北师大版七年级数学上册单元备课设计
- 格式:doc
- 大小:37.00 KB
- 文档页数:5
北师大版七年级数学上册第一章《丰富的图形世界》全部教案第一课时§1生活中的立体图形(一)一、教学目标:1、知识与技能目标:(1)、经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩。
(2)、在观察、摸索、讨论中直观认识立体图形,了解球体、柱体、锥体的特征;2、过程与方法:(1)、通过一系列活动,培养学生的语言表达能力、总结归纳能力、实际动手能力及探索发现能力。
(2)、过程中,建立一种互相了解合作的新型师生关系。
3、情感态度与价值观:(1)、通过直觉增进学生的理解力,使他们获得成功的体验.(2)、激发学生对丰富的图形世界的兴趣,好奇心,初步形成积极参与活动,主动与他人合作交流的意识。
二、教学重点、难点:重点:直观认识规则的立体图形,正确区分各类立体图形。
难点:1、找出各个立体图形的个性特征及它们之间的联系,进而掌握对图形认知、归纳的方法。
2、研究正多面体的顶点数、棱数和面数之间的关系,得出欧拉公式。
三、教学方法:引导发现法四、教具准备:一辆玩具小公交车、一架玩具小飞车、笔筒五、教学过程Ⅰ、创设现实情景,引入新课今天,我准备了“一架直升机”,带领同学们插上想像的翅膀去飞行,我们飞向了祖国的蓝天,飞呀、飞呀,我们飞到了一座现代化大城市的上空,翻开课本看第一章的第1页的彩图,这个城市多漂亮啊,我们在欣赏这个城市的美景时,不妨用数学的眼光观察一下,这个美丽的城市也是我们数学世界——丰富的图形世界,你能从中发现哪些熟悉的图形?大家先看这辆车是由哪些立体图形组成的?Ⅱ、根据现实情景,讲授新课1、从生活中发现熟悉的几何体。
[议一议](1)图中有茶杯,笛子,笔筒中的笔杆是圆柱形状,提球的网把球放进去上面一部分是圆锥的形状,书架上的小帽子是圆锥的形状。
(2)圆柱和圆锥的相同点是底面都是圆的,不同点是圆柱有上下两个底面都是圆的,而圆锥只有下底面,最上面只是一个顶点。
(3)笔筒的形状我们把它叫棱柱,老师,对不对?(4)地球是一个球体,与它形状类似的有足球。
生活中的立体图形教学目标1.在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球等几何体,能用语言描述它们的某些特征,并能对它们进行简单的分类。
2.培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想,培养语言表述能力。
3.经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对空间与图形的学习兴趣,培养积极参与数学活动、主动与他人合作交流的意识。
教学重点:常见几何体的识别与分类。
教学难点:常见几何体的分类以及用语言描述它们的某些特征。
教具准备1.多媒体辅助教学。
2.圆柱、圆锥、正方体、长方体、棱柱、球等几何体的实物和模型。
教学过程一、创设情境,导入新课。
师:同学们,请打开课本首页,你看到了什么?【一幅现代化城市建筑群的画面,汇总本章的主要图形,运用多媒体演示,向学生们展示丰富的图形世界,给他们带来直观感受,让他们观察、思考、判断,体会图形世界的现实性和艺术性,激发学生的求知欲和学数学的兴趣。
】师:在画面中,你能发现数学的影子吗?【分组讨论交流,引导学生观察、抽象、归纳,学会把现实情境中的物体抽象成几何图形,感悟知识的生成与积累。
多媒体配合演示。
】引入课题,板书:§1.1生活中的立体图形(一)二、直观感知,识别图形。
1.出示常见的几何体实物,让学生识别:圆柱、圆锥、正方体、长方体、棱柱、球。
(板书:常见几何体的名称)特别指出棱柱有直棱柱和斜棱柱,本书只讨论直棱柱(简称棱柱)。
2.请同学们举出一些几何体的实例。
阅读并观察课本第2页的彩图,寻找画面中含有哪些熟悉的几何体。
3.自学课本第3页的内容,然后分组讨论,回答课本中的四个问题。
【从熟悉的生活中识别几何体,不仅帮助学生理解,而且让他们感受到生活中处处有数学。
】三、实践探究,明确强化。
1.做一做:用学具中的橡皮泥、几何体的压模器等材料,自制圆柱、圆锥、正方体、长方体、棱柱、球等模型。
【学生自由组合,动手操作,培养他们的实践能力和互相协作精神。
北师大版数学七年级上册3.1《字母表示数》教学设计一. 教材分析北师大版数学七年级上册3.1《字母表示数》是学生在小学阶段学习用字母表示数的基础上,进一步深化对字母表示数的理解,并能够用字母表示简单的数学运算和实际问题。
本节课的内容包括字母表示数的意义,字母表示数的运算规则,以及用字母表示实际问题。
教材通过具体的例子和练习题,帮助学生理解和掌握字母表示数的方法和技巧。
二. 学情分析学生在小学阶段已经接触过字母表示数的概念,对字母表示数有一定的认识和理解。
但是,学生对字母表示数的运算规则和应用可能还不够清晰。
因此,在教学过程中,需要通过具体的例子和练习题,帮助学生理解和掌握字母表示数的方法和技巧。
三. 教学目标1.理解字母表示数的意义和作用。
2.掌握字母表示数的运算规则。
3.能够用字母表示简单的数学运算和实际问题。
四. 教学重难点1.字母表示数的运算规则。
2.用字母表示实际问题。
五. 教学方法采用问题驱动法和案例教学法,通过具体的例子和练习题,引导学生理解和掌握字母表示数的方法和技巧。
同时,采用小组合作学习和讨论的方式,激发学生的学习兴趣和主动性。
六. 教学准备1.准备相关的例子和练习题。
2.准备PPT课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过一个简单的例子,引导学生回顾和复习小学阶段学习的字母表示数的概念和方法。
例如,用字母表示数的加法运算:a + b = c。
2.呈现(15分钟)通过PPT课件,展示字母表示数的运算规则,并用具体的例子进行解释和演示。
例如,字母表示数的乘法运算:a × b = c。
3.操练(15分钟)让学生分组进行练习,运用字母表示数的运算规则,解决一些简单的数学问题。
例如,计算以下表达式的值:a = 3, b = 4, c = a + b。
4.巩固(10分钟)通过一些练习题,让学生巩固对字母表示数的理解和应用。
例如,用字母表示数的减法运算:a - b = c。
教课要点与难点教课要点: 1.借助数轴认识相反数的看法,会求一个数的相反数.2.借助数轴理解绝对值的看法.教课难点:1.会求一个数的相反数.2.会求一个数的绝对值.3.会用绝对值比较两个负数的大小.学情剖析经过上节课的学习学生已经认识数轴;能够用数轴上的点来表示有理数;会比较有理数的大小;初步领会到了数形联合的思想方法.在前方的学习过程中,学生经历了归纳、比较、沟通等活动,解决了一些简单的现实问题,感觉到了数学活动的重要性;在从前的数学学习中学生经历了合作学习的过程,拥有了必定的合作学习的经验和合作沟通的能力.教课目的1.借助数轴,初步理解相反数和绝对值的看法,能求一个数的相反数和绝对值,会利用绝对值比较两个负数的大小.2.经过应用绝对值解决本质问题,领会绝对值的意义和作用.教课方法借助数轴利用数形联合思想,经过教材问题,培育学生踊跃参加数学活动,并在数学活动中体验成功,锻炼学生战胜困难的意志,发展学生清楚地论述自己看法的能力以及培育学生合作研究、沟通、学习的新式学习方式.教课过程一、创建情境,引入新课设计说明利用生动的图例将学生引入问题情境,使学生易获取对绝对值的感性认识,激发学生的学习兴趣和踊跃主动性.问题 1:图中的三个小动物到原点的距离分别是多少?学生简单回答出距离分别是3,3,5 ,在此基础上教师进一步提出问题 2.问题 2:你知道这个距离在数学中叫什么吗?这个问题学生回答不上来,教师给出绝对值的定义,经过问题的形式使学生加强对看法的理解.二、合作沟通,研究新知1.看法引入33(1)3 与- 3 有什么同样点?与-,5与-5呢?你还可以列举两个这样的数吗?与伙伴2 2进行沟通.将三组数用数轴上的点表示出来,每组数所对应的点在数轴上的地点有什么关系?假如两个数只有符号不一样,那么称此中一个数为另一个数的相反数,也称这两个数互为相反数.特别地, 0 的相反数是 0.在数轴上,表示互为相反数的两个点,位于原点的双侧,且与原点的距离相等.(2)在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值.用符号“ || ”表示,+ 2 的绝对值等于2,记作 | + 2| = 2,-3 的绝对值等于 3,记作 | - 3| = 3.教课说明关于绝对值符号的书写教师应重视板书的规范性.2.沟通研究问题 1:说出以下各数的绝对值:114,- 4,2,-2, 0,- 0.25,0.25.问题 2:以上各组数都是什么关系?他们的绝对值又有什么关系?在学生进行充足的思虑议论过程后,教师指引学生得出结论:互为相反数的两个数的绝对值相等, 0 的相反数是 0.9例 1求出以下各数的绝对值:-21,+4, 0,- 7.8.9答案: 21,4, 0,7.8教课说明问题 1 让学生到黑板演示,这样做既检查了学生关于绝对值看法的理解掌握,同时又检查了书写的规范程度;问题 2 在学习了相反数看法的基础长进一步引申研究互为相反数的两个数的绝对值之间的关系,该问题教师可先让学生充足议论,勇敢讲话,同时关注学生数形联合思想的领悟程度,在学生经历了研究议论过程后结论的得出便理所应当了.最后例题的设计使学生关于所得结论进行充足的练习.3.比比练练,又探新知问题 1:请两个同学相互给对方随意写出两个正数、两个负数和零,而后要求对方求出它们的绝对值.问题 2:在以上练习中你可否总结出一个数的绝对值与这个数自己的关系吗?正数的绝对值是它自己;负数的绝对值是它的相反数;0 的绝对值是0.教课说明问题 1 是关于绝对值看法的应用,教课时可采纳学生相互出题竞猜的方式,易激发学生的学习兴趣,能够让一名同学在下边出题,另一名同学到黑板上板演示,其余同学当裁判,调换全体同学的踊跃性;问题 2 的设计使学生的思想空间又上涨了一个层次,在知识的理解水平上又加深了一步,教师可在学生充足发布自己的看法后,再与学生一同归纳总结出结论.4.深入思虑,再探新知问题 1:在数轴上表示以下各数,并比较它们的大小:- 1.5 ,- 3,- 1,- 5;问题 2:求出上述各数的绝对值,并比较它们的大小;问题 3:你发现了什么?两个负数比较大小,绝对值大的反而小.教课说明问题 1 是关于上节课知识的复习回首,在此基础上提出问题 2 意在指引学生利用比较绝对值大小的方法比较两个负数的大小,本环节是本节课的教课难点,在实现以上教课活动的过程中,学生有较好的参加意识和学习兴趣,本质问题与学生生活亲密联系,绝大部分学生能够很快的得出结论,并跟着教师问题的提出而不停进行更深入的思虑,体验看法的形成过程.三、应用迁徙,稳固提升例 2比较以下每组数的大小:5(1) -1 和- 5;(2) -6和- 2.7.5答案: (1) - 1>- 5(2) -6>- 2.7教课说明关于该例题的解决方式建议让学生充足思虑、研究不一样解法,经过用绝对值或数轴对两个负数的大小进行比较,让学生学会试试评论两种不一样方法之间的差别.中考链接若- 2 的绝对值是a,则以下结论正确的选项是()11A.a=2B.a=2C.a=- 2D.a=-2答案: A四、总结反省,拓展升华经过本节课的学习,我们都学到了哪些数学知识和方法?1.这节课我们学到了相反数和绝对值的看法;会求一个数的相反数和绝对值;会利用绝对值比较两个负数的大小.2.这节课的知识我们借助于数轴去理解,进一步领会数形联合思想.3.学生易疑惑的地方:用字母表示一个有理数的绝对值是学生理解掌握的难点.评论与反省本节课的设计旨在为学生供给兴趣性强、切近学生生活本质的背景资料,供给逻辑性强思想周密的问题串,供给沟通合作的学习环境,使学生踊跃主动地投入到学习之中,激发学生参加学习的踊跃性,使本来乏味、抽象的相反数和绝对值看法变得简单;此外,本节课还给学生供给了研究问题的时间和空间,并让学生自己归纳和总结获取新知识,锻炼了学生在与别人沟通中学会表达自己思想的能力.一个数的绝对值本质上是数轴上该数所对应的点到原点的距离的数值,而这类几何解说反应了看法的本质.本节课设计先让学生对看法进行理解,再归纳上涨到定义上来,这类理解问题的次序切合从感性认识上涨到理性认识的规律,同时使得绝对值看法的非负性拥有较扎实的基础.在教授知识的同时,必定要重视学科基本思想方法的教课,假如把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾御数学知识,就能逐渐形成和发展学生的数学能力.。
第二章有理数及其运算1.有理数一、学生起点分析学生的知识技能基础:学生在小学已经学习过整数、分数、小数的概念及运算;对负数的概念有所了解,知道正数、负数和零的区别。
学生活动经验基础:学生在小学通过对温度计的认识活动,学习了用负数解决一些简单的比较大小的问题。
刚进入初中的学生掌握正数、负数的概念程度参差不齐,结合实际正确的表示具有相反意义的量,建立有理数的概念是学习的难点。
二、学习任务分析“有理数”是初中数学学习的重要基础。
本节课的内容是正、负数的概念和有理数的分类。
通过和学生生活贴近的实例引入负数激发学生对数学学习的兴趣;通过让学生了解“中国是世界上最早使用负数的国家”,培养学生爱国主义情操,增强民族自豪感。
为此,本节课的学习任务是:1.在具体情境中,进一步认识负数,理解有理数的意义。
2.经历用正负数表示具有相反意义的量的过程,体会负数是实际生活的需要。
3.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类。
三、教学过程设计本节课设计了五个教学环节:第一环节:复习回顾,引入新课,第二环节:创设情境,探索新知,第三环节:实际应用,巩固提高,第四环节:合作交流,能力提升,第五环节:小结反思,布置作业。
第一环节:复习回顾,引入新课活动内容观察中国地图,珠穆朗玛峰高出海平面8844.43米,记作:+8844.43米;吐鲁番盆地地狱海平面155米,记作-155米.(登录优教同步学习网,搜索“新课导入:认识正数与负数”)教师出示上图,提出问题:(1)生活中我们会遇到用负数表示的量,你能说出一些例子吗?(2)你对负数有什么样的认识?(3)有了负数,数的运算与过去相比有什么区别和联系?有了负数,能解决哪些实际问题?本章将在小学学习的基础上,进一步学习负数,研究有理数的有关概念及其运算,并利用有理数的知识解决实际问题。
活动目的:通过提供学生熟悉的情景引导学生回顾小学有关负数的知识,三个问题不仅为本节课温故引入,也为本章的学习做了铺垫。
初中数学北师大版七年级上册第二单元第11课《有理数的混和运算》优质课公开课教案教师资格证面试试讲教案
1重点难点
1、理解掌握有理数混合运算的法则,用运算律对算式进行简便运算.让学生独立发现提出自己的计算方法。
2、混合运算要能够把各种运算在混合中分离出来,并先乘方运算,后乘除,再加减运算.如有括号要先算括号内部的。
3、如何将实际问题归纳抽象为数学模型并加以计算和解决。
2教学过程
2.1第一学时
2.1.1教学目标
知识目标: 掌握有理数混合运算的法则,并能熟练地进行有理数加、减、乘、除、乘方的混合运算(以三步为主)。
能力目标: 学生在运算过程中通过观察、分析、交流能合理使用运算律简化运算。
情感目标:学生能主动参与、勇与发现、学会合作探索交流的学习方式。
2.1.2学时重点
理解掌握有理数混合运算的法则,用运算律对算式进行简便运算.让学生独立发现提出自己的计算方法。
2.1.3学时难点
1、混合运算要能够把各种运算在混合中分离出来,并先乘方运算,后乘除,再加减运算.如有括号要先算括号内部的。
2、如何将实际问题归纳抽象为数学模型并加以计算和解决。
2.1.4教学活动
活动1【导入】有理数的混合运算教学过程
第一环节:复习回顾,引入新课。
丰富的图形世界教学目标:1、让学生在动手实践、自主探索、合作交流的过程中,回顾本章内容,梳理本章知识,反思所学,形成积极的学习态度和情感.2、结合本章复习题,进一步认识图形及其性质,把握实物与相应的几何图形,几何体与其展开图和三视图之间的相互转换关系,丰富几何的活动经验和良好的体验,发展空间观念.教学过程:一、梳理本章知识经过一章的学习,同学们体会到我们就生活在一个丰富的图形世界中,现实物体以图形的形式呈现在我们面前,我们通过图片这个窗口认识了我们生存的现实空间.下面我们乘坐一列“问题”快车一同来回顾本章的知识,反思所学.(一)生活中有哪些你熟悉的图形?举例说明.(二)你喜欢哪些几何体?举出一个生活中的物体,使它尽可能地包含不同的几何体.(三)用自己的语言说一说棱柱的特征?(直棱柱)展示六棱柱模型,学生观察交流回答棱柱有以下特征:①棱柱上有上下两个底面,它们形状大小相同;②棱柱的侧面都是长方形;③侧棱的长度都相等;④侧面的个数与底面多边形边数相同.引申:A、利用棱柱的特征我们可以解决哪些问题?B、能根据下列给出的正方体平面展开图指出正方体中相对的面吗?(可用相同的字母表示),发现了什么规律?给出若干个具有代表性的正方体平面展开图,如图BBA ACC让学生先想,再动手折叠,填空,分组讨论寻找规律.学生代表回答:正方体相对的两个面在其平面展开图中有两种位置关系. ①两个正方形在同一行或同一列且彼此相隔一个正方形;②两个正方形既不在同一行也不在同一列,其中一个正方形在展开图内部沿如右图路径平移能与另一个正方形重合.指出:事实上我们可以根据正方体相对的两个面在其平面展开图中的位置关系判别哪些平面展开图可以折叠成正方体.(四)找出两种几何体,使得分别用一个平面去截它们,可以得到三角形的截面.以正方体为例:A 、截下的几何体与剩余几何体分别是什么立体图形?B 、每个几何体的顶点数(v ),面数(f ),棱数(e )分别有什么关系?(f +v –e =2)(五)举出一种几何体,使得它的主视图,左视图和俯视图都一样,你能举出几种?与同伴进行交流.教师引申:三视图相同,立体物体的形状是否唯一确定?先让学生分组讨论,教师画出如下三视图:反思:三视图可以尽可能将立体物体的位置展现完整,但有时仅有三视图也不以能完全确定立体物体的形状.三、小结:请同学谈一谈学习本章的体会?四、作业:1、将一个正三棱柱沿棱剪开,你可以得到哪些平面展开图?2、根据下列三视图建造的建筑物是什么样子?共有几层?一共需要多少个小立方体?俯视图左视图 主视图主视图 左视图 俯视图生活中的立体图形(第1课时)教学目标1、认识几何图形,能根据它们的几何特征,通过观察与交流,经历从具体情景中辨别各种几何图形,感受图形世界的丰富多彩.2、在具体情境中认识圆柱、圆锥、正方体、长方体等几何体,能用自己的语言描述单个几何体的基本特征,并能根据几何体的某些特征将其分类.3、培养学生观察,操作,表达以及思维能力,学会合作,交流和自主探究的学习方式,发展空间观念,培养创造和实践能力,体验数学学习的乐趣,提高数学应用意识.4、在合作与交流中,学会肯定自己和倾听他人的意见.5、能由实物联想出几何图形、能从实物的形状、大小、位置考虑而得出几何图形.由几何图形联想到实物.从而进一步培养学生对几何图形的感性认识.6、经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩,通过直觉增进学生的理解力,在独立思考的基础上,帮助学生积极参与对数学问题的讨论,并敢于发表自己的观点,培养他们主动与他人合作交流的意识.教学重、难点重点:感受图形世界的丰富多彩;认识现实背景中的圆柱、圆锥、正方体、长方体、棱柱、球等.难点:能用自己的语言描述简单几何体的某些特征,正确认识各种不同的几何体,通过观察生活中常见几何体的特点区分不同的几何体.教学准备多媒体课件,生活中常见的几何体.教学过程一、复习引入请同学们观察一下小明的书房中各个物体各是什么形状的?(1)在小明的书房中哪些物体的形状与你在小学学过的几何体类似?(2)请找出上图中与笔筒形状类似的物体?二、讲授新课(一)活动一1、认一认:下面让我们一起来认识它们,(电脑显示上面各物体抽象出来的几何体)配注各几何体名称.球圆锥正方体长方体棱柱圆柱2、想一想:让我们一起来回想一下平时的日常生活中所见到过的哪些物体的形状类似于以上的几何体.在实物与几何体模型之间建立对应关系,尤其是组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答.(二)活动二图11、在棱柱中,任何相邻的两个面的交线都叫做棱柱的棱,其中相邻两个侧面的交线都叫做棱柱的侧棱.图1中的棱柱有15条棱,其中有5条侧棱,这5条侧棱的长相等.上底面是五边形,下底面是五边形,这两个五边形的大小、形状都相同;这个棱柱有5个侧面,当它为直棱柱时,5个侧面都是长方形,当它为斜棱柱时,5个侧面都是平行四边形.强调本书只讨论直棱柱(简称棱柱).2、当一个棱柱的底面是三角形时,称为三棱柱;当一个棱柱的底面是四边形时,称为四棱柱(长方体、正方体都是四棱柱);当一个棱柱的底面是五边形时,称为五棱柱;……;当一个棱柱的底面是n边形时,称为n棱柱.想一想n棱柱的顶点数、棱数分别是多少?(三)活动三你能指出下列两个图形分别是由哪些几何体组合而成的吗?。
初中数学北师大版七年级上册第二单元回顾与思考教学设
计
【名师授课教案】
1教学目标
1.使学生会求实数的相反数、绝对值(绝对值符号内不含字母)、倒数。
2.使学生会用科学记数法表示数。
3.让学生熟悉题型,实战毕业考,训练综合运用能力。
4.树立学生迎接毕业考的自信心。
2学情分析
授课班级是一个基础较差的班,在授课内容方面以基础知识为主。
3重点难点
教学重点:
1.使学生会求实数的相反数、绝对值(绝对值符号内不含字母)、倒数。
2.使学生会用科学记数法表示数。
教学难点:
1.使每个学生都熟悉本专题知识点,确保本专题训练类型题在中考中零失误。
2.培养学生解题的细心、耐心的情感价值观。
4教学过程
教学活动
1【导入】课前检查
通过练习,课前检查学生掌握“实数大小比较”此知识点的熟练程度。
1、(2012年重庆)在-3,-1,0,2这四个数中,最小的数是( )
A、-3
B、-1
C、0
D、.2
2、(2014年广东)在1、0、2、-3这四个数中,最大的数是( )
A、1
B、0
C、-1/2
D、-3
3、(2015年毕业调研)下列四个数中,最小的数是( )
A、-2
B、0
C、-1/2
D、2
3【练习】进行本专题的课堂训练:
第一部分相反数
( 1 ) 8的相反数是__ (2)0的相反数是__ (3)-5的相反数是__ (4)√3 的相反数是__。
北师大版数学七年级上册1.2《展开与折叠》教学设计1一. 教材分析《展开与折叠》是北师大版数学七年级上册第一章《几何图形》中的第二节内容。
本节课主要让学生初步了解和掌握展开图的概念,学会如何将立体图形展开成平面图形,并能够通过展开图还原立体图形的形状。
教材通过生活中的实际例子,引导学生感受展开与折叠在实际生活中的应用,激发学生的学习兴趣。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和几何图形的认知基础,但对立体图形的展开与折叠可能还比较陌生。
因此,在教学过程中,教师需要通过大量的实例和实践活动,帮助学生建立立体图形与平面图形之间的联系,提高他们的空间想象力。
三. 教学目标1.知识与技能:让学生掌握展开图的概念,学会如何将立体图形展开成平面图形,并能够通过展开图还原立体图形的形状。
2.过程与方法:通过观察、实践、交流等活动,培养学生的空间想象力,提高他们解决实际问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们合作学习的意识,感受数学在生活中的应用。
四. 教学重难点1.重点:展开图的概念及展开方法。
2.难点:如何通过展开图还原立体图形的形状。
五. 教学方法1.情境教学法:通过生活中的实际例子,引导学生感受展开与折叠在实际生活中的应用。
2.动手操作法:让学生亲自动手操作,将立体图形展开成平面图形,提高他们的实践能力。
3.合作交流法:鼓励学生之间相互讨论、交流,共同解决问题。
六. 教学准备1.教具:展开图模型、立体图形模型、黑板、粉笔。
2.学具:每人一份展开图模型、一份练习题。
七. 教学过程1. 导入(5分钟)教师通过展示一些生活中的展开与折叠实例,如纸箱、折扇等,引导学生思考:这些物品是如何展开或折叠的?它们的展开图是什么样子的?从而激发学生的学习兴趣。
2. 呈现(10分钟)教师简要介绍展开图的概念,并通过示例讲解如何将立体图形展开成平面图形。
同时,引导学生观察和分析展开图的特点,总结展开的方法。
七年级数学上册第五单元复习教案北师大版§5.1 你今年几岁了教学目标:1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义.2、过程与方法:通过观察,归纳一元一次方程的概念.3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决.教学重点:建立一元一次方程的概念.教学难点:根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义.教学方法:引导发现教学过程:一、情景导入:我能猜出你们的年龄,相信吗?只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.问:你的年龄乘以2加3等于多少?学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?学生讨论并回答二、知识探究:1.方程的教学(投影演示)小彬和小明也在进行猜年龄游戏,我们来看一看.找出这道题中的等量关系,列出方程.大家观察,这两个式子有什么特点.讨论并回答:什么是方程?方程有哪些特点?2.判断下列式子是不是方程?(1)x+2=3(是)(2)x+3y=6(是)(3)3x-6(不是)(4)1+2=3(不是)(5)x+3>5(不是)(6)y-12=5(是)三、合作交流1.如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约10厘米,大约几周后树苗长高到1米?你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?情景二:第五次全国人口普查统计数据(2001年3月28日新华社公布)截至2000年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%,1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?2x–5=2140+15x=100x(1+153.94﹪)=36112[x+(x+12)]=2002[y+(y–12)]=200在一个方程中,只含有一个未知数x(元),并且未知数的指数是1(次),这样的方程叫一元一次方程.问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?生:分组讨论,回答列方程的步骤:(1)找等量关系;(2)设未知数;(3)列方程.四、随堂练习1、投影趣味习题,2、做一做下面有两道题,请选做一题.(1)请根据方程2x+3=21自己设计一道有实际背景的应用题.(2)发挥你的想象,用自己的年龄编一道应用题,并列出方程.五、课堂小结1、这节课你学到了什么?2七、板书设计教学目标:1、学会利用等式性质1解方程;2、理解移项的概念;3、学会移项.教学重点:利用等式性质1解方程及移项法则;教学难点:利用等式性质1来解释方程的变形.教学方法:引导发现教学过程:一、引入新课:1、上节课的想一想引入新课:等式和方程之间有什么区别和联系?方程是等式,但必须含有未知数;等式不一定含有未知数,它不一定是方程.2、下面的一些式子是否为方程?这些方程又有何特点?①5x+6=9x;②3x+5;③7+5×3=22;④4x+3y=2.由学生小议后回答:①、④是方程.分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数.我们先来研究最简单的(只含有一个未知数的)的一元一次方程.3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程.注意:一次方程可以含有两个或两个以上的未知数:如上例的④.4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程.5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)①2x+3=11;②y2=16;③x+y=2;④3y-1=4y.6、什么叫方程的解?怎样解方程?关键是把方程进行变形为x=?即求得方程的解.今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程二、讲解新课:1、等式性质1:出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形.强调关键词:“两边”、“都”、“同”、“等式”.2、利用等式性质1解方程:x+2=5分析:要把原方程变形成x=?只要把方程两边同时减去2即可.注意:解题格式.例1 解方程5x=7+4x分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x.(解略)解完后提问:如何检验方程时的计算有没有错误?(由学生回答)只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)观察前面两个方程的求解过程:x+2=5 5x=7+4xx=5-2 5x-4x=7思考:(1)把+2从方程的一边移到另一边,发生了什么变化?(2)把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)3、移项:从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项.注意:①移项要变号;②移项的实质:利用等式性质1对方程进行变形.例2 解方程:3x+4=2x+7解:移项,得3x-2x=7-4,合并同类项,得x=3.∴x=3是原方程的解.归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系).四、课堂小结:①什么是一次方程,一元一次方程?②等式性质1(找关键词);③移项法则;④应用等式性质1的注意点(例2归纳的三条).六、板书设计七、教学后记§5.2解方程(2)教学目标:1.通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解和使用乘法分配律和去括号法则解方程.2.领悟到解方程作为运用方程解决实际问题的组成部分.3.进一步体会同一方程有多种解决方法及渗透整体化一的数学思想.4.培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践.教学重点:正确去括号解方程教学难点:去括号法则和分配律的正确使用.教学方法:引导发现教学设计:一、引入:(读教材156页引例),引导学生根据画面内容探讨解决问题的方法.针对学生情况,如有困难教师直接讲解.学生观看画面:两名同学到商店买饮料的情景.如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3教师组织学生讨论.教材“想一想”中的内容:首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的方法列方程并解释其中的道理.①学生研讨并交流各自解决问题的过程.②学生独立完成“想一想”中的问题(2).二、出示例题3并引导学生探讨问题的解决方法.引导学生对自己所列方程的解的实际意义进行解释.出示随堂练习题,鼓励学生大胆互评.①独立完成随堂练习.③四名同学板演.③纠正板演中的错误并总结注意事项.1、自主完成例题2、小组内交流各自解方程的方法.3、总结数学思想.三、出示例题4,教师首先鼓励学生独立探索解法,并互相交流.然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.(后一种解法不要求所有学生都必须掌握.)1、自主完成例题2、小组内交流各自解方程的方法.3、总结数学思想.四、出示随堂练习题.①独立完成练习题.②同桌互相检查.出示自编练习题:下面方程的解法对不对?如果不对应怎样改正?①解方程:2(x+3)-5(1-x)=3(x-1)②解方程:6(x+8)一6=0①小组间比赛找错误.②讨论交流各自看法.③选代表说出错误的原因,并总结解本节所学方程的注意事项.五、小结1、做出本节课小结并交流.2、说出自己的收获.给予评价:引导学生做出本节课小结.七、板书设计§5.2解方程(3)教学目标:1.经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程.进一步理解并掌握如何去分母的解题方法.2.通过解方程时去分母过程,体会转化思想.3.进一步体会解方程方法的灵活多样.培养解决不同问题的能力.4.培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯,团结合作的精神.教学重点:解方程时如何去分母.教学难点:解方程时如何去分母.教学方法:引导发现教学设计:一、用小黑板出示一组解方程的练习题.解方程:(1)8=7-2y;(2)5x-2=7x+8;(3)4x-3(20-x)=3;(4)-2(x-2)=12.1、自主完成解题.2、同桌互批.3、哪组同学全对人数多.(根据学生做题情况,教师给予评价).二、出示例题7,鼓励学生到黑板板演,教师给予评价.一名同学板演,其余同学在练习本上做.针对学生的实际,教师有目的引导学生如何去掉分母.去分母时要引导学生规范步骤,准确运算.三、组织学生做教材159页“想一想”,鼓励并引导学生总结解一元一次方程有哪些步骤.分组讨论、合作交流得出结论:方程两边都乘以所有分母的最小公倍数去掉分母.四、出示例题6,并鼓励学生灵活运用解一元一次方程的步骤解方程.出示快速抢答题:有几处错误,请把它们—一找出来并改正.①先自己总结.②互相交流自己的结论,并用语言表述出来.教师给予评价.引导学生总结本节的学习内容及方法.五、出示随堂练习题(根据学生情况做部分题或全部题).①自主完成解方程②互相交流自己的结论,并用语言表述出来.③自觉检验方程的解是否正确.(选代表到黑板板演).①学生抢答.②同组补充不完整的地方.③交流总结方程变形时容易出现的错误.①独立完成解方程.②小组互评,评出做得好的同学.六、小结①做出本节课小结共交流.②说出自己的收获及最困惑的地方八、板书设教学目标:1.让学生亲自经历和体验运用方程解决日历中一系列问题的过程,培养学生抽象、概括、分析问题、解决问题的能力.2.培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.3.培养学生的合作意识和合作精神.教学重点:运用方程解决日历中一系列问题;教学难点:如何从日历问题中寻找等量关系建立方程.教学方法:引导发现教学过程:一、复习铺垫1.三个连续的奇数,已知它们的和是54,这三个奇数分别是().2.2000年5月1日是星期三,5月15日是星期().二、设疑激趣,导入新课游戏一:老师随意说出日历中一个竖列上相邻3个数的和,让学生说说这3个数各是多少?(学生可能一时回答不上来.)游戏二:师生互换角色,学生模仿老师给出一个竖列上相邻3个数的和,让老师说说这3个数各是多少?(老师很快说出得数)师:你们一定想知道老师用什么方法这么快就得出答案吧.那就让我们一起进入今天的内容学习.板书课题:日历中的方程三、新知探讨:1、探求日历中一个竖列上相邻的几个数之间的关系.活动一:在各自的日历上任意圈出一个竖列上相邻的3个数,看看它们之间有什么关系?换几组数试试,看是不是有同样的结论.(同桌两人讨论、交流.)学生汇报,同时老师给出以下问题:(1)如果设最上面的一个数为x,那么其他两个数怎样表示?你还可以怎样设未知数?学生口述,老师板演:(2小组尽可能三种方法都有.)①学生独立解答.②小组讨论、交流.③学生汇报.(3)如果这3个数的和是75,求求看这3天分别是几号?①小组讨论、交流.②叫一位“小老师”上台,讲解该题.③师生质疑.活动二:看看日历上一个竖列上相邻的4个数之间有什么关系?(1)同桌两人一起探讨.(2)两人一组做游戏:①在各自的日历上,任意圈出一个竖列上相邻的3个数,两人分别把自己所圈3个数的和告诉同伴,由同伴求出这3个数.②换成4个数试试看.2、探求日历中相邻的2×2个数之间的关系.活动三:(1)在各自的日历上,用一个正方形任意圈出2×2个数,看看这4个数之间有什么关系.(2)认真观察日历上的数,看看你还有什么发现?(3)两人一组做游戏:在各自的日历上,用一个正方形任意圈出2×2个数,把它们的和告诉同伴,由同伴求出这4个数.3、例题教学:(1)出示例1.(教材152页的例1)(2)学生独立解答.(3)看书订正.活动四:(小组合作学习)每组由组长给2—3个类似的题,组员进行抢答,组长及时小结.四、考考你1.教材152页习题的2题.2.游戏:老师分别拿出一些标有6,12,18,24,…的卡片,后一张卡片的数比前一张卡片上的数大6.让一学生从中抽出相邻的3张卡片(卡片上的数保密),然后把这些卡片上的数字之和告诉大家.(1)让大家猜猜该同学拿到了哪3张卡片?(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是86吗?(该题是将教材152页习题第3题进行了改编)五、小结通过这节课的学习,你有哪些方面的收获?六、作业 P162 1、2、3、4七、板书设计七、教学后记§5.4 我变胖了教学目标:1.让学生通过分析实际问题中的“不变量”,建立方程解决问题2.让学生明白运用方程解决问题的关键是找到等量关系并建立数学模型3.设未知数,正确求解,并验明解的合理性4.激发学生的学习情绪,让学生在探索问题中学会合作教学重点:如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.教学难点:如何从实际问题中寻找等量关系建立方程.教学方法:引导发现教学过程:引入:情景1、放映“朝三暮四”的动画(附内容:从前有一个叫狙公的人养了一群猴子.每一天他都给足够的栗子给猴子吃,猴子高兴他也快乐.有一天他发现如果再这样喂猴子的话,等不到下一个栗子的收获季节,他和猴子都会饿死,于是他想了一个办法,并且把这个办法说给猴子听,当猴子听到只能早上吃四个,晚上吃三个栗子的时候很是生气,呲牙咧嘴的.没办法狙公只好说早上三个,晚上四个,没想到猴子一听高兴的直打筋斗)学生看到这里都笑了起来.教师把动画关了教师:有什么值大家这么高兴?学生:是猴子,他们蠢死了.4+3和3+4都是一样的.情景2:教师从讲台下拿出了两瓶矿泉水(容量一样,A短而宽,B长而窄)问到那个水多?学生1:A多学生2:B多学生3:一样多教师拿出两个相同的量杯,让学生1把两瓶矿泉水分别倒进两个量杯中,结果全体同学就说一样多,没有说对的同学,不好意思的笑了.教师:不要紧张,现在还有一个机会证明自己,请看附:找出下列问题中的等量关系问题1:把一个长5厘米,宽2厘米,高40厘米的长方体铁块锻压成一个半径为4厘米的圆柱体,问圆柱体的高是多少?问题2:有个同学用20厘米的铁丝围成一个长比宽多2厘米的长方形,问长方形的长和宽各是多少?教师让学生回答学生4:问题1的体积是等量学生5:问题2铁丝的长度是等量教师:下面请大家用方程形式把他们表示出来,看哪一个小组做的最好教师巡视后,见到各组已做完.(对做的最快的进行表扬)教师:请大家把两个问题的结论找出来教师巡视后,把做的最好一组的过程放在实物投影仪上让其他学生观看,并在此时规范方程格式.问题3:问题2中的铁丝在围成什么图形的时候面积最大,大多少?学生通过合作比较之后提出圆形的面积最大,并求出具体的数值课堂练习P165、随堂练习让学生做完之后,进行小组检查小结本课学了如何在问题中寻找等量关系,并建立方程解决问题.问题解决之后如何验证它的合理性板书设计教学后记§5.5 打折销售教学目标:1、进一步经历运用方程解决实际问题的过程,总结运用方程解决实际问题的一般步骤.2、提高学生找等量关系列方程的能力.3、培养学生的抽象、概括、分析和解决问题的能力.4、学会用数学的眼光去看待、分析现实生活中的情景.教学重点:1.如何从实际问题中寻找等量关系建立方程,解决问题后如何验证它的合理性.2.解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题.教学难点:如何从实际问题中寻找等量关系建立方程.教学方法:讲练结合教学过程:一、引入:1.通过社会调查,让学生亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系.进而能根据现实情境提出数学问题.2.谈一谈:请举例说明打折、利润、利润率、提价及削价的含义分别是什么?公式:利润=卖出价-成本价(或者:利润=销售价-成本价)3.算一算:(1)原价100元的商品,打8折后价格为____________元;(2)原价100元的商品,提价40%后的价格为__________元;(3)进价100元的商品,以150元卖出,利润是____________元.复习铺垫1、把下面的“折扣”数改写成百分数.九折八八折七五折2、你是怎样理解某种商品打“八折”出售的?创设情境,问题导入.1、教材256页的图.2、指着图,让学生说说“打折销售”中自己有过的亲身经历.(学生自由发言)3、师:假设你是一个商店老板,你的追求是什么?4、师:你是怎样理解商品的利润?5、师:一个成功的商人的经验之一是巧妙利用打折艺术,这节课我们就来研究商品中的打折问题.二、新知探讨1、你认为商品的标价、折数与商品的卖价之间有怎样的关系?2、结合实际,说说你从打折销售中可以获得哪些数学问题?(学生自由发言)根据学生的发言,进行归纳、总结:(1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?(2)一种画册原价每本16元,现在按每本11.2元出售.这种画册按原价打了几折?(3)为庆祝“六一儿童节”,某书店所有儿童读物一律八折优惠,小明花了24元买了一套读物,请问这套读物原价是多少?(4)一家商店将某种服装按成本价提高40%后卖出,已知每件服装的成本价是125元,每件服装获利多少?2、例题教学灯片给出:一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?(教材第156页应用题)如果设每件服装的成本价为x元,根据题意,(完成第156页的问题):(1)每件服装的标价为:()(2)每件服装的实际售价为:()(3)每件服装的利润为:()(4)列出方程,并解答:()3、小结并归纳用一元一次方程解决实际问题的一般步骤.三、巩固发展P157随堂练习的第1题和习题的第3题.四、回顾与反思通过这节课的学习,你最大的收获是什么?在调查中你还遇到哪些难解的问题,看看大家是不是可以给你解答?六、板书设计七、教学后记§5.6 “希望工程”义演教学目标:1、明确有关分配问题中两个未知量之间的关系,初步认识合理选元的重要性.2、能借助图表分析复杂问题的数量关系,建立方程解决实际问题.教学重点:进一步熟练掌握列一元一次方程解应用题的一般方法步骤,学会用图表分析数量较为复杂的应用题.教学难点:用图表分析数量关系较为复杂的应用题.教学方法:讲练结合教学过程:一、创设情景举手说一说自己有关“希望工程”的知识,讲解“希望工程”的作用和意义,引入课题.二、1.某文艺团体为“希望工程”募捐组织了一场义演,共售出了解1000张票,筹得票款6950元.成人票和学生票各售出了多少张?(成人:8元;学生:5元) 想一想:上面问题中包含哪些等量关系?成人票数+学生票数=1000张成人票款+学生票款=6950元设售出的学生票为x张,填写下表:读题,思考,找等量关系,填表,小组交流,全班交流.示题,组织交流.出示范例.解答(略)3.看一看这两种方法哪一种较为简单?你从中学到了什么?三.集体探究1.在以上问题中,如果票价和票的总数不变,票款能不能是6930元或6932元?为什么?如果可能,成人票比学生票多售出多少张?思考讨论,尝试解答.示题,辅导矫正,组织讨论交流.小结:解答的结果一定要代入实际问题中去检验.如果与实际问题不符,则要检查是否解答有误或是不可能发生.四、试一试:小明用172元钱买了两种书,共10本,单价分别为18元、10元.每种书小明各买了多少本?独立思考解答辅导,组织交流评价五、课堂小结:本课时你学到了什么?思考回顾,举手回答指名口答,补充完善【要点】1.图表法分析应用题. 2.结果代入实际问题中去检验.七、板书设计八、教学后记§5.7 能追上小明吗教学目标:1.掌握行程问题的基本数量关系及有关专业术语.2.能分析简单的行程问题并用方程解决.3.初步学会线段图示法和面积图示法分析数量关系和等量关系.教学重点:用图示法分析应用题的数量关系.教学难点:例2(用面积图示法).教学方法:引导发现教学过程:做一做:1.若小明每秒跑4米,那么他5秒能跑__米.2.小明用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分.3.已知小明家距离火车站1500米,他以4米/秒的速度骑车到达车站需要_____分钟.路程=速度×时间问题一(1)甲、乙两地路程为180千米,一人骑自行车从甲地出发,每小时走15千米,则需几小时?(2)甲、乙两地路程为180千米,一人骑自行车从甲地出发,每小时走15千米,另一人骑摩托车,从乙地出发,两人同时出发,相向而行,已知摩托车的速度是自行车速度的3倍,问经过多少时间两人相遇?分析:由(1)可分清理解时间、速度和路程的关系,并稍加应用这个关系.由(2)题意感觉有点复杂,先弄清几个关键字,如:相向而行,背向而行,同向而行,同时,同地,两地等.弄清当事人的时间、地点、速度、方向等,再把问题用图示法来表示(用彩色粉笔)可分以下几步:先画出总的路程,标出当事人的位置.标上固定的时间、距离等.标出行动的路程或时间.(自行车所走的路程用红笔,摩托车所走的路程用黄笔,总路程用白笔)设出x,并用含有x的一次式表示相应的路程或时间.找出数量关系,部分之和等于总量:红线+黄线=白线自行车所走路程+摩托车所走路程=总路程15x +45x =180若把(2)改为自行车先行一小时后摩托车出发,那么自行车再行几小时才与摩托车相遇?则图示该如何?等量关系:红线+黄线+兰线=白线。
3.1 字母表示数教学目标:1.体会字母表示数的意义,形成初步符号感。
2.能用字母和代数式表示以前学生学习过的运算律和计算公式。
3.通过动手、动脑实践,鼓励学生有个性、有创造的思考,同时鼓励学生在前进的道路上努力争取成功,培养学生的创新精神。
教学重点:用字母表示数的意义及符号感的培养教学难点:能从具体情境中抽象出数量关系及变化规律,并能正确运用字母和数学符号来表示.教学过程:一.预习1.预习书P77-79页,完成书上的问题,并勾出不懂的地方。
2.完成优化设计上的快乐预习。
3.已知树的高度与树生长的年数有关,测得某棵树的有关数据如下表(树苗原高100厘米):(1)填出第4年树苗可能达到的高度;(2)根据这种长势,10年后这棵树可能达到的高度是______厘米.(3)请用含a的代数式表示:a年后树的高度h=______.4、一个圆的半径为R,另一个圆的半径比R小2,则另一个圆的周长为______.二.引入:唱一唱:1只蛤蟆1张嘴,2只眼睛4条腿,扑通1声跳下水;2只蛤蟆2张嘴,4只眼睛8条腿,扑通2声跳下水;3只蛤蟆3张嘴,6只眼睛12条腿,扑通3声跳下水;…10只蛤蟆张嘴,只眼睛条腿,扑通声跳下水;100只蛤蟆张嘴,只眼睛条腿,扑通声跳下水;n只蛤蟆呢?你觉得这首歌唱完了吗?你能用字母表示吗?三.探究:1.根据书上的图3—1,小组讨论后回答下列问题问:(1)搭1个正方形需要___根小棒。
搭2个正方形需要___根小棒。
搭10个正方形需要___根小棒。
搭100个正方形需要_ _根小棒。
(2)搭x个正方形需要多少根火柴棒?谈谈你是如何算火柴的根数?2.你能用字母将我们学过的运算律表示出来小结:用字母表示数有时可以给我们研究问题带来很大方便.用字母表示数是代数的一个重要特点,是数学发展史上的一大进步.四.应用例1:填空:1、小明步行上学,速度为v米/秒,亮亮骑自行车上学,速度是小明的3倍, 则亮亮的速度可以表示为_______米/秒.2、一个三位数,个位数字是a, 十位数字是b, 百位数字是c, 这个三位数是____________练习:1.计算下列图形的周长、面积或体积a小结:用字母表示数应注意:(1)同一个字母,在不同的问题中可以代表不同的量;在同一个问题中,在不同的量要用不同的字母来表示。
2.1.1有理数教学目标:1.使学生了解正数与负数是从实际需要中产生的;2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3.初步会用正负数表示具有相反意义的量;4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.教学重点:负数的意义.教学难点:负数的意义.教学过程:一、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.二、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还在使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米.教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.三、运用举例 变式练习例:所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:3,-2.5,4,16,-27,0,-34此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.四、小结由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.五、课后作业 见学生用书. 教学后记:这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的. 从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.2.1.2 有理数教学目标:1.使学生理解有理数的意义,并能将给出的有理数进行分类; 2.培养学生树立分类讨论的思想. 教学重点:有理数包括哪些数.教学难点:有理数的分类及其分类的标准. 教学过程:一、从学生原有的认知结构提出问题 1.什么是正、负数?2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明. 3.任何一个正数都比0大吗?任何一个负数都比0小吗? 4.什么是整数?什么是分数? 根据学生的回答引出新课. 二、讲授新课1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数.2.给出有理数概念整数和分数统称为有理数,即有理数是英语“Rational number ”的译名,更确切的译名应译作“比”.3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同.根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.三、运用举例 变式练习例1:将下列数按上述两种标准分类: 1,12,0,-5,13.例2:下列各数是正数还是负数,是整数还是分数: 0,0.5,-2,5,16. 四、小结教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?五、课后作业 见学生用书. 教学后记:在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:1.分类的标准不同,分类的结果也不相同;2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.2.2 数轴一、教学目标(一)知识目标:1.使学生正确理解数轴的意义,掌握数轴的三要素2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.(二)能力目标1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识,提高应用数学的能力2.让学生渗透数形结合的思想方法.(三)情感态度目标1、通过对实数进行分类的练习,让学生进一步领会分类的思想,鼓励学生要从不同角度入手,寻解决问题的多种途径,训练学生的多角度思维,为他们以后更好地工作作准备。
4.1 线段、射线、直线教学目标:1、在现实情境中理解线段、直线、射线等简单的平面图形,感受图形世界的丰富多彩。
2、通过操作活动,了解两点确定一条直线等事实,积累操作活动经验。
教学重点:线段、射线、直线的概念及表示方法;了解三者的基本的特点,理解一个公理教学难点:几何语言的表达方法教学过程:一.预习:1.请同学们阅读教材,勾出重点和不懂的。
2.(1)绷紧的琴弦、人行横道线都可以近似地看做。
线段有端点。
(2)将线段向一个方向无限延长就形成了。
射线有端点。
(3)将线段向两个方向无限延长就形成了。
直线端点。
34.点与直线的位置关系点在直线上,即直线点;点在直线外,即直线点。
5.经过一点可以画条直线;经过两点有且只有条直线,即确定一条直线。
二.探究新知(一)创设情境,引入课题:用多媒体出示一组生活中的图片,有绷紧的琴弦、手电光束、笔直铁轨、筷子图、人行横道.让学生观察,问:你们能在其中发现我们所熟知的几何图形吗?(二)探究1. 线段射线和直线的概念及表示方法:讨论后讲解后完善预习中的表格。
线段特点及表示方法:射线特点及表示方法:直线特点及表示方法:探究2:(1)经过一个已知点A画直线,可以画多少条?经过两个点A、B画直线,又可以画多少条?(2)如果你想将一根细木条固定在墙上,至少需要几枚钉子?归纳:经过两点有且(“有”表示“存在性”,“只有”表示“唯一性”)练习1:如图,已知点A、B、C是直线m上的三点,请回答(1)射线AB与射线AC是同一条射线吗?cba BCADB CA(2)射线BA 与射线BC 是同一条射线吗? (3)射线AB 与射线BA 是同一条射线吗?(4)图中共有几条直线?几条射线?几条线段?分析:线段有两个端点;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸2、判断题: 1)、射线是向两方无限延伸的; ( ) 2)、可以用直线上的一个点来表示该直线 ( ) 3)、“射线AB ”也可以写成“射线BA ” ( ) 4)、线段AB 与线段BA 是指同一条线段 ( ) 探究3:点与直线的位置关系:(画图)1)、点P 在直线a 上(或说:直线a 经过点P ) 2)点P 在直线a 外 (或说:直线a 不经过点P )4.两条直线相交:当两条不同的直线有一个公共点时,称两条直线相交,公共点叫做它们的交点。
《点、线、面、体》教学教案练习:如果一个多面体的一个面是多边形,其余各(3)当知道棱柱或棱锥底面的多边形的边数,我们就可以用以上的公式求出我们所要的面的个数、顶点的个数和棱的条数。
新知导入:师:(1)请找出上面3幅图中的点、线和面。
(2)上面3幅图中,哪些线是直的,哪些线是曲的;哪些面是直的,哪些面是曲的?生:(自由举手回答问题。
)师:我们拿刚学过的六棱柱和圆柱对比,我们找找其中的点、线、面。
问:合作探究观察图片,回答问题。
观察图片,回答问题。
交流的能力。
进一步认识点、线、面进一步认识点、线、面生一:8个面。
3个面。
六棱柱的面全是平的,圆柱的面不都是平的。
生二:1条线。
曲的,是一圆形。
生三:12个顶点。
经过每个顶点有3条棱。
讲授新课师:同学们观察图片,图片画的是什么?有什么特别之处?生一:图一小孩在雪地上化出一道线。
生二:雨刮给雪后的车窗刮出两个扇面。
生三:沿着一三角形直角边旋转一周形成一个圆锥。
师:那也就是图一最终成了线,图二成了面,图三成了一个几何体。
那么它们之前都是什么呢?生一:图一的小孩可看成是一点。
生二:图二的雨刮可看成是一条线。
生三:图三直角三角形是一个面。
师生总结出:(1)点动成线。
(2)线动成面。
(3)面动成体。
观察图片,思考回答问题。
理解点、线、面、体之间的关系。
通过学习点、线、面、体之间的关系,进一步发展学生抽象概括能力和形象思维的能力。
师:那你还能举出生活中其他例子吗?生:举手各抒己见。
点动成线。
线动成面。
面动成体师:那我们学过简单的几何体圆柱和球,你知道由哪个平面旋转得到的吗?出示图片。
讨论,思考回答问题。
观察图片,回答问题。
通过对点、线、面、体的认识,使学生经历用图形描述现实世界的过程,用它们来解释生活中的现象。
通过学习点、线、面、体之间的关系,进一步发展学生抽象概括能力和形象思维的能力。
课堂练习一、填空右图中的几何体是由和组合而成,有个面围成。
面和面相交形成条线,线与线相交形成个点。
第一章丰富的图形世界(单元备课)
一、单元教学目标
1、经历展开与折叠、切截以及从不同方向看等数学活动过程,积累数学活动经验。
2、在平面图形和几何体相互转换等活动中,发展空间观念
3、认识常见几何体得基本特性,能对这些几何体进行正确的识别和简单的分类,并能从组合图形中分离出基本几何体。
4、通过丰富的实例,进一步认识点、线、面的基本含义,了解点、线、面、体之间的关系。
5、初步体会从不同方向观察同一物体可能看到不同的图形,能辨认和画出从不同方向观察正方体及其简单组合体得到的形状图。
6、了解直棱柱,圆柱,圆锥的表面展开图,能根据展开图想象和制作立体模型。
7、进一步丰富数学活动的成功体验,激发对图形与几何学习的好奇心,初步形成积极参与数学活动、主动与他人合作交流的意识。
二、单元教材分析
本章从生活中常见的立体图形入手,使学生在丰富的现实情境中,在展开与折叠等数学活动过程中,认识常见几何体及点、线、面的一些性质;再通过展开与折叠、切截,从不同方向看等活动,在平面图形与几何体的转换中发展学生的空间观念。
教学重点:
1、能识别简单物体的三种视图
2、会画立方体极其简单组合体的三种视图
教学难点:
能根据展开图想象和制作立体模型
突破难点的措施:强感性认识
三、单元课时安排
1 生活中的立体图形2课时
2 展开与折叠2课时
3 截一个几何体 1课时
4 从三个方向看物体的形状1课时
回顾与思考 1课时
四、单元设计思路
我们生活在一个三维世界中,周围大量存在的是空间图形。
因此图形与几何的学习将使学生更好地适应生活空间。
发展学生的空间观念是图形预计和学习的核心目标,而“能由实物的形状想象出几何图形,由几何图形想象出实物形状,进行几何体与其观察到的平面图形、展开图之间的转化”是空间观念的基本内容。
整个设计的意图,不仅在于促进学生对常见几何体有关内容的理解,对操作、识图、简单画图等技能的掌握,而且在于进一步丰富学生数学活动的经验和体验,发展他们的空间观念。
同时,有意识地培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力的发展。
五、单元教学建议
1、充分利用现实情境以及现实生活中大量存在的物体进行教学,鼓励学生从现实世界中“发现”图形。
2、强调学生的动手实践和主动参与,让他们在观察、操作、想象、交流等大量活动中,积累有关图形的经验,发展空间观念。
3、在保证基本要求的同时,应有意识地满足学生多样化的学习需求。
4、充分利用现代信息技术手段,丰富学生的学习资源,生动活泼地展示图
第二章有理数及其运算(单元备课)
一、单元教学目标
1、在具体情境中,理解有理数及其运算的意义,发展运算能力。
2、能用数轴上的点表示有理数,会比较有理数的大小。
3、借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。
4、经历探索有理数运算法则和运算律的过程,体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);理解有理数的运算律,并能运用运算律简化运算。
5、能运用有理数的运算解决简单的问题。
6、会用科学计数法表示大数;能对含有较大数字的信息作出合理的解释和推断,发展数感。
7、会用计算器进行有理数的简单运算。
8、理解有理数的运算律,并能用运算律简化运算。
9、能运用有理数的运算解决简单的问题。
二、单元教材分析
本章主要内容是有理数的有关概念及其运算,从引入负数开始,首先介绍有理数的基本概念,然后依次讲述有理数的加减、乘除以及乘方运算的意义、法则和运算,并能运用有理数及其运算解决简单的实际问题,以及用计算器进行有理数的运算并能运用计算器进行实际问题的复杂运算。
本章的内容是初等数学的重要基础,无论是有理数的有关概念还是运算,在初中数学、高中数学以及其它门学科的学习中,都是离不开的。
学生在学习本章的知识时,往往会感觉本章知识不难,但在考试中却发现这一章知识的得分并不高,因此在讲授本章知识时,教师要注意从具体情景出发,使学生了解知识的来源和形成,加深对数学概念的理解,从而达到能熟练掌握知识技能并应用其灵活解决实际问题的能力。
本章教学重点:有理数的运算
本章教学难点:对有理数运算法则的理解.
本章教学关键:学习有理数运算的关键,就是有理数加法和乘法中符号的确定。
三、单元课时安排
2.1 有理数------------------1课时
2.2 数轴--------------------1课时
2.3绝对值-----------------------1课时
2.4有理数的加法-------------------2课时
2.5有理数的减法-------------------1课时
2.6 有理数的加减法混合运算---------3课时
2.7 有理数的乘法-------------------2课时
2.8有理数的除法---------------------1课时
2.9有理数的乘方----------------------2课时
2.10 科学计数法----------------------1课时
2.11有理数的混合运算-----------------1课时
2.12用计算器进行运算------------------1课时
回顾与思考----------------------------1课时
四、单元设计思路
1.借助生活中的实例,从扩充运算的角度引进负数,然后使用正负数表示现实生活中具有相反意义的量.借助数轴理解相反数、绝对值等概念.
2.借助生活中的实例,引入有理数的运算.通过归纳学生总结运算法则和运算律.为了避免因为小数、分数运算的复杂性而冲淡学习的重点,以整数运算的学习为出发点,然后过渡到含有小数、分数的运算.利用有理数运算解决实际问题.
3.探索计算器的使用,利用计算器解决复杂数据的实际问题,
探索数学规律.——归纳、猜测、描述、验证、计算、尝试、交流.
五、单元教学建议
1.有理数概念和运算含义的教学应尽量从实际问题引入,注重对运算含义的理解.
2.鼓励学生自己归纳运算法则和运算律.自己的思考与表达——交流,形成较为规范的语言——规范的语言.
3.注重估算,提倡算法多样化,删除繁难的笔算.
4.注重使用有理数及其运算解决实际问题.。