第七章离子交换膜和电渗析(ED)
- 格式:ppt
- 大小:1.62 MB
- 文档页数:49
电渗析技术的简介一、电渗析技术简介及其发展背景电渗析(eletrodialysis,简称ED) 技术是膜分离技术的一种,它将阴、阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化)和浓缩两个系统,在直流电场作用下,以电位差为动力,利用离子交换膜的选择透过性,把电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。
电渗析技术的研究始于德国,1903年,Morse和Pierce把2根电极分别置于透析袋内部和外部溶液中,发现带电杂质能迅速地从凝胶中除去;1924年,Pauli采用化工设计的原理,改进了Morse的实验装置,力图减轻极化,增加传质速率。
但直到1950年Juda首次试制成功了具有高选择性的离子交换膜后,电渗析技术才进入了实用阶段,其中经历了三大革新:(1) 具有选择性离子交换膜的应用;(2) 设计出多隔室电渗析组件;(3) 采用频繁倒极操作模式。
现在离子交换膜各方面的性能及电渗析装置结构等不断革新和改进,电渗析技术进入了一个新的发展阶段,其应用前景也更加广阔。
电渗析器由隔板、离子交换膜、电极、夹紧装置等主要部件组成。
离子交换膜对不同电荷的离子具有选择透过性。
阳膜只允许通过阳离子,阻止阴离子通过,阴膜只允许通过阴离子,阻止阳离子通过。
在外加直流电场的作用下,水中离子作定向迁移。
由于电渗析器是由多层隔室组成,故淡室中阴阳离子迁移到相邻的浓室中去,从而使含盐水淡化。
在食品及医药工业,电渗析可用于从有机溶液中去除电解质离子, 在乳清脱盐、糖类脱盐和氨基酸精制中应用得都比较成功。
电渗析作为一种新兴的膜法分离技术,在天然水淡化,海水浓缩制盐,废水处理等方面起着重要的作用,已成为一种较为成熟的水处理方法。
二、几种电渗析技术1 倒极电渗析( EDR)倒极电渗析就是根据ED 原理,每隔一定时间(一般为15~20 min) ,正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。
电渗析法(ED)基本原理
离子交换膜是电渗析器的关键部件,它是由高分子材料制成的对离子具有选择透过性的薄膜。
在处理含多价金属离子和阴离子的水体时,阳离子交换膜表面经常由于Ca2+、Mg2+、CO32-、S042-等离子在表面的大量存在,造成污染。
由于这些离子结合形成的沉淀会覆盖在膜表面,造成膜的堵塞,会提高总电阻,从而影响膜的使用寿命,电渗析器的正常运转和产水水质⋯。
而目前控制膜污染的方法主要包括对料液进行预处理,加入阻垢剂,和优化操作条件等。
ED法是利用阴、阳离子交换膜交替排列于正负电极之间,并用特制的隔板将其隔开,组成除盐(淡化)和浓缩两个系统。
当向隔室通人盐水后,在直流电场作用下,阳离子向负极迁移,井只能通过阳离子交换膜,阴离子向正极迁移,只能通过阴离子交换膜,而使淡室中的盐水被淡化。
浓室中的盐水被浓缩。
一般来说,淡水作为产水被回收利用。
浓水作为废水排掉,其作用原理如图1所示。
图1 电渗析(ED)原理。
电渗析的工作原理
电渗析(Electrodialysis,简称ED)是一种利用电场作用下的离子选择性透析现象来实现离子选择性透析分离的技术。
它是一种利用电场作用下的离子选择性透析现象来实现离子选择性透析分离的技术。
电渗析技术已经在水处理、食品加工、药品制备等领域得到了广泛应用。
电渗析的工作原理主要包括两个基本过程,电场驱动和离子选择性透析。
在电渗析过程中,通过外加电场,正负离子被分别迁移至阳极和阴极,从而实现了离子的分离。
这种分离是基于膜的选择性透析特性,即膜对不同离子的透析速率不同,从而实现了对混合离子溶液的分离。
在电渗析设备中,通常会采用阳离子交换膜和阴离子交换膜来实现对离子的选择性透析。
阳离子交换膜具有对阴离子通透性,而阴离子交换膜则具有对阳离子通透性。
当混合离子溶液通过这两种离子交换膜时,根据离子的电荷和大小,它们会被分别迁移至阳极和阴极,从而实现了离子的分离。
电渗析技术的工作原理在实际应用中具有重要意义。
首先,它可以实现对混合离子溶液的高效分离,从而得到纯净的产物。
其次,它可以实现对水中的离子、微污染物的去除,达到水处理和净化的目的。
此外,电渗析还可以用于食品加工、药品制备等领域,实现对离子的选择性提取和分离。
总的来说,电渗析是一种利用电场驱动下的离子选择性透析现象来实现离子分离的技术。
通过对离子交换膜的选择和电场的控制,可以实现对混合离子溶液的高效分离,具有广泛的应用前景和重要的工程价值。
电渗析(ED)技术及操作简介电渗析原理电渗析器是在外加直流电场的作用下,当含盐分的水流经阴、阳离子交换膜和隔板组成的隔室时,水中的阴、阳离子开始定向运动,阴离子向阳极方向移动,阳离子向阴极方向移动,由于离子交换膜具有选择透过性,阳离子交换膜(简称阳膜)的固定交换基团带负电荷,因此允许水中阳离子通过而阻挡阴离子,阴离子交换膜(简称阴膜)的固定交换基团带正电荷,因此允许水中的阴离子通过而阻挡阳离子,致使淡水隔室中的离子迁移到浓水隔室中去,从而达到淡化的目的。
电渗析器通电以后,电极表面发生电极反应,致使阳极水呈酸性,并产生初生态的氧O2和氧气Cl2。
阴极水呈减性,当极节水中有Ca=+和Ng++时由生成CaCO3和Ng(OH)2水垢,结集在阴极上,阴极室有氧气H2排出。
因此极水要畅通,不断排出电极反应产物,有利于电渗析器正常运行。
三、电渗析的结构电渗析不论其规格怎样,形式如何,均由膜堆、电极、夹紧装臵三大部件组成。
1.膜堆一张阳膜、一张隔膜、一张阴膜,再一张隔板组成一个膜对,一对电极之间所有的膜对之和称膜堆。
它是电渗析器的心脏部件,也是电渗析器性能好、坏的关键部件。
在此简单介绍组成膜对零件的主要材料:(1)阴、阳离子交换膜:按膜中活性基团的均一程度可分为异相膜(非均质),均相膜与半均相膜。
理论上讲均相膜优越,事实上由于各制膜厂技术水平不齐,生产经验不等,制出来的膜性能相关很大,即使同一家厂的产品由于批号不一样性能差别也不小。
本所通过试制比较确定采用上海化工厂生产的异相膜,该膜性能相对比较稳定。
(2)隔板:本所电渗析器隔板流进均为无回路短流形式。
其边框采用0.9毫米聚丙烯板冲压成型。
内烫二聚丙烯丝编织网构成水流通道,有时根据用户需要选用0.5或1.2毫米聚丙烯板加工成型(一般说隔板愈薄脱盐效果越好,但对进水水质要求也愈高)。
2.电极一般电渗析的电极采用石墨、铅、不锈钢材料,这些电极材料易得,造价低,制作方便;但电化学性能不好,寿命短。
电渗析系统操作说明一、电渗析(ED)概述电渗析是一种利用荷电膜的选择透过性和电场力作用对水中的离子型物质进行分离而达到脱盐、浓缩等预期目的的一种膜分离设备。
电渗析器的主要部件为阴、阳离子交换膜、隔板、电极和直流电源四部分。
隔板构成的隔室为液体流经过的通道。
物料经过的隔室为脱盐室,浓水经过的隔室为浓缩室。
在直流电场的作用下,利用离子交换膜的选择透过性,阳离子透过阳膜,阴离子透过阴膜,脱盐室的离子向浓缩室迁移,浓缩室的离子由于膜的选择透过性而无法向脱盐室迁移。
这样淡室的盐分浓度逐渐降低,相邻浓缩室的盐分浓度相应逐渐升高。
经过这样的过程物料中的盐分得以脱除。
电渗析膜技术主要应用于化学制药工艺中物料的脱盐(灰份的去除),涉及的脱盐产品有阿斯巴甜、L-肉碱、碘海醇、甘露醇、各类氨基酸、各种糖类、有机酸、醇类等。
也可用于高含盐废水的进一步浓缩,含氨氮废水的零排放处理,电镀废液中的金属回收,冶金行业的废水回用等。
二、电渗析安装示意图1、膜堆组装顺序:铁夹板-绝缘橡皮-电极板A-极室格网及极框-极膜-隔板正-阴膜-隔板反-阳膜-隔板正-阴膜-隔板反-……阴膜-隔板反-极膜-极室格网及极框-电极板B-绝缘橡皮-铁夹板。
膜堆组装顺序图2、组装过程请注意隔板的正反和膜片的交替顺序,防止浓淡水室的混料。
3、紧固夹紧螺杆时,首先从电渗析中部的螺杆开始上紧螺母,要求对角上紧并均匀用力,切不可单边用力过猛。
4、上紧螺杆后,再把电渗析器用起吊设备吊起,安装到支撑架上。
过程中需要注意电渗析器的重心位移,防止砸坏设备和造成人员的受伤。
-4-·5、电渗析器安装完毕后,将极水管、浓水管、淡水管和相应的电渗析器上的接口连接牢固。
电渗析管路连接图三、电渗析器进料要求:料液温度:5~40℃PH:2~12浊度<0.3mg/L高锰酸钾指数<3mg/L游离氯< 1.5mg/LFe3+<0.3mg/LMn2+<0.1mg/L进电渗析器之前,料液需经精度小于2微米过滤器过滤。
离子交换膜电渗析浓缩海水制造哎呀,今天小智要给大家聊聊一个非常有趣的话题——离子交换膜电渗析浓缩海
水制造!这个过程可是让大海的水分变废为宝哦!让我们一起来看看这个神奇的过程吧!
我们要了解什么是离子交换膜。
简单来说,离子交换膜就是一种可以控制离子进出的薄膜。
在这个过程中,海水中的盐分会被去除,而淡水就会被浓缩起来。
这个过程就像是一个魔法师在变魔术一样,让人惊叹不已!
这个过程是如何实现的呢?其实,离子交换膜电渗析浓缩海水制造的过程可以分为三个步骤:第一步是让海水通过离子交换膜;第二步是让淡水通过离子交换膜;第三步是收集淡水。
第一步,海水通过离子交换膜。
这一步就像是大海在向我们展示它的美丽身姿一样。
当海水流过离子交换膜时,盐分会被吸附在膜上,而淡水则会穿过膜进入下一道工序。
第二步,淡水通过离子交换膜。
这一步就像是大海在向我们传递它的清凉信息一样。
当淡水流过离子交换膜时,盐分仍然会被吸附在膜上,而淡水则会被浓缩起来。
第三步,收集淡水。
这一步就像是大海在向我们赠送它的礼物一样。
当淡水流过离子交换膜后,就可以收集到纯净的淡水了。
这样一来,大海的水分就被变废为宝了!
这个过程并不是一帆风顺的。
有时候,离子交换膜可能会出现堵塞的情况,导致海水无法顺利通过。
这时候,我们就需要对离子交换膜进行清洗和维护,让它重新恢复活力。
离子交换膜电渗析浓缩海水制造是一个非常神奇的过程。
它让我们看到了大自然的力量和智慧,也让我们意识到保护海洋资源的重要性。
希望大家都能珍惜大海的水资源,让我们共同守护这个美丽的地球家园!。
电渗析(ED)技术和电去离子技术(EDI)的应用研究作者:杨飞黄来源:《中国新技术新产品》2015年第05期摘要:电渗析技术是膜分离技术之一,具有低能耗、高效率、连续运行、环境友好等显著优点,在多个行业具有广泛的应用。
电去离子技术是在普通电渗析的基础上发展起来的,广泛应用于纯水和超纯水的制备。
本文着重介绍了电渗析技术和电去离子技术在水处理、食品和化工等方面的应用,并简要探讨了电渗析技术及其发展前景。
关键词:电渗析;电去离子;离子交换膜;应用中图分类号:X703 文献标识码:A1 电渗析技术的简介电渗析是在外加直流电场的作用下,利用离子交换膜的选择透过性,使离子从一部分水中迁移到另一部分水中的物理化学过程。
ED作为一种工业技术,其真正发展时期是从1950年美国人W·Juda发明了对阴、阳离子分别具有选择透过性能的阴、阳离子交换膜后才开始的。
我国的ED技术起步于1958年,中科院化学研究所研制出了纸质均相阴、阳离子交换膜,此膜曾用于从自来水ED脱盐制取初级脱盐水。
2 电渗析原理ED是在直流电场作用下溶液中带电离子通过半透膜的迁移过程,是一种物质分离方法,其中离子交换膜和直流电场是ED分离方法不可缺少的两个条件。
电渗析主要用于水溶液脱盐或浓缩。
ED脱盐原理如图1所示。
图1是由阳、阴膜交替排列在一对阴、阳电极之间构成的电渗析槽,有10个隔室。
将NaCl溶液分别通入这10个隔室中,加直流电压。
在电场力作用下,带正电荷的Na+离子和带负电荷的Cl-离子将分别向阴、阳两极移动。
因为离子交换膜对离子具有选择透过性,水中所有的Na+离子向阴极移动时和所有的Cl-离子向阳极移动时,2,4,6,8,10室中的Na+离子和Cl-离子分别通过阳膜和阴膜到各自邻室,从而达到脱盐的目的。
因此,2,4,6,8,10室称为淡化室或脱盐室,从淡化室汇总出来的水称为淡水或脱盐水;1,3,5,7,9室中的Na+和Cl-离子在迁移过程中被阴阳膜阻挡而留在本室中。
电渗析原理与应用简介1.引言电渗析(简称ED)是以溶液中的离子选择性地透过离子交换膜为特征的,一种新兴的高效膜分离技术。
它是利用直流电场的作用使水中阴、阳离子定向迁移,并利用阴、阳离子交换膜对水溶液中阴、阳离子的选择透过性(即阳膜具有选择透过阴离子而阻挡阳离子通过),使原水在通过电渗析器时,一部分水被淡化,另一部分则被浓缩,从而达到了分离溶质和溶剂的目。
电渗析利用半透膜的选择透过性来分离不同的溶质粒子(如离子)的方法称为渗析。
在电场作用下进行渗析时,溶液中的带电的溶质粒子(如离子)通过膜而迁移的现象称为电渗析。
利用电渗析进行提纯和分离物质的技术称为电渗析法,它是20世纪50年代发展起来的一种新技术,最初用于海水淡化,现在广泛用于化工、轻工、冶金、造纸、医药工业,尤以制备纯水和在环境保护中处理三废最受重视,例如用于酸碱回收、电镀废液处理以及从工业废水中回收有用物质等。
2.电渗析原理在外加直流电场作用下,利用离子交换膜的透过性(即阳膜只允许阳离子透过,阴膜只允许阴离子透过),使水中的阴、阳离子作定向迁移,从而达到水中的离子与水分离的一种物理化学过程。
原理是:在阴极与阳极之间,放置着若干交替排列的阳膜与阴膜,让水通过两膜及两膜与两极之间所形成的隔室,在两端电极接通直通电源后,水中阴、阳离子分别向阳极、阴极方向迁移,由于阳膜、阴膜的选择透过性,就形成了交替排列的离子浓度减少的淡室和离子浓度增加的浓室。
与此同时,在两电极上也发生着氧化还原反应,即电极反应,其结果是使阴极室因溶液呈碱性而结垢,阳极室因溶液呈酸性而腐蚀。
因此,在电渗析过程中,电能的消耗主要用来克服电流通过溶液、膜时所受到的阻力及电极反应。
例如,用电渗析方法处理含镍废水,在直流电场作用下,废水中的硫酸根离子向正极迁移,由于离子交换膜具有选择透过性,淡水室的硫酸根离子透过阴膜进入浓水室,但浓水室内的硫酸根离子不能透过阳膜而留在浓水室内;镍离子向负极迁移,并通过阳膜进入浓水室,浓水室内的镍离子不能透过阴膜而留在浓水室中。
一、工作原理电渗析器除盐的基本原理,是利用离子交换膜的选择透过性。
阳离子交换膜只允许阳离子通过,阻档阴离子通过,阴离子交换膜只允许阴离子通过,在外加直流电场的作用下,水中离子作定向迁移,使一路水中大部份离子迁移到另一路离子水中去,从而达到含盐水淡化的目的。
二、应用范围电渗析器具有工艺简单,除盐率高,制水成本低、操作方便、不污染环境等主要优点,广泛应用于水的除盐,具体应用在如下场合:海水及苦咸水淡化,根据我单位的试验资料,可将含盐量高达60克/升的苦咸水淡化成饮用水,解决沙漠地区的饮用水源。
制取软水,(水的电阻率为105欧姆一厘米),可供低压锅炉给水,不需要食盐再生,还可节煤20%左右。
深度除盐水及高纯水的前级处理,采用电渗析一离子交换法,扩大了原水适用范围,广泛应用电力、电子、化工、制药、科研化验等场合、降低制水成本50%以上。
节省离子交换法再生用酸碱80%左右,延长再生周期五倍以上。
用于饮料食品工业的提纯,使啤酒、汽水的质量提高,为创优质名牌产品创造了条件。
电渗析器还可用于化工分离,浓缩及工业废水处理回收率。
三、构造及组装方式1.构造:电渗析器由膜堆、极区和压紧装置三部分构成。
(1)膜块:是由相当数量的膜对组装而成的。
膜对:是由一张阳离子交换膜,一张隔板甲(或乙);一张阴膜,一张隔板乙(或甲)组成。
离子交换膜:是电渗析器的关键部件,本厂采用上海化工厂产的异相膜。
隔板:分浓、淡水隔板,交替放在阴阳膜之间,使阴膜和阳膜之间保持一定的间隔,沿着隔板平面通过水流,垂直隔板平面通过电流。
隔板厚离0.9毫米。
(2)极区包括电极、极框和导水板。
电极:为连接电源所用,本厂电极采用钛涂钌。
极框:放置在电极和膜之间,以防膜帖到电极上去,起支撑作用。
(3)压紧装置:是用来压紧电渗析器,使膜堆、电极等部件形成一个整体,不致漏水。
2、组装方式:电渗析器的组装是用“级”和“段”来表示,一对电极之间的膜堆称为“一级”。
水流同向的每一个膜称为“一段”。
第七章离子交换膜与电渗析电渗析的研究始于上世纪初的德国。
1952年美国Ionics公司制成了世界上第一台电渗析装置,用于苦咸水淡化。
至今苦咸水淡化仍是电渗析最主要的应用领域。
在锅炉进水的制备、电镀工业废水的处理、乳清脱盐和果汁脱酸等领域,电渗析都达到了工业规模。
另外,在上世纪50年代末,由日本开发的海水浓缩制食盐的应用,虽仅限于日本和科威特等国,但也是电渗析的一大市场。
目前,电渗析以其能量消耗低,装置设计与系统应用灵活,操作维修方便,工艺过程洁净、无污染,原水回收率高,装置使用寿命长等明显优势而被越来越广泛地用于食品、医药、化工、工业及城市废水处理等领域。
我国的电渗析技术的研究始于1958年。
1965年在成昆铁路上安装了第一台电渗析法苦咸水淡化装置。
1981年我国在西沙永兴岛建成日产200吨饮用水的电渗析海水淡化装置。
几十年来,在离子交换膜、隔板、电极等主要部件方面不断创新,电渗析装置不断向定型化、标准化方向发展。
第一节、电渗析基本原理一、电渗析的工作原理电渗析是在直流电场作用下,溶液中的带电离子选择性地通过离子交换膜的过程。
主要用于溶液中电解质的分离。
图7-1是电渗析工作原理示意图。
流程说明:在淡化室中通入含盐水,接上电源,溶液中带正电荷的阳离子,在电场的作用下,向阴极方向移动到阳膜,受到膜上带负电荷的基团的异性相吸引的作用而穿过膜,进入右侧的浓缩室。
带负电荷的阴离子,向阳极方向移动到阴膜,受到膜上带正电荷的基团的异性相吸引的作用而穿过膜,进入左侧的浓缩室。
淡化室盐水中的氯化钠被不断除去,得到淡水,氯化钠在浓缩室中浓集。
图7-1 电渗析工作原理示意图电渗析过程除我们希望的反离子迁移外,还可能发生如图7-2所示的其它迁移过程:(1) 同名离子迁移同名离子指与膜的固定活性基所带电荷相同的离子。
根据唐南(Donnan)平衡理论,离子交换膜的选择透过性不可能达到100%,再加上膜外溶液浓度过高的影响,在阳膜中也会进入个别阴离子,阴膜中也会进入个别阳离子,从而发生同名离子迁移。