当前位置:文档之家› (完整版)从头到尾彻底理解傅里叶变换算法

(完整版)从头到尾彻底理解傅里叶变换算法

(完整版)从头到尾彻底理解傅里叶变换算法
(完整版)从头到尾彻底理解傅里叶变换算法

从头到尾彻底理解傅里叶变换算法、上

从头到尾彻底理解傅里叶变换算法、上

前言

第一部分、DFT

第一章、傅立叶变换的由来

第二章、实数形式离散傅立叶变换(Real DFT)

从头到尾彻底理解傅里叶变换算法、下

第三章、复数

第四章、复数形式离散傅立叶变换

前言:

“关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong,

那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列?

傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。

哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。

ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂:

以下就是傅里叶变换的4种变体(摘自,维基百科)

连续傅里叶变换

一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。

这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。

连续傅里叶变换的逆变换(inverse Fourier transform)为:

即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。

一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。

除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对:

或者是因系数重分配而得到新的变换对:

一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。

分数傅里叶变换的物理意义即做傅里叶变换a 次,其中a 不一定要为整数;而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。

当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform).

另一个值得注意的性质是,当f(t)为纯实函数时,F(?ω) = F*(ω)成立.

傅里叶级数

连续形式的傅里叶变换其实是傅里叶级数(Fourier series)的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:

其中Fn为复幅度。对于实值函数,函数的傅里叶级数可以写成:

其中an和bn是实频率分量的幅度。

离散时域傅里叶变换

离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT 在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆变换。

离散傅里叶变换

离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。在实际应用中通常采用快速傅里叶变换以高效计算DFT。

为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下,使用离散傅里叶变换(DFT),将函数xn表示为下面的求和形式:

其中Xk是傅里叶幅度。直接使用这个公式计算的计算复杂度为O(n*n),而快速傅里叶变换(FFT)可以将复杂度改进为O(n*lgn)。(后面会具体阐述FFT是如何将复杂度降为O(n*lgn)的。)计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。

下面,比较下上述傅立叶变换的4种变体,

如上,容易发现:函数在时(频)域的离散对应于其像函数在频(时)域的周期性。反之连续则意味着在对应域的信号的非周期性。也就是说,时间上的离散性对应着频率上的周期性。同时,注意,离散时间傅里叶变换,时间离散,频率不离散,它在频域依然是连续的。如果,读到此,你不甚明白,大没关系,不必纠结于以上4种变体,继续往下看,你自会豁然开朗。(有什么问题,也恳请提出,或者批评指正)

ok,本文,接下来,由傅里叶变换入手,后重点阐述离散傅里叶变换、快速傅里叶算法,到最后彻底实现FFT算法,全篇力求通俗易懂、阅读顺畅,教你从头到尾彻底理解傅里叶变换算法。由于傅里叶变换,也称傅立叶变换,下文所称为傅立叶变换,同一个变换,不同叫法,读者不必感到奇怪。

第一部分、DFT

第一章、傅立叶变换的由来

要理解傅立叶变换,先得知道傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。

一、傅立叶变换的提出

傅立叶是一位法国数学家和物理学家,原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier于1807年在法国科学学会上发表了一篇论文,论文里描述运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号都可以由一组适当的正弦曲线组合而成。

当时审查这个论文拉格朗日坚决反对此论文的发表,而后在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。直到拉格朗日死后15年这个论文才被发表出来。

谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。

为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷多的,但分解信号的目的是为了更加简单地处理原来的信号。

用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正余弦曲线信号输入后,输出的仍是正余弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正余弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

二、傅立叶变换分类

根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:

1、非周期性连续信号傅立叶变换(Fourier Transform)

2、周期性连续信号傅立叶级数(Fourier Series)

3、非周期性离散信号离散时域傅立叶变换(Discrete Time Fourier Transform)

4、周期性离散信号离散傅立叶变换(Discrete Fourier Transform)

下图是四种原信号图例(从上到下,依次是FT,FS,DTFT,DFT):

这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,

我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?

没有。因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。

面对这种困难,方法是:把长度有限的信号表示成长度无限的信号。如,可以把信号无

限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离散信号,我们可以用到离散时域傅立叶变换(DTFT)的方法。也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离散信号,这时我们就可以用离散傅立叶变换方法(DFT)进行变换。本章我们要讲的是离散信号,对于连续信号我们不作讨论,因为计算机只能处理离散的数值信号,我们的最终目的是运用计算机来处理信号的。

但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算

机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。

这里要理解的是我们使用周期性的信号目的是为了能够用数学方法来解决问题,至于考

虑周期性信号是从哪里得到或怎样得到是无意义的。

每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方

法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(real DFT),再去理解复数傅立叶变换就更容易了,所以我们先把复数的傅立叶变换放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解

了实数傅立叶变换的基础上再来理解复数傅立叶变换。

还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。

三、一个关于实数离散傅立叶变换(Real DFT)的例子

先来看一个变换实例,下图是一个原始信号图像:

这个信号的长度是16,于是可以把这个信号分解9个余弦波和9个正弦波(一个长度为N的信号可以分解成N/2+1个正余弦信号,这是为什么呢?结合下面的18个正余弦图,我想从计算机处理精度上就不难理解,一个长度为N的信号,最多只能有N/2+1个不同频率,再多的频率就超过了计算机所能所处理的精度范围),如下图:

9个余弦信号:

9个正弦信号:

把以上所有信号相加即可得到原始信号,至于是怎么分别变换出9种不同频率信号的,我们先不急,先看看对于以上的变换结果,在程序中又是该怎么表示的,我们可以看看下面这个示例图:

上图中左边表示时域中的信号,右边是频域信号表示方法,

从左向右,-->,表示正向转换(Forward DFT),从右向左,<--,表示逆向转换(Inverse DFT),用小写x[]表示信号在每个时间点上的幅度值数组, 用大写X[]表示每种频率的副度值数组(即时间x-->频率X),

因为有N/2+1种频率,所以该数组长度为N/2+1,

X[]数组又分两种,一种是表示余弦波的不同频率幅度值:Re X[],

另一种是表示正弦波的不同频率幅度值:Im X[],

Re是实数(Real)的意思,Im是虚数(Imagine)的意思,采用复数的表示方法把正余弦波组合起来进行表示,但这里我们不考虑复数的其它作用,只记住是一种组合方法而已,目的是为了便于表达(在后面我们会知道,复数形式的傅立叶变换长度是N,而不是N/2+1)。如此,再回过头去,看上面的正余弦各9种频率的变化,相信,问题不大了。

第二章、实数形式离散傅立叶变换(Real DFT)

上一章,我们看到了一个实数形式离散傅立叶变换的例子,通过这个例子能够让我们先对傅立叶变换有一个较为形象的感性认识,现在就让我们来看看实数形式离散傅立叶变换的正向和逆向是怎么进行变换的。在此,我们先来看一下频率的多种表示方法。

一、频域中关于频率的四种表示方法

1、序号表示方法,根据时域中信号的样本数取0 ~ N/2,用这种方法在程序中使用起来可以更直接地取得每种频率的幅度值,因为频率值跟数组的序号是一一对应的: X[k],取值范围是0 ~ N/2;

2、分数表示方法,根据时域中信号的样本数的比例值取0 ~ 0.5: X[?],? = k/N,取值范围

是0 ~ 1/2;

3、用弧度值来表示,把?乘以一个2π得到一个弧度值,这种表示方法叫做自然频率(natural frequency):X[ω],ω = 2π? = 2πk/N,取值范围是0 ~ π;其中k取0-N/2。

4、以赫兹(Hz)为单位来表示,这个一般是应用于一些特殊应用,如取样率为10 kHz表示每秒有10,000个样本数:取值范围是0到取样率的一半。

二、DFT基本函数

ck[i] = cos(2πki/N)

sk[i] = sin(2πki/N)

其中k表示每个正余弦波的频率,如为2表示在0到N长度中存在两个完整的周期,10即有10个周期,如下图:

上图中至于每个波的振幅(amplitude)值(Re X[k],Im X[k])是怎么算出来的,这个是DFT 的核心,也是最难理解的部分,我们先来看看如何把分解出来的正余弦波合成原始信号(Inverse DFT)。

三、合成运算方法(Real Inverse DFT)

DFT合成等式(合成原始时间信号,频率-->时间,逆向变换):

如果有学过傅立叶级数,对这个等式就会有似曾相识的感觉,不错!这个等式跟傅立叶级数是非常相似的:

当然,差别是肯定是存在的,因为这两个等式是在两个不同条件下运用的,至于怎么证明DFT合成公式,这个我想需要非常强的高等数学理论知识了,这是研究数学的人的工作,对于普通应用者就不需要如此的追根究底了,但是傅立叶级数是好理解的,我们起码可以从傅立叶级数公式中看出DFT合成公式的合理性。

_ _

DFT合成等式中的Im X[k]和Re X[k]跟之前提到的Im X[k]和Re X[k]是不一样的,下面是转换方法(关于此公式的解释,见下文):

但k等于0和N/2时,实数部分的计算要用下面的等式:

上面四个式中的N是时域中点的总数,k是从0到N/2的序号。

为什么要这样进行转换呢?这个可以从频谱密度(spectral density)得到理解,如下图就是个频谱图:

这是一个频谱图,横坐标表示频率大小,纵坐标表示振幅大小,原始信号长度为N(这里是32),经DFT转换后得到的17个频率的频谱,频谱密度表示每单位带宽中为多大的振幅,那么带宽是怎么计算出来的呢?看上图,除了头尾两个,其余点的所占的宽度是2/N,这个宽度便是每个点的带宽,头尾两个点的带宽是1/N,而Im X[k]和Re X[k]表示的是频谱密度,即每一个单位带宽的振幅大小,但表示2/N(或1/N)带宽的振幅

大小,所以分别应当是Im X[k]和Re X[k]的2/N(或1/N)。

频谱密度就象物理中物质密度,原始信号中的每一个点就象是一个混合物,这个混合物是由不同密度的物质组成的,混合物中含有的每种物质的质量是一样的,除了最大和最小两个密度的物质外,这样我们只要把每种物质的密度加起来就可以得到该混合物的密度了,又该混合物的质量是单位质量,所以得到的密度值跟该混合物的质量值是一样的。

至于为什么虚数部分是负数,这是为了跟复数DFT保持一致,这个我们将在后面会知道这是数学计算上的需要(Im X[k]在计算时就已经加上了一个负号(稍后,由下文,便可知),再加上负号,结果便是正的,等于没有变化)。

如果已经得到了DFT结果,这时要进行逆转换,即合成原始信号,则可按如下步骤进行转换:

1、先根据上面四个式子计算得出的值;

2、再根据DFT合成等式得到原始信号数据。

下面是用BASIC语言来实现的转换源代码:

100 ‘DFT逆转换方法

110 ‘/XX[]数组存储计算结果(时域中的原始信号)

120 ‘/RE X[]数组存储频域中的实数分量,IMX[]为虚分量

130 ‘

140 DIM XX[511]

150 DIM REX[256]

160 DIM IMX[256]

170 ‘

180 PI = 3.14159265

190 N% = 512

200 ‘

210 GOSUB XXXX ‘转到子函数去获取REX[]和IMX[]数据220 ‘

230 ‘

240 ‘

250 FOR K% = 0 TO 256

260 REX[K%] = REX[K%] / (N%/2)

270 IMX[K%] = -IMX[K%] / (N%/2)

280 NEXT k%

290 ‘

300 REX[0] = REX[0] / N

310 REX[256] = REX[256] / N

320 ‘

330 ‘ 初始化XX[]数组

340 FOR I% = 0 TO 511

350 XX[I%] = 0

360 NEXT I%

370 ‘

380 ‘

390 ‘

400 ‘

410 ‘

420 FOR K% =0 TO 256

430 FOR I%=0 TO 511

440 ‘

450 XX[I%] = XX[I%] + REX[K%] * COS(2 * PI * K% * I% / N%)

460 XX[I%] = XX[I%] + IMX[K%] * SIN(2 * PI * K% * I% / N%)

470 ‘

480 NEXT I%

490 NEXT K%

500 ‘

510 END

上面代码中420至490换成如下形式也许更好理解,但结果都是一样的:

420 FOR I% =0 TO 511

430 FOR K%=0 TO 256

440 ‘

450 XX[I%] = XX[I%] + REX[K%] * COS(2 * PI * K% * I% / N%)

460 XX[I%] = XX[I%] + IMX[K%] * SIN(2 * PI * K% * I% / N%)

470 ‘

480 NEXT I%

490 NEXT K%

四、分解运算方法(DFT)

有三种完全不同的方法进行DFT:一种方法是通过联立方程进行求解, 从代数的角度看,要从N个已知值求N个未知值,需要N个联立方程,且N个联立方程必须是线性独立的,但这是这种方法计算量非常的大且极其复杂,所以很少被采用;第二种方法是利用信号的相关性(correlation)进行计算,这个是我们后面将要介绍的方法;第三种方法是快速傅立叶变换(FFT),这是一个非常具有创造性和革命性的的方法,因为它大大提高了运算速度,使得傅立叶变换能够在计算机中被广泛应用,但这种算法是根据复数形式的傅立叶变换来实现的,它把N个点的信号分解成长度为N的频域,这个跟我们现在所进行的实域DFT变换不一样,而且这种方法也较难理解,这里我们先不去理解,等先理解了复数DFT后,再来看一下FFT。有一点很重要,那就是这三种方法所得的变换结果是一样的,经过实践证明,当频域长度为32时,利用相关性方法进行计算效率最好,否则FFT算法效率较高。现在就让我们来看一下相关性算法。

利用第一种方法、信号的相关性(correlation)可以从噪声背景中检测出已知的信号,我们也可以利用这个方法检测信号波中是否含有某个频率的信号波:把一个待检测信号波乘以另一个信号波,得到一个新的信号波,再把这个新的信号波所有的点进行相加,从相加的结果就可以判断出这两个信号的相似程度。如下图:

上面a和b两个图是待检测信号波,图a很明显可以看出是个3个周期的正弦信号波,图b的信号波则看不出是否含有正弦或余弦信号,图c和d都是个3个周期的正弦信号波,图e和f分别是a、b两图跟c、d两图相乘后的结果,图e所有点的平均值是0.5,说明信号a含有振幅为1的正弦信号c,但图f所有点的平均值是0,则说明信号b不含有信号d。这个就是通过信号相关性来检测是否含有某个信号的方法。

第二种方法:相应地,我也可以通过把输入信号和每一种频率的正余弦信号进行相乘

(关联操作),从而得到原始信号与每种频率的关联程度(即总和大小),这个结果便是我们所要的傅立叶变换结果,下面两个等式便是我们所要的计算方法:

第二个式子中加了个负号,是为了保持复数形式的一致,前面我们知道在计算

时又加了个负号,所以这只是个形式的问题,并没有实际意义,你也可以把负号去掉,并在计算时也不加负号。

这里有一点必须明白一个正交的概念:两个函数相乘,如果结果中的每个点的总和为0,则可认为这两个函数为正交函数。要确保关联性算法是正确的,则必须使得跟原始信号相乘的信号的函数形式是正交的,我们知道所有的正弦或余弦函数是正交的,这一点我们可以通过简单的高数知识就可以证明它,所以我们可以通过关联的方法把原始信号分离出正余弦信号。当然,其它的正交函数也是存在的,如:方波、三角波等形式的脉冲信号,所以原始信号也可被分解成这些信号,但这只是说可以这样做,却是没有用的。

下面是实域傅立叶变换的BASIC语言代码:

到此为止,我们对傅立叶变换便有了感性的认识了吧。但要记住,这只是在实域上的离散

傅立叶变换,其中虽然也用到了复数的形式,但那只是个替代的形式,并无实际意义,现实中一般使用的是复数形式的离散傅立叶变换,且快速傅立叶变换是根据复数离散傅立叶变换来设计算法的,在后面我们先来复习一下有关复数的内容,然后再在理解实域离散傅立叶变换的基础上来理解复数形式的离散傅立叶变换。

第三章、复数

复数扩展了我们一般所能理解的数的概念,复数包含了实数和虚数两部分,利用复数的形式可以把由两个变量表示的表达式变成由一个变量(复变量)来表达,使得处理起来更加自然和方便。

我们知道傅立叶变换的结果是由两部分组成的,使用复数形式可以缩短变换表达式,使得我们可以单独处理一个变量(这个在后面的描述中我们就可以更加确切地知道),而且快速傅立叶变换正是基于复数形式的,所以几乎所有描述的傅立叶变换形式都是复数的形式。

但是复数的概念超过了我们日常生活中所能理解的概念,要理解复数是较难的,所以

我们在理解复数傅立叶变换之前,先来专门复习一下有关复数的知识,这对后面的理解非常重要。

一、复数的提出

在此,先让我们看一个物理实验:把一个球从某点向上抛出,然后根据初速度和时间来计算球所在高度,这个方法可以根据下面的式子计算得出:

其中h表示高度,g表示重力加速度(9.8m/s2),v表示初速度,t表示时间。现在反过来,

假如知道了高度,要求计算到这个高度所需要的时间,这时我们又可以通过下式来计算:

(多谢JERRY_PRI提出:

1、根据公式h=-(gt2/2)+Vt(gt后面的2表示t的平方),我们可以讨论最终情况,也就是说小球运动到最高点时,v=gt,所以,可以得到t=sqt(2h/g)

且在您给的公式中,根号下为1-(2h)/g,化成分数形式为(g-2h)/g,g和h不能直接做加减运算。

2、g是重力加速度,单位是m/s2,h的单位是m,他们两个相减的话在物理上没有意义,而且使用您给的那个公式反向回去的话推出的是h=-(gt2/2)+gt啊(gt后面的2表示t的平方)。

3、直接推到可以得出t=v/g±sqt((v2-2hg)/g2)(v和g后面的2都表示平方),那么也就是说当v2<2hg时会产生复数,但是如果从实际的v2是不可能小于2hg的,所以我感觉复数不能从实际出发去推到,只能从抽象的角度说明一下。

经过计算我们可以知道,当高度是3米时,有两个时间点到达该高度:球向上运动时的时间是0.38秒,球向下运动时的时间是1.62秒。但是如果高度等于10时,结果又是什么呢?根据上面的式子可以发现存在对负数进行开平方运算,我们知道这肯定是不现实的。

第一次使用这个不一般的式子的人是意大利数学家Girolamo Cardano(1501-1576),两个世纪后,德国伟大数学家Carl Friedrich Gause(1777-1855)提出了复数的概念,为后来的应用铺平了道路,他对复数进行这样表示:复数由实数(real)和虚数(imaginary)两部分组成,虚数中的根号负1用i来表示(在这里我们用j来表示,因为i在电力学中表示电流的意思)。我们可以把横坐标表示成实数,纵坐标表示成虚数,则坐标中的每个点的向量就可以用复数来表示,如下图:

上图中的ABC三个向量可以表示成如下的式子:

A = 2 + 6j

B = -4 – 1.5j

C = 3 – 7j

这样子来表达方便之处在于运用一个符号就能把两个原来难以联系起来的数组合起来了,不方便的是我们要分辨哪个是实数和哪个是虚数,我们一般是用Re( )和Im( )来表示实数和虚数两部分,如:

Re A = 2 Im A = 6

Re B = -4 Im B = -1.5

Re C = 3 Im C = -7

复数之间也可以进行加减乘除运算:

这里有个特殊的地方是j2等于-1,上面第四个式子的计算方法是把分子和分母同时乘以c – dj,这样就可消去分母中的j了。

复数也符合代数运算中的交换律、结合律、分配律:

A B = B A

(A + B) + C = A + (B + C)

A(B + C) = AB + AC

二、复数的极坐标表示形式前面提到的是运用直角坐标来表示复数,其实更为普遍应用的是极坐标的表示方法,如下图:

上图中的M即是数量积(magnitude),表示从原点到坐标点的距离,θ是相位角(phase angle),表示从X轴正方向到某个向量的夹角,下面四个式子是计算方法:

我们还可以通过下面的式子进行极坐标到直角坐标的转换:

a + j

b = M (cosθ + j sinθ)

上面这个等式中左边是直角坐标表达式,右边是极坐标表达式。

傅里叶(Fourier)级数的指数形式与傅里叶变换

傅里叶(Fourier )级数的指数形式与傅里叶变换 专题摘要:根据欧拉(Euler )公式,将傅里叶级数三角表示转化为指数表示,进而得到傅里叶积分定理,在此基础上给出傅里叶变换的定义和数学表达式。 在通信与信息系统、交通信息与控制工程、信号与信息处理等学科中,都需要对各种信号与系统进行分析。通过对描述实际对象数学模型的数学分析、求解,对所得结果给以物理解释、赋予其物理意义,是解决实际问题的关键。这种数学分析方法主要针对确定性信号的时域和频域分析,线性时不变系统的描述以及信号通过线性时不变系统的时域分析与变换域分析。所有这些分析方法都离不开傅里叶变换、拉普拉斯变换和离散时间系统的z 变换。而傅里叶变换的理论基础是傅里叶积分定理。傅里叶积分定理的数学表达式就是傅里叶级数的指数形式。 不但傅里叶变换依赖于傅里叶级数,就是纯数学分支的调和分析也来源于函数的傅里叶级数。因此,傅里叶级数无论在理论研究还是在实际应用中都占有非常重要的地位。我们承认满足狄里克莱(Dirichlet )条件下傅里叶级数的收敛性结果,不去讨论和深究傅里叶展式的唯一性问题。 傅里叶级数的指数形式 一个以T 为周期的函数)(t f ,在]2 ,2[T T 上满足狄里克莱条件:1o

)(t f 连续或只有有限个第一类间断点;2o 只有有限个极值点。那么)(t f 在]2 ,2[T T - 上就可以展成傅里叶级数。在连续点处 ∑∞ =++=1 )sin cos (2)(n n n t n b t n a a t f ωω, (1) 其中 T πω2= , ),2,1,0(,cos )(2 22Λ==?-n dt t n t f T a T T n ω, (2) ),3,2,1(,sin )(2 22 Λ==?-n dt t n t f T b T T n ω, (3) 根据欧拉(Euler )公式:θθθsin cos j e j +=,(1)式化为 ∑∞=--?? ????-+++=10222)(n t jn t jn n t jn t jn n j e e b e e a a t f ωωωω ∑∞=-?? ? ???++-+=10222n t jn n n t jn n n e jb a e jb a a ωω, (4) 若令 dt t f T c T T ?-=22 0)(1 Λ,3,2,1,)(1 ]sin )[cos (1 sin )(1cos )(1222 2222 22==-=-=-=????-----n dt e t f T dt t n j t n t f T dt t n t f T j dt t n t f T jb a c T T t jn T T T T T T n n n ωωωωω Λ,3,2,1,)(1 22 ==?--n dt e t f T c T T t jn n ω 综合n n c c c -,,0,可合并成一个式子 Λ,2,1,0,)(1 22 ±±==?--n dt e t f T c T T t jn n ω, (5)

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

离散傅里叶变换及其快速算法

第五章 离散傅里叶变换及其快速算法 1 离散傅里叶变换(DFT)的推导 (1) 时域抽样: 目的:解决信号的离散化问题。 效果:连续信号离散化使得信号的频谱被周期延拓。 (2) 时域截断: 原因:工程上无法处理时间无限信号。 方法:通过窗函数(一般用矩形窗)对信号进行逐段截取。 结果:时域乘以矩形脉冲信号,频域相当于和抽样函数卷积。 (3) 时域周期延拓: 目的:要使频率离散,就要使时域变成周期信号。 ! 方法:周期延拓中的搬移通过与)(s nT t -δ的卷积来实现。 表示:延拓后的波形在数学上可表示为原始波形与冲激串序列的卷积。 结果:周期延拓后的周期函数具有离散谱。 (4) 1。 图1 DFT 推导过程示意图 (5) 处理后信号的连续时间傅里叶变换:∑∑ ∞ -∞=-=π--δ???? ? ????= k N n N kn j s kf f e nT h f H )()()(~ 010/2

(i) )(~ f H 是离散函数,仅在离散频率点S NT k T k kf f == =00处存在冲激,强度为k a ,其余各点为0。 (ii) )(~ f H 是周期函数,周期为s s T NT N T N Nf 100===,每个周期内有N 个不同的幅值。 (iii) 时域的离散时间间隔(或周期)与频域的周期(或离散间隔)互为倒数。 2 DFT 及IDFT 的定义 (1) , (2) DFT 定义:设()s nT h 是连续函数)(t h 的N 个抽样值1,,1,0-=N n ,这N 个点的宽度为N 的DFT 为:[])1,...,1,0(,)()(1 /2-=???? ??==? -=π-∑N k NT k H e nT h nT h DFT s N n N nk j s s N (3) IDFT 定义:设??? ? ??s NT k H 是连续频率函数)(f H 的N 个抽样值1,,1,0-=N k , 这N 个点 的宽度为N 的IDFT 为: ())1,...,1,0(,11 0/21 -==??? ? ? ?=??? ???? ?? ??? ???-=π--∑ N k nT h e NT k H N NT k H DFT s N k N nk j s s N (4) N nk j e /2π-称为N 点DFT 的变换核函数,N nk j e /2π称为N 点IDFT 的变换核函数。它们互 为共轭。 (5) 同样的信号,宽度不同的DFT 会有不同的结果。DFT 正逆变换的对应关系是唯一的, 或者说它们是互逆的。 (6) 引入N j N e W /2π-= (i) 用途: (a) 正逆变换的核函数分别可以表示为nk N W 和nk N W -。 (b) 核函数的正交性可以表示为:() )(* 1 0r n N W W kr N N k kn N -δ=∑-= (c) DFT 可以表示为:)1,,1,0(,)(10 -==? ??? ??∑ -=N k W nT h NT k H N n nk N s s (d) IDFT 可以表示为:)1,,1,0(,1 )(10 -=??? ? ??=∑-=-N n W NT k H N nT h N k nk N s s (ii) ) (iii) 性质:周期性和对称性: (a) 12==π-j N N e W (b) 12 /-==π-j N N e W (c) r N r N N N r N N W W W W ==+ (d) r N r N N N r N N W W W W -=-=+2/2/ (e) )(1Z m W m N ∈?= (f) ),(/2/2Z n m W e e W n N N n j mN mn j mn mN ∈?===π-π- 3 离散谱的性质 (1) 离散谱定义:称)(Z k NT k H H S k ∈??? ? ??=? 为离散序列)0)((N n nTs h <≤的DFT 离散谱,简称离散谱。 (2) 性质:

(完整版)从头到尾彻底理解傅里叶变换算法

从头到尾彻底理解傅里叶变换算法、上 从头到尾彻底理解傅里叶变换算法、上 前言 第一部分、DFT 第一章、傅立叶变换的由来 第二章、实数形式离散傅立叶变换(Real DFT) 从头到尾彻底理解傅里叶变换算法、下 第三章、复数 第四章、复数形式离散傅立叶变换 前言: “关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶变换的描述,但是大都是些故弄玄虚的文章,太过抽象,尽是一些让人看了就望而生畏的公式的罗列,让人很难能够从感性上得到理解”---dznlong, 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。

这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 连续傅里叶变换的逆变换(inverse Fourier transform)为: 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对: 或者是因系数重分配而得到新的变换对: 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。 分数傅里叶变换的物理意义即做傅里叶变换a 次,其中a 不一定要为整数;而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。

傅里叶变换与傅里叶级数

重温傅里叶—笔记篇 本文记录的大多是基础的公式,还有一些我认为比较重要的有参考价值的说明。(如果对这些公式已经很熟悉,可以直接看第三部分:总结性说明) 重温傅里叶—笔记篇 一、傅里叶级数 $关于三角函数系的正交性: 三角函数系包括: 1,cos x,sinx,cos2x,sin 2x,……cos nx,sinnx,…… “正交性”是说,三角函数系中的任何一项与另一项的乘积,在(-π, π) 区间内的积分为0。(任何两相的积总可以展成两个频率为整数倍基频的正余弦函数之和或差,而这两个展开后的正余弦在(-π, π)上积分都为0)。 不同频率(但都是整数倍基频)的两个正弦函数之积,在(-π, π)上积分恒为0。 同频率的两个正弦函数之积,只有在这两个正弦的相位正交时,其在(-π, π)上积分才是0。 三角函数系中除“1”以外的任何一项的平方,在(-π, π)上的积分恒为π,“1”在这个区间上的积分为2π。

$ 上公式! ①当周期为2π时: 式(1): 上式成立的条件是f(x)满足狄立克雷充分条件: 1.在任意有限区间内连续,或只有有限多个第一类间断点; 2.任意的有限区间,都可被分成有限多个单调区间(另一种说法是:任意有限区间内只有有限多个极值点,其实是一样的)

式(1)第一行中的a0/2 就是f(x)的周期平均值,而且第一行的式子只对f(x)是连续函数的情况成立;如果f(x)不连续,则应表示成“(1/2) ×[f(x-0)+f(x+0)]”,即f(x)左右极限的算术平均。下面的类似情况都是这样,之后就不再专门说明,这些大家应该都懂。 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。 ②当周期为2L时(这也是最一般的情形): 式(2): 第一行中的a0/2 就是f(x)的周期平均值; 第三、四行中,n的取值都是:1,2,3,4,……n,……(都为正,且不包含0)。

我对傅里叶变换(DFT,FFT)的理解

我本身不是学通信专业的,相近专业+刻苦最终能够让我理解通信理论方面的一些知识,对此我坚信不移.看了一些天的书,总结一下,现代通信中,傅里叶变换是很重要的组成部分.现代的通讯基本都是数字通信,这里面就要对数字信号处理有很多的了解,而在学信号处理之前,是要学习信号与系统的,看了书后才知道这件事情的,所以非专业的人学习的路往往是弯曲前行的,但这个弯曲的过程却会给人对知识的更深刻的了解. 尤其是随着通讯技术的发展,更多的数学被运用到通讯中,这种数学知识的运用使得本来需要用复杂的硬件来实现的功能最终被软件轻松化解,这样带来的好处就是在产品的设计中硬件的比例会变小,成本也就自然会降低.4G时代的通讯协议中大量的运用了通讯数学方面的计算,而FFT在4G通讯中变得越来越重要,如果对FFT不了解或者不理解的话,想从事4G 相关产品的研究与开发会变得很艰难. 在学校傅里叶变换的时候,多种傅里叶变换让我经常把他们弄混,搞得我晕头转向.向一位学通信的同事询问一些知识,后来发现,哥们总是不往点上说,也就是说那些最关键,最容易混淆的东西,他都不愿意说出来.但这并不能阻碍我,因为我是不怕这种情况的,我就是在这种环境下成长起来的,只要我想学的东西,我从来没被难倒过,克服了太多的困难让我对自己很有信心.后来总结了一通才发现,其实那东西只要知道了要领,最终会绕过很多弯路的. 在通讯中,我们的傅里叶变换时间上是一种在时域上的周期离散信号到频域上的周期离散信号之间的变换,这样才是数字通信,如果变换中有连续的模拟量,那也就不是数字通信了.因此,在学习的使用一定要注意到这一点.有了这个方向,你就该知道应该记住什么,应该学习哪种傅里叶变换了. 学了东西几天不看就要忘记,前几天看的,现在又开始变得模糊了,看来学的东西还是要经常复习才是. 前一篇讲我们在数字通讯中用来进行计算的傅里叶变换一般是指时域和频域上都是周期性的离散信号来讲的.这里我们要明确一下周期信号,非周期信号,连续信号,离散信号到底是什么样的信号,明确这一点对理解DFT比较有好处. 首先,我们先知道一个惯例,在通讯中,时域上的变量一般使用小写字母来表示,而频域上的变量一般使用大写字母来表示. 连续信号,应该不用再说明了吧,也就是说时域上的连续信号是指幅度在时域上随时间连续变化的信号,用x(t)的形式来表达,同理频域上的连续信号就是指幅度在频域上随频率连续变化的信号,一般用类似X(jw)之类的形式来表达.而非连续信号不言而喻就是指有间断的信号,不连续的信号,离散的信号,在数字通信中一般指类似脉冲之类的信号.

傅里叶级数及变换的本质解释和形象阐述

傅里叶级数及变换的本质解释和形象阐述 ——老师不会这么讲,书上也不会讲很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,什么是傅里叶变换,它是怎样一种变换,具体有怎么变换,有没有确切一点或者形象一点的物理解释呢?下面笔者将尝试将自己的理解比较本质和形象地讲出来,形式是思考探讨渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。 首先,要知道傅里叶变换是一种变换,准确点说是投影。傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。但是要是从投影(或者说变换)的角度来说,怎么解释呢?这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基的投影很好理解,那么,傅里

叶变换的正交基函数,也是这样一种相互垂直的关系么???投影也是取余弦值么? 这可以很容易地想清,我们只用余弦或者只用正弦就可以,如cos(2pi*nf0)系列,显然每两个函数图像之间不可能是垂直关系,相反可以看出这是在同一个维度里面的!所以上面两个答案是否定的。 那么,到底是怎么正交、怎么投影的呢。出现这个问题,是因为开始看书的时候我看得太粗心太浅显,没有认真透彻地理解函数正交的含义,没想到那才是最重要最根本的,从那里面再深刻理解一下,问题就迎刃而解。 函数正交和矢量正交完全不一样,是两个概念。函数正交是两个函数,一个不变另一个取共轭值然后逐点相乘再求积分的结果,积分就涉及到一个区间,这也很重要。如果满足:当这两个函数不同时,积分值为0;当两函数相同,积分值不为0。那么这两个函数在这个区间上正交。现在再回过头去看正弦或者余弦函数序列,在各个周期内,都满足上述条件,在正弦和余弦函数之间同样满足,所以这些函数是正交的。至于完备,很明显看出,不去证明了。 第一个问题解决了,现在看怎么去投影了。为更易于理解,我们取指数傅里叶变换为例。众所周知exp(jwt)表示的是一个圆周,我们用来作傅里叶变换的因子,正是这个形式(exp(-jwt)),这里我们还要理解一下傅里叶变换和傅里叶级数的区别,前者求的是复指数傅里叶级数的系数,即每个正交函数的系数(权重),复指数傅里叶级数的正交函数集正是exp(jwt),所以求系数刚好乘以一个共轭

(完整版)傅里叶变换分析

第一章 信号与系统的基本概念 1.信号、信息与消息的差别? 信号:随时间变化的物理量; 消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等 信息:所接收到的未知内容的消息,即传输的信号是带有信息的。 2.什么是奇异信号? 函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。例如: 单边指数信号 (在t =0点时,不连续), 单边正弦信号 (在t =0时的一阶导函数不连续)。 较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。 3.单位冲激信号的物理意义及其取样性质? 冲激信号:它是一种奇异函数,可以由一些常规函数的广义极限而得到。 它表达的是一类幅度很强,但作用时间很短的物理现象。其重要特性是筛选性,即: ()()()(0)(0)t x t dt t x dt x δδ∞ ∞ -∞ -∞ ==? ? 4.什么是单位阶跃信号? 单位阶跃信号也是一类奇异信号,定义为: 10()00t u t t >?=?

12()()()x t ax t bx t =+,其中a 和b 是任意常数时, 输出信号()y t 是1()y t 和2()y t 的线性叠加,即:12()()()y t ay t by t =+; 且当输入信号()x t 出现延时,即输入信号是0()x t t -时, 输出信号也产生同样的延时,即输出信号是0()y t t -。 其中,如果当12()()()x t x t x t =+时,12()()()y t y t y t =+,则称系统具有叠加性; 如果当1()()x t ax t =时,1()()y t ay t =则称系统具有均匀性。 线性时不变系统是最基本的一类系统,是研究复杂系统,如非线性、时变系统的基础。 6.线性时不变系统的意义与应用? 线性时不变系统是我们本课程分析和研究的主要对象,对线性时不变性进行推广,可以得到线性时不变系统具有微分与积分性质,假设系统的输入与输出信号分别为()x t 和()y t ,则 当输入信号为 ()dx t dt 时,输出信号则为() dy t dt ; 或者当输入信号为()t x d ττ-∞ ?时,输出信号则为()t y d ττ-∞ ?。 另外,线性时不变系统对信号的处理作用可以用冲激响应(或单位脉冲响应)、系统函数或频率响应进行描述。而且多个系统可以以不同的方式进行连接,基本的连接方式为:级联和并联。 假设两个线性时不变系统的冲激响应分别为:1()h t 和2()h t , 当两个系统级联后,整个系统的冲激响应为:12()()*()h t h t h t =; 当两个系统并联后,整个系统的冲激响应为:12()()()h t h t h t =+; 当0t <时,若()0h t =, 则此系统为因果系统; 若|()|h t dt ∞ -∞<∞?, 则此系统为稳定系统。 第二章 连续时间系统的时域分析 1.如何获得系统的数学模型? 数学模型是实际系统分析的一种重要手段,广泛应用于各种类型系统的分析和控制之中。 不同的系统,其数学模型可能具有不同的形式和特点。对于线性时不变系统,其数学模型

按频率抽取基2-快速傅里叶逆变换算法_MATLAB代码

function x=MyIFFT_FB(y) %MyIFFT_TB:My Inverse Fast Fourier Transform Time Based %按频率抽取基2-傅里叶逆变换算法 %input: % y -- 傅里叶正变换结果,1*N的向量 %output: % x -- 逆变换结果,1*N的向量 %参考文献: % https://www.doczj.com/doc/035175184.html,/view/fea1e985b9d528ea81c779ee.html N=length(y); x=conj(y); %求共轭 x=MyFFT_FB(x);%求FFT x=conj(x);%求共轭 x=x./N;%除以N end %% 内嵌函数====================================================== function y=MyFFT_FB(x,n) %MYFFT_TB:My Fast Fourier Transform Frequency Based %按频率抽取基2-fft算法 %input: % x -- 输入的一维样本 % n -- 变换长度,缺省时n=length(x) 当n小于x数据长度时,x数据被截断到第n个数据% 当n大于时,x数据在尾部补0直到x 含n个数据 %output: % y -- 1*n的向量,快速傅里叶变换结果 %variable define: % N -- 一维数据x的长度 % xtem -- 临时储存x数据用 % m,M -- 对N进行分解N=2^m*M,M为不能被2整除的整数 % two_m -- 2^m % adr -- 变址,1*N的向量 % l -- 当前蝶形运算的级数 % W -- 长为N/2的向量,记录W(0,N),W(1,N),...W(N/2-1,N) % d -- 蝶形运算两点间距离 % t -- 第l级蝶形运算含有的奇偶数组的个数 % mul -- 标量,乘数 % ind1,ind2 -- 标量,下标 % tem -- 标量,用于临时储存 %参考文献: % https://www.doczj.com/doc/035175184.html,/view/fea1e985b9d528ea81c779ee.html %% 输入参数个数检查

二维傅里叶变换推倒及理解

2D 傅里叶变换理解心得 一、 目的 完整推倒2D 傅里叶变换公式,加深对2D 傅里叶变换公式的理解。 二、 内容 2维傅里叶变换,针对的信号函数是2维空间平面内的函数,2维傅里叶变换也有四种不同的形式。 1、 连续周期时域信号<---->非周期离散频谱。2D_CFS (,)XY f x y 表示2维周期连续信号,可以理解为一幅连续的图像信号(这里(,)XY f x y 可以为复数信号,但工程实践中常为实信号),(,)F k l 表示2维频谱信号,其中,k l 取-∞ +∞上的整数。 00000000002()2()00 00 2()2()0000 2()00 (,).(,).(,).1(,).,,-+X Y X Y j ku x lv y j ku x lv y XY XY X Y X Y j ku x lv y j ku x lv y X Y j ku x lv y XY f x y e dxdy f x y e dxdy F k l e e dxdy dxdy f x y e dxdy k l XY πππππ-+-++-+-+= = = ∞ ∞?? ?? ?????? 取上的实整数 其中X,Y 为(,)XY f x y 在x 坐标和y 坐标上各自的最小正周期。00,u v 表示在x 坐标和y 坐标上各自的基频率,这里有0011 ,u v X Y = =,,k l 取-∞+∞上的整数,对应不同的频率成分,(,) F k l 的图像为离散的,且在x 坐标和y 坐标上的频率间隔分别为0011 ,u v X Y = =。 002() (,)(,).,,-+j ku x lv y XY k l f x y F k l e x y π+∞ +∞ +=-∞=-∞ = ∞∞∑ ∑ 取上的实数 这里,(,)F k l 为复数。 所以得到2D_CFS (2维连续傅里叶级数) 00002() 002()(,).(,),,-+(,)(,).,,-+X Y j ku x lv y XY j ku x lv y XY k l f x y e dxdy F k l k l XY f x y F k l e x y ππ-++∞+∞ +=-∞=-∞????=∞∞???=∞∞?? ?? ∑∑取上的实整数 取上的实数

傅里叶变换和傅里叶级数的收敛问题

1、傅里叶变换和傅里叶级数的收敛问题 由于傅里叶级数是一个无穷级数,因而存在收敛问题。这包含两方面的意思:是否任何周期信号都可以表示为傅里叶级数;如果一个信号能够表示为傅里叶级数,是否对任何t 值级数都收敛于原来的信号。关于傅里叶级数的收敛,有两组稍有不同的条件。 第一组条件:如果周期信号()t x 在一个周期内平方可积,即 ()∞

吉布斯现象: 当简单地把信号频谱截断时,相当于给信号频谱加上了一个矩形窗口函数,正是由于矩形窗口函数的时域特性导致了在间断点处的吉布斯现象的产生。 2、周期序列的傅里叶级数展开和傅里叶变换之间的问题 假定()t x 是一个长度为N 的有限长序列,将()t x 以N 为周期延拓而成的周期序列为()n x ~,则有 ()()∑∞-∞=-= r rN n x n x ~ 或表示为()()()N n x n x =~。于是()n x ~ 与()n x 的关系表示为: ()()()N n x n x =~ ()()()n R n x n x N ~= 将()n x ~表示为离散时间傅里叶级数有: ()()kn N N n W k X N n x --=?=∑10~~ 1 ()()kn N N n W n x k X ?=∑-=10~ ~ 其中()k X ~是傅里叶级数的系数,这样做的目的是使其表达形式与离散时间傅里叶变换的形式相类似。如果将()k X ~的主值周期记为()k X ,10-≤≤N k ,由于以上两式中的求和范围均取为区间0~N-1,在次区间内()n x ~ =()n x ,因此可以得到: ()()kn N N n W n x k X ∑-==10~, 10-≤≤N k ()()kn N N n W k X N n x --=∑=10~1, 10-≤≤N n 表明时域N 点有限长序列()n x 可以变换成频域N 点有限长序列()k X 。显然,DFT 与DFS 之间存在以下关系: ()()()N k X k X =~

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

深入浅出的讲解傅里叶变换

深入浅出的讲解傅里叶变换 我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ————以上是定场诗———— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… 一、嘛叫频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢?

第七章 傅里叶变换.

第七章 傅里叶变换 1.求下列函数的傅氏变换: (1)1,10, ()1, 01,0,; t f t t --<? 解: (1)[()]()j t F f t f t e dt ω+∞--∞ =? 1 101 10 1 1 22sin cos | 2(1cos ).j t j t j t j t e dt e dt e dt e dt j i tdt t j ωωωωωωω ωω -----=-+=-+=-= =- -????? (2) ()()j t F f t e dt ωω+∞--∞ =? 0(1)(1)0 11|.11t j t j t j t e e dt e dt e j j ωωωωω ---∞ -∞ --∞====--?? 6.求下列函数的傅氏变换 (1) 1,0,sgn 1,0;t t t -? (2) ()sin(5).3f t t π =+ 解: (1)已知 1 [()](),[1]2(),F u t F j πδωπδωω = +=由sgn 2()1t u t =-有 12[sgn ]2( ())2().F t j j πδωπδωωω =+-= (2) 由于 1()sin(5)sin 5cos5,322f t t t t π=+=+ 故 [()][(5)(5)](5)(5)].2j F f t πδωδωδωδω= +--++- 7.已知00()[()()]F ωπδωωδωω=++-为函数()f t 的傅氏变换,求().f t

傅里叶变换,原来就这么简单

傅里叶变换,原来就这么简单! ---好文开始了-- 我保证这篇文章和你以前看过的所有文章都不同,这是2012 年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者…… 这篇文章的核心思想就是: 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。 ————以上是定场诗———— 下面进入正题: 抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。这样的例子太多了,也许几年后你都没有再打开这个页面。无论如何,耐下心,读下去。这篇文章要比读课本要轻松、开心得多…… 一、什么是频域 从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。这种以时间作为参照来观察动态世界的方法我们称其为时域分析。而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。 先举一个公式上并非很恰当,但意义上再贴切不过的例子: 在你的理解中,一段音乐是什么呢? 这是我们对音乐最普遍的理解,一个随着时间变化的震动。但我相信对于乐器小能手们来说,音乐更直观的理解是这样的: 好的!下课,同学们再见。

傅里叶级数与傅里叶变换关系与应用

论文题目傅里叶级数与傅里叶变换的关系与应用 目录 摘要: 0 关键词 0 Abstract 0 1绪论 (1) 2傅里叶级数的概念 (1) 2.1周期函数 (2) 2.2傅里叶级数的定义 (2) 3 傅里叶变换的概念及性质 (10) 3.1傅里叶变换的概念 (10) 3.2傅立叶变换的性质 (11) 4傅里叶变换与傅里叶级数之间的区别与联系 (12) 5傅里叶级数和傅里叶变换的应用 (12) 5.1傅里叶级数的应用 (12) 5.2傅里叶变换的应用 (13) 参考文献 (15)

傅里叶级数与傅里叶变换的关系与应用 摘要:傅里叶级数是对周期性现象做数学上的分析,而傅里叶变换则可以看作傅里叶级数的极限形式,它也可以看作是对周期现象进行数学上的分析。除此之外,傅里叶变换还是处理信号领域的一种很重要的算法。 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。很多波形可以作为信号的成分,例如余弦波,方波,锯齿波等等,傅里叶变换作为信号的成分。在电子类学科,物理学科,信号处理学科等众多领域都有着广泛的应用。 傅里叶级数针对的是周期性函数,傅里叶变换针对的是非周期性函数,它们在本质上都是一种把信号表示成复正选信号的叠加,存在相似的特性。 关键词:傅里叶级数;傅里叶变换;周期性 Fourier series And Fourier Transforms Abstract: Fourier series is made mathematical analysis to cyclical phenomenon, and Fourier transform can be seen as the limit form of Fourier series, it also can be regarded as a mathematical analysis of cycle phenomenon. In addition, the Fourier transform is a kind of very important in the field of signal processing algorithms. Fourier transform is a method of signal analysis, it can analyze signal component, also can use these ingredients synthetic signal. Many waveform can be used as a signal of ingredients, such as cosine wave, square wave, sawtooth wave, etc., the Fourier transform as a signal of composition. In electronics disciplines, physics, signal processing disciplines etc many fields have a wide range of applications. Fourier series is for periodic function, Fourier transform for is a periodic function, they are in essence a kind of papers said the signal into a complex signal superposition, similar features. Key words: Fourier series; Fourier Transform; Periodic

快速傅里叶变换FFT.

————第四章———— 快速傅里叶变换FFT 所谓的快速算法,就是根据原始变换定义算法的运算规律及其中的某些算子的特殊性质,找出减少乘法和加法运算次数的有效途径,实现原始变换的各种高效算法。一种好的快速算法可使变换速度提高几个数量级。 由于快速算法很多,而且还在不断研究和发展。较成熟的算法都有现成的程序。所以,通过教材中介绍的四种快速算法,主要学习研究快速算法的基本思想和减少运算量的途径,熟悉各种快速算法的特点、运算效率和适用情况。为今后研究新的快速算法和合理选用快速算法打好基础。 4.1 学 习 要 点 4.1.1 直接计算N 点DFT 的运算量 对于 ()(),1 0∑-==N n kn N W n x k X 1,,1,0-=N k 复数乘法次数: 2 N M c = 复数加法次数: ()1-=N N A c 当1>>N 时,复数乘法和加法次数都接近为2 N 次,随着N 增大非线性增大。 4.1.2 减少运算量的基本途径 DFT 定义式中只有两种运算:()n x 与kn N W 的乘法相加。所以,kn N W 的特性对乘法运算 量必有影响。 (1)根据的对称性、周期性和特殊值减少乘法运算次数。 ①对称性:k N N k N W W -=+ 2 ,()k k N N W 12-=,()k N k N N W W =* - ②周期性:k N lN k N W W =+。 ③kn N W 的特殊值(无关紧要旋转因子): 1;;124 -===±N N N N N W j W W 。对这些因子不能进行乘法运算。 (2)将较大数N 点DFT 分解为若干个小数点DFT 的组合,减少运算量。这正是FFT 能大量节省运算量的关键。 4.1.3 四种快速算法的基本思想及特点 根据上述减少运算量的途径,巧妙地在时域或频域进行不同的抽取分解与组合,得到不

相关主题
文本预览
相关文档 最新文档