雪线及其影响因素[1]
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
(完整版)中国雪线分布规律中国雪线分布规律中国位于亚洲东部的大陆内部,地势复杂多样,山脉众多。
由于地理和气候的影响,中国的雪线分布呈现一定的规律。
本文将对中国雪线的分布规律进行探讨,并分析其原因。
一、雪线的概念和分类雪线是指山地上永久积雪的最低高度限度,也称为雪带。
根据区域气候的差异,雪线可分为高寒地区、亚高寒地区和温带地区三种类型。
高寒地区的雪线分布较低,一般在海拔3000米以下。
这些地区冬季寒冷,夏季凉爽短暂,由于温度较低,降雪量较大,导致雪线的下降。
亚高寒地区的雪线分布在海拔3000-4000米之间。
这些地区冬季寒冷,夏季短暂,气温较高,降雪量较小,因此相对于高寒地区而言,雪线略高。
温带地区的雪线分布在海拔4000-5000米之间。
这些地区冬季相对较暖,夏季较长,温度较高,降雪量相对较小,因此雪线较高。
二、中国雪线的分布规律中国雪线的分布规律可以概括为“南低北高,东低西高”。
1. 南北方向上的分布规律南方的雪线相对较低。
主要原因是南方地区海拔较低,温度较高,降雪量较小,雪线相应较低。
受季风的影响,南方的夏季温暖湿润,很少有积雪出现。
北方的雪线相对较高。
北方地势较高,气温较低,降雪量相对较大。
同时,受到冬季气候的影响,北方地区的积雪更为常见,因此雪线高于南方。
2. 东西方向上的分布规律东部的雪线相对较低。
东部地区地势相对平坦,海拔较低,温度较高,积雪较少,雪线自然较低。
西部的雪线相对较高。
西部地势复杂多样,大量的山脉交错于此,形成高大的山峰,海拔较高,温度较低,积雪较多,因此雪线自然较高。
三、中国雪线分布规律的原因分析中国雪线分布规律的形成是由多种因素共同作用的结果。
1. 地形因素中国地势复杂,山脉纵横交错,地形起伏较大。
青藏高原、喜马拉雅山脉等是中国雪线较高的地区,这些地区海拔较高,气候寒冷,降雪量大,导致雪线的上升。
2. 气候因素中国气候多样,北方寒冷,南方温暖湿润。
北方的冷气流和冰雪的形成,使得北方地区的雪线相对较高。
雪线的名词解释雪线是地理学中一个重要的概念,指的是高山地区气温在一定海拔上升至足够低的程度,使得年降雨转化为常年积雪进而形成雪带的临界线。
雪线的高度随着季节、气候和地理环境的不同而有所变化。
一、雪线的形成与特征雪线的形成主要受到气温和降雨量的影响。
当气温低于零摄氏度,且降雨量高于融雪速率时,积雪会越积越厚,形成雪线。
雪线在高山地区通常呈扇形或波浪状,较低处的雪线高度较高,而较高处的雪线高度较低。
这是由于气温随海拔的升高逐渐下降,导致较高处的气温更容易低于零度。
在雪线以下,积雪常年存在,形成被称为永久积雪区的地带。
在这个区域内,雪的积累和熔化基本处于平衡状态。
而在雪线以上,雪只在冬季积累,夏季几乎全面融化。
这一带被称为季节性积雪区。
从永久积雪区到季节性积雪区之间的过渡地带就是雪线。
二、影响雪线高度的因素1. 纬度和海拔:纬度越高和海拔越高,气温越低,雪线也就越低。
这是因为纬度和海拔的升高导致气温降低,使得雨滴在高处凝结为雪。
2. 气候:温暖湿润的气候条件有利于雪线降低。
由于降雨量充足,积雪量增加,达到形成雪线的条件。
3. 大气环流:如冷锋和暖锋的活动会改变气温分布,从而对雪线的高度产生影响。
4. 地理条件:山脉、山谷的分布、坡度和山体的形状对雪线的高度也有影响。
山脉的阻挡作用可将湿空气迫使上升,使得降雨增加,雪线相应下降。
三、雪线的意义与生态影响雪线在地理学和生态学研究中具有重要意义。
它反映了高山区域的气候条件和生态系统的特点,对于研究区域的生态环境变化、水资源分布以及生物多样性的保护都具有重要价值。
雪线的上升或下降会对生态系统造成深远影响。
当雪线上升,雪的融化速度加快,导致土壤水分严重缺乏,影响植物的生长和生态系统的稳定性。
此外,雪线上升还会引发冰川融化加快,影响着河流的径流量、流域的水资源并对下游地区的生活产生重要影响。
雪线的变化也对动物和植物的适应性提出了挑战。
很多高山物种都是特别适应寒冷条件的,它们的生活受到雪线的限制。
2018-2019学年一轮复习高中地理:雪线分布的规律及影响因素2019-2019学年一轮复习高中地理:雪线分布的规律及影响因素雪线是指在高山区和高纬度的永久积雪区及季节性积雪区之间的界限,也就是常年积雪的下界。
实际上雪线并不是一条线,而是一个地带。
在雪线以上,气温较低,全年冰雪的补给量大于消融量,形成了常年积雪区;在雪线以下,气温较高,全年冰雪的补给量小于消融量,不能积累多年冰雪,只能是季节性积雪区;在雪线附近,年降雪量等于年消融量,达到动态平衡。
因此,雪线亦称为固态降水的零平衡线。
雪线是冰川学上一个重要的标志,它控制着冰川的发育和分布。
只有山体高度超过该地的雪线,每年才会有多余的雪积累起来。
年长日久,才能成为永久积雪和冰川发育的地区。
一个地方的雪线位置并不是固定不变的。
季节变化就能引起雪线的升降:夏季气温升高,雪线上升;冬季气温降低,雪线下降。
这种临时界限叫做季节雪线。
只有夏季雪线位置比较稳定,每年都回复到比较固定的高度,由于这个缘故,雪线高度都是在夏季最热月进行测定的。
一、雪线的纬度分布规律从全球来看,雪线的分布高度与气温和降水量密切相关。
赤道地区空气多对流上升,云层较厚,降水多,大气对太阳辐射的削弱作用强;而副热带地区多下沉气流,晴天多,降水少,热量充足,积雪较易融化。
因此,全球雪线最高的地量很大的情况下,必须有较高的年平均温度(即雪线必然较低)方能融化大量的积雪,以保持降雪量与消融量的平衡。
例如,我国的天山——祁连山一线,水汽来源主要受西风带控制,所以由天山西段向东降水量递减,雪线升高,到天山东段雪线达5000米以上,再向东到祁连山东段,由于来自太平洋的水汽增多,雪线反而降低。
2、地貌因素对雪线高度的影响,主要表现在山势和坡向上①从山势上看,陡峻的山地,积雪易下滑,不利于保存,雪线偏高;坡度较小的山地,有利于积雪沉积,雪线偏低。
②在海拔高度相同的山坡两侧,向阳坡接受的太阳辐射量较多,气温偏高,雪融化较快,雪线位置较高;背阳坡接受的太阳辐射量较少,气温偏低,雪线位置也较低。
自然带及雪线高低分布的几点比较一.雪线的高低(一)雪线的定义:降雪量与消融量的平衡线。
如右图示,雪线非常清晰,雪线位置的降雪量等于消融量。
不难看出该线刚好与0度等温线吻合。
该线以上出现了积雪,说明降雪量大于消融量。
雪线以下无积雪,说明降雪量小于消融量。
(二)雪线的影响因素:气温与湿度1.气温:温度高,则积雪消融量增大,0度等温线所在的海拔位置升高,雪线上升。
这里分三个方面来分析关于温度这个影响因素。
1)雪线由低纬向高纬逐渐降低。
受温度影响,低纬地区,温度高,高山上的雪线海拔较高。
高纬地区温度低,高山上雪线海拔较低。
到两极附近,积雪就覆盖在整个地表。
这个知识点可以对两座海拔较高的高山的纬度高低进行比较。
例如图1中,如果甲、乙两座高山的雪线是由于纬度不同导致的,则可以判断出甲山的纬度比乙山高。
2)阳坡雪线高于阴坡。
一座山体,由于所处纬度不同,太阳辐射量在山体两侧有差异,导致同一海拔高度上的温度也不同,坡面两侧雪线会出现高低。
以阳坡与阴坡为例:阳坡温度高,积雪消融量大,雪线上升,阴坡与之相反。
3)近几年来,温室效应,两极冰川融化,各山体的雪线总体上出现了上升趋势。
例四川贡嘎山近几年来由于温室效应,冰川不断退却,同时水位大增,引发了多处泥石流灾害。
4)雪线也有季节的变化,在季节分明的地区,冬季雪线偏低,夏季雪线偏高。
2.湿度:降水的条件之一就是充足的水汽,水汽丰富的地区,降水容易一些,因此,雪线海拔较低。
这里可以从两个方面来分析湿度对雪线的影响,以供大家参考。
1)迎风坡雪线海拔比背风坡低迎风坡降水充沛,背风坡为雨影区,相对干燥,同海拔高度上,迎风坡由于大量的降水导致温度比背风坡低,故雪线下降。
如图2:为位于南半球赤道附近的乞立马扎罗山南北两侧的自然带与雪线的分布,这里我们来研究雪线,发现雪线的海拔高度由北向南逐渐降低。
原因就是南坡为来自印度洋的西南风的迎风坡,降水丰富。
再如喜马拉雅山,其南坡是夏季来自印度洋的暖湿气流,降水丰富,故雪线比北坡低。
2019-2019学年一轮复习高中地理:雪线分布的规律及影响因素雪线是指在高山区和高纬度的永久积雪区及季节性积雪区之间的界限,也就是常年积雪的下界。
实际上雪线并不是一条线,而是一个地带。
在雪线以上,气温较低,全年冰雪的补给量大于消融量,形成了常年积雪区;在雪线以下,气温较高,全年冰雪的补给量小于消融量,不能积累多年冰雪,只能是季节性积雪区;在雪线附近,年降雪量等于年消融量,达到动态平衡。
因此,雪线亦称为固态降水的零平衡线。
雪线是冰川学上一个重要的标志,它控制着冰川的发育和分布。
只有山体高度超过该地的雪线,每年才会有多余的雪积累起来。
年长日久,才能成为永久积雪和冰川发育的地区。
一个地方的雪线位置并不是固定不变的。
季节变化就能引起雪线的升降:夏季气温升高,雪线上升;冬季气温降低,雪线下降。
这种临时界限叫做季节雪线。
只有夏季雪线位置比较稳定,每年都回复到比较固定的高度,由于这个缘故,雪线高度都是在夏季最热月进行测定的。
一、雪线的纬度分布规律从全球来看,雪线的分布高度与气温和降水量密切相关。
赤道地区空气多对流上升,云层较厚,降水多,大气对太阳辐射的削弱作用强;而副热带地区多下沉气流,晴天多,降水少,热量充足,积雪较易融化。
因此,全球雪线最高的地区不在赤道,而是在副热带地区。
处在此范围的南纬20°~25°间的安第斯山雪线最高,主要在智利北部和玻利维亚西南部,一般高5500~6000米,最高可达6400米,成为世界上雪线最高的地方。
在纬度40°的地方,根据气候的干燥程度,雪线高度在海拔2500~5000米之间。
到极地附近,雪线可降至地表。
此外,由于10°N的降水量比10°S多,因此10°S的雪线比10°N也要高一些。
总之,雪线高度的纬度分布规律是由副热带地区向两侧高低纬度递减。
二、影响雪线分布高度的因素地球上各地区雪线的分布高度起伏多变,主要取决于气候与地貌因素的综合作用。
何谓雪线及影响雪线的因素
1.雪线的含义:
雪线实际上为一个地带。
在高寒地区,由于气温低,降雪多,每年降雪量大于融雪量,因而形成终年积雪区。
雪线既是终年积雪区的下界,也是固体降水量和消融量(包括蒸发消耗和融化量)相等的界线,故又将雪线称为固体降水的零平衡线。
雪线是控制冰川发育和分布的重要界线,只有雪线以上的地区,才会形成多年积雪和冰川。
如果在某一高度以上,周围视线以内有一半以上被积雪覆盖且终年不化,这个高度就称为雪线高度。
2.影响雪线高度的因素
气温:雪线高度与气温成正比,由赤道向两极逐渐降低
降水:雪线高度与降水量成反比,降水量小,则雪线高度高;降水量大,则雪线高度低。
如副热带地区降水少,
雪线最高,为5000—6400米;赤道地区降水多,雪线高度一般为4400—4900米。
迎风坡降水多,雪线低;背风坡降水少,雪线高。
如喜马拉雅山南坡雪线为4600米,北坡雪线则高达5800米
地貌:地形对雪线高度的影响主要表现在坡向、坡度等方面。
如阳坡气温高,冰雪消融量大,阴坡则相反。
地形陡峭的地方不易积雪,陡坡雪线较高,缓坡则相反气候:气候变化直接影响雪线高度,气候变暖则雪线上升,气候变冷则雪线下降
注意:具体到某一山区,主要看气候(包含了气温、降水量等因素,非上表中的“气候”)与地貌两方面对其影响的强弱。
高三地理知识点归纳雪线高三地理知识点归纳:雪线在高中地理教科书中,我们经常会接触到关于地貌的知识,其中一个重要的概念就是雪线。
雪线是指在高山地带中,山坡上常年积雪的分界线。
今天,我们就来回顾一下关于雪线的知识。
一、雪线的定义和形成雪线是指高山地区上的积雪界限,它的高度和地理位置受到多种因素的影响。
雪线的高度主要由纬度、气候、山体特征和降水量等因素共同决定。
首先,纬度是影响雪线高度的重要因素之一。
纬度越高,雪线高度就越低。
这是因为纬度越高,温度越低,气温随海拔的变化程度也更为显著,从而导致雪线的高度较低。
其次,气候状况也对雪线高度产生重要影响。
温暖湿润的气候条件下,雪线相对较高;而气温低、降水量少的地区,雪线较低。
此外,山体特征也是影响雪线高度的因素之一。
山体的坡度和形状会影响气流的流动情况,从而影响降水的分布。
较陡峭的山体上升气流较强,降水量较大,雪线较低;而较平缓的山体则相对降雪较少,雪线较高。
最后,降水量也直接影响雪线的高度。
降水量较大的地区,雪线相对较低;而降水量较少的地区,雪线相对较高。
二、雪线的特点1. 雪线的高度和地理位置随地区而异。
从全球范围来看,雪线在北纬30度到北极圈之间高度约为3500米至6000米不等。
而在赤道附近的低纬度地区,雪线高度则较低。
2. 雪线的高度与气候类型密切相关。
常年凉爽的温带地区雪线相对较高,而炎热的亚热带和热带地区雪线则较低。
3. 雪线的位置与山脉的走向有关。
横越山脉的走向受到来自大气环流的影响,降水量和雪线高度也会相应发生变化。
4. 雪线的变化通常是季节性的。
在季节转换时,随着气温的变化,雪线的高度也会发生相应的变化。
三、雪线的地理意义雪线是高山地区生态系统研究的重要依据之一。
在雪线以下的地区,气候较温暖,植被生长较为茂盛。
而雪线以上的地区,气温较低,植被稀疏。
因此,雪线是高山植被类型的分界线,同时也是高山动物区系的分界线。
研究雪线可以帮助我们更好地了解高山生态系统的特点和变化。
雪线及其影响因素
2006年12月05日星期二 10:06
在对海拔较高的山地进行垂直自然带分析时,常常会遇到一条雪线。
雪线作为冰川学上的一个重要标志,它控制着冰川的发育和分布。
雪线变化对陆地自然环境变迁和人类活动所产生的影响具有显著的指示作用。
因此,研究雪线分布变化具有十分重要的意义
一、雪线的定义及分类
在高纬度和高山地区永久积雪区的下部界线,称为雪线。
在雪线以上,气温较低,全年冰雪的补给量大于消融量,形成了常年积雪区;在雪线以下,气温较高,全年冰雪的补给量小于消融量,不能积累多年冰雪,只能是季节性积雪区;在雪线附近,年降雪量等于年消融量,达到动态平衡。
因此,雪线亦称为固态降水的零平衡线。
一个地方的雪线位置不是固定不变的。
季节变化就能引起雪线的升降:夏季气温较高,雪线上升;冬季气温降低,雪线下降。
这种临时界限叫做季节雪线。
只有夏季雪线位置比较稳定,每年都回复到比较固定的高度,由于这个缘故,雪线高度都是在夏季最热月进行测定的。
雪线可分为以下两种:(1)气候雪线:夏季中高山上成片雪层的最低高度。
(2)地形雪线:夏季中雪以孤立分片形式持留在地表的最低高度。
二、影响雪线分布高度的因素地球上各地区雪线的分布高度起伏多变,主要取决于气候与地貌因素的综合作用。
大气环境改变等因素也会对其产生影响。
1、气候上的气温与降水都与之有关系。
雪线的分布高度与气温成正相关,温度高时雪线也高。
由于地表气温由低纬度向高纬度递减,使雪线分布高度的总趋势也由低纬度向高纬度递减。
例如,雪线高度在热带非洲为4500~5200米,到阿尔卑斯山降至2400~3200米,北极圈内只有200米以下。
降水量与雪线高度关系密切:降水量越大,雪线越低;降水量越少,雪线越高。
因为,在降雪量很少的条件下,要达到降雪量与消融量的平衡,必须有较低的年平均温度(即雪线位置必然较高),以使消融量和蒸发量减到很少;而降雪量很大的情况下,必须有较高的年平均温度(即雪线必然较低)方能融化大量的积雪,以保持降雪量与消融量的平衡。
例如,我国的天山~祁连山一线,水汽来源主要受西风带控制,所以由天山西段向东,降水量递减,雪线升高,到天山东段雪线达5000米以上,再向东到祁连山东段,由于来自太平洋的水汽增多,雪线反而降低。
2、地貌因素对雪线的影响,主要表现在山势和坡向上。
从山势上看,陡峻的山地,积雪易下滑,不利于积雪保存,雪线偏高;坡度较小的山地,有利于积雪沉积,雪线偏低。
在海拔高度相同的山坡两侧,向阳坡接受的太阳辐射量较多,气温偏高,雪融化较快,雪线位置较高;背阳坡接受的太阳辐射量较少,气温偏低,雪线位置也较低。
对于北半球而言,南坡、西坡日照多,
冰雪消融量大,雪线偏高,而北坡和东坡的雪线位置较低。
例如,中国天山南坡雪线高度为3900~4200米,而北坡雪线高度为3500~3900米。
3、具体到某一山区,主要看气候与地貌两方面对其影响的强弱。
喜马拉雅山南坡既是向阳坡,又是迎风坡,但水分条件的影响超过了热量条件的影响,因此,降水量丰富的喜马拉雅山南坡比干燥少雨的北坡雪线高度要低。
其南坡面向印度洋,夏季西南季风带来丰沛的降水,年降水量在2000~3000毫米以上,在同等气温(低于0°C)情况下,南坡空气易达到过饱和,形成降雪,形成海洋性冰川,雪线高度在4500米左右;北坡位于西南季风的背风坡,受喜马拉雅山的阻挡,印度洋的水汽难以到达,年降水量一般只有600~800毫米,空气要达到过饱和,必须海拔升高,气温继续降低,才可能形成降雪,形成大陆性冰川,雪线大多在6000米左右,个别地区达6200米。
青藏高原境内雪线海拔高低相差很大,大体上有从边缘向内部、自东南向西北增高的趋势。
青臧高原东南边缘雪线位于海拔4500~5000米,至高原内部,中喜马拉雅山北翼、冈底斯山等雪线海拔5800~6000米,珠峰北侧东绒布冰川及羌塘高原西部昂龙岗日雪线达海拔6200米,是北半球分布最高的雪线。
阿尔卑斯山北坡为背阳坡,蒸发弱;北坡又是迎风坡,大西洋水汽在此产生了大量的降水。
因此,阿尔卑斯山北坡雪线较低,南坡雪线较高。
天山南坡为向阳坡,气温比北坡高,且南坡降水量比北坡少,故天山南坡雪线比北坡高。
4、雪线的升降变化还受大气环境改变制约。
如全球变暖、臭氧层的破坏、沙尘暴等因素均可对雪线高度产生影响。
据联合国环境规划署最近发布的一份报告称,全球变暖可能会导致全球范围内数以百计的滑雪胜地面临"歇业"的尴尬境地。
瑞士苏黎世大学的罗尔夫·比尔基等人在报告中说,今后数十年间,不断升高的气温将使雪线持续向更高海拔推进,雪线之下的许多滑雪胜地的滑雪道将变得越来越"不可靠"。
在一些国家,比如欧洲中部的奥地利,未来30到50年,雪线将升高300米之多。
澳大利亚的情况更为糟糕,到2070年,全国9大滑雪胜地将无一幸免,全部要关门转业。
不断上升的雪线使得大批滑雪爱好者向更高海拔挺进,这也给对环境异常敏感的高海拔滑雪场带来了巨大压力。
臭氧层遭到破坏后,到达地面的太阳紫外线大量增加,使雪线急剧上升。
据生物学家野外观察证明,由于夏季青臧高原上空臭氧层低谷的存在,藏北羌塘地区的雪线在近100年上升了100~150米,造成一些生活在雪线附近的藏羚羊、雪豹、野牦牛等动物分布区域的改变和栖息、繁殖地面积减少或加大,以及食性与活动规律的改变,改变了动物的繁衍生存条件。
甘肃省受沙漠化的威胁突出表现在沙尘暴危害加剧。
20世纪50年代,甘肃境内
发生沙尘暴5次,60年代发生8次,70年代发生13次,80年代发生14次,90年代发生23次。
沙漠化造成了河西沙区来水量减少,致使祁连山冰川局部地区雪线有所上升,最严重的地区雪线年均后退12.5~22.5米,其它地区也以年均2~6.5米的速度后退。
据美国国家航空航天局科学家最新公布的一项结果表明,煤烟颗粒(是一种由碳微粒混合盐分和灰尘而形成的黑色物质,是油料和植物燃烧后的副产品,在发展中国家其最大来源是矿物燃烧)是导致近年来全球范围内冰雪融化的主要因素。
研究显示,因煤烟污染而变暗的雪对太阳光的反射率降低,提高了对太阳能的吸收率,从而导致冰雪融化,雪线后退。
三、雪线的纬度分布规律
从全球来看,雪线的分布高度与气温和降水量密切相关。
赤道地区空气多对流上升,云层较厚,降水多,大气对太阳辐射的削弱作用强;而副热带高压带多下沉气流,晴天多,降水少,热量充足,积雪较易融化。
因此,全球雪线最高的地区不在赤道,而是在副热带高压带。
处在此范围的南美洲南纬20°~25°间的安第斯山雪线最高,主要在智利北部和玻利维亚西南部,一般高5500~6000米,最高可达6400米,成为世界上雪线最高的地方。
在纬度40°的地方,根据气候的干燥程度,雪线高度在海拔2500~5000米之间。
到极地附近,雪线可降至地表。
总之,雪线高度的纬度分布规律是由副热带高压带向高低纬度两侧递减。