第十一章 团簇及纳米材料
- 格式:ppt
- 大小:1.52 MB
- 文档页数:50
纳米粒子团簇是由数个至数百个原子、分子凝聚在一起形成的纳米尺度的超微粒子。
这种团簇的物理和化学性质随所含的原子数目而变化,其空间尺度在几埃至几百埃的范围内,介于原子、分子与大块材料之间,是一种介观物质。
纳米粒子团簇具有许多独特的性质,例如磁性、吸附和排斥作用等。
在液体介质中,纳米颗粒的团聚可分为软团聚和硬团聚两种。
软团聚主要是由颗粒间的静电力和范德华力所致,可以通过一些化学作用或施加机械能的方式来消除;硬团聚形成的原因除了静电力和范德华力之外,还存在化学键作用,因此不易破坏,需要采取一些特殊的方法进行控制。
纳米粒子团簇具有广泛的应用前景。
例如,在量子器件、能量贮存、催化反应、新型材料、生物医学检测和宇航工业等领域都有深入研究和应用。
此外,对纳米材料个体的研究可以揭示其物理和化学性质,是纳米材料学基础研究的重要方面。
而对纳米颗粒群体的研究则可以探索组装纳米材料及其器件,使分子团簇、原子簇的特异性、微观性在宏观上得以表达,使无序的状态变成有序状态,使简单的组装研究向自组装方向发展。
以上内容仅供参考,建议查阅关于“纳米粒子团簇”的学术文献或咨询相关专家以获取更准确的信息。
团簇和纳米体系物理发展团簇和纳米体系是20世纪末发展起来的崭新领域,它所研究的对象是既不同于原子、分子,又不同于宏观物体的中间体系,尺度范围大约在0.1-100nm,这是人们过去从未进行研究的新领域,是人们认识物质世界的新层次。
它的丰富物理内涵,对物理学提出了新的挑战,也是当前物理学与其它学科交叉最富有活力的热点领域。
团簇简介原子和分子团簇,简称团簇(Cluster)或微团簇(microclusters),是几个乃至上千个原子、分子或离子通过物理或化学结合力组成相对稳定的微观和亚微观聚集体,其物理和化学性质随所包含的原子数目而变化。
团簇的空间尺度是几个至几百个纳米的范围,用分子描述显得太大,用小块固体描述又显得太小,许多性质既不同于单个原子分子,又不同于固体或液体,也不能用两者性质作简单线性外延和内插得到。
因此,人们把团簇看作是介于原子分子和宏观固体之间物质结构的新层次,有人称之为物质的“第五态”。
正因为如此,团簇可作为各种物质由原子分子向大块物质转变过程中的特殊物相,或者说它代表了凝聚态物质的初始状态,团簇的研究有助于我们认识大块凝聚物质的某些性质和规律。
团簇科学是研究团簇的原子组态和电子结构、物理和化学性质及其向大块物质演化过程中与尺寸的关联,团簇同外界环境的相互作用规律等。
团簇科学处于多学科交叉的范畴。
从原子分子物理、凝聚态物理、量子化学、表面科学、材料科学甚至核物理学引入的概念和方法交织在一起,构成当前团簇究的中心议题,并逐渐发展成一门介于原子分子物理和固体物理之间的新型学科。
团簇研究的基本问题是:弄清团簇如何由原子、分子一步步发展而成,以及随着这种发展、团簇的性质将如何变化,当尺寸多大时,团簇发展成宏观固体人们知道,由若干原子构成的分子,可在气相、液相和固相中稳定的单元存在,而团簇作为原子聚集体往往产生于非平衡条件,很难在平衡的气相中产生。
当团簇尺寸较小时,每增加一个原子,团簇的结构发生变化,即所谓重构。
团簇和纳米体系物理发展团簇和纳米体系是20世纪末发展起来的崭新领域,它所研究的对象是既不同于原子、分子,又不同于宏观物体的中间体系,尺度范围大约在0.1-100nm,这是人们过去从未进行研究的新领域,是人们认识物质世界的新层次。
它的丰富物理内涵,对物理学提出了新的挑战,也是当前物理学与其它学科交叉最富有活力的热点领域。
团簇简介原子和分子团簇,简称团簇(Cluster)或微团簇(microclusters),是几个乃至上千个原子、分子或离子通过物理或化学结合力组成相对稳定的微观和亚微观聚集体,其物理和化学性质随所包含的原子数目而变化。
团簇的空间尺度是几个至几百个纳米的范围,用分子描述显得太大,用小块固体描述又显得太小,许多性质既不同于单个原子分子,又不同于固体或液体,也不能用两者性质作简单线性外延和内插得到。
因此,人们把团簇看作是介于原子分子和宏观固体之间物质结构的新层次,有人称之为物质的“第五态”。
正因为如此,团簇可作为各种物质由原子分子向大块物质转变过程中的特殊物相,或者说它代表了凝聚态物质的初始状态,团簇的研究有助于我们认识大块凝聚物质的某些性质和规律。
团簇科学是研究团簇的原子组态和电子结构、物理和化学性质及其向大块物质演化过程中与尺寸的关联,团簇同外界环境的相互作用规律等。
团簇科学处于多学科交叉的范畴。
从原子分子物理、凝聚态物理、量子化学、表面科学、材料科学甚至核物理学引入的概念和方法交织在一起,构成当前团簇究的中心议题,并逐渐发展成一门介于原子分子物理和固体物理之间的新型学科。
团簇研究的基本问题是:弄清团簇如何由原子、分子一步步发展而成,以及随着这种发展、团簇的性质将如何变化,当尺寸多大时,团簇发展成宏观固体人们知道,由若干原子构成的分子,可在气相、液相和固相中稳定的单元存在,而团簇作为原子聚集体往往产生于非平衡条件,很难在平衡的气相中产生。
当团簇尺寸较小时,每增加一个原子,团簇的结构发生变化,即所谓重构。
§3. 纳米团簇的结构与性质
3.1 稳定机构与幻数
在团簇质谱分析中、含有某些特殊原子数的团簇的强度呈现峰值,表明这些团簇特别稳定,所含的原子数称为“幻数”。
团簇的幻数序列与构成团簇的原子键合方式有关,金属键来源于自由价电子,半导体键是取向共价键、碱金属卤化物为离子键,惰性元素原子间的作用力为范德瓦尔斯键。
3.2 团簇的性质
3.2.1 量子尺寸效应
尺寸为2.8nm CdS团簇,光吸收谱进—步蓝移,在360nn处有一个宽峰,属1s跃迁。
而高频端也存在吸收峰。
实验表明纳米尺寸的半导体团簇具有可贵的光学性质,即分立的能级跃迂,并与团簇尺寸和形状密切有关。
3.2.2 电子性质
(1)下图给出了钾团簇电离势随n的变化”,可以看出直至n接近100,电离势具有与团族幻数相对应的峰值,在某一壳层连续填充的过程中,电离势近似一常数,但在每一个壳层填满时,电离势发生突变。
(2)带负电铜簇Cu-(n=1-410)进行紫外光电子谱实验,通过观察光电子发射可以直接估计出相应中性团族的电子亲和势。
下图是有各种原子数的铜团簇Cu n-的光电子谱。
3.2.3光学性质
金属团簇对光的响应具有和单个原于及大块固体均不相向的特征。
下图示出尺寸分别为2nm,14nm和20nm铜闭簇嵌埋于氟化理基体中的光
吸收谱,下表给出了实验结果。
随着团簇尺寸增加.峰位红移.峰展宽。