螺旋的纵向稳定性。
DNA的三级结构❤DNA超螺旋a.负超螺旋:顺时针右手螺旋的DNA双螺旋b.正超螺旋:反方向围绕它的轴扭转而成❤DNA在真核细胞内的组装:①核小体:是染色质丝的最基本单位②核小体的组成:组蛋白、DNA③核小体由核心颗粒、连接区DNA两部分组成:核心颗粒包括组蛋白H2A、H2B、H3、H4各两分子构成的致密八聚体以及缠绕其上的7/4圈的DNA 链4.RNA㈠mRNA(半衰期最短)ⅠmRNA结构特点:从5’末端3’末端的结构依次是5’帽子结构、5’末端非编码区、决定多肽氨基酸序列的编码区、3’末端非编码区和多聚腺苷酸尾巴。
帽子和多聚尾A的功能:mRNA 核内向胞质的转化、mRNA的稳定性维系、翻译起始的调控ⅡmRNA功能:从DNA转录遗传信息,是蛋白质合成的模板把核内DNA的碱基顺序,按照碱基互补的原则,抄录并转送至胞质,以决定蛋白质合成的氨基酸排列顺序。
mRNA分子上每3个核苷酸为一组,决定肽链上某一个氨基酸,为三联体密码。
㈡tRNA(在蛋白质的模板mRNA和原料氨基酸间起桥梁作用)(分子量最小)包括双氢尿嘧啶,假尿嘧啶和甲基化的嘌呤等。
ⅠtRNA一级结构特点:①含10%—20%稀有碱基,②3’末端为—CCA—OH,③5’末端大多为G,④具有TΨC环,⑤小分子核酸每分子含有60-120个核苷酸ⅡtRNA二级结构特点:三叶草结构,①氨基酸臂,②DHU环,③反密码子环,④TΨC环⑤额外环ⅢtRNA三级结构特点:倒L形㈢tRNA所携带的特定的氨基酸是反密码子所识别的密码子所编码的氨基酸㈣tRNA功能:转运、活化氨基酸,反密码子识别密码子,参与蛋白质翻译㈤rRNA:参与组成核蛋白体,作为提供蛋白质合成的场所☂问其一,答三者:1.DNA变性:某些理化因素作用下,碱基对间的氢键被打断,DNA双链解开成两条单链的过程2.增色效应:变性后DNA溶液的紫外吸收作用增强的效应3.Tm(溶解温度):DNA变性是在一个很窄的温度范围内发生的,这一范围内紫外吸收光值达到最大值。
通常将核酸加热变性过程中50%DNA变性时的温度称为该核酸的解链温度,又称Tm。
5.核酶的化学本质:核酸6、DNA是遗传信息的载体,而遗传作用是由蛋白质功能来体现的,在两者之间RNA起着中介作用。
其种类繁多,分子较小,一般以单链存在,可有局部二级结构,各类RNA在遗传信息表达为氨基酸序列过程中发挥不同作用。
如:名称功能核蛋白体RNA (rRNA) 核蛋白体组成成分信使RNA (mRNA) 蛋白质合成模板转运RNA (tRNA) 转运氨基酸不均一核RNA (HnRNA) 成熟mRNA的前体小核RNA (SnRNA) 参与HnRNA的剪接、转运小核仁RNA (SnoRNA) rRNA的加工和修饰第三章酶酶的组成单纯酶:仅由氨基酸残基构成的酶。
结合酶:酶蛋白:决定反应的特异性;辅助因子:决定反应的种类与性质;可以为金属离子或小分子有机化合物。
可分为辅酶:与酶蛋白结合疏松,可以用透析或超滤方法除去。
辅基:与酶蛋白结合紧密,不能用透析或超滤方法除去。
酶蛋白与辅助因子结合形成的复合物称为全酶,只有全酶才有催化作用。
参与组成辅酶的维生素转移的基团辅酶或辅基所含维生素氢原子 NAD+、NADP+ 尼克酰胺(维生素PP)FMN、FAD 维生素B2醛基 TPP 维生素B1酰基辅酶A、硫辛酸泛酸、硫辛酸烷基钴胺类辅酶类维生素B12二氧化碳生物素生物素氨基磷酸吡哆醛吡哆醛(维生素B6)甲基、等一碳单位四氢叶酸叶酸⒈酶的活性中心①酶的必须基团:对酶发挥活性所必须的基团②酶的活性中心:在一级结构上相距很远,但在空间结构上彼此靠近的一些R基团形成的特殊区域,该区域能特异的结合底物并催化底物发生化学变化。
按必须基团作用分类:结合基团:参与酶对底物的结合;催化基团:催化底物变成产物2.酶与一般催化剂的区别①高效性:酶的催化作用可是反应速度提高106到1012次方,反应前后酶本身无变化②专一性(对底物具有选择性):Ⅰ绝对专一性:酶对底物要求非常严格,只作用于一个特定的底物;Ⅱ相对专一性:作用对象不是一种底物,而是一类化合物或化学键;Ⅲ立体异构体专一性:D-、L-,顺反,α/β.③酶活性对环境因素的敏感性④酶活性可调节控制:Ⅰ别构调节;Ⅱ反馈调节;Ⅲ供价修饰调节;Ⅳ酶原激活及激素控制⑤某些酶催化活力与辅酶因子有关⑥酶的区域性分布(多在线粒体):有利于酶活性的调控3.诱导契合学说:酶表面并没有一种与底物互补的固定形状,而只是由于底物的诱导才形成了互补的形状①底物诱导酶分子,构象改变②底物和酶分子都发生构象改变4.酶催化反应的快慢决定于活化能㈠测定化学反应速度:测定初速度(测定底物消耗小于5%反应时段内的平均速度)㈡底物浓度对酶促反应速度的影响:①反应速度最大:底物浓度﹥﹥酶浓度K1 K3②中间产物学说E(酶)+S(底物)↔ES(中间复合物)→E+P(游离酶产物)K2中间产物学说:酶催化时,酶活性中心首先与酶底物结合生成一种酶和一种底物的复合物,此复合物再分解释放出酶并释放出产物米氏方程:V=Vmax ×[S] /﹙Km+[S] ﹚⑴当底物浓度很大时([S] ≥10×Km﹚,酶对底物饱和,反应速度达到最大⑵当反应速度V=1/2Vmax时,Km=[S]㈢米氏方程中动力学参数Km的意义★①Km在数值上等于最大反应速度一半时对应的底物浓度,即V=1/2Vmax时,Km=[S]②Km单位:mol/L③Km只是在固定的底物、一定的温度和pH条件下、一定缓冲体系中测定,不同条件下,具有不同Km值。