2020-2021学年高一上学期期末考试数学试题 答案和解析
- 格式:docx
- 大小:852.62 KB
- 文档页数:19
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:150分 时间:120分钟)题号一 二 三 总分 得分一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若,则( )A B C D2、下面各组函数中为相同函数的是( ) A . B .C .D .3.若a<12,则化简4(2a -1)2的结果是 ( ) A.2a -1 B .-2a -1 C.1-2a D .-1-2a 4 设,用二分法求方程内近似解的过程中得则方程的根落在区间( ) A B C D 不能确定 5.化简的结果是( )A.B.C.D.6、下列判断正确的是( )A 、B 、C 、D 、 7、若集合A={y|y=log x ,x>2},B={y|y=()x,x>1},则A ∩B=( )A 、{y|0<y<}B 、{y|0<y<1}C 、{y|<y<1}D 、φ8.已知α为锐角,则2α为( )A 、第一象限角B 、第二象限角C 、第一或第二象限角D 、小于1800的角9、则θ在 ( )A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限 10. 已知,则的大小关系是( ) A . B . C . D . 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题5分,共20分.{}{}|02,|12A x x B x x =<<=≤<A B ⋃={}|0x x ≤{}|2x x ≥{}02x ≤≤{}|02x x <<x x g x x f ==)(,)(2x x g x x f ==)(,)(3322)(,)()(xx g x x f ==x x g xx x f ==)(,)(2()833-+=x x f x ()2,10833∈=-+x x x 在()()(),025.1,05.1,01<><f f f (1,1.25)(1.25,1.5)(1.5,2)1352-sin πcos35π-cos35π±cos35π52cosπ-35.27.17.1>328.08.0<22ππ<3.03.09.07.1>2212121,0sin tan >θθf(x)=|lgx|11()()(2)43f f f 、、)41()31()2(f f f >>)2()31()41(f f f >>)31()41()2(f f f >>)2()41()31(f f f >>内 不 得11. 幂函数的图象过点,则的解析式是 __ .12、 ;若 。
绝密★启用前2020-2021学年吉林省吉林市高一上学期期末考试数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.设集合U =R ,{}220A x x x =--<,则UA =( )A .[12]-,B .(12)-, C .(1)(2)-∞-+∞,,D .(][),12,-∞-⋃+∞答案:D解一元二次不等式求出集合A ,再利用集合的补集运算即可求解. 解:{}()(){}{}22021012A x x x x x x x x =--<=-+<=-<<,所以{U2A x x =≥或}(][)1,12,x ≤-=-∞-⋃+∞,故选:D2.已知角α的终边经过点()3,4P -,则cos α的值等于( ) A .35B .35C .45D .45-答案:A由三角函数的定义可求出cos α的值. 解:由三角函数的定义可得3cos 5α==-,故选A.点评:本题考查三角函数的定义,解题的关键在于三角函数的定义进行计算,考查计算能力,属于基础题. 3.“4πα=”是“sin 2α=”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件答案:B分别从充分性与必要性两个方面论证判断.解:因为sin4π=,所以满足充分性;而sin α=,2,4k k Z παπ=+∈或32,4k k Z παπ=+∈,所以不满足必要性,所以4πα=是sin α=. 故选:B.4.已知0.52021a =,20210.5b =,20210.5c log =,则( ) A .c b a >> B .c a b >>C .a b c >>D .a c b >>答案:C分析得到1,0,01a c b ><<<,即得解. 解:由题得202120210.510c log log =<=,0.50202021211a >==,202100.05.51b <==且0b >,所以a b c >>. 故选:C点评:关键点睛:解答本题的关键正确运用指数对数函数的单调性,理解掌握了指数对数函数的单调性,就容易判断,,a b c 的范围了,即得它们的大小关系了.5.在日常生活中有这样一种现象,向糖水中不断加入糖,糖水会变得越来越甜.已知a 克糖水中含有b 克糖(0a b >>),再添加m 克糖(0m >)(假设全部溶解),可将糖水变甜这一事实表示为下列哪一个不等式( ) A .b b m a a m+>+ B .b b m a a m +<+ C .a a mb b m+>+ D .a a mb b m+<+ 答案:B根据不等式中两个重要不等式判定即可 解:解:根据不等式中两个重要不等式判定得b b m a a m +<+,a a m b b m+>+, 糖水变甜说明加糖后分式的值变大了,只有b b m a a m+<+符合. 故选:B.点评:两个重要不等式:若0,0a b m >>>则(1);(0)b b m b b m b m a a m a a m +-<>->+-; (2);(0)a a m a a mb m b b m b b m+-><->+-. 6.下列四个函数中,以π为最小正周期,且在区间0,2π⎛⎫⎪⎝⎭上为增函数的是( ) A .sin 2y x = B .cos 2y x =C .tan y x =D .sin2x y = 答案:C利用三角函数的单调性和周期性,逐一判断各个选项是否正确,从而得出结论. 解:解:在区间0,2π⎛⎫⎪⎝⎭上,()20,x π∈,sin 2y x =没有单调性,故排除A. 在区间0,2π⎛⎫⎪⎝⎭上,()20,x π∈,cos 2y x =单调递减,故排除B. 在区间0,2π⎛⎫⎪⎝⎭上,tan y x =单调递增,且其最小正周期为π,故C 正确; 根据函数以π为最小正周期,sin 2x y =的周期为2412ππ=,可排除D.故选:C.点评:本题考查了三角函数的性质,掌握三角函数的基本性质是解题的关键,属于基础题. 7.若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围是( ) A .(30)-, B .(]30-,C .()(),30,-∞-⋃+∞D .()[),30,-∞-+∞答案:B根据一元二次不等式恒成立讨论0k =,0k ≠即可.解:解:当0k =时,308-<对一切实数x 都成立,故0k =符合题意; 当0k ≠时,要使不等式23208kx kx +-<对一切实数x 都成立,则203034208k k k k <⎧⎪⇒-<<⎨⎛⎫∆=-⨯⨯-< ⎪⎪⎝⎭⎩,综上:30k -<≤ 故选:B.点评:方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 8.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=-- D .()sin(2)13g x x π=-+答案:D由周期求出ω,由五点法作图求出ϕ的值,可得()f x 的解析式,再根据函数sin()y A x ωϕ=+的图象变换规律,得出结论.解:根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=. 再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x x π=+.将函数()f x 的图象先向右平移3π个单位长度,可得sin(2)3y x π=-的图象.然后向上平移1个单位长度,得到函数()g x 的解析式为()sin(2)13g x x π=-+,故选:D点评:关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A x ωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A 的值,根据最值点求出ϕ的值.9.已知函数22()4(0)f x x ax a a =-+>的两个零点分别为12,x x ,则1212ax x x x ++的最小值为( ) A .8 B .6 C .4 D .2答案:C根据函数22()4(0)f x x ax a a =-+>的两个零点分别为12,x x ,得到124x x a +=,212x x a ⋅=,然后由121214a x x a x x a++=+,利用基本不等式求解. 解:因为函数22()4(0)f x x ax a a =-+>的两个零点分别为12,x x ,所以124x x a +=,212x x a ⋅=,所以1212144a x x a x x a ++=+≥=, 当且仅当14a a =,即12a =时,取等号, 所以则1212ax x x x ++的最小值为4 故选:C10.Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()I t (t 的单位:天)的Logistic 模型:0.23(52)()1t K I t e--=+其中K 为最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为( )(ln193)≈ A .60 B .65C .66D .69答案:B将t t *=代入函数()()0.23521t KI t e--=+结合()0.95I t K *=求得t*即可得解.解:()()0.23521t K I t e--=+,所以()()0.23520.951t K I t K e**--==+,则()0.235219te *-=,所以()0.2352ln193t *-=≈,解得352650.23t *≈+≈.故选:B.二、多选题11.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明.如图,在AB 上取一点C ,使得,AC a BC b ==,过点C 作CD AB ⊥交以AB 为直径,O 为圆心的半圆周于点D ,连接OD .下面不能由OD CD ≥直接证明的不等式为( )A .(00)2a bab a b +≤>>, B .2(00)abab a b a b≥>>+, C .222(00)a b ab a b +≥>>, D .22(00)22a b a b a b ++≤>>,答案:BCD由,AC a BC b ==,得到()12OD a b =+,然后利用射影定理得到2CD ab =判断. 解:因为,AC a BC b ==, 所以()12OD a b =+, 因为90ADB ∠=,所以由射影定理得2CD ab =, 因为OD CD ≥, 所以2a bab +≤,当且仅当a b =时取等号, 故选:BCD12.如图,摩天轮的半径为40米,摩天轮的轴O 点距离地面的高度为45米,摩天轮匀速逆时针旋转,每6分钟转一圈,摩天轮上点P 的起始位置在最高点处,下面的有关结论正确的有( )A .经过3分钟,点P 首次到达最低点B .第4分钟和第8分钟点P 距离地面一样高C .从第7分钟至第10分钟摩天轮上的点P 距离地面的高度一直在降低D .摩天轮在旋转一周的过程中有2分钟距离地面不低于65米 答案:ABD建立如图所示的平面直角坐标系,求出点P 的坐标后可求高度关于t 的函数关系式,结合函数关系逐项判断后可得正确的选项.解:以O 为原点,过O 且平行于地面的直线为x 轴建立如图所示的平面直角坐标系,O 为摩天轮,P 为圆上的动点,设P 到地面的高为h . 由题设有40cos ,40sin 3232P t t ππππ⎛⎫⎛⎫⎛⎫++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故40sin 4540cos 45323h t t πππ⎛⎫=++=+ ⎪⎝⎭,其中0t ≥. 对于A ,令5h =,则cos13t π=-,解得63,t k k N =+∈,故点P 首次到达最低点所需的时间为3分钟,故A 正确. 对于B ,当4t =时,1440cos 453h π=+,当8t =时,2840cos 453h π=+, 因为481coscos 332ππ==-,故12h h =,故B 正确. 对于C ,当710t ≤≤,710333t πππ≤≤, 而71073332ππππ<<<且cos y u =在73,2ππ⎛⎫⎪⎝⎭是单调递增的, 故40cos453h t π=+在[]7,10上是单调递增函数,故C 错.对于D ,考虑06t ≤≤时不等式40cos 45653t π+≥的解,故1cos 32t π≥, 解得01t ≤≤或56t ≤≤,故摩天轮在旋转一周的过程中有2分钟距离地面不低于65米,故D 正确. 故选:ABD.点评:本题考查函数三角函数在实际中的应用,注意根据问题的特征建立合适的坐标系,便于构建时间和高度的时间关系,本题属于综合题,有一定的难度.三、填空题13.已知312ab +=a b =__________. 答案:3利用指数幂的运算性质即可求解.22132223333333a bb a ab a a a b +-+===⋅==故答案为:3点评:本题主要考查了指数幂的运算性质,属于基础题.14.某市在创建全国文明城市活动中,需要在某老旧小区内建立一个扇形绿化区域.若设计该区域的半径为20米,圆心角为45,则这块绿化区域占地___________平方米. 答案:50π利用扇形的面积公式:212S r α=,即可求解. 解:由题意,扇形半径为20米,圆心角为45, 所以22112050224S r παπ==⨯⨯=. 故答案为:50π15.已知,αβ为锐角,且cos α=17 , cos ()αβ+=1114-,则β=_________. 答案:3π根据角()βαβα=+-,求出角β的一个三角函数值,即可得到角β. 解:因为,αβ为锐角,所以,0αβ<+<π,243sin 1cos αα=-=,()()253sin 1cos αβαβ+=-+=.∵()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦53111433714⎛⎫=⨯--⨯=⎪⎝⎭,而β为锐角,∴3πβ=. 故答案为:3π. 点评:本题主要考查“给值求角”的解法应用,同角三角函数基本关系的应用,以及两角差的正弦(或余弦)公式的应用,属于基础题.四、双空题16.已知函数2,()24,x x mf x x mx m x m⎧≤=⎨-+>⎩,其中0m >.若()f x 在区间(0)+∞,上单调递增,则m 的取值范围是___________;若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m的取值范围是___________.答案:(0]3,()3+∞, 由题意画出函数()f x 的图象,结合图象可得关于m 的不等式,求解得答案. 解:0m >时,函数()2,2+4,>x x m f x x mx m x m⎧≤=⎨-⎩的图象如下图所示:要使()f x 在区间(0)+∞,上单调递增,则24m m m,解得03m ≤≤,又0m >,所以m 的取值范围是(0]3,; 要使关于x 的方程()f x b =有三个不同的根,则24m m m -<,即2>3>0m m m ,所以m 的取值范围是()3+∞,, 故答案为:(0]3,;()3+∞,.点评:方法点睛:对于分段函数的单调性,方程的根的个数等相关问题,运用数形结合是常采用的方法.五、解答题17.如图,在平面坐标系xoy 中,第二象限角α的终边与单位圆交于点A ,且点A的纵坐标为45.(1)求sin α,cos α,tan α的值;(2)先化简再求值:()()()sin sin cos 42tan ππααπαπα⎛⎫++-+- ⎪⎝⎭-. 答案:(1)4sin 5α,3cos 5α=-,4tan 3α=-;(2)原式sin 2cos 3tan 2ααα-+==--. (1)由题意可得4sin 5α,再根据同角三角函数的基本关系计算可得;(2)利用诱导公式化简,再代入求值即可;解:解:(1)由题知,4sin 5α,因为22sin cos 1αα+=,所以3cos 5α=±, 又α为第二象限角,所以3cos 5α=-,sin tan s 43co ααα==-. (2)原式()432sin cos cos sin 2cos 3554tan tan 23ααααααα⎛⎫-+⨯- ⎪-++--+⎝⎭====---. 点评:本题主要考查了三角函数定义,同角三角函数的基本关系及诱导公式的应用,考查了数形结合思想,属于基础题.18.已知0,0x y >>,且440x y +=. (1)求xy 的最大值;(2)求11x y+的最小值.答案:(1)最大值为100;(2)最小值为940.(1)由基本不等式变形后求得最大值;(2)利用“1”有代换得定值后由基本不等式得最小值.解:(1)因为0,0x y >>,404x y ∴=+≥=(当且仅当4x y =,即=205,x y =时等号成立)所以100xy ≤,因此xy 的最大值为100(2)因为440x y +=,即1(4)140x y += 所以11111=(x 4y)()40x y x y+++1419(5)(5404040y x x y =++≥+= (当且仅当2x y =,即4020=33,x y =时等号成立) 所以11x y +的最小值为940. 点评:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方19.已知函数21()cos cos 2222x x x f x =++. (1)求函数()f x 的最小正周期;(2)将函数()y f x =的图象上的各点________;得到函数()y g x =的图象,求函数()y g x =的最大值及取得最大值时x 的取值集合.你需要在①、②中选择一个,补在(2)中的横线上,并加以解答. ①向左平移32π个单位,再保持纵坐标不变,横坐标缩短到原来的一半;②纵坐标保持不变,横坐标缩短到原来的一半,再向右平移4π个单位. 答案:(1)函数的周期为2π;(2)条件选择见解析,max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. (1)用正弦余弦的二倍角公式整理()f x 可得正弦函数标准型,可得函数最小正周期;(2)选①先平移变换后周期变换可得对应的()g x ,可得()g x 的最值;选②先周期变换后平移变换得对应的()g x ,由此可求得最值.解:(1)∵函数1cos 1()sin()1226x f x x x π+=++=++, 所以函数的周期为2π;(2)<选择①>依题意:()cos(2)16g x x π=-++, 令226x k πππ+=+,即5()12x k k Z ππ=+∈. 使函数()g x 取得最大值2,即max ()2g x =,使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; <选择②>依题意:()cos(2)16g x x π=-++, 令226x k πππ+=+,即5()12x k k Z ππ=+∈,使函数()g x 取得最大值2,即max ()2g x = 使函数()g x 取得最大值的集合为5|,12x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭. 点评:关键点点睛:在解决正弦型函数的周期,最值,单调性等性质时,关键在于利用三角恒等变换将函数化成正弦型函数的标准形,再利用整体代换的思想求解.20.已知函数()f x 是定义在R 上的减函数,对于任意的12,x x R ∈都有1212()()()f x x f x f x +=+,(1)求(0)f ,并证明()f x 为R 上的奇函数;(2)若(1)2f -=,解关于x 的不等式()(3)4f x f x --<.答案:(1)(0)0f =,证明见解析;(2)1()2+∞,. (1)根据题意令120x x ==得(0)0f =,令12,x x x x ==-,得()()f x f x -=-即证;(2)令121x x ==-得(2)4f -=,转化为()(3)(2)f x f x f --<-,结合奇函数得(23)(2)f x f -<-,结合单调递减得232x ->-化简即可.解:(1)令120x x ==,则有(0)2(0),(0)0f f f =∴=令12,x x x x ==-,则有()()(0)0f x f x f +-==即()()f x f x -=-所以()f x 为R 上的奇函数(2)令121x x ==-,则有(2)2(1)224f f -=-=⨯=所以不等式()(3)4f x f x --<化为()(3)(2)f x f x f --<-由于()f x 为R 上的奇函数,所以(3)(3)f x f x --=-所以()(3)()(3)(23)f x f x f x f x f x --=+-=-因此不等式进一步化为(23)(2)f x f -<-已知函数()f x 是定义在R 上的减函数所以有232x ->-,解得12x >因此不等式的解集为1()2+∞,点评:判断函数奇偶性的3种常用方法:(1)定义法:确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再化简解析式后验证()()f x f x -=±或其等价形式()()0f x f x -±=是否成立.(2)图象法:若()f x 的图象关于原点对称,则()f x 为奇函数;若()f x 的图象关于y 轴对称,则()f x 为偶函数.(3)性质法:设(),()f x g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.21.某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x 台机器人的总成本21()150600p x x x =++万元. (1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m 人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量()()()()8161301548030m m m q m m ⎧-≤≤⎪=⎨⎪>⎩(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少多少?答案:(1)300台;(2)90(人).(1)求出()p x x,然后由基本不等式得最小值; (2)求出300台机器人的日平均分拣量的最大值,并计算此时人工分拣时需要的人工数,然后可得结果.解:(1)由总成本21()150600p x x x =++,得每台机器人的平均成本()1150112600p x x x x =++≥=, 当且仅当1150600x x=,即300x =时,等号成立. 所以若使每台机器人的平均成本最低,则应买300台.(2)引进机器人后,每台机器人的日平均分拣量为()()()()8161301548030m m m q m m ⎧-≤≤⎪=⎨⎪>⎩,当130m ≤≤时,300台机器人的日平均分拣量为2300160(8(16)160)16096005m m m m m m ⨯-=-+-=, 对称轴30m =,开口向下,∴当30m =时,日平均分拣量有最大值144000件, 当30m >时,日平均分拣量为480300144000⨯=件,∴300台机器人的日平均分拣量的最大值为144000件,若传统人工分拣144000件,则需要人数为144000=1201200(人) ∴日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少1203090-=(人) 点评:关键点点睛:本题考查函数模型的应用.在已知函数模型时,关键是怎样利用已知函数模型求解.如第一小题关键是求平均最大,即求()p x x的最大值,而不是()p x 的最大值.第二小题中可先求出300台机器人的日平均分拣量的最大值,然后得出人工分拣时的人工数,考查学生的逻辑推理能力与运算求解能力,属于中档题.22.已知函数2()2xx m f x n -=+是定义在R 上的奇函数. (1)求实数m n ,的值;(2)函数()g x 满足()()22x x f x g x -⋅=-,若对任意x ∈R 且0x ≠,不等式(2)[()2]16g x t g x ≥--恒成立,求实数t 的取值范围.答案:(1)1m =,1n =;(2)(8],-∞.(1)利用()()f x f x =--求解;(2)将(1)中()f x 的解析式代入()()22x x f x g x -⋅=-,解出g()222x x x -=++,然后得出(2)[()2]16g x t g x ≥--的表达式,令()222x x u u -=+>,则原不等式可化为216u tu ≥-,利用参数分离法求解t 的取值范围.解:解:(1)因为()f x 是定义在R 上的奇函数,所以()()f x f x -=- 即22212221x x x x x x m m m n n n ----⋅-=-=-++⋅+, 化简得1()(14)(1)20x x m n mn +--+-=. 由于x ∈R ,所以有010m n mn -=⎧⎨-=⎩ 解得1m n == (2)因为12()12xxf x -=+, 所以221212(12)g()2222122x x x x x x x x x --++=⨯==++-设22x x u -=+,因为x ∈R 且0x ≠,222x x -+>=所以2u >因为2222(2)222(22)x x x x g x u --=++=+=所以不等式可化为216u tu ≥-,即16t u u≤+在2u >时恒成立由基本不等式得168u u +≥=,当且仅当4u =时等号成立 所以实数t 的取值范围是(8],-∞点评:本题考查根据函数的奇偶性求参及函数与不等式的综合问题,解答时主要思路如下:(1)当已知函数的奇偶性求参数值时,注意运用奇偶性的定义,列出关于参数的方程并求解即可;(2)解答关于指数函数有关的不等式恒成立综合问题时,要先对原不等式进行变形,利用换元法将原不等式化为熟悉的简单不等式模型求解,或采用参变分离法,转化为讨论函数的最值来求解.23.已知函数()ln(1)x f x e mx =+-是定义在R 上的偶函数.(1)求m 的值;(2)设1()()2h x f x x =+, ①若()ln(21)h x a ≥-对于[0],x e ∀∈恒成立,求a 的取值集合;②若[22e],a ∃∈,使得不等式()ln(21)h x a ≥-有解,求x 的取值集合. 答案:(1)12m =;(2)①13|22a a ⎧⎫<≤⎨⎬⎩⎭;②{}|ln2x x ≥. (1)由函数为偶函数可得()()f x f x -=,代入即可求解.(2)①将不等式转化为1210x e a +≥->对于[0],x e ∀∈恒成立,求出e 1x y =+在[]0,e 上的最小值,只需()min 1210x e a +≥->,解不等式即可;②不等式转化为1210x e a +≥->在22a e ≤≤时有解,求出21y a =-在[22e],上的最小值,只需()min 121x e a +≥-即可求解. 解:(1)根据题意()f x 的定义域是R()ln(1)x f x e mx =+-()ln(1)ln(1)(1)x x f x e mx e m x -∴-=++=++-又()f x 是偶函数,()()f x f x ∴-=因此(1)mx m x -=-恒成立,故12m = (2)①1()()=ln(e 1)2x h x f x x =++不等式()ln(21)h x a ≥-等价于1210x e a +≥->对于[0],x e ∀∈恒成立因为e 1x y =+在[0],x e ∈时是增函数,所以min (1)2x e +=,因此2210a ≥->,解得1322a <≤ 所以a 的取值集合为13|22a a ⎧⎫<≤⎨⎬⎩⎭ ②不等式ln(e 1)ln(21)x a +≥-在22a e ≤≤时有解,等价于1210x e a +≥->在22a e ≤≤时有解,因为21y a =-在[22],a e ∈时是增函数,所以min (21)3a -=, 所以13x e +≥,解得ln 2x ≥,所以x 的取值集合为{}|ln2x x ≥.点评:关键点点睛:本题考查了函数的奇偶性求参数值,不等式恒成立、能成立问题,解题的关键是利用对数函数的单调性将不等式转化为求函数的最值问题,注意转化变量,考查了转化与化归的思想.。
山东省潍坊市2020-2021学年高一上学期期末考试高一数学2021.1本试卷共4页.满分150分.考试时间120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束,考生必须将试题卷和答题卡一并交回.一、单项选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}1,0,1A =−,{}1,2,5B =,则A B ⋃=( ) A .{}0,1,2,5 B .{}1,0,1,5−C .{}1,0,1,2,5−D .{}1,0,2,5−2.函数31y x =的定义域是( ) A .(,1]−∞ B .(,0)(0,1]−∞⋃ C .(,0)(0,1)−∞⋃D .(0,1]3.把A ,B 两支篮球队在一个赛季十场比赛中的得分情况绘成如图所示的茎叶图,设A 队得分的极差为x ,B 队得分的25%分位数为y ,则x ,y 的值分别为( )A .42 66.5B .47 66.5C .42 69D .47 694.方程ln 4x x =−的根所在的区间是( ) A .()0,1B .()1,2C .()2,3D .()3,45.1614年苏格兰数学家纳皮尔在研究天文学的过程中为了简化计算而发明了对数方法;1637年法国数学家笛卡尔开始使用指数运算;1770年瑞士数学家欧拉发现了指数与对数的互逆关系,指出:对数源于指数,对数的发明先于指数.若25x =,lg 20.3010≈,则x 的值约为( )A .2.301B .2.322C .2.507D .2.6996.函数2()1xf x x =−+的图像大致是( ) A . B .C .D .7.城镇化是国家现代化的重要指标,根据资料显示,1978-2013年,我国城镇常住人口从1.7亿增加到7.3亿,假设每一年城镇常住人口的增加量都相等,由此估算2035年我国城镇常住人口数为( ) A .10.82亿B .10.66亿C .10.98亿D .9.12亿8.已知函数()2xf x =,且函数()g x 的图像与()f x 的图像关于y x =对称,函数()x ϕ的图像与()g x 的图像关于x 轴对称,设12a f ⎛⎫=− ⎪⎝⎭,13b g ⎛⎫= ⎪⎝⎭,13c ϕ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .b c a <<C .c b a <<D .b a c <<二、多项选择题:9.若0a b >>.0c ≠,则( ) A .ac bc <B .a c b c +>+C .22a b>D .11a b< 10.从装有2个红球和2个黑球的口袋中任取2个小球,则下列结论正确的是( ) A .“至少有一个红球”和“至少有一个黑球”是互斥事件 B .“恰有一个黑球”和“都是黑球”是互斥事件 C .“恰有一个红球”和“都是红球”是对立事件 D .“至少一个黑球”和“都是红球”是对立事件11.若函数,0()3(1),0x a a x f x a x x ⎧+≥=⎨+−<⎩(0a >且1a ≠)在R 上为单调函数,则a 的值可以是( )A .13B .23CD .212.已知()f x 为奇函数,且()1f x +为偶函数,若()10f =,则( ) A .()30f =B .()()35f f =C .(3)(1)f x f x +=−D .(2)(1)1f x f x +++=三、填空题:13.1249log 24⎛⎫+=⎪⎝⎭______. 14.若“x ∃∈R ,220x ax a −−<”的否定是真命题,则实数a 的取值范围是______.15.如图所示是某商家根据去年甲、乙两种产品的月销售额(单位:万元)作出的统计图(称为雷达图),根据图中信息,写出一个关于甲、乙两种产品销售额比较..的统计结论:____________________________________.16.若存在常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数()2()f x x x =∈R ,1()(0)g x x x=<,若函数()f x 和()g x 之间存在隔离直线2y x b =−+,则实数b 的取值范围是______.四、解答题:解答应写出文字说明、证明过程或演算步骤. 17.已知全集为R ,[,5]A a =,(,2](6,)B =−∞⋃+∞. (1)若[3,2]A B ⋂=−,求RA ;(2)从下面所给的两个条件中选择一个,并说明它是RA B ⊆的什么条件?(只需说明充分必要性,无需证明).①[3,2)a ∈−−;②(3,4)a ∈.18.已知函数2()(1)4f x x k x =+−+,且关于x 的不等式()0f x <的解集为()1,m .(1)求实数m ,k 的值; (2)当(0,)x ∈+∞时,()f x b x<恒成立,求实数b 的取值范围.19.有甲、乙两个盒子,其中甲盒中有3个红球,2个白球;乙盒中有1个红球,4个白球除颜色外球的质地大小完全相同).(1)从甲盒中按先后顺序随机取两个球,取后不放回,则至少取得一个红球的概率是多少?(2)现在从两个盒子中任意选择一个,再从中任意摸出一球.如果摸到的是红球,你认为选择的是哪个盒子?做出你的判断,并说说你的想法,你认为能否做出完全正确的判断? 20.已知函数()2()31x f x λλ=−∈+R . (1)若32λ=,求函数()f x 的零点; (2)探索是否存在实数λ,使得函数()f x 为奇函数?若存在,求出实数λ的值并证明;若不存在,请说明理由.21.某市约有30万户居民,为了实现绿色发展,避免浪费资源,市政府计划对居民用电采用阶梯收费的方法,即制定每户居民月用电量的临界值a ,若居民某月用电量不超过a 度则按第一阶梯电价标准收费,价格为0.5元/度;若某月用电量超过a 度,超出部分则按第二阶梯电价标准收费,价格为b 元/度,未超出部分按第一阶梯电价标准收费.为此,相关部门在该市随机调查了200户居民的某月用电量,以了解这个城市家庭用电量情况,进行统计分析后得到如图所示的频率分布直方图,根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).(1)若该市政府希望让全市70%的居民在使用阶梯电价前后缴纳的电费保持不变,临界值a 应定为多少?并估计全市居民月用电量的众数和平均数;(2)在(1)的条件下,假定使用阶梯电价之后,月用电量未超过a 度的居民用电量保持不变;月用电量超过a 度的居民节省“超出部分”的40%,试估计全市居民每月节约的电量;(3)在(1)(2)的条件下,若使用阶梯电价前后全市缴纳电费总额不变,求第二阶梯电价b .(结果保留两位有效数字)22.已知函数()log log ()2a a a f x x x a ⎛⎫=−+− ⎪⎝⎭(0a >且1a ≠). (1)当2a =时,解不等式()1f x >;(2)[2,4]x a a ∀∈,()1f x ≤,求实数a 的取值范围;(3)在(2)的条件下,是否存在,(,)a αβ∈+∞,使()f x 在区间[],αβ上的值域是[]log ,log a a βα?若存在,求实数a 的取值范围;若不存在,试说明理由.山东省潍坊市2020-2021学年高一上学期期末考试高一数学参考答案及评分标准2021.1一、单项选择题 1-4 CBDC 5-8 BAAD二、多项选择题 9.BCD 10.BD11.ABD12.ABC三、填空题 13.214.[]8,0− 15.结论一:甲产品的月销售额的平均水平高于乙产品;结论二:甲产品的月销售额的方差小于乙产品,比较稳定;乙产品月销售额的方差大于甲产品,波动性较大;结论三:甲产品的月销售额的极差小于乙产品的月销售额的极差.16.1⎡⎤−−⎣⎦四、解答题17.解:(1)由题意可得3a =−, 所以R(,3)(5,)A =−∞−⋃+∞,(2)当选择①时,则结论是既不充分也不必要条件; 当选择②时,则结论是充分不必要条件.18.解:(1)由题意得m ,1是方程2(1)40x k x +−+=的根,由韦达定理得14m ⨯=, 所以4m =,又151m k +==−, 解得4k =−. 所以4m =,4k =−.(2)由题意得,254x x b x −+<在(0,)x ∈+∞上恒成立,令254()x x g x x−+=,只需min ()b g x <即可,由均值不等式得4()551g x x x =+−≥=−, 当且仅当4x x =,即2x =时等号成立.所以1b <−,所以实数b 的取值范围是(),1−∞−.19.解(1)甲盒中的3个红球记为1a ,2a ,3a ;2个白球记为1b ,2b ; 从甲盒中按先后顺序随机取两个球,取后不放回,样本空间()()()()()()()()()()()()()()()()()()()()1213111221232122313231321112131221222321,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a a a a a b a b a a a a a b a b a a a a a b a b b a b a b a b b b a b a b a b b ⎧⎫⎪⎪⎪⎪⎪⎪Ω=⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭共20个样本点,记事件A :至少取得一个红球,则()()()()()()()()()()()()()()()()()()121311122123212231323132111213212223,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a a a a a b a b a a a a A a b a b a a a a a b a b b a b a b a b a b a b a ⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭共18个样本点,所以至少取得一个红球的概率189()2010P A ==; (2)参考答案一:选择的是甲盒, 理由如下:在甲盒中摸到红球的概率为35,在乙盒中摸到红球的概率为15, 在甲盒中摸到红球的概率大于乙盒,故选择的应是甲盒, 但这种判断并不能保证完全正确,也存在选择乙盒的可能性. 参考答案二:选择的是乙盒 理由如下:在甲盒中摸到红球的概率为35,在乙盒中摸到红球的概率为15, 虽然在乙盒中摸到红球的概率较低,但是不为0,所以存在选择乙盒的可能性,但这种判断并不能保证完全正确,也存在选择甲盒的可能性. 参考答案三:无法判断, 理由如下:在甲盒中摸到红球的概率为35,在乙盒中摸到红球的概率为15, 都是概率不为0的随机事件,都有可能发生,所以可能无法判断. 20.解:(1)当32λ=时,32()231x f x =−+, 由()0f x =得,23312x =+, 所以4313x +=,133x =,解得1x =−,所以函数()f x 的零点为1−.(2)假设存在实数λ,使得函数()f x 为奇函数, 因为()f x 的定义域为R ,关于原点对称, 则(0)10f λ=−=, 所以1λ=,此时31()31x x f x −=+,又因为3113()()3131x xx x f x f x −−−−−===−++,此时()f x 为奇函数,满足题意.故存在实数1λ=,使得函数()f x 为奇函数.21.解:(1)由频率分布直方图可得,区间[]0,160的频率总和恰为0.7,由样本估计总体,可得临界值a 的值为160,众数为(]120,160的中间值140,平均数为200.04600.121000.241400.31800.252200.05130⨯+⨯+⨯+⨯+⨯+⨯=. (2)由(1)知,月用电量在[]0,160内的居民在使用阶梯电价前后用电量不变,节电量为0度; 月用电量在(]160,200内的50户居民,平均每户用电180度,超出部分为20度,根据题意,每户每月节电2040%8⨯=(度),50户每月共节电850400⨯=(度);月用电量在(]200,240内的10户居民,平均每户用电220度,超出部分为60度,根据题意,每户每月节电6040%24⨯=(度),10户每月共节电2410240⨯=(度) 故样本中200户居民每月共节电400240640+=(度), 用样本估计总体,得全市居民每月节电量约为3064096200⨯=(万度). (3)由题意,全市缴纳电费总额不变,由于“未超出部分”的用电量在“阶梯电价”前后不变,故“超出部分”对应的总电费也不变,在200户居民组成的样本中,每月用电量共超出205060101600⨯+⨯=度,实行“阶梯电价”后,共节约640度,剩余960度,所以16000.5960b ⨯=⨯,解得0.83b ≈. 22.解:(1)2a =时,()2222()log (1)log (2)log 32f x x x x x =−+−=−+ 函数定义域为(2,)+∞,()1f x >,即()222log 32log 2x x −+>,所以2322x x −+>, 即230x x −>, 解得0x <或3x >, 又(2,)x ∈+∞,所以不等式()1f x >的解集为(3,)+∞. (2)[2,4]x a a ∀∈,()1f x ≤, 即max ()1f x ≤成立,又222233()log log 22416a a a a a f x x ax x ⎡⎤⎛⎫⎛⎫=−+=−−⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦函数223416a t x a ⎛⎫=−− ⎪⎝⎭在[2,4]a a 上为增函数,①若01a <<,则(2)1f a ≤,所以223log 21416a a a a ⎡⎤⎛⎫−−≤⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,即2232416a a a a ⎛⎫−−≥ ⎪⎝⎭,则3102a a ⎛⎫−≥⎪⎝⎭, 解得23a ≥或0a ≤. 又01a <<,所以213a ≤<.②若1a >,则(4)1f a ≤,所以223log 41416a a a a ⎡⎤⎛⎫−−≤⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,即2234416a a a a ⎛⎫−−≤ ⎪⎝⎭,则21102a a ⎛⎫−≤⎪⎝⎭, 解得2021a ≤≤, 又1a >,所以a ∈∅. 综上a 的取值范围为2,13⎡⎫⎪⎢⎣⎭.(3)假设存在α,β满足题意,由(2)知213a ≤<,所以()f x 在(,)a +∞上是减函数,则()log ()log a a f f ααββ=⎧⎨=⎩, 所以2222322322a a a a αααβββ⎧−+=⎪⎪⎨⎪−+=⎪⎩, 即α,β是方程22322a x ax x −+=的大于a 的两个不等实根, 设223()122a h x x a x ⎛⎫=−++ ⎪⎝⎭,其对称轴为3142x a =+,由题意得2231,423140,22()0,a a a a h a ⎧+>⎪⎪⎪⎛⎫∆=+−⨯>⎨ ⎪⎝⎭⎪⎪>⎪⎩11所以260a a a <⎧⎪>−⎨⎪<⎩或6a <−− 又213a ≤<,所以a ∈∅. 综上,不存在满足题意的实数α,β.。
福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)本试卷共5页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一.单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|4}A x x =>,{|2}B x x ,则A B =( )A. (2,)+∞B. (4,)+∞C. (2,4)D. (,4)-∞【答案】B 【解析】 【分析】由交集的定义求解即可. 【详解】{|{|2}4}{|4}x A B x x x x x =>>=>故选:B【点睛】本题主要考查了集合间的交集运算,属于基础题. 2.sin(600)-︒的值是( )A.12B. 12-C.2D. 【答案】C 【解析】 【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【详解】解:()()()sin 600sin 720120sin120sin 18060sin60-︒=-︒+︒=︒=︒-︒=︒= 故选C .【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键. 3.下列各函数的值域与函数y x =的值域相同的是( ) A. 2yxB. 2xy =C. sin y x =D.2log y x =【答案】D 【解析】 【分析】分别求出下列函数的值域,即可判断. 【详解】函数y x =的值域为R20y x =≥,20x y =>则A ,B 错误;函数sin y x =的值域为[]1,1-,则C 错误; 函数2log y x =的值域为R ,则D 正确; 故选:D【点睛】本题主要考查了求具体函数的值域,属于基础题.4.已知函数42,0,()log ,0,x x f x x x ⎧=⎨>⎩则((1))f f -=( )A. 2-B. 12-C.12D. 2【答案】B 【解析】 【分析】分别计算(1)f -,12f ⎛⎫ ⎪⎝⎭即可得出答案.【详解】121(1)2f --==,241211log log 12222f -⎛⎫===- ⎪⎝⎭所以1((1))2f f -=- 故选:B【点睛】本题主要考查了已知自变量求分段函数的函数值,属于基础题. 5.函数log ||()(1)||a x x f x a x =>图象的大致形状是( )A. B.C. D.【答案】A 【解析】 【分析】判断函数函数()f x 为奇函数,排除BD 选项,取特殊值排除C ,即可得出答案. 【详解】log ||log ||()()||||a a x x x x f x f x x x ---==-=--所以函数()f x 为奇函数,故排除BD.log ||()10||a a a f a a ==>,排除C故选:A【点睛】本题主要考查了函数图像的识别,属于基础题.6.已知0.22log 0.2,2,sin 2a b c ===,则( )A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B【解析】 【分析】分别求出a ,b ,c 的大概范围,比较即可.【详解】因为22log 0.2log 10<=,0sin 21<<,0.20221>= 所以a c b <<. 故选:B【点睛】本题主要考查了指数,对数,三角函数的大小关系,找到他们大概的范围再比较是解决本题的关键,属于简单题.7.已知以原点O 为圆心的单位圆上有一质点P ,它从初始位置01(,22P 开始,按逆时针方向以角速度1/rad s 做圆周运动.则点P 的纵坐标y 关于时间t 的函数关系为 A. sin(),03y t t π=+≥ B. sin(),06y t t π=+≥ C. cos(),03y t t π=+≥D. cos(),06y t t π=+≥【答案】A 【解析】当时间为t 时,点P 所在角的终边对应的角等于3t π+, 所以点P 的纵坐标y 关于时间t 的函数关系为sin(),03y t t π=+≥.8.已知函数()f x 为定义在(0,)+∞的增函数,且满足()()()1f x f y f xy +=+.若关于x 的不等式(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+恒成立,则实数a 的取值范围为( ) A. 1a >- B. 14a >-C. 1a >D. 2a >【答案】D 【解析】 【分析】将题设不等式转化为2(cos )(cos )f x f a x <+,根据函数()f x 的单调性解不等式得出2cos cos x a x <+,通过换元法,构造函数2()g x t t =-,[]1,1t ∈-求出最大值,即可得到实数a 的取值范围.【详解】(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+(1sin )(1sin )(cos )(1)f x f x f a x f ∴-++<++因为()()()2(1sin )(1sin )1sin 1sin 1(cos)1f x f x fx x f x -++=-++=+,(cos )(1)(cos )1f a x f f a x ++=++所以2(cos )(cos )f x f a x <+在(0,)x ∈+∞恒成立故2cos cos x a x <+在(0,)x ∈+∞恒成立,即2cos cos x x a -<在(0,)x ∈+∞恒成立 令[]cos ,1,1x t t =∈-,则22()cos cos g x x x t t =-=-所以函数2()g x t t =-在11,2⎡⎤-⎢⎥⎣⎦上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,(1)2(1)0g g -=>= 所以2a > 故选:D【点睛】利用函数的单调性解抽象不等式以及不等式的恒成立问题,属于中档题.二.多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设11,,1,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域是R ,且为奇函数的α值可以是( )A. 1-B.12C. 1D. 3【答案】CD 【解析】 【分析】求出对应α值函数y x α=的定义域,利用奇偶性的定义判断即可.【详解】当α的值为11,2-时,函数y x α=的定义域分别为()(),00,-∞+∞,[)0,+∞当1α=时,函数y x =的定义域为R ,令()f x x =,()()f x x f x -=-=-,则函数y x =为R 上的奇函数当3α=时,函数3y x =的定义域为R ,令3()f x x =,3()()f x x f x -=-=-,则函数3y x=为R 上的奇函数故选:CD【点睛】本题主要考查了判断函数的奇偶性,属于基础题. 10.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象上所有的点( ) A. 向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B. 向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C. 横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D. 横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度【答案】AD 【解析】 【分析】由正弦函数的伸缩变换以及平移变换一一判断选项即可. 【详解】将函数sin y x =的图象上所有的点向右平行移动5π个单位长度,得到函数n 5si y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故A 正确;将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,得到函数sin 10y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 210y x π⎛⎫=- ⎪⎝⎭的图象,故B 错误;将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动5π个单位长度,得到25sin 2y x π⎛⎫=-⎪⎝⎭的图象,故C 错误; 将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动10π个单位长度,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故D 正确;故选:AD【点睛】本题主要考查了正弦函数的伸缩变换以及平移变换,属于基础题.11.对于函数()sin(cos )f x x =,下列结论正确的是( ) A. ()f x 为偶函数B. ()f x 的一个周期为2πC. ()f x 的值域为[sin1,sin1]-D. ()f x 在[]0,π单调递增【答案】ABC 【解析】 【分析】利用奇偶性的定义以及周期的定义判断A ,B 选项;利用换元法以及正弦函数的单调性判断C 选项;利用复合函数的单调性判断方法判断D 选项. 【详解】函数()f x 的定义域为R ,关于原点对称()()()()sin cos sin cos ()f x x x f x -=-==,则函数()f x 偶函数,故A 正确;()()()sin co 22s sin cos ()f x x x f x ππ+=+==⎡⎤⎣⎦,则函数()f x 的一个周期为2π,故B正确;令[]cos ,1,1t x t =∈-,则()sin f x t =,由于函数sin y t=[]1,1-上单调递增,则()sin 1()sin1sin1()sin1f x f x -≤≤⇒-≤≤,故C 正确;当[]0,x π∈时,函数cos t x =为减函数,由于[]cos 0,1t x =∈,则函数sin y t =在0,1上为增函数,所以函数()f x 在[]0,π单调递减,故D 错误; 故选:ABC【点睛】本题主要考查了判断函数的奇偶性,周期性,求函数值域,复合函数的单调性,属于中档题.12.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( ) A. ()g x 为奇函数B. 若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C. ()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D. 若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【解析】 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫-⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅= 所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题. 三、填空题:本大题共4题,每小题5分,共20分.13.函数()1xf x a =+(0a >且1a ≠)的图象恒过点__________【答案】()0,2 【解析】分析:根据指数函数xy a =过()0,1可得结果.详解:由指数函数的性质可得xy a =过()0,1,所以1xy a =+过()0,2,故答案为()0,2.点睛:本题主要考查指数函数的简单性质,属于简单题. 14.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【答案】6π 【解析】 【分析】由扇形面积公式求出扇形半径,根据扇形弧长公式即可求解.【详解】设扇形的半径为r 由扇形的面积公式得:216212r ππ=⨯,解得2r该扇形的弧长为2126ππ⨯=故答案为:6π 【点睛】本题主要考查了扇形面积公式以及弧长公式,属于基础题. 15.函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为______;【答案】[2] 【解析】 【分析】由x 的范围,确定23x π-的范围,利用换元法以及正弦函数的单调性,即可得出答案.【详解】0,2x π⎡⎤∈⎢⎥⎣⎦,22,333x πππ⎡⎤∴-∈-⎢⎥⎣⎦令22,333t x πππ⎡⎤=-∈-⎢⎥⎣⎦,函数()2sin g t t =在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,在2,23ππ⎡⎤⎢⎥⎣⎦上单调递减2si ()(n 33)g ππ--==2si 2()2n 2g ππ==, 222sin (3)3g ππ==所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[2]故答案为:[2]【点睛】本题主要考查了正弦型函数的值域,属于中档题. 16.已知函数1()f x x=,()2sin g x x =,则函数()f x 图象的对称中心为_____,函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为____. 【答案】 (1). (0,0) (2). 0 【解析】 【分析】判断函数()f x ,()g x 为奇函数,即可得出函数()f x ,()g x 图象的对称中心都为原点; 根据对称性即可得出所有交点的横坐标与纵坐标之和. 【详解】1()()f x f x x-=-=-,则函数()f x 为奇函数,即函数()f x 图象的对称中心为(0,0) ()()2sin 2sin ()g x x x g x -=-=-=-,则函数()g x 为奇函数,即函数()g x 的对称中心为(0,0)所以函数()y f x =的图象与函数()y g x =的图象所有交点都关于原点对称 即所有交点的横坐标之和为0,纵坐标之和也为0则函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为0 故答案为:(0,0);0【点睛】本题主要考查了函数奇偶性的应用以及对称性的应用,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知α为锐角,且3cos 5α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求cos sin(2)2παπα⎛⎫-+-⎪⎝⎭的值. 【答案】(1)-7(2)4425【解析】 【分析】(1)利用平方关系以及商数关系得出tan α,再利用两角和的正切公式求解即可; (2)利用诱导公式以及二倍角的正弦公式求解即可. 【详解】解:(1)因为α为锐角,且3cos 5α=. 所以24sin 1cos 5αα, 所以sin 4tan cos 3ααα==, 所以41tan tan34tan 7441tan tan 1143παπαπα++⎛⎫+===- ⎪⎝⎭--⨯. (2)因为cos sin 2παα⎛⎫-=⎪⎝⎭, sin(2)sin 2παα-=,所以cos sin(2)sin sin 22παπααα⎛⎫-+-=+ ⎪⎝⎭sin 2sin cos ααα=+4432555=+⨯⨯ 4425= 【点睛】本题主要考查了两角和的正切公式,诱导公式,二倍角的正弦公式,属于中档题. 18.已知集合{}|2216xA x =<<,{|sin 0,(0,2)}B x x x π=>∈. (1)求AB ;(2)集合{|1}C x x a =<<()a ∈R ,若AC C =,求a 的取值范围.【答案】(1){|04}A B x x ⋃=<<(2)4a 【解析】 【分析】(1)利用指数函数以及正弦函数的性质化简集合,A B ,再求并集即可;(2)由题设条件得出C A ⊆,分别讨论集合C =∅和C ≠∅的情况,即可得出答案.【详解】解:(1)依题意{|14}A x x =<<,{|0}B x x π=<<,所以{|04}A B x x ⋃=<<. (2)因为AC C =,所以C A ⊆.①当C =∅时,1a ,满足题意;②当C ≠∅时,1a >,因为C A ⊆,得4a ≤,所以14a <; 综上,4a .【点睛】本题主要考查了集合的并集运算以及根据集合间的包含关系求参数范围,属于中档题.19.已知函数()2sin (sin cos )f x x x x =⋅+. (1)求()f x 的最小正周期; (2)求()f x 的单调区间.【答案】(1)最小正周期为π.(2)单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【解析】 【分析】利用倍角公式以及辅助角公式化简函数()f x ,根据周期公式得出第一问;根据正弦函数的单调增区间和减区间求()f x 的单调区间,即可得出第二问. 【详解】解:因为2()2sin 2sin cos f x x x x =+⋅22sin sin 2x x =+1cos2sin2x x =-+ sin2cos21x x =-+214x π⎛⎫=-+ ⎪⎝⎭(1)所以函数()f x 的最小正周期为22T ππ==.(2)由222,242k x k k πππππ-+-+∈Z ,得3222,44k x k k ππππ-++∈Z , 即3,88k xk k ππππ-++∈Z , 所以()f x 的单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,同理可得,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【点睛】本题主要考查了求正弦型函数的最小正周期以及单调区间,属于中档题. 20.已知2()1x af x x bx +=++是定义在[1,1]-上的奇函数. (1)求a 与b 的值;(2)判断()f x 的单调性,并用单调性定义加以证明; (3)若[0,2)απ∈时,试比较(sin )f α与(cos )f α的大小.【答案】(1)0a =. 0b =.(2)()f x 在[1,1]-单调递增.见解析 (3)见解析 【解析】 【分析】(1)根据奇函数的性质得出(0)0f =,(1)(1)f f -=-,求解方程,即可得出a 与b 的值; (2)利用函数单调性的定义证明即可;(3)分别讨论α的取值使得sin cos αα=,sin cos αα<,sin cos αα>,结合函数()f x 的单调性,即可得出(sin )f α与(cos )f α的大小.【详解】解:(1)因为()f x 是定义在[1,1]-上的奇函数,所以(0)0f =,得0a =.又由(1)(1)f f -=-,得到1122b b -=--+,解得0b =. (2)由(1)可知2()1xf x x =+,()f x 在[1,1]-上为增函数.证明如下:任取12,[1,1]x x ∈-且设12x x <, 所以()()1212221211x x f x f x x x -=-++()()22121212221211x x x x x x x x +--=++ ()()()()122112221211x x x x x x x x -+-=++()()()()21122212111x x x x xx --=++由于12x x <且12,[1,1]x x ∈-,所以210x x ->,且2110x x -<,又2110x +>,2210x +>,所以()()()()211222121011x x x x xx --<++,所以()()12f x f x <,从而()f x 在[1,1]-单调递增. (3)当4πα=或54πα=时,sin cos αα=,所以(sin )(cos )f f αα=;当04πα<或524παπ<<时,sin cos αα<, 又因为sin [1,1]α∈-,cos [1,1]α∈-,且()f x 在[1,1]-上为增函数,所以(sin )(cos )f f αα<当544ππα<<时,sin cos αα>,同理可得(sin )(cos )f f αα>; 综上,当4πα=或54πα=时,(sin )(cos )f f αα=;当50,,244ππαπ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭时,(sin )(cos )f f αα<;当5,44ππα⎛⎫∈ ⎪⎝⎭时,(sin )(cos )f f αα>.【点睛】本题主要考查由函数的奇偶性求参数,判断函数的单调性以及利用单调性比较函数值大小,属于中档题.21.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: .(1)设港口在x 时刻的水深为y 米,现给出两个函数模型:sin()(0,0,)y A x h A ωϕωπϕπ=++>>-<<和2(0)y ax bx c a =++≠.请你从两个模型中选择更为合适的函数模型来建立这个港口的水深与时间的函数关系式(直接选择模型,无需说明理由);并求出7x =时,港口的水深.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),问该船何时能进入港口,何时应离开港口?一天内货船可以在港口呆多长时间?【答案】(1)选择函数模型Asin()y x h ωϕ=++更适合. 水深为3米 (2)货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港.一天内货船可以在港口呆的时间为8小时. 【解析】 【分析】(1)观察表格中水深的变化具有周期性,则选择函数模型Asin()y x h ωϕ=++更适合,由表格数据得出,,,A h ωϕ的值,将7x =代入解析式求解即可; (2)由题意 5.5y 时,船可以进港,解不等式2.5sin4.255.56x π+,得出x 的范围,由x的范围即可确定进港,出港,一天内在港口呆的时间. 【详解】解:(1)选择函数模型Asin()y x h ωϕ=++更适合因为港口在0:00时刻的水深为4.25米,结合数据和图象可知 4.25h =6.75 1.752.52A -==因为12T =,所以22126T πππω===, 所以 2.5sin 4.256y x πϕ⎛⎫=++⎪⎝⎭, 因为0x =时, 4.25y =,代入上式得sin 0ϕ=,因为πϕπ-<<,所以0ϕ=, 所以 2.5sin4.256y x π=+.当7x =时,712.5sin4.25 2.5 4.25362y π⎛⎫=+=⨯-+= ⎪⎝⎭, 所以在7x =时,港口的水深为3米(2)因为货船需要的安全水深是4 1.5 5.5+=米, 所以 5.5y 时,船可以进港, 令2.5sin4.255.56x π+,则1sin62xπ, 因为024x <,解得15x 或1317x ,所以货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港. 因为(51)(173)8-+-=,一天内货船可以在港口呆的时间为8小时. 【点睛】本题主要考查了三角函数在生活中的应用,属于中档题. 22.已知函数3(1)log (1)f x a x +=+,且(2)1f =. (1)求()f x 的解析式;(2)已知()f x 的定义域为[2,)+∞. (ⅰ)求()41xf +的定义域;(ⅱ)若方程()()412xxf f k k x +-⋅+=有唯一实根,求实数k 取值范围.【答案】(1)2()log f x x =(2)(ⅰ)[0,)+∞.(ⅱ)1k = 【解析】 【分析】(1)利用换元法以及(2)1f =,即可求解()f x 的解析式;(2)(ⅰ)解不等式412x +≥,即可得出()41xf +的定义域;(ⅱ)根据()41xf +,()2x f k k ⋅+的定义域得出1k ,结合函数()f x 的解析式将方程化为()2(1)2210x x k k -⋅+⋅-=,利用换元法得出2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,讨论k的值,结合二次函数的性质即可得出实数k 的取值范围.【详解】解:(1)令1(0)t x t =+>,则3()log f t a t =,所以3()log f x a x =, 因为3(2)log 21f a ==,所以231log 3log 2a ==, 所以3232()log log 3log log f x a x x x ==⨯= (2)(ⅰ)因为()f x 的定义域为[2,)+∞, 所以412x +≥,解得0x , 所以()41xf +的定义域为[0,)+∞.(ⅱ)因为0,22,x x k k ⎧⎨⋅+⎩,所以221xk +在[0,)+∞恒成立, 因为221x y =+在[0,)+∞单调递减,所以221x y =+最大值为1,所以1k .又因为()()412xxf f k k x +-⋅+=,所以()()22log 41log 2xxk k x +-⋅+=, 化简得()2(1)2210xx k k -⋅+⋅-=,令2(1)xt t =,则2(1)10k t k t -⋅+⋅-=在[1,)+∞有唯一实数根, 令2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,当1k =时,令()0g t =,则1t =,所以21x =,得0x =符合题意,所以1k =; 当1k >时,2440k k ∆=+->,所以只需(1)220g k =-,解得1k ,因为1k >,所以此时无解; 综上,1k =.【点睛】本题主要考查了利用换元法求函数解析式以及根据函数的零点确定参数的范围,属于较难题.。
2020-2021高一数学上期末试卷(及答案)一、选择题1.函数()12cos 12x x f x x ⎛⎫-= ⎪+⎝⎭的图象大致为() A . B . C . D .2.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .()y =f x 的图像关于直线x=1对称D .()y =f x 的图像关于点(1,0)对称 3.函数y =a |x |(a >1)的图像是( )A .B .C .D .4.已知二次函数()f x 的二次项系数为a ,且不等式()2f x x >-的解集为()1,3,若方程()60f x a +=,有两个相等的根,则实数a =( )A .-15B .1C .1或-15D .1-或-155.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ). A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-6.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( ) A .2,35⎡⎫⎪⎢⎣⎭ B .2,35⎛⎤ ⎥⎝⎦ C .(),3-∞ D .2,5⎛⎫+∞ ⎪⎝⎭7.若函数()2log ,? 0,? 0x x x f x e x >⎧=⎨≤⎩,则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭( ) A .1e B .e C .21e D .2e8.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]9.若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 10.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12x f x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫ ⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭ 11.函数y =11x -在[2,3]上的最小值为( ) A .2B .12C .13D .-1212.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞ B .][)4,20,⎡--⋃+∞⎣C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞ 二、填空题13.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.14.对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0,则称x 0是f (x )的一个不动点,已知f (x )=x 2+ax +4在[1,3]恒有两个不同的不动点,则实数a 的取值范围______.15.已知函数()22ln 0210x x f x x x x ⎧+=⎨--+≤⎩,>,,若存在互不相等实数a b c d 、、、,有()()()()f a f b f c f d ===,则+++a b c d 的取值范围是______.16.函数22log (56)y x x =--单调递减区间是 .17.已知函数12()log f x x a =+,2()2g x x x =-,对任意的11[,2]4x ∈,总存在2[1,2]x ∈-,使得12()()f x g x =,则实数a 的取值范围是______________.18.已知()f x 为奇函数,且在[)0,+∞上是减函数,若不等式()()12f ax f x -≤-在[]1,2x ∈上都成立,则实数a 的取值范围是___________.19.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()g x 的图象,则其中一个函数的解析式可以为__________.20.对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____.三、解答题21.已知函数()10()m f x x x x=+-≠. (1)若对任意(1)x ∈+∞,,不等式()2log 0f x >恒成立,求m 的取值范围. (2)讨论()f x 零点的个数.22.已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f =(1)求函数()f x 的解析式(2)求函数()f x 在区间[1,1]-上的值域;23.已知函数sin ωφf xA xB (0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x 32,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移22个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围. 24.已知幂函数35()()m f x x m N -+=∈为偶函数,且在区间(0,)+∞上单调递增. (Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围.25.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数)26.已知函数()()20f x ax bx c a =++≠,满足()02f =,()()121f x f x x +-=-. (1)求函数()f x 的解析式;(2)求函数()f x 的单调区间;(3)当[]1,2x ∈-时,求函数的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】函数f (x )=(1212xx -+)cosx ,当x=2π时,是函数的一个零点,属于排除A ,B ,当x ∈(0,1)时,cosx >0,1212x x -+<0,函数f (x )=(1212xx -+)cosx <0,函数的图象在x 轴下方. 排除D .故答案为C 。
绝密★启用前四川省南充市2020-2021学年高一上学期期末考试数学试卷注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、选择题:本题共12小题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{|12}A B x x =-=-<<,则A B =( )A. {1,0}-B. {1,1}-C. {0,1}D. {1,0,1}-2. cos 210︒=( )A.2B. C.12D. 12-3. 已知函数22()1x f x x=+,则12f ⎛⎫= ⎪⎝⎭( ) A. 5B. 3C.13D.154. 已知向量(2,1),(3,5)a b =-=,则2a b =-( ) A. (8,9)--B. (4,9)--C. (5,6)--D. (8,11)5. 若函数()xf x a x a =--(0a >且1a ≠)有两个不同零点,则a 的取值范围是( ) A. (2,)+∞ B. (1,)+∞C. (0,)+∞D. (0,1)6. 角α终边上有一点(,)P a a ,(0)a ≠,则sin α=( )A.2B. 2-C. 2±D. 17. 为了得到函数sin(2)6y x π=-的图象,可以将函数sin 2y x =的图象( )A 向右平移6π个单位长度 B. 向左平移12π个单位长度C. 向左平移6π个单位长度 D. 向右平移12π个单位长度8. 已知f (x )=5x +a 3x +bx-8,且f (-2)=10,那么f (2)等于( )A. -26B. -18C. -10D. 109. 已知1tan 2α=,则2sin sin cos ααα+=( ) A.15B. 25C. 35D.4510. 给定集合A ,B ,定义{},,A B x x m n m A n B *==-∈∈,若{}4,5,6A =,{}1,2,3B =,则集合A B *中的所有元素之和为( ) A. 15B. 14C. 27D. 14-11. 已知12,e e 是单位向量,1223e e ⋅=-,若平面向量a 满足11a e ⋅=,22a e ⋅=且12a xe ye =+,则x y +=( ) A. 9B. 8C. 7D. 612. 已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()()0.52log 3,log 5,(2)a f b f c f m ===,则( )A. a b c <<B. a c b <<C. c b a <<D. c a b <<二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量(1,),(2,2)a m b ==-,且a b ⊥,则m =__________. 14. 若12sin 313πα⎛⎫+= ⎪⎝⎭,则()cos 6πα-=__________. 15. 幂函数()f x 的图象过点1(2,)4,则(3)f -=__________.16. 函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-,若对任意的(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是_______ 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17. 已知函数1()21f x x x =+++ (1)求()f x 定义域;(2)若0a >,求(1)f a -的值.18. 已知函数()f x ax b =+是R 上的奇函数,且()12f =.(1)求a ,b ;(2)用函数单调性的定义证明()f x 在R 上是增函数. 19. 已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积. 20. 设函数()2sin 26f x x mπω⎛⎫=-+ ⎪⎝⎭的图象关于直线x π=对称,其中102ω<<. (1)求()f x 的最小正周期;(2)若函数()y f x =的图象过点(,0)π,求()f x 在30,2π⎡⎤⎢⎥⎣⎦上的值域;21. 已知二次函数()y f x =的图象以原点为顶点且过点(1,1),函数()kg x x=的图象过点(1,8),()()()h x f x g x =+.(1)求()h x 的解析式;(2)证明:当3m >时,函数()()()H x h x h m =-有三个零点.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22. 已知集合{}34A x x =-≤≤,{}211B x m x m =-<<+,且B A ⊆,求实数m 的取值范围. 23. 若,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan 23k x π⎛⎫+- ⎪⎝⎭的值总不大于零,求实数k 的取值范围.南充市2020-2021学年度上期高中一年级教学质量监测 数学试卷(解析版)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效. 3.考试结束后,将答题卡交回.一、选择题:本题共12小题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{|12}A B x x =-=-<<,则A B =( )A. {1,0}-B. {1,1}-C. {0,1}D. {1,0,1}-答案:C 【解析】利用交集定义求解即可. 解:由题意,{}0,1A B =故选:C.2. cos 210︒=( )A.2B. C.12D. 12-答案:B 【解析】利用诱导公式化简求值即可.解:()cos 210cos 18030cos30︒=︒+︒=-︒= 故选:B3. 已知函数22()1x f x x=+,则12f ⎛⎫= ⎪⎝⎭( ) A. 5 B. 3C.13D.15答案:D 【解析】根据函数的解析式,代入准确计算,即可求解.解:由题意,函数22()1x f x x=+,可得221()112()1251()2f ==+. 故选:D.4. 已知向量(2,1),(3,5)a b =-=,则2a b =-( ) A. (8,9)-- B. (4,9)--C. (5,6)--D. (8,11)答案:A 【解析】利用平面向量坐标公式求解即可. 解:2(6,10)b =,2a b ∴=-(8,9)--故选:A5. 若函数()xf x a x a =--(0a >且1a ≠)有两个不同零点,则a 的取值范围是( ) A. (2,)+∞ B. (1,)+∞ C. (0,)+∞ D. (0,1)答案:B 【解析】先讨论01a <<,根据函数单调性,判定不满足题意;再讨论1a >,结合图形,即可判定出结果. 解:当01a <<时,()xf x a x a =--在定义域上单调递减,最多只有一个零点,不满足题意; 当1a >时,根据函数()x f x a x a =--有两个不同零点,可得方程x a x a =+有两个不等实根, 即函数xy a =与直线y x a =+有两不同零点,指数函数xy a =恒过点()0,1;直线y x a =+过点()0,a ,作出函数x y a =与y x a =+的大致图象如下:因为1a >,所以点()0,a 在()0,1的上方,因此1a >时,y x a =+与xy a =必有两不同交点,即原函数有两不同零点,满足题意; 综上1a >. 故选:B.【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6. 角α的终边上有一点(,)P a a ,(0)a ≠,则sin α=( )2 B. 2 C. 2 D. 1答案:C【解析】根据三角函数的定义,分类讨论,即可求解.解:由题意,角α的终边上有一点(,)P a a ,则222r OP a ===,当0a >时,根据三角函数的定义,可得2sin 22y r a α===; 当0a <时,根据三角函数的定义,可得2sin 22y r a α===--, 综上,sin α=2故选:C7. 为了得到函数sin(2)6y x π=-的图象,可以将函数sin 2y x =的图象( )A. 向右平移6π个单位长度B. 向左平移12π个单位长度C. 向左平移6π个单位长度 D. 向右平移12π个单位长度答案:D 【解析】因为把2y sin x =的图象向右平移12π个单位长度可得到函数22126y sin x sin x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象,所以,为了得到函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin2y x =的图象,向右平移12π个单位长度故选D.8. 已知f (x )=5x +a 3x +bx-8,且f (-2)=10,那么f (2)等于( ) A. -26 B. -18C. -10D. 10答案:A 【解析】令()g x =5x +a 3x +bx ,利用函数的奇偶性求解即可.解:令()g x =5x +a 3x +bx ,由函数的奇偶性定义,函数为奇函数, 则()()8f x g x =-,所以()()22810f g -=--=, 得()218g -=,又函数()g x 是奇函数,即()()22g g =--, 所以()218g =-,则()()22818826f g =-=--=-. 故选:A点评:本题考查了利用函数的奇偶性求函数值,考查了基本运算求解能力,属于基础题.9. 已知1tan 2α=,则2sin sin cos ααα+=( ) A.15B. 25C. 35D.45答案:C 【解析】根据三角函数的基本关系式,化简为“齐次式”,代入即可求解. 解:因为1tan 2α=, 由2222sin sin cos sin sin cos cos sin αααααααα++=+222211()tan tan 32211tan 51()2ααα++===++. 故选:C.10. 给定集合A ,B ,定义{},,A B x x m n m A n B *==-∈∈,若{}4,5,6A =,{}1,2,3B =,则集合A B *中的所有元素之和为( ) A. 15 B. 14C. 27D. 14-答案:A 【解析】根据集合的新定义,分别表示出符合A B *的集合的元素,再求和即可 解:由题可知,456m ,,=,1,2,3n =, 当4m =时,1,2,3n =时,321m n ,,-= 当5m =时,1,2,3n =时,432m n ,,-= 当6m =时,1,2,3n =时,543m n ,,-= 所以{}12345A B ,,,,*=,元素之和为15 故选A点评:本题考查对新定义的理解,元素与集合的关系,解题关键在于不遗漏,m n 的取值,正确算出m n -,属于基础题11. 已知12,e e 是单位向量,1223e e ⋅=-,若平面向量a 满足11a e ⋅=,22a e ⋅=且12a xe ye =+,则x y +=( )A. 9B. 8C. 7D. 6答案:A 【解析】对12a xe ye =+两边都与1e 、2e 求数量积,所得两个式子相加即可求解. 解:因为12a xe ye =+,所以211211a e xe ye e ⋅=+⋅=,即213x y -=①, 因为12a xe ye =+,所以221222a e xe e ye ⋅=⋅+=,即223x y -+=②, 两式相加可得:11333x y +=,所以9x y +=, 故选:A点评:关键点点睛:本题解题的关键是将12a xe ye =+两边都与1e 、2e 求数量积即可利用已知条件的数据得出关于x 和y 的两个方程.12. 已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()()0.52log 3,log 5,(2)a f b f c f m ===,则( )A. a b c <<B. a c b <<C. c b a <<D. c a b <<答案:D 【解析】根据()f x 为偶函数便可求出m =0,从而||()21x f x =-,根据此函数的奇偶性与单调性即可作出判断.解:∵()f x 为偶函数; ∴()()f x f x -= ; ∴||2121x m x m ----=-;∴--=-x m x m 得()()22x m x m --=- ,0mx = 得0m = ∴()21xf x =- ;∴()f x 在[)0,+∞上单调递增,并且()()0.52log 3log 3a f f ==,()()2log 5,(2)0b f c f m f ===∵220log 3log 5<<; ∴c a b <<. 故选:D点评:方法点晴:对于偶函数比较函数值大小的方法就是将自变量的值变到区间[)0,+∞上,根据单调性去比较函数值大小.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量(1,),(2,2)a m b ==-,且a b ⊥,则m =__________. 答案:1 【解析】因为a b ⊥,则0a b ⋅=,代入坐标求解即可求出答案. 解:因为a b ⊥,所以=220,1a b m m ⋅-=∴=. 故答案为:1. 14. 若12sin 313πα⎛⎫+= ⎪⎝⎭,则()cos 6πα-=__________. 答案:1213【解析】 由于362πππαα⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭,可得632πππαα⎛⎫-=+- ⎪⎝⎭,然后由诱导公式可得 cos cos sin 6323ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,最后写出结果即可解:362πππαα⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭,632πππαα⎛⎫∴-=+- ⎪⎝⎭,12cos cos cos sin 63223313ππππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=+-=-+=+= ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:1213.点评:关键点点睛:本题的解题关键是由角的关系得出632πππαα⎛⎫-=+- ⎪⎝⎭,进而利用诱导公式进行计算.15. 幂函数()f x 的图象过点1(2,)4,则(3)f -=__________. 答案:19【解析】设出幂函数的解析式,由图象过12,4⎛⎫ ⎪⎝⎭确定出解析式,然后令x =-3即可得到f (-3)的值.解:设f (x )=x a ,因为幂函数图象过12,4⎛⎫ ⎪⎝⎭,则有14=2a ,∴a=-2,即f (x )=x -2, ∴f(-3)=(-3)-2=19,故答案为19.点评:本题考查了待定系数法求幂函数解析式的问题,考查了求幂函数的函数值,属于基础题. 16. 函数()f x 的定义域为R ,满足(1)2()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-,若对任意的(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是_______ 答案:7,3⎛⎤-∞ ⎥⎝⎦ 【解析】首先根据已知条件依次得到在(0,1]x ∈附近的区间,(1,2]x ∈、(2,3]x ∈对应的函数解析式,然后按其规律画出函数的图像,再根据不等式恒成立的意义与函数图像即可求得实数m 的取值范围 解:当10-<≤x 时,011x <+≤,则11()(1)(1)22f x f x x x =+=+, 当12x <≤时,011x <-≤,则()2(1)2(1)(2)f x f x x x =-=--,当23x <≤时,021x <-≤,则22()2(1)2(2)2(2)(3)f x f x f x x x =-=-=--,由此作出()f x 图象如图所示,由图知当23x <≤时,令282(2)(3)9x x --=-,整理得:(37)(38)0x x --=, 解得:73x =或83x =,要使对任意的(,]x m ∈-∞,都有8()9f x ≥-,必有73m ≤, 所以m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦, 故答案为:7,3⎛⎤-∞ ⎥⎝⎦点评:本题主要考查函数的解析式,函数的图象,不等式恒成立问题,考查分类讨论,数形结合的思想,属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17. 已知函数1()21f x x x =+++ (1)求()f x 的定义域;(2)若0a >,求(1)f a -的值.答案:(1){|2x x ≥-且}1x ≠-;(2)1(1)1f a a a-=+ 【解析】(1)由1020x x +≠⎧⎨+≥⎩,解不等式可得定义域;(2)0a >时,将1a -代入求值即可.解:(1)由1020x x +≠⎧⎨+≥⎩,解得2x ≥-且1x ≠-故()f x 的定义域为{|2x x ≥-且}1x ≠- (2)若0a >,11(1)11f a a a-==-+18. 已知函数()f x ax b =+是R 上的奇函数,且()12f =. (1)求a ,b ;(2)用函数单调性的定义证明()f x 在R 上是增函数. 答案:(1)2a =,0b =;(2)证明见详解. 【解析】(1)根据函数是奇函数,得到()00f b ==,根据()12f =求出a ,再验证函数奇偶性,即可得出结果;(2)任取12x x <,作差比较()1f x 与()2f x ,根据函数单调性的定义,即可得出结论. 解:(1)因为()f x ax b =+是R 上的奇函数,所以()00f b ==,则()f x ax =;又()12f =,所以2a =,则()2f x x =,此时()()2f x x f x -=-=-,所以()2f x x =是奇函数,满足题意;故2a =,0b =;(2)任取12x x <,则()()()121220f x f x x x -=-<显然成立,即()()12f x f x <, 所以()f x 在R 上是增函数. 点评:方法点睛:定义法判定函数()f x 在区间D 上的单调性的一般步骤: 1.取值:任取1x ,2x D ∈,规定12x x <, 2.作差:计算()()12f x f x -; 3.定号:确定()()12f x f x -的正负; 4.得出结论:根据同增异减得出结论.19. 已知4,3,(23)(2)61a b a b a b ==-⋅+=.(1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积.答案:(1)23π;(2(3)【解析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形的内角,利用面积公式求得结果. 解:(1)因为(23)(2)61a b a b -⋅+=, 所以2244361aa b b-⋅-=.又4,3a b ==,所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=. (2)2222()2a b a b a a b b +=+=+⋅+=42+2×(-6)+32=13,所以13a b +=;(3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =14322⨯⨯⨯=点评:该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目. 20. 设函数()2sin 26f x x m πω⎛⎫=-+ ⎪⎝⎭的图象关于直线x π=对称,其中102ω<<. (1)求()f x 的最小正周期;(2)若函数()y f x =的图象过点(,0)π,求()f x 在30,2π⎡⎤⎢⎥⎣⎦上的值域; 答案:(1)3T π=;(2)[]3,0-. 【解析】(1)由函数图象关于直线x π=对称,可得ω的值,进而得出函数的最小正周期;(2)由函数()y f x =的图象过点(,0)π,求出m 的值,由30,2x π⎡⎤∈⎢⎥⎣⎦,结合正弦函数的图象和性质得出函数的值域.解:(1)函数()2sin 26f x x m πω⎛⎫=-+ ⎪⎝⎭的图象关于直线x π=对称,则2,62k k Z ππωππ⨯-=+∈,解得1,23k k Z ω=+∈ 又102ω<<,则当0k =时,13ω= 即2()2sin 36f x x m π⎛⎫=-+ ⎪⎝⎭,()f x 的最小正周期为2323T ππ==;(2)函数()y f x =的图象过点(,0)π, 则()22sin 036f m πππ⎛⎫=-+=⎪⎝⎭,解得2m =- 故2()2sin 236f x x π⎛⎫=-- ⎪⎝⎭302x π≤≤,203x π∴≤≤,256366x πππ-≤-≤ 则12sin 1236x π⎛⎫-≤-≤ ⎪⎝⎭,232sin 2036x π⎛⎫-≤--≤ ⎪⎝⎭()f x 在30,2π⎡⎤⎢⎥⎣⎦上的值域为[]3,0-. 21. 已知二次函数()y f x =的图象以原点为顶点且过点(1,1),函数()kg x x=的图象过点(1,8),()()()h x f x g x =+.(1)求()h x 的解析式;(2)证明:当3m >时,函数()()()H x h x h m =-有三个零点. 答案:(1)28()h x x x =+;(2)证明见解析. 【解析】(1)待定系数法即可求解(2)将方程变形,分解因式,分析实数根的个数.解:(1)设2()=f x ax ,由(1)1f a ==可得2()f x x =(1)8g k ==,()8g x x=故28()h x x x=+(2)令()()()0H x h x h m =-= 故22880x m x m-+-= 即()()1180x m x m x m ⎛⎫-++-= ⎪⎝⎭,故()()80m x x m x m xm -⎛⎫-++= ⎪⎝⎭即()()80x m x m xm ⎡⎤-+-=⎢⎥⎣⎦,0x ≠ 故()280x m x mx m ⎛⎫-+-= ⎪⎝⎭① 当3m >时,22288821803m m m m m +-=->->,2320m m+> 故280x mx m+-=有两实根,且不为0和m 0x m -=有一根,为m故()()()0H x h x h m =-=有三实数根故()()()H x h x h m =-有三个零点. 点评:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分.22. 已知集合{}34A x x =-≤≤,{}211B x m x m =-<<+,且B A ⊆,求实数m 的取值范围. 答案:{|1}m m ≥- 【解析】B A ⊆时,要分类讨论,分B =∅和B ≠∅讨论.解:∵B A ⊆,∴当B =∅时,211m m -≥+,即2m ≥,当B ≠∅时,213142m m m -≥-⎧⎪+≤⎨⎪<⎩,解得12m -≤<,综上所述,m 的取值范围是{|1}m m ≥-.点评:本题考查集合的包含关系,解题时要注意空集是任何集合的子集.因此需分类讨论. 23. 若,63x ππ⎡⎤∈⎢⎥⎣⎦时,tan 23k x π⎛⎫+- ⎪⎝⎭的值总不大于零,求实数k 的取值范围.答案:k ≤【解析】先根据题意得tan 203k x π⎛⎫+-≤ ⎪⎝⎭,进而得πtan 23k x ⎛⎫≤-- ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立,在求函数πtan 23y x ⎛⎫=-- ⎪⎝⎭最小值即可得答案.解:解:根据题意得tan 203k x π⎛⎫+-≤ ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴πtan 23k x ⎛⎫≤-- ⎪⎝⎭在ππ,63x ⎡⎤∈⎢⎥⎣⎦上恒成立.∵ππ,63x ⎡⎤∈⎢⎥⎣⎦,∴ π20,33x π⎡⎤-∈⎢⎥⎣⎦,∴π0tan 23x ⎛⎫≤-≤ ⎪⎝⎭πtan 203x ⎛⎫--≤ ⎪⎝⎭,∴min πtan 23x k ⎡⎤⎛⎫--≥ ⎪⎢⎥⎝⎭⎣⎦,∴k ≤点评:方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可); ② 数形结合(()y f x = 图象在()y g x = 上方即可); ③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立.。
北京市东城区2020-2021学年高一数学上学期期末考试试题(含解析)一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x33.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.6.(5分)下列各式正确的是()A.B.C.D.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是.12.(5分)sin的值为.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为.(写出符合条件的一个函数即可)14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有.(注:请写出所有正确结论的序号)四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).2020-2021学年北京市东城区高一(上)期末数学试卷参考答案与试题解析一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M【分析】利用集合与集合的关系直接求解.【解答】解:∵集合M={0},N={﹣1,0,1},∴M⫋N.故选:C.【点评】本题考查集合的关系的判断,考查交集、并集、子集定义等基础知识,考查运算求解能力,是基础题.2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x3【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=|x|,是偶函数,符合题意;对于B,y=lnx,是对数函数,不是偶函数,不符合题意;对于C,y=e x,是指数函数,不是偶函数,不符合题意;对于D,y=x3,是幂函数,不是偶函数,不符合题意;故选:A.【点评】本题考查函数的奇偶性的判断,关键是掌握常见函数的奇偶性,属于基础题.3.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.【分析】直接利用函数的单调性和子区间之间的关系求出结果.【解答】解:根据函数y=sin x的单调递增区间:[](k∈Z),当k=0时,单调增区间为[],由于为[]的子区间,故选:D.【点评】本题考查的知识要点:函数的单调性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 【分析】根据含有量词的命题的否定即可得到结论.【解答】解:命题为全称命题,则命题”∀x∈A,2x∈B”的否定为∃x∈A,2x∉B,故选:A.【点评】本题主要考查含有量词的命题的否定,比较基础.5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.【分析】直接利用不等式的应用和函数的单调性的应用求出结果.【解答】解:由于a>b,且a和b的正负号不确定,所以选项ACD都不正确.对于选项:B由于函数y=2x为单调递增函数,且a>b,故正确故选:B.【点评】本题考查的知识要点:函数的单调性的应用,不等式的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.(5分)下列各式正确的是()A.B.C.D.【分析】利用正弦函数、余弦函数、正切函数的单调性和诱导公式直接求解.【解答】解:在A中,sin>0>sin=﹣sin,故A错误;在B中,<cos,故B正确;在C中,>,故C错误;在D中,>cos=sin,故D错误.故选:B.【点评】本题考查命题真假的判断,考查正弦函数、余弦函数、正切函数的单调性和诱导公式等基础知识,考查运算求解能力,是基础题.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】可以取特殊值讨论充要性.【解答】解:若a,b为正实数,取a=1,b=1,则a+b=2,则“a,b为正实数”是“a+b>2”的不充分条件;若a+b>2,取a=1,b=0,则b不是正实数,则“a+b>2”是“a,b为正实数''的不必要条件;则“a,b为正实数”是“a+b>2”的既不充分也不必要条件,故选:D.【点评】本题考查命题充要性,以及不等式,属于基础题.8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9【分析】由题意令V=2m/s,0m/s,则可求出耗氧量,求出之比.【解答】解:鲑鱼游速为2m/s时的耗氧量为:令v=2=,即,即,即o=8100,鲑鱼静止时耗氧量为:令v=0=,即,即o'=100,故鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为,故选:C.【点评】本题考查对数求值,属于中档题.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点【分析】直接利用函数的图象和函数的性质及参数的范围求出函数的交点的情况,进一步确定结果.【解答】解:根据函数的解析式画出函数的图象:①对于选项A:当t<0或t≥2时,有0个交点,故正确.②对于选项B:当t=0或时,有1个交点,故正确.③对于选项C:当t=时,只有一个交点,故错误.④对于选项D:当,只有一个交点,故错误.故选:AB.【点评】本题考查的知识要点:函数的图象的应用,利用函数的图象求参数的取值范围,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)【分析】直接利用函数的对称性和函数的单调性的应用求出结果.【解答】解:函数f(x)=4|x|+x2+a,①对于选项A:由于x∈R,且f(﹣x)=f(x),故函数f(x)为偶函数.故选项A正确.②对于选项B:由于x2≥0,所以,故4|x|+x2≥1所以当x=0时a=﹣2时,f(x)<0,故选项B错误.③对于选项C:由于函数f(x)的图象关于y轴对称,在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故f(x)在(﹣∞,﹣1)上单调递减,故选项C正确.④对于选项D:由于函数的图象关于y轴对称,且在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故存在实数a=0时,当x∈(﹣∞,﹣1]∪[1,+∞)时,不等式成立,故选项D正确.故选:ACD.【点评】本题考查的知识要点:函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是(﹣1,1).【分析】解不等式1﹣x2>0即可.【解答】解:令1﹣x2>0,解得﹣1<x<1,即函数的定义域为(﹣1,1).故答案为:(﹣1,1).【点评】本题考查函数定义域的求法及不等式的求解,属于基础题.12.(5分)sin的值为﹣.【分析】原式中的角度变形后,利用诱导公式化简,计算即可得到结果.【解答】解:sin=sin(2π﹣)=﹣sin=﹣.故答案为:﹣【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为f(x)=.(写出符合条件的一个函数即可)【分析】由函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,即是符合要求的一个函数.【解答】解:∵函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,∴函数f(x)=()x即是符合要求的一个函数,故答案为:f(x)=()x.【点评】本题主要考查了指数函数的单调性和值域,是基础题.14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.【分析】①利用交集定义直接求解.②利用并集定义直接求解.【解答】解:①设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B.故答案为:A∩B.②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.故答案为:A∪C.【点评】本题考查并集、交集的求法,考查并集、交集定义等基础知识,考查运算求解能力,是基础题.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=0或1 .【分析】结合已知函数解析式,把x=﹣2代入即可求解f(﹣2),结合已知函数解析式及f(t)=1,对t进行分类讨论分别求解.【解答】解:f(x)=则f(﹣2)=2﹣2=,∵f(t)=1,①当t≥1时,可得=1,即t=1,②当t<1时,可得2t=1,即t=0,综上可得t=0或t=1.故答案为:;0或1【点评】本题考查了求分段函数的函数值的问题,解题时应对自变量进行分析,是基础题.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有①②④.(注:请写出所有正确结论的序号)【分析】直接利用函数的图象求出函数的解析式,进一步利用函数的额关系式再利用函数的性质的应用求出结果.【解答】解:浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t ﹣1(a>0且a≠1),函数的图象经过(2,2)所以2=a2﹣1,解得a=2.①当x=0时y=,故选项A正确.②当第8个月时,y=28﹣1=27=128>60,故②正确.③当t=1时,y=1,增加0.5,当t=2时,y=2,增加1,故每月的增加不相等,故③错误.④根据函数的解析式,解得t1=log210+1,同理t2=log220+1,t3=log230+1,所以2t2=2log220+2=log2400+2>t1+t2=log2300+2,所以则2t2>t1+t3.故④正确.故答案为:①②④.【点评】本题考查的知识要点:函数的性质的应用,定义性函数的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.【分析】(1)根据题意,求出集合A,进而由补集的性质分析可得答案;(2)根据题意,结合集合间的关系分析可得答案.【解答】解:(1)根据题意,因为A={x|x2+3x+2<0}={x|﹣2<x<﹣1}.因为全集U=R,所以∁U A={x|x≤﹣2或x≥﹣1},(2)根据题意,∁U A={x|x≤﹣2或x≥﹣1},若B⊆∁U A,当m﹣1≥﹣1或m≤﹣2,即m≥0或m≤﹣2,所以m的取值范围为(﹣∞,﹣2]∪[0,+∞).【点评】本题考查集合的补集运算,涉及集合的子集关系,属于基础题.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.【分析】(1)利用函数值,转化求解函数的解析式,推出函数的周期;(2)利用函数的自变量的范围,求出相位的范围,然后求解正弦函数的最值.【解答】解:(1)因为,所以.又因为φ∈,所以φ=.所以.所以f(x)最的小正周期.(2)因为x∈[0,2π],所以.当,即时,f(x)有最大值2,当,即x=2π时,f(x)有最小值.【点评】本题考查函数的周期以及函数的最值的求法,考查转化思想以及计算能力,是中档题.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.【分析】(1)由题意利用任意角的三角函数的定义,同角三角函数的基本关系,求得tanβ的值.(2)由题意利用诱导公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:(1)因为β的终边与单位圆交于点B,B点的纵坐标为,所以.因为,所以.所以.(2)因为α的终边与单位圆交于点A,A点的纵坐标为,所以.因为,所以,故===.【点评】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、诱导公式,属于基础题.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.【分析】(1)定义域为R,然后求出f(﹣x),得f(﹣x)=﹣f(x),所以为奇函数;(2)直接由指数函数的单调性可判断函数f(x)的单调性;(3)不等式变形,由奇函数的性质得出ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立,令关于a的函数g(a)=xa+1﹣x>0在(﹣∞,2]上恒成立,g(a)一定单调递减,所以满足则只需解出x的范围.【解答】解:(1)f(x)为奇函数.因为f(x)定义域为R,,所以f(﹣x)=﹣f(x).所以f(x)为奇函数;(2)在(﹣∞,+∞)是增函数.因为y=3x在(﹣∞,+∞)是增函数,且y=3﹣x在(﹣∞,+∞)是减函数,所以在(﹣∞,+∞)是增函数,(3)由(1)(2)知f(x)为奇函数且f(x)(﹣∞,+∞)是增函数.又因为f(ax﹣1)+f(2﹣x)>0,所以f(ax﹣1)>﹣f(2﹣x)=f(x﹣2).所以ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立.令g(a)=xa+(1﹣x),a∈(﹣∞,2].则只需,解得所以﹣1<x≤0.所以x的取值范围为(﹣1,0].【点评】考查函数的奇函数的判断即函数的单调性,使用中档题.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).【分析】(1)由新定义的元素即可求出f A(1)与f B(1)的值,再分情况求出A*B;(2)对x是否属于集合A,B分情况讨论,即可证明出f A*B(x)=f A(x)•f B(x);(3)利用(2)的结论即可证明出*运算具有交换律和结合律.【解答】解:(1)∵A={1,2,3},B={2,3,4,5},∴f A(1)=﹣1,f B(1)=1,∴A*B={1,4,5};(2)①当x∈A且x∈B时,f A(x)=f B(x)=﹣1,所以x∉A*B.所以f A*B(x)=1,所以f A*B(x)=f A(x)•f B(x),②当x∈A且x∉B时,f A(x)=﹣1,f B(x)=1,所以x∈A*B.所以f A*B(x)=﹣1,所以f A*B(x)=f A(x)•f B(x),③当x∉A且x∈B时,f A(x)=1,f B(x)=﹣1.所以x∈A*B.所以f A*B(x)=﹣1.所以f A*B(x)=f A(x)•f B(x).④当x∉A且x∉B时,f A(x)=f B(x)=1.所以x∉A*B.所以f A*B(x)=1.所以f A*B(x)=f A(x)•f B(x).综上,f A*B(x)=f A(x)•f B(x);(3)因为A*B={x|f A(x)•f B(x)=﹣1},B*A={x|f B(x)•f A(x)=﹣1}={x|f A(x)•f B(x)=﹣1},所以A*B=B*A.因为(A*B)*C={x|f A*B(x)•f C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},A*(B*C)={x|f A(x)•f B*C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},所以(A*B)*C=A*(B*C).【点评】本题主要考查了集合的基本运算,考查了新定义问题,是中档题.。
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
2020-2021学年河北省唐山市高一上期末考试数学试卷一.选择题(共8小题,每小题5分,共40分)1.已知集合A={x|x2﹣2x=0},则下列选项中说法不正确的是()A.∅⊆A B.﹣2∈A C.{0,2}⊆A D.A⊆{y|y<3} 2.命题p:“∀x≥0,都有e x≥﹣x+1”,则命题p的否定为()A.∀x≥0,都有e x<﹣x+1B.∀x<0,都有e x≥﹣x+1C.∃x0≥0,e<﹣x0+1D.∃x0<0,e<﹣x0+13.函数f(x)=的图象大致是()A.B.C.D.4.已知a=,,,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>b>a5.已知关于x不等式ae x≥x+b对任意x∈R和正数b恒成立,则的最小值为()A.B.1C.D.26.今有一组实验数据如表:x 2.0 3.0 4.0 5.1 6.1y 1.5 4.17.51218.1现准备用下列函数中一个近似地表示这些数据满足的规律,比较恰当的一个是()A.y=log2x B.y=C.y=D.y=2x﹣17.已知函数f(x)=cos(ωx﹣)(ω>0)的图象向左平移个单位长度,得到g(x)的图象,g(x)图象的相邻两条对称轴之间的距离为个单位长度,则函数g (x)图象的一个对称中心为()A.(﹣,0)B.(,0)C.(﹣,0)D.(﹣,0)8.已知函数f(x)=2sinωx cosωx﹣2cos2ωx+a(ω>0)的最小正周期为π,最大值为4,则()A.ω=1,a=3B.ω=2,a=3C.ω=2,a=7D.ω=1,a=7二.多选题(共4小题,每小题5分,共20分)9.已知a>0,b>0,且a+b=1,则()A.a2+b2≥B.2a﹣b>C.log2a+log2b≥﹣2D.+≤10.关于函数g(x)=,下列结论正确的()A.g(x)的图象过原点B.g(x)是奇函数C.g(x)在区间(1,+∞)上单调递增D.g(x)是定义域上的增函数11.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是()A.B.若把函数f(x)的图象向左平移个单位,则所得函数是奇函数C.若把f(x)的横坐标缩短为原来的倍,纵坐标不变,得到的函数在[﹣π,π]上是增函数D.,若恒成立,则a的最小值为12.下列条件能使log a3<log b3成立的有()A.b>a>0B.1>a>b>0C.b>>1D.1>>>0三.填空题(共4小题,每小题5分,共20分)13.已知x,y∈R,x2﹣xy+9y2=1,则x+3y的最大值为.14.已知一次函数f(x)满足f(f(x))=4x﹣3,则f(1)=.15.函数y=a x+2﹣2(a>0,a≠1)的图象恒过定点P,若P∈{(x,y)|mx+ny+1=0,mn >0},则的最小值.16.将函数f(x)=cos2x的图象向左平移个单位长度后,再将图象上各点的纵坐标变为原来的2倍,得到函数y=g(x)的图象,则=.四.解答题(共6小题,第17题10分,18-22每小题12分,共70分)17.已知A={x|x2﹣3ax+2a2>0,a>0},B={x|x2﹣x﹣6≥0},若x∈A是x∈B的必要不充分条件,求实数a的取值范围.18.已知函数.(1)判断函数的奇偶性;(2)证明函数f(x)在(0,+∞)上是增函数;(3)比较f(x+1)与f(x)的大小.19.(1)求函数的值域;(2)已知,求f(x)的解析式.20.设x∈R,函数f(x)=cos x(2sin x﹣cos x)+sin2x+1,(1)求函数f(x)的单调递增区间;(2)求函数f(x)的对称轴方程与对称中心.21.已知函数.(Ⅰ)设α∈[0,2π],且f(α)=1,求α的值;(Ⅱ)将函数y=f(2x)的图象向左平移个单位长度,得到函数y=g(x)的图象.当时,求满足g(x)≤2的实数x的集合.22.某市为了刺激当地消费,决定发放一批消费券,已知每投放a(0<a≤4,a∈R)亿元的消费券,这批消费券对全市消费总额提高的百分比y随着时间x(天)的变化的函数关系式近似为y=,其中f(x)=,若多次投放消费券,则某一时刻全市消费总额提高的百分比为每次投放的消费券在相应时刻对消费总额提高的百分比之和.(1)若第一次投放2亿元消费券,则接下来多长时间内都能使消费总额至少提高40%;(2)政府第一次投放2亿元消费券,4天后准备再次投放m亿元的消费券,若希望第二次投放后的接下来两天内全市消费总额仍然至少提高40%,试求m的最小值.2020-2021学年河北省唐山市高一上期末考试数学试卷参考答案与试题解析一.选择题(共8小题,每小题5分,共40分)1.已知集合A={x|x2﹣2x=0},则下列选项中说法不正确的是()A.∅⊆A B.﹣2∈A C.{0,2}⊆A D.A⊆{y|y<3}【解答】解:集合A={x|x2﹣2x=0}={0,2},由于空集是任何集合的子集,所以A说法正确,因为A={0,2},所以C,D说法正确,B说法错误,故选:B.2.命题p:“∀x≥0,都有e x≥﹣x+1”,则命题p的否定为()A.∀x≥0,都有e x<﹣x+1B.∀x<0,都有e x≥﹣x+1C.∃x0≥0,e<﹣x0+1D.∃x0<0,e<﹣x0+1【解答】解:命题p:“∀x≥0,都有e x≥﹣x+1”,则命题p的否定为:“∃x0≥0,都有<﹣x0+1”.故选:C.3.函数f(x)=的图象大致是()A.B.C.D.【解答】解:由x2﹣1>0且x≠0得x>1或x<﹣1,f(﹣x)==f(x),则函数f(x)是偶函数,图象关于y轴对称,排除A,C 当x→+∞,f(x)>0,排除A,故选:D.4.已知a=,,,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>b>a【解答】解:∵,,,∴a>b>c.故选:A.5.已知关于x不等式ae x≥x+b对任意x∈R和正数b恒成立,则的最小值为()A.B.1C.D.2【解答】解:不等式ae x≥x+b,化为不等式ae x﹣x≥b,设f(x)=ae x﹣x,f′(x)=ae x﹣1,当a≤0时,f′(x)<0,f(x)在R上单调递减,若a>0时,令f′(x)=ae x﹣1=0,x=﹣lna,在x>﹣lna时,f′(x)>0,f(x)为增函数,在x<﹣lna时,f′(x)<0,f(x)为减函数.由题意可得f(x)min≥b,当a≤0时,f(x)在R上单调递减,无最小值,不符合题意,当a>0时,f(x)min=f(﹣lna)=1+lna≥b,∴≥,设h(a)=,则h′(a)=,当a∈(0,1],h′(a)<0,h(a)递减;a∈[1,+∞),h′(a)≥0,h(a)递增,∴h(a)min=h(1)=1.则≥1,的最小值为1.故选:B.6.今有一组实验数据如表:x 2.0 3.0 4.0 5.1 6.1y 1.5 4.17.51218.1现准备用下列函数中一个近似地表示这些数据满足的规律,比较恰当的一个是()A.y=log2x B.y=C.y=D.y=2x﹣1【解答】解:由表格数据可知y随x的增大而增大,且增加速度越来越快,排除A,B,又由表格数据可知,每当x增加1,y的值不到原来的2倍,排除D,故选:C.7.已知函数f(x)=cos(ωx﹣)(ω>0)的图象向左平移个单位长度,得到g (x)的图象,g(x)图象的相邻两条对称轴之间的距离为个单位长度,则函数g (x)图象的一个对称中心为()A.(﹣,0)B.(,0)C.(﹣,0)D.(﹣,0)【解答】解:由已知得数f(x)=cos(ωx﹣),函数g(x)的最小正周期为,则,解得ω=2,所以g(x)=cos(2x﹣),由(k∈Z),解得(k∈Z),所以函数g(x)图象的对称中心为()(k∈Z).显然当k=﹣1时,g(x)图象的一个对称中心为(﹣).故选:C.8.已知函数f(x)=2sinωx cosωx﹣2cos2ωx+a(ω>0)的最小正周期为π,最大值为4,则()A.ω=1,a=3B.ω=2,a=3C.ω=2,a=7D.ω=1,a=7【解答】解:f(x)=2sinωx cosωx﹣2cos2ωx+a(ω>0),=sin2ωx﹣cos2ωx+a﹣1=2sin(2ωx﹣)+a﹣1,因为的最小正周期为π,最大值为4,故2ω=2即ω=1,2+a﹣1=4,所以a=3故选:A.二.多选题(共4小题,每小题5分,共20分)9.已知a>0,b>0,且a+b=1,则()A.a2+b2≥B.2a﹣b>C.log2a+log2b≥﹣2D.+≤【解答】解:①已知a>0,b>0,且a+b=1,所以(a+b)2≤2a2+2b2,则,故A正确.②利用分析法:要证,只需证明a﹣b>﹣1即可,即a>b﹣1,由于a>0,b>0,且a+b=1,所以:a>0,b﹣1<0,故B正确.③,故C错误.④由于a>0,b>0,且a+b=1,利用分析法:要证成立,只需对关系式进行平方,整理得,即,故=,当且仅当a=b=时,等号成立.故D正确.故选:ABD.10.关于函数g(x)=,下列结论正确的()A.g(x)的图象过原点B.g(x)是奇函数C.g(x)在区间(1,+∞)上单调递增D.g(x)是定义域上的增函数【解答】解:根据题意,依次分析选项:对于A,函数g(x)=,则有g(0)=0,则函数g(x)的图象经过原点,A正确,对于B,函数g(x)=,其定义域为{x|x≠1},不关于原点对称,既不是奇函数又不是偶函数,B错误,对于C,函数g(x)=,其导数g′(x)=,在区间(1,+∞),g′(x)>0,即函数g(x)在区间(1,+∞)上单调递增,C正确,对于D,函数g(x)=,有g(0)=0,g(2)=﹣4,g(x)是定义域上的增不是函数,D错误,故选:AC.11.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是()A.B.若把函数f(x)的图象向左平移个单位,则所得函数是奇函数C.若把f(x)的横坐标缩短为原来的倍,纵坐标不变,得到的函数在[﹣π,π]上是增函数D.,若恒成立,则a的最小值为【解答】解:如图所示:,∴T=6π,∴,∵f(2π)=2,∴,即,∴(k∈Z),∴(k∈Z),∵|φ|<π,∴,∴,故A正确;把y=f(x)的图象向左平移个单位,则所得函数,是奇函数,故B正确;把y=f(x)的横坐标缩短为原来的倍,纵坐标不变,得到的函数,∵x∈[﹣π,π],∴,∴在[﹣π,π]上不单调递增,故C错误;由可得,恒成立,令,,则,∵,∴,∴,∴,∴a的最小值为,故D正确.故选:ABD.12.下列条件能使log a3<log b3成立的有()A.b>a>0B.1>a>b>0C.b>>1D.1>>>0【解答】解:要使log a3<log b3成立,只要<,∴<,∴0>lga>lgb,或lga<0,lgb>0.求得1>a>b>0,或b>1>a>0,故选:BC.三.填空题(共4小题,每小题5分,共20分)13.已知x,y∈R,x2﹣xy+9y2=1,则x+3y的最大值为.【解答】解:∵x2﹣xy+9y2=1,∴x2+9y2=1+xy≥=6xy,即xy≤,当且仅当x=3y,即,y=时,等号成立,∴(x+3y)2=x2+6xy+9y2=1+7xy≤1+7×=,∴≤x+3y≤,∴x+3y的最大值为.故答案为:.14.已知一次函数f(x)满足f(f(x))=4x﹣3,则f(1)=1.【解答】解:设f(x)=kx+b(k≠0),则f(f(x))=k2x+kb+b=4x+9,从而,解得k=2,b=﹣1或k=﹣2,b=3,则f(x)=2x﹣1或f(x)=﹣2x+3,故f(1)=1.故答案为:1.15.函数y=a x+2﹣2(a>0,a≠1)的图象恒过定点P,若P∈{(x,y)|mx+ny+1=0,mn >0},则的最小值8.【解答】解:由已知定点P坐标为(﹣2,﹣1),由点P在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,又mn>0,∴m>0,n>0,∴+=(2m+n)(+)=4++≥4+2=4+4=8当且仅当m=,n=取等号.故答案为:8.16.将函数f(x)=cos2x的图象向左平移个单位长度后,再将图象上各点的纵坐标变为原来的2倍,得到函数y=g(x)的图象,则=﹣.【解答】解:将函数f(x)=cos2x的图象向左平移个单位长度后,可得y=cos(2x+)的图象,再将图象上各点的纵坐标变为原来的2倍,得到函数y=g(x)=2cos(2x+)的图象,则=﹣,故答案为:﹣.四.解答题(共6小题,第17题10分,18-22每小题12分,共70分)17.已知A={x|x2﹣3ax+2a2>0,a>0},B={x|x2﹣x﹣6≥0},若x∈A是x∈B的必要不充分条件,求实数a的取值范围.【解答】解:A={x|x2﹣3ax+2a2>0,a>0}=(﹣∞,a)∪(2a,+∞),B={x|x2﹣x ﹣6≥0}=(﹣∞,﹣2]∪[3,+∞),若x∈A是x∈B的必要不充分条件,∴a>0,且2a≤3.解得0<a≤.18.已知函数.(1)判断函数的奇偶性;(2)证明函数f(x)在(0,+∞)上是增函数;(3)比较f(x+1)与f(x)的大小.【解答】(1)解:∵,∴f(x)是偶函数;(2)证明:任取x1,x2∈(0,+∞),且x1<x2,则,∵x1,x2∈(0,+∞),且x1<x2,∴,则f(x2)>f(x1),即当x∈(0,+∞)时,f(x)是增函数;(3)解:要比较f(x+1)与f(x)的大小,∵f(x)是偶函数,∴只要比较f(|x+1|)与f(|x|)大小即可.当|x+1|≥|x|时,即时,∵当x∈(0,+∞)时,f(x)是增函数,∴f(x+1)≥f(x);当|x+1|<|x|时,即当时,∵当x∈(0,+∞)时,f(x)是增函数,∴f(x+1)<f(x).19.(1)求函数的值域;(2)已知,求f(x)的解析式.【解答】解:(1)设t=,则t≥0,x=,代入f(x)得,y=+t=,因为t≥0,所以函数y的最大值是1,即函数f(x)的值域是(﹣∞,1];(2)由题意得,,①令x取代入得,,②由①②解得f(x)=.20.设x∈R,函数f(x)=cos x(2sin x﹣cos x)+sin2x+1,(1)求函数f(x)的单调递增区间;(2)求函数f(x)的对称轴方程与对称中心.【解答】解:(1)函数f(x)=cos x(2sin x﹣cos x)+sin2x+1=sin2x﹣(cos2x﹣sin2x)+1=sin2x﹣cos2x+1=2sin(2x﹣)+1令:﹣+2kπ≤2x﹣≤+2kπ,(k∈Z),解得:﹣+kπ≤x≤+kπ,(k∈Z),所以函数的单调递增区间为:[﹣+kπ,+kπ],(k∈Z).(2)令:2x﹣=+kπ,(k∈Z),解得:x=kπ+,(k∈Z),所以函数的对称轴方程为:x=kπ+,(k∈Z),令:2x﹣=kπ,(k∈Z),解得:x=kπ+,(k∈Z),所以函数的对称中心为:(kπ+,1),(k∈Z).21.已知函数.(Ⅰ)设α∈[0,2π],且f(α)=1,求α的值;(Ⅱ)将函数y=f(2x)的图象向左平移个单位长度,得到函数y=g(x)的图象.当时,求满足g(x)≤2的实数x的集合.【解答】解:(Ⅰ)由=,由,得sin(α+)=0,又α∈[0,2π],得或.(Ⅱ)由题知,,由g(x)≤2,得,∴,∵,,∴,或,∴,或,即所求x的集合为,或.22.某市为了刺激当地消费,决定发放一批消费券,已知每投放a(0<a≤4,a∈R)亿元的消费券,这批消费券对全市消费总额提高的百分比y随着时间x(天)的变化的函数关系式近似为y=,其中f(x)=,若多次投放消费券,则某一时刻全市消费总额提高的百分比为每次投放的消费券在相应时刻对消费总额提高的百分比之和.(1)若第一次投放2亿元消费券,则接下来多长时间内都能使消费总额至少提高40%;(2)政府第一次投放2亿元消费券,4天后准备再次投放m亿元的消费券,若希望第二次投放后的接下来两天内全市消费总额仍然至少提高40%,试求m的最小值.【解答】解:(1)依题意,a=2,y=,要使y≥0.4,则f(x)≥2.当0≤x≤2时,,得1≤x≤2;当2<x≤7时,7﹣x≥2,得2<x≤5.∴1≤x≤5,即第一次投放2亿元消费券,则接下来5天内都能使消费总额至少提高40%;(2)设再次投放m亿元消费券x天,则,,0≤x≤2,由≥0.4,得m≥,令t=3+x,t∈[3,5],t∈N*,则m≥=,而=,当且仅当,即t=2,即x=时,上式等号成立,∴m的最小值为20﹣.。
2020-2021学年山西省高一(上)期末数学试卷1.已知命题p:x∈N,q:x∈Q.则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件2.在平面直角坐标系xOy中,角α的顶点与原点O重合,始边与x轴的非负半轴重合,终边经过点P(513,1213),则sinα=()A. 513B. 1213C. 125D. 5123.函数y=log3x的反函数为y=f(x),则f(2)=()A. 9B. 18C. 32D. 364.利用二分法求方程lnx+x−2=0的近似解,已求得f(x)=lnx+x−2的部分函数值的数据如表:x12 1.5 1.75 1.6251.5625f(x)−10.6931−0.09450.30960.11050.0088则当精确度为0.1时,该方程的近似解可取为()A. 1.55B. 1.62C. 1.71D. 1.765.风力发电不需要燃料、不占耕地、没有污染,运行成本低,所以产业发展前景非常广阔,在某风速时,传感器显示的电压按正弦规律变化,如表是时间和电压的相关数据,则风力发电的风叶转一圈的时间为()时间t(单位:s)00.10.20.30.40.50.6电压U/(单位:V)0220−220220A. 0.2sB. 0.4sC. 0.6sD. 0.8s6.a=0.53,b=log0.64,c=log0.60.3,则()A. b>a>cB. a>c>bC. c>a>bD. a>b>c7.已知函数f(x)=ln|x|⋅sinx,则此函数的图象可能是()A. B.C. D.8.摩天轮是一种大型转轮状的机械建设设施,游客坐在摩天轮的座舱里慢慢地往上转,可以从高处俯瞰四周的景色.如图,某摩天轮开启后按逆时针方向匀速旋转,游客在座舱转到距离地面最近的位置进舱,从此时开始计时,游客距离地面的高度H(单位:m)关于时间t(单位:min)的函数为H=50sin(π15t−π2)+65.已知在距离地面超过90m的高度,游客可以观看到游乐场全景,那么从游客进舱开始,在摩天轮转动一圈的过程中,他可以观看到游乐场全景时,t的取值范围是()A. (5,25)B. (7.5,22.5)C. (10,20)D. (12.5,17.5)9.要得到函数y=sin(2x+π3)的图象,可将函数y=sinx图象上的所有点()A. 向左平移π6个单位长度,再把横坐标缩短为原来的12(纵坐标不变)B. 向左平移π3个单位长度,再把横坐标缩短为原来的12(纵坐标不变)C. 横坐标缩短为原来的12(纵坐标不变),再向左平移π6个单位长度D. 横坐标缩短为原来的12(纵坐标不变),再向左平移π3个单位长度10.几名大学生创业,经过调研,他们选择了一种技术产品,生产此产品获得的月利润p(x)(单位:万元)与每月投入的研发经费x(单位:万元)有关:当每月投入的研发经费不高于16万元时,p(x)=−15x2+6x−20,研发利润率y=p(x)x×100%.他们现在已投入研发经费9万元,则下列判断正确的是()A. 投入9万元研发经费可以获得最大利润率B. 要再投入6万元研发经费才能获得最大利润C. 要想获得最大利润率,还需要再投入研发经费1万元D. 要想获得最大利润,还需要再投入研发经费1万元11.某地出租车日间段(5:00~23:00)收费标准如表:千米数收费标准0~3km10元3~10km2元/km(超过3km部分),不足1km按1km计算10km以上3元/km(超过10km部分),不足1km按1km计算若某人在日间段乘坐出租车出行,乘车行驶路程为6.8km,则他应付的出租车费是.12.砖雕是我国古建筑雕刻中很重要的一种艺术形式,传统砖雕精致细腻、气韵生动、极富书卷气.如图是一扇环形砖雕,可视为扇形OCD截去同心扇形OAB所得部分.已知OA=0.5m,AD=0.9m,∠AOB=100°,则该扇环形砖雕的面积为______ m2.13.若tan(π4−α)=13,则tan(π4−2α)=______ .14.已知当x∈[−1,3]时,不等式(m−|x−n|)sin(2x−π6)≥0恒成立,则n−m的值为______ .15.已知sin(π2−α)=√1010,α∈(0,π2).(1)求tanα;(2)求sinα+cos(π+α)sinα+cos(−α).16.已知定义在R上的函数f(x)=e2x+3e x+me x为偶函数.(1)求m的值;(2)设g(x)=3f(x)−3e x,试判断函数g(x)的单调性,并用定义证明.17.已知函数f(x)=sin2x+√3sinxcosx.(1)求函数f(x)的单调递增区间;]时,f(x)>m恒成立,求实数m的取值范围.(2)当x∈[0,5π1218.已知函数f(x)=x2−ax−a−1,a∈R.(1)若关于x的不等式f(x)≤0的解集为[−1,2],求a的值;(2)解关于x的不等式f(x)≤0.19.噪声是指发声体做无规则振动时发出的声音.声音由物体的振动产生,以波的形式在一定的介质(如固体、液体、气体)中进行传播.噪声不但会对听力造成损伤,也对人们的生活工作有所干扰,还能诱发多种致癌致命的疾病.科学家经过大量的分析发现:声音强度D(分贝)与声音能量I(W/cm2)之间存在函数关系.经测定,数据如表:为了描述声音强度D(分贝)与声音能量I(W/cm2)之间的函数关系,现有以下两种模型供选择:D=KI+B,D=KI+B,D=MlgI+N.(1)选出你认为符合实际的函数模型,简单叙述理由,并写出相应的解析式;(2)对于人的耳朵,(40,60]分贝的声音比较适宜室内谈话,(60,70]分贝的声音比较适宜室外谈话.试问声音能量在什么范围时适合人与人交流谈话?20. 已知函数f(x)=Acos(ω1x +φ)(A >0,ω1>0,−π2<φ<π2),g(x)=Asin(ω2x +π6)(ω2>0),且函数f(x)的图象如图所示,则( )A. A =2,ω1=1,φ=−π3 B. 若ω2=ω1,则f(x)=g(x)C. 已知ω2=2,若g(x −a)为偶函数,则a =−π6+kπ(k ∈Z) D. 若g(x)在(π2,π)上单调递减,则ω2的取值范围为[23,43]21. 函数f(x)={x +1,x ≤0log 2x,x >0,函数g(x)=−f 2(x)+2f(x)−m ,则函数g(x)的零点个数可能为( )A. 0B. 1C. 2D. 322. 已知f(x)=(log 2x)2−2alog 28x +3,g(x)=log 3(x 2+2x +6).(1)求f(x)在[12,2]上的最大值(用含a 的式子表示);(2)任意的x 1∈[12,2],存在x 2∈[0,1],使得f(x 1)<g(x 2),求a 的取值范围.答案和解析1.【答案】A【解析】解:若x∈N,则x∈Q成立,反之若x∈Q,则x∈N不一定成立,比如x=−3,即p是q的充分不必要条件,故选:A.根据充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合N与Q的关系,以及充分条件和必要条件的定义是解决本题的关键,是基础题.2.【答案】B【解析】解:∵角α的顶点与原点O重合,始边与x轴的非负半轴重合,终边经过点P(513,1213),显然,|OP|=1,则sinα=1213,故选:B.由题意利用任意角的三角函数的定义,求得结果.本题主要考查任意角的三角函数的定义,属于基础题.3.【答案】A【解析】解:∵函数y=log3x的反函数为y=f(x),∴f(x)=3x,∴f(2)=32=9,故选:A.由已知中函数y=f(x)的反函数为y=log3x,根据同底的指数函数和对数函数互为反函数,我们可以求出函数y=f(x)的解析式,将2代入即可得到答案.本题考查反函数,考查学生的计算能力,比较基础.4.【答案】A【解析】解:根据表中的数据可得,f(1.5)=−0.0945,f(1.5625)=0.0088,故函数f(x)的零点在区间(1.5,1.5625)之间,只有1.55符合要求.故选:A.利用表格中的数据,在结合零点的存在性定理进行分析求解即可.本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题.5.【答案】B【解析】解:由于传感器显示的电压按正弦规律变化,可知电压相邻的最大值与最小值相差半个周期,=(0.3−0.1)=0.4s.设风力发电的风叶转一圈的时间为T,可得T2故选:B.由题意利用正弦函数的周期性即可求解.本题主要考查了正弦函数的性质,属于基础题.6.【答案】C【解析】解:∵0<a=0.53<0.50=1,b=log0.64<log0.61=0,c=log0.60.3>log0.60.6=1,∴c>a>b.故选:C.利用指数函数、对数函数的单调性直接求解.本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.7.【答案】D【解析】解:f(−x)=ln|−x|sin(−x)=−ln|x|⋅sinx=−f(x),则函数为奇函数,排除AC,当0<x<1时,f(x)<0,排除B,故选:D.判断函数的奇偶性和对称性,判断当0<x<1时,函数值的符号,利用排除法进行判断即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和对称性的性质,结合排除法是解决本题的关键,是基础题.8.【答案】C【解析】解:由题意可知,在距离地面超过9m的高度,游客可以观看到游乐场全景,所以令50sin(π15t−π2)+65>90,则sin(π15t−π2)>12,所以π6+2kπ<π15t−π2<5π6+2kπ,k∈Z,解得10+30k<t<20+30k,k∈Z,因为0≤t≤24,所以10<t<20,则t的取值范围是(10,20).故选:C.根据题意可得50sin(π15t−π2)+65>90,求解三角函数不等式结合t的范围,即可得到答案.本题考查了三角函数模型在实际生活中的应用,涉及了三角不等式的求解,解题的关键是正确理解题意,属于基础题.9.【答案】BC【解析】解:将函数y=sinx图象上的所有点向左平移π3个单位长度,可得y=sin(x+π3)图象;再把横坐标缩短为原来的12(纵坐标不变),可得函数y=sin(2x+π3)的图象.或者横坐标缩短为原来的12(纵坐标不变),可得y=sin2x的图象,再向左平移π6个单位长度,可得函数y=sin(2x+π3)的图象.故选:BC.由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.10.【答案】BC【解析】解:因为产品的月利润为P(x)=−15 x2+6x−20=−15(x−15)2+125,(0≤x≤16),则当x=15时,月利润有最大值为125万元,即在已经投入9万元时需再投入6万元,才能使月利润最大,故B正确,D错误,而利润率y=p(x)x =−15x2+6x−20x=−(15x+20x)+6,因为0<15x≤165,20x≥54>0,所以15x+20x≥2√15x⋅20x=4,即y=−(15x+20x)+6≤−4+6=2,当且仅当15x=20x,即x=10万元时,利润率有最大值为2,即在已经投入9万元时再投入1万元,才能使利润率最大,故A错误,C正确,故选:BC.利用二次函数的性质分析出月利润取得最大值的条件,即可判断选项B,D是否正确,再求出利润率的关系式,利用基本不等式求出取得最大值的条件,即可判断选项A,C 是否正确.本题考查了根据实际问题建立函数模型的问题,涉及到基本不等式的应用以及二次函数的性质,考查了学生的运算能力,属于中档题.11.【答案】18元【解析】【分析】本题考查了分段函数的实际应用问题,属于基础题.根据题意,分别求出不足3km的车费和超过3km的车费,求解计算即可.【解答】解:因为乘车行驶路程为6.8km,所以3<6.8<10,故前3km的收费是10元,又超出3km的部分,不足1km按1km计算,则有4km,故应付的出租车费是10+4×2=18元.故答案为:18元.12.【答案】19π40【解析】解:环形面积=S扇形COD −S扇形AOB=100π×(0.5+0.9)2360−100π×0.52360=19π40,故答案为:19π40.根据扇形的面积公式计算即可.本题考查了扇形的面积公式,熟记扇形的面积公式是解题的关键.13.【答案】−17【解析】解:由tan(π4−α)=13,得1−tanα1+tanα=13,得3−3tanα=1+tanα,得tanα=12,则tan2α=2tanα1−tan2α=2×121−14=134=43,则tan(π4−2α)=1−tan2α1+tan2α=1−431+43=3−43+4=−17,故答案为:−17.先求出tanα的值,利用三角函数的倍角公式以及两角和差的正切公式进行计算即可.本题主要考查三角函数值的计算,利用两角和差的正切公式以及倍角公式是解决本题的关键,是基础题.14.【答案】π12【解析】解:设f(x)=m−|x−n|),g(x)=sin(2x−π6),由sin(2x−π6)≥0得2kπ≤2x−π6≤2kπ+π,k∈Z,得kπ+π12≤x≤kπ+7π 12,k∈Z,当−1≤x ≤3时,∴当k =0时,π12≤x ≤7π 12.由sin(2x −π6)<0得2kπ−π<2x −π6<2kπ,k ∈Z ,得kπ−5π12<x <kπ−π12,k ∈Z , 当−1≤x ≤3时,∴−1<x <π12或7π 12<x <3, 即要使f(x)g(x)≥0恒成立,等价为当π12≤x ≤7π 12时,f(x)≥0恒成立,当−1<x <π12或7π 12<x <3时,f(x)≤0恒成立即可. 即π12,7π 12是f(x)=0的两个根, 即{m =|π12−n|m =|7π12−n|, |π12−n|=|7π 12−n|,得π12−n =7π 12−n 或π12−n =−(7π 12−n),得n 无解或n =π3,此时m =π4, 则n −m =π3−π4=π12, 故答案为:π12.设f(x)=m −|x −n|),g(x)=sin(2x −π6),根据同号关系求出f(x)与g(x)同号时对应的取值条件即可.本题主要考查不等式恒成立问题,根据条件利用换元法转化为f(x)与g(x)同号时满足的条件,结合绝对值函数的性质是解决本题的关键.综合性较强,有一定的难度.15.【答案】解:(1)由题sin(π2−α)=√1010,即cosα=√1010, ∴sin 2α=1−cos 2α=910.∵α∈(0,π2),∴sinα>0,∴sinα=3√1010,∴tanα=sinαcosα=3. (2)sinα+cos(π+α)sinα+cos(−α)=sinα−cosαsinα+cosα=tanα−1tanα+1=12.【解析】本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题. (1)由题意利用诱导公式、同角三角函数的基本关系,求得tanα的值. (2)由题意利用诱导公式、同角三角函数的基本关系,求得要求式子的值.16.【答案】解:(1)变形可得:f(x)=e x+me−x+3.∵函数f(x)为偶函数,∴f(−x)=f(x),即e−x+me x+3=e x+me−x+3,即(1−m)e x=(1−m)e−x,所以1−m=0,即m=1.(2)由(1)可得f(x)=e x+e−x+3,∴g(x)=3f(x)−3e x=3e−x+9.可知g(x)为减函数,证明如下:∀x1,x2∈R,且x1<x2,则g(x1)−g(x2)=3e−x1−3e−x2=3(e−x1−e−x2)=3(e x2−e x1)e x1e x2=3(e x2−e x1)e x1+x2,∵x1<x2,∴e x1<e x2,即e x2−e x1>0.∴g(x1)−g(x2)>0,∴g(x1)>g(x2),所以g(x)为减函数.【解析】(1)由f(−x)=f(x),即可求得m的值;(2)求出g(x),判断g(x)为减函数,利用定义即可证明其单调性.本题主要考查函数奇偶性与单调性的综合,考查利用定义法证明单调性,属于中档题.17.【答案】解:(1)f(x)=sin2x+√3sinxcosx=1−cos2x2+√32sin2x=√32sin2x−1 2cos2x+12=sin(2x−π6)+12,令−π2+2kπ≤2x−π6≤π2+2kπ,k∈Z,得−π6+kπ≤x≤π3+kπ,k∈Z,故函数f(x)的单调递增区间为[−π6+kπ,π3+kπ],k∈Z,(2)x∈[0,5π12]时,2x−π6∈[−π6,2π3],∴sin(2x−π6)∈[−12,1],f(x)∈[0,32],又∵当x∈[0,5π12]时,f(x)>m恒成立,故m<f(x)min,所以实数m的取值范围为{m|m<0}.【解析】(1)利用辅助角公式进行化简,然后结合单调性进行求解即可.(2)求出角的范围,结合三角函数的最值性质求出最小值即可.本题主要考查三角函数的图象和性质,利用辅助角公式进行化简,结合函数的单调性和最值性是解决本题的关键,是基础题.18.【答案】解:(1)函数f(x)=x 2−ax −a −1,不等式f(x)≤0化为x 2−ax −a −1≤0, 因为不等式f(x)≤0的解集为[−1,2],所以方程x 2−ax −a −1=0的根为−1和2, 所以{−1+2=a−1×2=−a −1,解得a =1.(2)由x 2−ax −a −1=0,得(x −a −1)(x +1)=0, 所以方程的两根为x =a +1或x =−1.当a +1>−1时,即a >−2时,不等式f(x)≤0的解集为[−1,a +1]; 当a +1=−1时,即a =−2时,不等式f(x)≤0的解集为{−1}; 当a +1<−1时,即a <−2时,不等式f(x)≤0的解集为[a +1,−1]. 综上所述:当a >−2时,不等式的解集为[−1,a +1]; 当a =−2时,不等式的解集为{−1}; 当a <−2时,不等式的解集为[a +1,−1].【解析】(1)根据不等式f(x)≤0的解集得出对应方程的实数根,由根与系数的关系求出a 的值.(2)求出对应方程f(x)=0的根,再讨论两根的大小,从而写出不等式f(x)≤0的解集. 本题考查了一元二次不等式的解法与应用问题,也考查了运算求解能力,是中档题.19.【答案】解:(1)选择D =MlgI +N .原因:10−13,10−12,1910×10−12,2810×10−12,3710×10−12,……, 当自变量增加量为常数910×10−12时,函数增加量不是常数, 所以不选择一次函数,而选择D =MlgI +N . 由已知可得:{Mlg10−13+N =30Mlg10−12+N =40,即{−13M +N =30−12M +N =40,解得M =10,N =160, 所以函数的解析式为:D =10lgI +1,(2)由已知可得:当40<D ≤70时,适合人与人交流谈话, 所以40<10lgI +160≤70, 即:−120<10lgI ≤−90,即:−12<lgI ≤−9,所以10−12<I ≤10−9.所以当声音能量I∈(10−12,10−9]时,适合人与人交流谈话.【解析】(1)根据声音强度随着声音能量的变化以及函数的性质即可做出判断;(2)由(1)选择的函数模型建立不等式关系,即可求解.本题考查了根据实际问题建立函数模型的问题,考查了学生的运算转化能力,属于中档题.20.【答案】ABD【解析】解:对于选项A,由函数f(x)的图象可得其周期T=2(4π3−π3)=2π=2πω1,解得ω1=1,由于点(π3,A)在f(x)上,可得f(π3)=Acos(π3+φ)=A,可得π3+φ=2kπ,k∈Z,解得φ=2kπ−π3,k∈Z,由于−π2<φ<π2,可得φ=−π3,又由于点(0,1)在f(x)上,可得f(0)=Acos(−π3)=12A=1,解得A=2,故A正确;对于选项B,由于f(x)=2cos(x−π3),g(x)=2sin(x+π6),可知f(x)=2sin[π2−(x−π3)]=2sin(x+π6)=g(x),故B正确;对于选项C,g(x)=2sin(2x+π6),可得g(x−a)=2sin(2x−2a+π6)=±2cos2x,所以a=−π6+12kπ,k∈Z,故C错误;对于选项D,g(x)=2sin(ω2x+π6),所以π2ω2+π6≥π2,πω2+π6≤3π2,可得23≤ω2≤43,故D正确;故选:ABD.对于选项A,根据图象求出A,ω1和φ,即可判断;对于选项B,由题意利用诱导公式即可求解;对于选项C,由题意利用余弦函数的奇偶性可得g(x−a)=2sin(2x−2a+π6)=±2cos2x ,可得a =−π6+12kπ,k ∈Z ,即可判断C ; 对于选项D ,利用正弦函数的单调性即可求解.本题考查三角函数的解析式的求法和图象变换,考查了三角函数的图象和性质,考查数形结合思想和函数思想,属于中档题.21.【答案】ACD【解析】 【分析】根据题意,作出函数f(x)的大致图象,函数g(x)=−f 2(x)+2f(x)−m 的零点,即方程−f 2(x)+2f(x)−m =0,即m =−f 2(x)+2f(x)=−[f(x)−1]2+1的根,结合二次函数的性质分3种情况讨论,分析g(x)的零点情况,综合即可得答案. 本题考查函数与方程的应用,涉及分段函数的性质,属于较难题. 【解答】解:根据题意,f(x)={x +1,x ≤0log 2x,x >0,其大致图象如图:函数g(x)=−f 2(x)+2f(x)−m 的零点,即方程−f 2(x)+2f(x)−m =0即m =−f 2(x)+2f(x)=−[f(x)−1]2+1的根, 对于m =−f 2(x)+2f(x)=−[f(x)−1]2+1, 当m >1时,方程无解,则函数g(x)的零点个数为0, 当m =1时,m =−f 2(x)+2f(x)=−[f(x)−1]2+1有1解,即f(x)=1,此时有x =0和x =2符合题意,函数g(x)的零点个数为2, 当m <1时,m =−f 2(x)+2f(x)=−[f(x)−1]2+1有2解, 即f(x)=1+√1−m 和f(x)=1−√1−m , 若f(x)=1+√1−m ,有1个x 符合题意,若f(x)=1−√1−m ,有2个x 符合题意,则此时函数g(x)的零点个数为3, 综合可得:函数g(x)的零点个数可能为0、2、3; 故选:ACD .22.【答案】解:(1)因为(log 2x)2−2alog 28x +3=(log 2x)2−2a(log 2x +3)+3=(log 2x)2−2alog 2x −6a +3,所以f(x)=(log 2x)2−2alog 2x −6a +3. 令t =log 2x , ∵x ∈[12,2],∴t ∈[−1,1],则y =ℎ(t)=t 2−2at −6a +3,t ∈[−1,1]. 二次函数ℎ(t)开口向上,对称轴为t =a , 当a ≤0时,f(x)max =ℎ(1)=4−8a ; 当a >0时,f(x)max =ℎ(−1)=4−4a . 综上,f(x)max ={4−8a,a ≤04−4a,a >0.(2)令u =x 2+2x +6,x ∈[0,1],则u ∈[6,9]. 则y =log 3u ,u ∈[6,9],根据函数的单调性,可得g(x)max =log 39=2.由任意的x 1∈[12,2],存在x 2∈[0,1],使得f(x 1)<g(x 2), 等价于f(x)max <g(x)max , 所以{a ≤04−8a <2或{a >04−4a <2,解得a >12,故所求a 的取值范围是{a|a >12}.【解析】(1)利用对数的运算性质先化简f(x)的解析式,然后利用换元法令t =log 2x ,将问题转化为二次函数求最值,按照对称轴与区间的位置关系进行讨论,分别求解最值即可;(2)将任意的x 1∈[12,2],存在x 2∈[0,1],使得f(x 1)<g(x 2),转化为f(x)max <g(x)max ,利用换元法研究函数g(x)的最值,再结合(1)中的结论,得到f(x)的最值,列出不等式,求解即可得到答案.本题考查了函数最值的求解,涉及了二次函数最值的求解、二次函数性质的应用、复合函数最值的求解,解题的关键是熟练掌握求解最值的方法,属于中档题.。
家家乞巧望秋月______ 报得三春晖谁言寸草心______ 亲口尝梨知酸甜亲身下河知深浅______ 礼轻情意千里送鹅______ 千山响杜鹃②听到消息后,居民们纷纷走出家门,______严寒,______漫天飞舞的大雪,______冻得坚硬的山路,______寻找冻僵的燕子。
③太阳有______、______和______三大特点。
“太阳会发光,会发热,是个大火球”。
这是______句。
它把______比作______。
④“等闲识得东风面,______。
”是宋代诗人朱熹《______》中的诗句。
9. 如果你的同学学习不认真,总想着玩乐,你会真诚地劝诫(jiè)他:“_____________________”。
()A .长江后浪推前浪,世上今人胜古人B .若使年华虚多过,到老空留后悔心C .三百六十行,行行出状元D .冰生于水而寒于水,青出于蓝而胜于蓝10. 课文内容我熟悉。
(根据课文内容填空)①______,万条垂下绿丝绦。
②______,牵牛织女渡河桥。
③下过几阵______。
微风______的柳丝。
______,______,______都像______,形成了______。
燕子似______,为______。
④《______》这首儿童诗的寓意书籍“世界是大家的”,全世界的孩子共在一片蓝天下,分享太阳的温暖、世界的和平和社会的安宁。
请默写你最喜欢的一句话:______。
11. 从《翠鸟》这一课中,我们学到了不少写作方法,请模仿翠鸟的外形描写,写一写自己熟悉的小动物,注意只写外形就可以哦!二、阅读理解(30分)12. 请你仔细阅读文章,回答后面的问题。
春天到了,大地复苏,花儿开放,整个大自然充满了生机,我十分喜爱这生机勃勃的春天,尤其爱春天里那绿油油的小草。
我家门前有一片空地,上面种着小草,它们是那样富有[生机、生命],春天一到,一下子就铺开了一片绿色的天地。
细看,它们是嫩绿色的,水灵灵的,多么喜人!一阵风吹过,小草跳起了欢乐的舞蹈,时而舒展双臂,时而左右摇摆。
2020-2021学年黑龙江省大庆实验中学高一上学期期末考试数学试题一、单选题1.由实数2,,|,x x x -所组成的集合,最多可含有( )个元素A .2B .3C .4D .5【答案】B【分析】把2,,|,x x x -分别可化为x ,x -,2x ,x ,2x ,,根据集合中元素的互异性,即可得到答案. 【详解】由题意,当0x ≠时所含元素最多,此时2,,|,x x x -分别可化为x ,x -,2x ,所以由实数2,,|,x x x -所组成的集合,最多可含有3个元素.故选:B2.“||||||x y x y +=+”是“0xy >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .不充分不必要条件【答案】B【分析】根据充分条件,必要条件及绝对值的定义即可求解.【详解】由绝对值的定义知,||||||,x y x y x y +=+⇒同号或至少有一个为0, 所以||||||x y x y +=+成立推不出0xy >,0xy >⇒||||||x y x y +=+,所以“||||||x y x y +=+”是“0xy >”的必要不充分条件, 故选:B3.sin2cos3tan4的值( ) A .等于0 B .大于0 C .小于0 D .不存在【答案】C【解析】试题分析:∵1弧度大约等于57度,2弧度等于114度,∴20sin >,∵3弧度小于π弧度,在第二象限,∴30cos <,∵4弧度小于32π弧度,大于π弧度,在第三象限,∴40tan >,∴2340sin cos tan <,故选C. 【解析】三角函数值的符号.4.下图是函数()||2y sin x πωϕϕ⎛⎫=+<⎪⎝⎭的图象,那么( )A .2,6πωϕ==-B .2,3πωϕ==C .3=2,πωϕ=-D .=2,6πωϕ=【答案】B 【分析】根据2362T πππ⎛⎫=--= ⎪⎝⎭求出T 的值即可求ω,令()226k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭结合||2ϕπ<即可求ϕ得值,进而可得正确选项.【详解】由图知:2362T πππ⎛⎫=--= ⎪⎝⎭,解得:T π=, 所以222T ππωπ===,()2y sin x ϕ=+ 令()226k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 所以()23k k Z πϕπ=+∈, 因为||2ϕπ<,所以0,3k πϕ==,所以2,3πωϕ==,故选:B5.如图所示,面积为8的平行四边形OABC 的对角线AC ⊥CO ,AC 与BO 交于点E .若指数函数(0x y a a =>且1)a ≠的图象经过点E ,B ,则a 等于( )A .B .C .2D .3【答案】A【分析】由已知可得848(,),(,),(,2)A m E m B m m m m,根据点E ,B 在指数函数的图象上,列出方程组,即可求解.【详解】设点(0,)(0)C m m >,则由已知可得848(,),(,),(,2)A m E m B m m m m, 又因为点E ,B 在指数函数的图象上,所以48(1)2(2)mm m am a ⎧=⎪⎨⎪=⎩, (1)式两边平方得82mm a =,(3)(2)(3)联立,得220m m -=,所以0m =(舍去)或2m =,所以2a =故选:A.【点睛】本题主要考查了指数函数的图象与性质及其应用,其中解答中根据指数函数的解析式列出方程组是解答的关键,着重考查推理与运算能力. 6.函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,那么( ) A .可能不存在单调区间 B .()f x 是R 上的增函数 C .不可能有单调区间 D .一定有单调区间【答案】A【分析】根据题意,举出两个满足()12f x f x ⎛⎫<+⎪⎝⎭的例子,据此分析选项可得答案.【详解】根据题意,函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,则()f x 的解析式可以为:()2,1 1.51,0.510,00.5x f x x x ⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩,满足()12f x f x ⎛⎫<+ ⎪⎝⎭,不是增函数,没有单调区间,也可以为()f x x =,满足()12f x f x ⎛⎫<+ ⎪⎝⎭, 是增函数,其递增区间为R ,则()f x 可能存在单调区间,也可能不存在单调区间, 则A 正确;BCD 错误; 故选:A.【点睛】关键点睛:本题考查函数单调性的定义,构造反例是解决本题的关键. 7.对任意实数x ,不等式2(2)2(2)40a x a x -+--<恒成立,则a 的取值范围是( ). A .22a -<≤B .22a -≤≤C .2a <-或2a ≥D .2a ≤-或2a ≥【答案】A【分析】20a -≠时,利用二次函数的性质可求解,20a -=时直接验证即得.【详解】由已知得220[2(2)]4(2)(4)0a a a -<⎧⎨∆=---⨯-<⎩,即222a a <⎧⎨-<<⎩,解得22a -<<.又当2a =时,原不等式可化为40-<,显然恒成立. 故a 的取值范围是22a -<. 故选:A .【点睛】本题考查一元二次不等式恒成立问题,解题时要注意对最高次项系数分类讨论, 8.若定义在R 上的函数()f x 满足:对任意1,x 2x R ∈有1212()()()1f x x f x f x +=++则下列说法一定正确的是A .()f x 为奇函数B .()f x 为偶函数C .()1f x +为奇函数D .()1f x +为偶函数 【答案】C【详解】x 1=x 2=0,则()()()0001f f f =++,()01f ∴=-, 令x 1=x ,x 2=-x ,则()()()01f f x f x =+-+, 所以()()110f x f x ++-+=,即()()11f x f x ⎡⎤+=--+⎣⎦,()1f x +为奇函数,故选C. 9.函数y =的值域是( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[]0,1C .10,2⎡⎤⎢⎥⎣⎦D .[)0,+∞【答案】C 【分析】令t =,转化为21ty t =+,0t ≥,根据均值不等式求解即可. 【详解】令t =,则0t ≥,当0t =时,0y =,当0t ≠时,2110112t y t t t <==≤=++,当且仅当1t =时,即2x =时等号成立, 综上102y ≤≤, 故选:C【点睛】关键点点睛:注意含根号式子中,经常使用换元法,利用换元法可简化运算,本题注意均值不等式的使用,属于中档题.10.若函数()()2log 3a f x x ax =-+在区间,2a ⎛⎤-∞ ⎥⎝⎦上是减函数,则a 的取值范围是( ) A .()0,1 B.(C.(D .()(0,1⋃【答案】C【分析】函数()()2log 3a f x x ax =-+是由log a y t =和23t x ax =-+复合而成,23t x ax =-+在,2a ⎛⎤-∞ ⎥⎝⎦单调递减,所以log a y t =为增函数,可得1a >,且min 02a t t ⎛⎫=> ⎪⎝⎭,即可求得a 的范围.【详解】函数()()2log 3a f x x ax =-+是由log a y t =和23t x ax =-+复合而成,因为23t x ax =-+为开口向上的抛物线,对称轴为2a x =, 所以23t x ax =-+在,2a ⎛⎤-∞ ⎥⎝⎦单调递减,且2min 30222a a a t t a ⎛⎫⎛⎫==-⨯+> ⎪ ⎪⎝⎭⎝⎭,即234a <,解得:a -<<又因为函数()()2log 3a f x x ax =-+在区间,2a ⎛⎤-∞ ⎥⎝⎦上是减函数,所以log a y t =为增函数,所以1a >,所以1a << 故选:C【点睛】关键点点睛:本题解题的关键是根据内层函数23t x ax =-+在,2a ⎛⎤-∞ ⎥⎝⎦单调递减,以及函数()()2log 3a f x x ax =-+在区间,2a ⎛⎤-∞ ⎥⎝⎦上是减函数,可得log a y t=为增函数,还必须使23t x ax =-+最小值大于0,两个条件可破解此问题. 11.为使函数()cos 02y x πωω⎛⎫=->⎪⎝⎭在区间[]0,1上至少出现100次最大值,则ω的最小整数值是( ) A .616 B .624C .627D .629【答案】B【分析】根据诱导公式化简函数解析式,利用一个周期内只有一个最大值,即可求解. 【详解】由()cos sin 02y x x πωωω⎛⎫=-=>⎪⎝⎭知, 在区间[]0,1上至少出现100次最大值,需要最少有99+4TT 个周期,所以21299+14ππωω⨯⨯≤, 解得623.29ω≥, 故ω的最小整数值是624. 故选:B12.已知函数()(2f x m x =+,()22xg x lnx+=-,[]10,1x ∃∈,对于[]20,4x ∀∈都有()()12g x f x <,则实数m 的取值范围是( )A .1,12⎡⎤-⎢⎥⎣⎦B .1113,13422ln ln ⎛⎫--⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .1113,13422ln ln ⎡⎤--⎢⎥⎣⎦ 【答案】C【分析】由题意可得()()min min g x f x <,判断g (x )在[0,1]递增,可得其最小值;再讨论m =0,m <0,m >0,结合函数y =x 和y =f (x )的单调性,可得其最小值,解不等式可得m 的取值范围.【详解】由∃x 1∈[0,1],对于∀x 2∈[0,4]都有g (x 1)<f (x 2),可得()()min min g x f x <, 由2()ln()2x g x x +=-,得4()ln(1)2g x x =---在[0,1]递增, ∴g (x )min =g (0)=0,∵()(2f x m x =-+, ∴当m =0,f (x )=2>0恒成立;当m >0时,f (x )在[0,4]递增,可得f (x )min =f (0)=﹣2m +2, 由﹣2m +2>0,解得m <1,即0<m <1成立;当m <0时,f (x )在[0,4]递减,可得f (x )min =f (4)=4m +2, 由4m +2>0,解得12m >-,即102m -<<.综上,m 的范围是1,12⎛⎫- ⎪⎝⎭. 故选:C【点睛】关键点点睛:本题关键点在于对[]10,1x ∃∈,对于[]20,4x ∀∈都有()()12g x f x <的理解,理解为()()min min g x f x <是解题的关键所在,属中档题.二、填空题 13.()tan 225︒-=_____.【答案】1-【分析】利用诱导公式及特殊角的三角函数值进行求值. 【详解】由()()tan 225tan 18045tan 451︒-=-︒-︒=-︒=-,故答案为:1-14.已知函数2log my x =,当01x <<时图象在直线y x =上方,则m 的取值范围是____.【答案】(0,2) 【分析】根据函数2log my x=,当01x <<时图象在直线y x =上方,可得2log m x x >,再求出m 的取值范围即可. 【详解】函数2log my x=,当01x <<时图象在直线y x =上方,当01x <<时,2log m x x >,2log 1m ∴<, 02m ∴<<,∴m 的取值范围是(0,2)故答案为:(0,2)15.已知实数x 满足316281536x x x ⨯+⨯=⨯,则x 的值为____. 【答案】0或12【分析】根据指数幂的运算将式子因式分解,再分别解方程即可;【详解】解:因为316281536x x x ⨯+⨯=⨯,所以()2443223523xx x ⨯+⨯=⨯⨯,42243223523x x x x ⨯+⨯=⨯⨯,所以422432235230x x x x ⨯+⨯-⨯⨯=,即()()22223223230xxxx --⨯⨯=,所以2232230x x -⨯⨯=,或22230x x -=解得12x =或0x = 故答案为:0或1216.给出下列4个命题:①若函数()f x 在(2021,2023)上有零点,则一定有()()202120230f f ⋅<; ②函数y =既不是奇函数又不是偶函数;③若函数()f x 满足条件()()14,0f x f x x R x x ⎛⎫-=∈≠⎪⎝⎭,则()||f x 的最小值为415. ④若函数()()254f lg ax x x =++的值域为R .则实数a 的取值范围是250,16⎛⎤⎥⎝⎦. 其中正确命题的序号是____.(写出所有正确命题的序号) 【答案】③【分析】对于①:直接利用函数的零点的概念判断选项;对于②:函数的定义域和函数的奇偶性判断选项;对于③:赋值法求函数的解析式判断选项;对于④:特殊值代入法判断选项即可;【详解】对于①:若函数()f x 在(2021,2023)上有零点, 且函数()f x 在(2021,2023)上严格单调, 则一定有()()202120230f f ⋅<, 当函数()f x 在(2021,2023)上有零点, 但函数()f x 在(2021,2023)上不单调时, 不一定得到()()202120230f f ⋅<;例如:如果函数()f x 在(2021,2022)上单调递减, 在(2022,2023)上单调递增,且()20220f =, 满足函数()f x 在(2021,2023)上有零点, 但是不能得到()()202120230f f ⋅<; 故①错;对于②:由函数y =,得函数的定义域:()-4,4,所以函数y =令()f x则()()-f x f x ,则函数y =为偶函数,故②错误;对于③:函数()f x 满足条件()()14,0f x f x x R x x ⎛⎫-=∈≠ ⎪⎝⎭(1), 用1x替换x , 则得()114f f x x x ⎛⎫-=⎪⎝⎭(2), 由(1)(2)得:()41515xf x x =--, ()4415151515x x f x x x =--=+, 因为415x 与15x同号,所以()4441515151515x x f x x x =+=+≥=, 当且仅当421515x x x =⇒=±时取等号; 故③正确;对于④:若函数()()254f lg ax x x =++的值域为R ,当0a =时,()()54f lg x x =+,值域为R , 故④不正确; 故答案为:③.【点睛】关键点睛:本题考查了函数的综合问题;熟练的掌握函数的零点概念,函数的定义域以及函数的奇偶性的定义,赋值法求函数的解析式,以及对数的性质是解决本题的关键.三、解答题17.已知关于x 的函数()22sin cos 2y a x x a b =-++的定义域是0,2π⎡⎤⎢⎥⎣⎦,值域为[]4,1-,求实数a ,b 的值.【答案】52a =-,72b =或52a =,132b =-.【分析】由已知利用同角三角函数基本关系式化简可得函数解析式为22sin y a x a b =++,结合范围x ∈0,2π⎡⎤⎢⎥⎣⎦,可求2sin [0,1]x ∈,利用正弦函数的性质分类讨论即可求解.【详解】()222sin cos 22sin y a x x a b a x a b =-++=++, ∵0,2x π⎡⎤∈⎢⎥⎣⎦∴2sin [0,1]x ∈. 当0a >时,有31,4,a b a b +=⎧⎨+=-⎩得52a =,132b =-;当0a <时,有34,1,a b a b +=-⎧⎨+=⎩得52a =-,72b =.18.已知函数()326f x sin x π⎛⎫=+ ⎪⎝⎭.(1)求函数()f x 在[]0,π上的单调增区间; (2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数值的取值范围; (3)若将此图象向右平移()0θθ>个单位后图象关于y 轴对称,求θ的最小值. 【答案】(1)06,π⎡⎤⎢⎥⎣⎦和2π,π3;(2)3,32⎡⎤-⎢⎥⎣⎦;(3)3π. 【分析】(1)令()222262k x k k Z πππππ-+≤+≤+∈,求得x 的范围再与[]0,π求交集即可; (2)先由,63x ππ⎡⎤∈-⎢⎥⎣⎦求出26x π+的范围,再结合正弦函数的性质求出sin 26x 的范围即可求解;(3)先求出()f x 图象向右平移()0θθ>个单位后的解析式为()3sin 226f x x πθ⎛⎫=+- ⎪⎝⎭,再利用其为偶函数即可求解.【详解】(1)令()222262k x k k Z πππππ-+≤+≤+∈,解得:()36k x k k Z ππππ-+≤≤+∈,令0k =可得36x ππ-≤≤,令1k =可得2736x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或2ππ3x,所以函数()f x 在[]0,π上的单调增区间为06,π⎡⎤⎢⎥⎣⎦和2π,π3; (2)因为,63x ππ⎡⎤∈-⎢⎥⎣⎦,所以52666x πππ-≤+≤, 所以1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭,33sin 2326x π⎛⎫-≤+≤ ⎪⎝⎭,所以当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数值的取值范围为3,32⎡⎤-⎢⎥⎣⎦; (3)将()326f x sin x π⎛⎫=+ ⎪⎝⎭图象向右平移()0θθ>个单位后可得()()323sin 2266f x sin x x ππθθ⎡⎤⎛⎫=-+=+- ⎪⎢⎥⎣⎦⎝⎭,因为其图象关于y 轴对称, 所以()262k k Z ππθπ-=+∈,解得()62k k Z ππθ=--∈, 所以1k =-时,θ最小为623πππ-+=,【点睛】结论点睛:三角函数的奇偶性 ①对于()y Asin x ωϕ=+,若为奇函数,则()k k Z ϕπ=∈,若为偶函数,则()2k k Z πϕπ=+∈;②对于函数()cos y A x ωϕ=+ 若为奇函数,则()2k k Z πϕπ=+∈,若为偶函数,则()k k Z ϕπ=∈;③对于函数()tan y A x ωϕ=+, 若为奇函数,则()2k k Z πϕ=∈. 19.已知二次函数264y ax x a =+-的图像开口向上,且与x 轴由左到右分别交于A ,B 两点,且||42AB =. (1)求这条抛物线的解析式;(2)设抛物线的顶点为C ,与y 轴的交点为D ,求A ,B ,C ,D 四点围成的四边形的面积.【答案】(1)23662y x x =+-;(2)12182+. 【分析】(1)利用已知条件得到264(4)a a AB a--=求解即可;(2)由题意可求,C D ,然后结合二次函数与x 轴交点与二次方程根的关系可求,A B ,进而可求. 【详解】解:(1)0a >,0∆>,且264(4)42a a AB a--==,易解得294a =, 则32a =, 故23662y x x =+-.(2)点(2,12)C --,点(0,6)D -. 令0y =,解得1222x =--2222x =-+, 故点(22,0)A --,(2B -+.连接OC (O 为坐标原点), 则AOCOCDBOD ABCD S SSS ∆=++四边形111(21262(26222=+⨯+⨯⨯+-+⨯12=+20.设函数()221xf x a =-+. (1)求证:()f x 为增函数(2)若()f x 为奇函数,求实数a 的值,并求出()f x 的值域. 【答案】(1)证明见解析;(2)1,(1,1)-.【分析】(1)利用定义法证明()f x 为增函数,先假设12x x <,然后计算并化简()()12f x f x -,通过分析()()12f x f x -与0的大小关系,确定出()()12,f x f x 的大小关系,由此证明出单调性;(2)先根据()f x 为奇函数,得到()()f x f x -=-,由此求解出a 的值,然后结合不等式以及指数函数的值域求解出()f x 的值域.【详解】(1)∵()f x 的定义域为R ,∴任取12,x x R ∈且12x x <,则()()()()()121212122222221211212x x x x x x f x f x a a ⋅--=--+=++++, ∵12x x <,∴12220x x -<,()()1212120xx ++>,∴()()120f x f x -<,即()()12f x f x <,所以不论a 为何实数()f x 总为增函数; (2)∵()f x 为奇函数,∴()()f x f x -=-,即222121x xa a --=-+++, ∴2222222212121x x x x a -⋅+=+==+++,解得:1a =,∴2()121xf x =-+. 由以上知2()121xf x =-+,∵211x +>,∴20221x <<+, ∴22021x -<-<+,∴1()1f x -<<, 所以()f x 的值域为(1,1)-.【点睛】思路点睛:用定义法证明函数单调性的步骤:(1)设:设两个自变量12,x x ,并给定大小关系; (2)作差:计算()()12f x f x -;(3)变形:将()()12f x f x -的结果化简至容易判断出正负;(4)判号:根据()()12f x f x -的化简结果并结合12,x x 的大小,判断出()()12f x f x -的正负;(5)下结论:说明()f x 的单调性. 21.已知函数()2ln2ax f x x +=+,且()f x 不恒为0. (1)若()f x 为奇函数,求实数a 的值; (2)若()()x f g x e=,且函数()g x 在()0,1上单调递减,求实数a 的取值范围.【答案】(1)1-;(2)21a -≤<.【分析】(1)由条件可知()()f x f x -=-,由此列出关于a 的方程,求解出a 的值; (2)先计算出()g x 的解析式,采用分离常数的方法对()g x 进行变形,然后结合单调性和对数的真数大于零列出关于a 的不等式组,求解出a 的取值范围. 【详解】(1)由奇函数的定义可知:()()f x f x -=-,即222lnln ln 222ax ax x x x ax -+++=-=-+++,则:2222ax x x ax -++=-++22244x a x ⇔-=-1a ⇔=±,又当1a =时,()f x 恒为0,矛盾,所以1a =-. (2)()()f xg x e=在()0,1x ∈上单调递减,()202ax g x x +∴=>+在()0,1x ∈上恒成立,且()22222ax ag x a x x +-==+++在()0,1x ∈上单调递减,()()min 2103a g x g +∴==≥且220a ->, 解得:21a -≤<.【点睛】结论点睛:常见函数的单调性分析:(1)一次函数()()0f x kx b k =+≠:当0k >时,在R 上递增,当0k <时,在R 上递减;(2)反比例类型的函数()()0kf x k x a=≠-,当0k >时,在(),a -∞和(),a +∞上递减;当0k <时,在(),a -∞和(),a +∞上递增;(3)二次函数()()20f x ax bx c a =++≠:当0a >时,在,2b a ⎛⎫-∞-⎪⎝⎭上递减,在,2b a ⎛⎫-+∞ ⎪⎝⎭上递增;当0a <时,在,2b a ⎛⎫-∞- ⎪⎝⎭上递增,在,2b a ⎛⎫-+∞ ⎪⎝⎭上递减. 22.已知定义域为R 的函数()f x 和()g x ,其中()f x 是奇函数,()g x 是偶函数,且()()12x f x g x ++=.(1)求函数()f x 和()g x 的解析式; (2)解不等式:()()2f x g x ;(3)已知实数0λ>,且关于x 的方程()()10x f x g λ-+=有实根,求λ的表达式(用x 表示),并求λ的取值范围.【答案】(1)()22x xf x -=-,()22x xg x -=+;(2)21log 3,2⎡⎫+∞⎪⎢⎣⎭;(3)2222121x x xλ+-=+,⎛⎝⎦. 【分析】(1)利用奇偶性,结合()()12x f x g x ++=,得到1()()2x f x g x -+-+=,联立方程解得()f x 和()g x 的解析式即可;(2)代入函数解析式并化简得到223x ≥,再结合指数函数单调性解不等式即可;(3)代入函数解析式并分离参数得到2222121x x xλ+-=+,再进行换元20x t =>,使22212111t t t t t λ+--==+++有正根,设2t m -=,则2m >-,转化成2145m m m λ=+++有2m >-的实根,最后对m 进行讨论,结合对勾函数的单调性研究值域问题即可. 【详解】解:(1)因为()f x 是奇函数,()g x 是偶函数, 所以()()f x f x -=-,()()g x g x -=, 因为1()()2x f x g x ++=,所以1()()2x f x g x -+-+-=,即1()()2x f x g x -+-+=,联立两个方程,可解得1122()222x x x x f x +-+--==-,()22x x g x -=+;(2)2()()f x g x ≥可化为()22222x xxx ---≥+,化简得232x x -≥⨯,即223x ≥,而2log 332=,所以22log 3x ≥,得21log 32x ≥, 所以不等式2()()f x g x ≥的解集为21log 3,2⎡⎫+∞⎪⎢⎣⎭;(3)关于x 的方程()()10f x g x λ-+=有实根,即()222210x x x xλ----++=有实根,所以()()22212120x x x λ⎡⎤--++=⎢⎥⎣⎦有实根, 则2222121x x xλ+-=+. 令20x t =>,则()22110t t t λ--++=有正根,所以22212111t t t t t λ+--==+++有正根, 因为222211(22)1(2)4(2)5t t t t t λ--=+=+-++-+-+,设2t m -=,则2m >-,2145mm m λ=+++.当0m =时,1λ=,此时22x t ==,方程有实根1x =;当0m ≠且2m >-时,方程即2145541m m m m mλ++==++-有2m >-的实根,则11λ-的值域,即是54m m++的值域.因为对勾函数5()4m m mϕ=++在(2,0)-上递减,在上递减,在)+∞上递增,故(2,0)m ∈-时,1()(2)2m ϕϕ<-=;(0,)m ∈+∞时()4m ϕϕ≥=+所以1112λ<--或141λ≥+-0λ>,故解得01λ<<或12λ<≤,综上所述:λ取值范围是⎛ ⎝⎦. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:150分 时间:120分钟)题号一 二 三 总分 得分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数( )A.5B.7C.9D.11 2.如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z},则( )A.A BB.B AC.A =BD.A ∩B = 3.设A ={x ∈Z||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是( )A.5B.4C.3D.24.若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q (P ∩Q )成立的所有实数a 的取值范围为A.(1,9)B.[1,9]C.[6,9D.(6,9] 5.已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为( )A.18B.30C. 272D.286.函数f (x )=3x -12-x (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元素是( ) A.2 B.-2 C.-1 D.-3 7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为( )A.3x -2B.3x +2C.2x +3D.2x -3 8.下列各组函数中,表示同一函数的是( )∅⊆)A.f (x )=1,g (x )=xB.f (x )=x +2,g (x )=x 2-4x -2C.f (x )=|x |,g (x )=⎩⎪⎨⎪⎧x x ≥0-x x <0 D.f (x )=x ,g (x )=(x )29. f (x )=⎩⎪⎨⎪⎧x 2x >0π x =00 x <0,则f {f [f (-3)]}等于( )A.0B.πC.π2D.910.已知2lg(x -2y )=lg x +lg y ,则xy的值为( )A.1B.4C.1或4D. 14 或411.设x ∈R ,若a <lg(|x -3|+|x +7|)恒成立,则( ) A.a ≥1 B.a >1 C.0<a ≤1 D.a <1 12.若定义在区间(-1,0)内的函数f (x )=log 2a (x +1)满足f (x )>0,则a 的取值范围是( )A.(0,12 )B.(0,C.( 12 ,+∞)D.(0,+∞二、填空题(本大题共6小题,每小题4分,共24分.填在题中横线上)13.若不等式x 2+ax +a -2>0的解集为R ,则a 为__________.14.函数y =x 2+x +1 的定义域是_____,值域为__ ____. 15.若不等式3>(13)x +1对一切实数x 恒成立,则实数a 取值范围为___ ___.16. f (x )=,则f (x )值域为_____ _.17.函数y =12x +1的值域是__________.18.方程log 2(2-2x)+x +99=0的两个解的和是三、解答题(本大题共5小题,共66分. 明、证明过程或演算步骤)⎥⎦⎤21axx 22-]()⎪⎩⎪⎨⎧+∞∈--∞∈---,1 231,( 2311x x x x密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题19.全集U =R ,A ={x ||x |≥1},B ={x |x 2-2x -3>0},求(C U A )∩(C U B ).20.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1.(1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集.21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?22.已知函数f (x )=log 2x -log x +5,x ∈[2,4],求f (x )的最大值及最小值.23.已知函数f (x )=a a 2-2(a x -a -x)(a >0且a ≠1)是R 上的增函数,求a 的取值范围.参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CBCDBDACCBDA二、填空题13. 14. R [32,+∞) 15. -12 < a <3216. (-2,-1] 17. (0,1) 18. -99 三、解答题(本大题共5小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.全集U =R ,A ={x ||x |≥1},B ={x |x 2-2x -3>0},求(C U A )∩(C U B ).(C U A )∩(C U B )={x |-1<x <1}414120.已知f (x )是定义在(0,+∞)上的增函数,且满足f (xy )=f (x )+f (y ),f (2)=1.(1)求证:f (8)=3 (2)求不等式f (x )-f (x -2)>3的解集.考查函数对应法则及单调性的应用.(1)【证明】 由题意得f (8)=f (4×2)=f (4)+f (2)=f (2×2)+f (2)=f (2)+f (2)+f (2)=3f (2)又∵f (2)=1 ∴f (8)=3 (2)【解】 不等式化为f (x )>f (x -2)+3∵f (8)=3 ∴f (x )>f (x -2)+f (8)=f (8x -16) ∵f (x )是(0,+∞)上的增函数∴解得2<x <16721.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2最大?最大月收益是多少?考查函数的应用及分析解决实际问题能力.【解】 (1)当每辆车月租金为3600辆数为 3600-300050 =12,所以这时租出了88辆.(2)设每辆车的月租金定为x 元,则公司月收益为f (x )=(100-x -300050)(x -150)-x -300050×50整理得:f (x )=-x 250 +162x -2100=-150 (x -4050)2307050∴当x =4050时,f (x )最大,最大值为f (4050)=307050 22.已知函数f (x )=log 2x -log x +5,x ∈[2,4],求f (的最大值及最小值.考查函数最值及对数函数性质.⎩⎨⎧->>-)2(80)2(8x x x 4141密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题【解】 令t =log x ∵x ∈[2,4],t =log x 在定义域递减有log 4<log x <log 2, ∴t ∈[-1,-12 ]∴f (t )=t 2-t +5=(t -12 )2+194 ,t ∈[-1,-12]∴当t =-12 时,f (x )取最小值 234当t =-1时,f (x )取最大值7. 23.已知函数f (x )=a a 2-2(a x -a -x)(a >0且a ≠1)是R 上的增函数,求a 的取值范围.【解】 f (x )的定义域为R ,设x 1、x 2∈R ,且x 1<x 2 则f (x 2)-f (x 1)=a a 2-2(a -a -a +a )=a a 2-2(a -a )(1+) 由于a >0,且a ≠1,∴1+>0∵f (x )为增函数,则(a 2-2)( a -a )>0 于是有, 解得a > 2 或0<a <1人教版2020—2021学年上学期期末考试高一年级数学测试卷及答案(满分:120分 时间:100分钟)题号一 二 三 总分 得分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( )A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}2.函数f (x )=x 2+x -2的零点的个数为( ) A .0 B .1C .2D .不确定3.下列函数中,既是奇函数又是增函数的是( ) A .y =x +1B .y =-x 2C .y =1xD .y =x |x |41414141412x 2x -1x 1x -2x 1x 211x x a a ⋅211x x aa 2x 1x ⎪⎩⎪⎨⎧<-<-⎪⎩⎪⎨⎧>->-02002121222x x x x a a a a a a 或4.函数f (x )=ln x +3x -11在以下哪个区间内一定有零点( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)5.若函数f (x )=log 2(x -1)2-x的定义域为A ,g (x )=ln (1-x )的定义域为B ,则∁R (A ∪B )=( ) A .[2,+∞)B .(2,+∞)C .(0,1]∪[2,+∞)D .(0,1)∪(2,+∞) 6.已知a =21.2,b =⎝ ⎛⎭⎪⎪⎫12-0.2,c =2log 52,则a ,b ,c的大小关系为( )A .c <b <aB .c <a <bC .b <a <cD .b <c <a7.设集合A ={x |-1<x -a <1,x ∈R },B ={x |1<x <5,x∈R },若A ∩B =∅,则实数a 的取值范围是( )A .0≤a ≤6B .a ≤2,或a ≥4C .a ≤0,或a ≥6D .2≤a ≤48.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x <-1,0,|x |≤1,-x +2,x >1,则f (x )( )A .是奇函数但不是偶函数B .是偶函数但不是奇函数C .既是奇函数也是偶函数D .既不是奇函数也不是偶函数9.某工厂2018年生产某种产品2万件,计划从2019开始每年比上一年增产20%产品的年产量超过12万件( )A .2026年B .2027年C .2028年D .2029年10.函数y =log 2|1-x |的图象是( ) 二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中横线上)11.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,x -4,x ≥0,则f (f (1))=_______.12.已知集合A ={x |0<log 4x <1},B ={x |x ≤2},则A =________.13.已知点⎝⎛⎭⎪⎪⎫33,33在幂函数f (x )的图象上,则f (的定义域为_______,奇偶性为________,单调减区间为________.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题14.国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超出800元部分的14%纳税;超过4 000元的按全稿酬的11.2%纳税.某人出版了一书共纳税420元,这个人的稿费为________元.15.给出下列四个判断:①若f (x )=x 2-2ax 在[1,+∞)上是增函数,则a =1; ②函数f (x )=2x-x 2只有两个零点;③函数y =2|x |的最小值是1;④在同一坐标系中,函数y =2x与y =2-x的图象关于y 轴对称.其中正确的序号是________.三、解答题(本大题共5小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)计算: (1)lg 2+lg 5-lg 8lg 50-lg 40+log 222;(2)⎝ ⎛⎭⎪⎪⎫2 790.5+0.1-2+⎝ ⎛⎭⎪⎪⎫2 1027-23-3π0+3748.17.(本小题满分10分)设f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3,2.(1)求f (x );(2)当函数f (x )的定义域为[0,1]时,求其值域.18.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的10%进行奖励;当销售利润超过15万元时,若超过部分为A 万元,则超出部分按2log 5(A +1)进行奖励,没超出部分仍按销售利润的10%进行奖励.记奖金总额为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数表达式; (2)如果业务员老张获得5.5万元的奖金,那么他的销售利润是多少万元?19.已知集合A ={x |3≤3x≤27},B ={x |log 2x >1}. (1)分别求A ∩B ,(∁R B )∪A ;(2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围.20.设f (x )=ax 2+x -a ,g (x )=2ax +5-3a . (1)若f (x )在[0,1]上的最大值为54,求a 的值;(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0)成立,求a的取值范围.参考答案一、选择题1.解析:选C.易知∁U A={0,4},所以(∁U A)∪B={0,2,4},故选C.2.解析:选C.方程x2+x-2=0的解的个数即为函数f(x)=x2+x-2零点的个数.∵Δ=1-4×(-2)=9>0,∴函数f(x)有两个零点3.解析:选D.对于A,是增函数,但不是奇函数;对于B,是偶函数,在区间(-∞,0]上是增函数,在区间(0,+∞)上是减函数;对于C,是奇函数,在区间(-∞,0)上是减函数,在区间(0,+∞)上是减函数;对于D,既是奇函数,又是增函数.4.解析:选D.因为f(x)的图象是一条连续不断的曲线,且f(3)=ln 3+3×3-11=ln 3-2<0,f(4)=ln 4+3×4-11=ln 4+1>0,所以f(3)·f(4)<0,故f(x)在区间(3,内一定有零点,选D.5.解析:选C.由题意知,⎩⎪⎨⎪⎧x-1>0,2-x>0⇒1<x<2.∴A=(1,2).⎩⎪⎨⎪⎧1-x>0,ln(1-x)≥0⇒x≤0.∴B=(-∞,0],A∪B=(-∞,0]∪(1,2),∴∁R(A∪B)=(0,1]∪[2,+∞).6.解析:选A.a=21.2,b=⎝⎛⎭⎪⎪⎫12-0.2=20.2,∵21.2>20.2>1,∴a>b>1,c=2log52=log54<1.∴c<b<a.7.解析:选C.由-1<x-a<1,得a-1<x<a+1.如图,可知a+1≤1或a-1≥5.所以a≤0,或a≥8.解析:选B.密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题画出已知函数的图象如图,利用函数图象直观判断函数f (x )为偶函数.9.解析:选C.设经过x 年这种产品的产量开始超过12万件,则2(1+20%)x >12,即1.2x>6,∴x >lg 6lg 1.2≈9.8,取x =10,故选C.10.解析:选D.函数y =log 2|1-x |可由下列变换得到:y =log 2x →y =log 2|x |→y =log 2|x -1|→y =log 2|1-x |.故选D.二、填空题11.解析:由题f (f (1))=f (-3)=2-3=18.答案:1812.解析:0<log 4x <1⇔log 41<log 4x <log 44⇔1<x <4,即A ={x |1<x <4}, ∴A ∩B ={x |1<x ≤2}. 答案:{x |1<x ≤2} 13.解析:设f (x )=x α(α∈R ),则⎝⎛⎭⎪⎪⎫33α=33, 即3-α2=332.∴-α2=32,得α=-3,∴f (x )=x -3=1x3, ∴定义域为{x |x ≠0},为奇函数. 单调减区间为(-∞,0)和(0,+∞).答案:(-∞,0)∪(0,+∞) 奇函数 (-∞,0)和(0,+∞)14.解析:设稿费为x 元,纳税为y 元. 由题意可知y =⎩⎪⎨⎪⎧0(0<x ≤800),(x -800)·14%(800<x ≤4 000),11.2%·x (x >4 000),∵此人纳税为420元,∴(x -800)×14%=420,∴x =3 800.答案:3 80015.解析:若f (x )=x 2-2ax 在[1,+∞)上是增函数,其对称轴x =a ≤1,故①不正确;函数f (x )=2x -x 2有三个零点,所以②不正确;③函数y =2|x |的最小值是1正确;④在同一坐标系中,函数y =2x 与y =2-x的图象关于y 轴对称正确.答案:③④ 三、解答题16.(1)原式=lg (2×5)-lg 8lg 54+log 2(2)-1=lg54lg54-1=0.(2)原式=⎝ ⎛⎭⎪⎪⎫25912+102+⎝ ⎛⎭⎪⎪⎫6427-23-3+3748=53+100+916-3+3748=100. 17.解:(1)因为f (x )的两个零点分别是-3,2,所以⎩⎪⎨⎪⎧f (-3)=0,f (2)=0,即⎩⎪⎨⎪⎧9a -3(b -8)-a -ab =0,4a +2(b -8)-a -ab =0,解得a =-3,b =5,f (x )=-3x 2-3x +18.(2)由(1)知f (x )=-3x 2-3x +18的对称轴为x =-12,图象开口向下,所以f (x )在[0,1]上为减函数,f (x )的最大值为f (0)=18,最小值为f (1)=12.所以值域为[12,18]. 18解:(1)由题意,得y =⎩⎪⎨⎪⎧0.1x ,0<x ≤15,1.5+2log 5(x -14),x >15.(2)∵x ∈(0,15]时,0.1x ≤1.5, 又y =5.5>1.5,∴x >15,所以1.5+2log 5(x -14)=5.5,解得x =39.所以老张的销售利润是39万元.19.解:(1)A ={x |3≤3x≤27}={x |1≤x ≤3},B ={x |log 2x >1}={x |x >2},A ∩B ={x |2<x ≤3}.(∁R B )∪A ={x |x ≤2}∪{x |1≤x ≤3}={x |x ≤3}. (2)①当a ≤1时,C =∅,此时C ⊆A ; ②当a >1时,C ⊆A ,则1<a ≤3;综合①②,可得a 的取值范围是(-∞,3]. 20.解:(1)①当a =0时,不合题意. ②当a >0时,对称轴x =-12a <0,所以x =1时取得最大值1,不合题意. ③当a ≤-12时,0<-12a≤1,所以x =-12a 时取得最大值-a -14a =54.第21页,共22页 第22页,共22页 密线 学校 班级 姓名 学号 密 封 线 内 不得 答 题 得:a =-1或a =-14(舍去). ④当-12<a <0时,-12a >1,所以x =1时取得最大值1,不合题意,综上所述,a =-1. (2)依题意a >0时,f (x )∈[-a ,1], g (x )∈[5-3a ,5-a ], 所以⎩⎪⎨⎪⎧5-3a ≤-a ,5-a ≥1, 解得,a ∈⎣⎢⎢⎡⎦⎥⎥⎤52,4, a =0时不符合题意舍去. a <0时,g (x )∈[5-a ,5-3a ],f (x )开口向下,最小值为f (0)或f (1),而f (0)=-a <5-a ,f (1)=1<5-a 不符合题意舍去,所以a ∈⎣⎢⎢⎡⎦⎥⎥⎤52,4.。