一元二次方程的应用(1)面积问题解析
- 格式:ppt
- 大小:594.50 KB
- 文档页数:11
构造一元二次方程解决图形面积问题天津 张琪列一元二方程解决面积问题是一元二次方程的实际应用中一个重点,也是中考的一个热点. 解题的关键是结合图形列出一元二次方程,从而解决问题.【课本原题】如图1,在一块长92 m 、宽60 m 的矩形耕地上挖三条水渠(水渠的宽都相等),水渠把耕地分成面积均为855的6个矩形小块,水渠应挖多宽?(北师大九年级上册教材P57复习题第15题)思路分析:设水渠的宽度为x m ,借助平移将水平的水渠移到矩形的上面,竖直的两条水渠平移到矩形的右边(如图2),可得空白部分为一个矩形,面积为6个原矩形小块的面积和,据此列方程求解.解答展示:设水渠的宽度为x m.根据题意,得(92-2x )(60-x )=885×6.解得x 1=105(不合题意,舍去),x 2=1.答:水渠的宽度为1 m.方法领悟:有些图形中涉及的基本图形比较分散,我们可以通过适当地平移将图形进行转化,可以方便我们求解. 变式1(2017•凉州区)如图3,某小区计划在一块长为32 m ,宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m 2.若设道路的宽为x m ,则下面所列方程正确的是( )A .(32-2x )(20-x )=570B .32x+2×20x=32×20-570C .(32-x )(20-x )=32×20-570D .32x+2×20x-2x 2=570 解析:仿照上面的课本原题,通过平移后可知草坪的长为(32-2x ),宽为(20-x ),进而可知答案为A..变式2 如图4,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行的且宽度相等的道路,已知道路的宽为正方形边长的41,若道路与观赏亭的面积之和是矩形水池面积的61,求道路的宽. 解析:如图5,利用平移把不规则的图形转化为规则图形.设道路的宽为x 米,则AE =CH =x 米,EF =(20-4x )米,HG =(12-4x )米.根据题意,得x (12-4x )+x (20-4x )+16x2=16×20×12. 整理,得x 2+4x -5=0.解得x 1=l ,x 2=-5(舍去).答:道路的宽为1米. 图5 FG H M E 图4。
一元二次方程应用题专题训练一、面积问题1. 题目- 一个矩形的长比宽多2cm,面积是100cm²,求这个矩形的长和宽。
- 解析:设矩形的宽为x cm,因为长比宽多2cm,所以长为(x + 2)cm。
根据矩形面积公式:面积=长×宽,可得到方程x(x + 2)=100。
展开方程得到x²+2x - 100 = 0。
对于一元二次方程ax²+bx + c = 0(这里a = 1,b = 2,c=-100),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},先计算判别式Δ=b^2-4ac = 2^2-4×1×(- 100)=4 + 400=404。
则x=(-2±√(404))/(2)=(-2±2√(101))/(2)=-1±√(101)。
因为矩形的宽不能为负数,所以取x=-1+√(101)≈ - 1+10 = 9(这里√(101)≈10),长为x + 2=9+2 = 11cm。
2. 题目- 有一块正方形铁皮,从四个角各剪掉一个边长为2分米的正方形后,所剩部分正好围成一个无盖的正方体盒子,这个盒子的容积是27立方分米,求原来正方形铁皮的边长。
- 解析:设原来正方形铁皮的边长为x分米。
那么围成无盖正方体盒子底面的边长为(x - 2×2)=(x - 4)分米,盒子的高为2分米。
根据正方体容积公式V=a^3(这里a为正方体棱长),可得方程(x - 4)^2×2 = 27,即(x - 4)^2=(27)/(2),展开得到x^2-8x + 16=(27)/(2),整理为2x^2-16x+32 - 27 = 0,即2x^2-16x + 5 = 0。
这里a = 2,b=-16,c = 5,判别式Δ=b^2-4ac=(-16)^2-4×2×5=256 - 40 = 216,x=(16±√(216))/(4)=(16±6√(6))/(4) = 4±(3√(6))/(2),因为边长不能为负,所以x =4+(3√(6))/(2)分米。
一元二次方程应用题面积问题1. 引言:面积问题的迷人世界大家好!今天咱们聊聊一元二次方程中的面积问题。
别急着皱眉头,这个话题其实特别贴近咱们的生活,学会了,能让你在解答一些日常问题时得心应手。
比如说,买草坪、规划花园、甚至是设计墙面装饰,这些都能用到哦!2. 面积问题的基础:概念简述2.1 什么是面积问题?说白了,面积问题就是要求你计算一个区域的大小。
在几何中,咱们经常需要找出矩形、三角形或者其他形状的面积。
那一元二次方程为什么会出现在这个问题里呢?好问题!因为有些面积计算需要用到二次方程来解决。
2.2 为什么用一元二次方程?一元二次方程,看起来有点复杂,但其实就是形如 ( ax^2 + bx + c = 0 ) 的方程。
它能帮我们解决一些涉及面积的实际问题,比如说,计算一个长方形的面积,特别是当这个长方形的边长变化时,就需要用到这样的方程了。
3. 实际例子:如何应用一元二次方程解决面积问题。
3.1 示例一:草坪面积假设你想在家里的花园里铺草坪,花园的长度是 ( x ) 米,宽度比长度少 5 米。
那么,花园的宽度就是 ( x 5 ) 米。
你知道草坪的面积是 84 平方米。
我们可以用一元二次方程来找出长度和宽度。
首先,面积 ( A ) = 长度 ( times ) 宽度。
根据题意,有:[ A = x times (x 5) = 84 ]。
简化一下,得到方程:[ x^2 5x = 84 ]接着,把 84 移到方程的另一边:[ x^2 5x 84 = 0 ]现在咱们可以用因式分解法或者求根公式来解这个方程。
因式分解的话,我们可以得到:[ (x 9)(x + 4) = 0 ]。
从中可以得到 ( x = 9 ) 或 ( x = 4 )。
因为长度不能是负数,所以我们取 ( x = 9 ) 米。
这样,花园的宽度就是 ( 9 5 = 4 ) 米。
3.2 示例二:墙面装饰再来一个例子,假如你要装饰一面墙,墙的高度比宽度多 2 米,装饰的总面积是60 平方米。
一元二次方程方程的应用面积问题一元二次方程是数学中的重要概念,它在现实生活中有着丰富的应用。
其中之一就是在解决面积问题时发挥作用。
从简到繁,本文将深入探讨一元二次方程在面积问题中的应用,以便读者能够更深入地理解这一概念。
一、一元二次方程的基本概念在深入讨论一元二次方程在面积问题中的应用之前,我们先来复习一下一元二次方程的基本概念。
一元二次方程通常具有如下形式:\[ax^2 + bx + c = 0\]其中,\(a\)、\(b\) 和 \(c\) 分别是一元二次方程的系数,而 \(x\) 则是未知数。
通过求解一元二次方程,我们可以得到该方程的根,从而找到方程所代表的数学意义。
二、一元二次方程在面积问题中的应用1. 求矩形的面积假设矩形的长为 \(x+3\),宽为 \(x-1\),我们希望求解这个矩形的面积。
根据矩形面积的计算公式 \[面积 = 长 \times 宽\]我们可以建立一个关于矩形面积的一元二次方程,通过求解这个方程,就可以得到这个矩形的面积。
2. 求三角形的面积假设有一个底边长为 \(x+2\),高为 \(2x-1\) 的三角形,我们可以利用一元二次方程来求解这个三角形的面积。
根据三角形面积的计算公式\[面积 = \frac{底边 \times 高}{2}\]我们可以建立一个关于三角形面积的一元二次方程,通过求解这个方程,就可以得到这个三角形的面积。
3. 求圆的面积对于圆的面积问题,我们需要利用一元二次方程的相关知识进行转化。
假设一个圆的半径为 \(x+1\),我们希望求解这个圆的面积。
根据圆的面积公式 \[面积 = \pi \times 半径^2\]我们可以建立一个关于圆面积的一元二次方程,通过求解这个方程,就可以得到这个圆的面积。
三、总结与回顾通过以上的例子,我们可以看到一元二次方程在面积问题中的广泛应用。
无论是矩形、三角形还是圆,我们都可以利用一元二次方程来求解其面积,这为我们在实际生活中的计算提供了便利。