测定核酸含量的几种方法
- 格式:ppt
- 大小:83.00 KB
- 文档页数:12
实验35 核酸的含量测定I——紫外吸收法一、 目的和要求1、 学习紫外吸收法测定核酸含量的原理。
2、掌握利用紫外分光光度计测定核酸含量的方法。
二、 实验原理DNA 和RNA 都有吸收紫外线的性质,最大吸收峰在260nm 波长处。
紫外吸收是嘌呤环和嘧啶环的共轭双键系统所具有的性质,所有嘌呤和嘧啶的物质,都具有吸收紫外线的性质。
核酸和核苷酸的摩尔吸收系数用ɛ(P )表示。
ɛ(P )为每升溶液中含有1摩尔核酸磷时的吸光度(即光密度,或光吸度)。
RNA 的ɛ(P )260nm (pH7)为7700~7800,RNA 中磷的质量分数约为9.5%,因此每毫升溶液中含1.0μg RNA 的吸光度为0.022~0.024。
小牛胸腺DNA 钠盐的ɛ(P )260nm (pH7)为6600,含磷的质量分数为9.2%,因此每毫升溶液中含1.0μg DNA 钠盐的吸光度为0.020。
不同形式DNA 紫外吸光度不同,因为DNA 具有双螺旋结构,当过量的酸、碱或加热使DNA 变性,则出现ɛ(P )260nm 值升高的增色效应现象。
在核苷酸量相同的情况下,ɛ(P )260nm 有以下关系:单核苷酸>单链DNA >双链DNA 。
DNA 变性后,双螺旋结构被破坏,碱基充分暴露,导致紫外吸光度增加,还可根据DNA 溶液在260nm 出吸光度的变化监测DNA 变性情况。
变性DNA复性后,ɛ(P )260nm 值降低,称为减色效应。
蛋白质由于含有芳香氨基酸,也能吸收紫外光。
蛋白质的吸收峰在280nm 波长处,在260nm 处的吸光度仅为核酸的1/10或更低,因此核酸样品中蛋白质含量较低时对核酸的紫外测定影响不大。
RNA在260nm 与280nm 处的吸光度的比值在2.0以上,DNA 在260nm 与280nm 处的吸光度的比值为1.9左右。
当样品中蛋白质含量较高时该比值会下降。
紫外吸收发测定核酸含量简便快速,灵敏度高,一般可达3ng/L 的检测水平。
核酸定量方法及原理广泛用于测定制备物中核酸含量的方法有两类。
如果样品较纯(即蛋白质、酚、琼脂糖以及其他核酸等杂质含量较低时),可通过分光光度法测定其吸收紫外线的量,既简便又准确。
若样品中DNA或RNA含量较低或含有较多杂质,则可以通过溴化乙锭或Hoechst 33258等荧光染料所发出的荧光估测核酸的含量。
DNA或RNA的分光光度法测定核酸的定量是分光光度计使用频率最高的功能。
可以定量溶于缓冲液的寡核苷酸,单链、双链DNA,以及RNA。
核酸的最高吸收峰的吸收波长 260 nm。
每种核酸的分子构成不一,因此其换算系数不同。
定量不同类型的核酸,事先要选择对应的系数。
如:1OD 的吸光值分别相当于50μg / mL的dsDNA,37μg / mL的ssDNA, 40μg/mL的RNA,30μg/ mL的寡核苷酸。
测试后的吸光值经过上述系数的换算,从而得出相应的样品浓度。
测试前,选择正确的程序,输入原液和稀释液的体积,而后测试空白液和样品液。
然而,实验并非一帆风顺。
读数不稳定可能是实验者最头痛的问题。
灵敏度越高的仪器,表现出的吸光值漂移越大。
事实上,分光光度计的设计原理和工作原理,对应吸光值在一定范围内变化,即仪器有一定的准确度和精确度。
另外,还需考虑核酸本身理化性质和溶解核酸缓冲液的pH 值、离子浓度等。
在测试时,离子浓度太高也会导致读数漂移,因此建议使用pH 值一定、离子浓度较低的缓冲液(如TE)可大大稳定读数。
样品的稀释浓度同样是不可忽视的因素:由于样品中不可避免存在一些细小的颗粒,尤其是核酸样品。
这些小颗粒的存在干扰测试效果。
为了最大程度减少颗粒对测试结果的影响,要求核酸吸光值至少大于0.1A ,吸光值最好在0.1-1.5 A。
在此范围内,颗粒的干扰相对较小,结果稳定。
从而意味着样品的浓度不能过低,或者过高(超过光度计的测试范围)。
最后是操作因素,如混合要充分,否则吸光值太低,甚至出现负值;混合液不能存在气泡,空白液无悬浮物,否则读数漂移剧烈;必须使用相同的比色杯测试空白液和样品,否则浓度差异太大;换算系数和样品浓度单位选择一致;不能采用窗口磨损的比色杯;样品的体积必须达到比色杯要求的最小体积等多个操作事项。
核酸含量的测定——紫外吸收法[原理]核苷、核苷酸、核酸的组成成分中都有嘌呤、嘧啶碱基,这些碱基都具有共轭双键 ( -C-C=C-C=C-),在紫外光区的250-280nm 处有强烈的光吸收作用,最大吸收值在260nm 左右。
常利用核酸的紫外吸收性进行核酸的定量测定。
核酸的摩尔消光系数ε(P)表示为每升溶液中含有1摩尔原子磷的光吸收值。
RNA 的ε(P)260nm ()为7 700~7 800,RNA 的含磷量约%,因此每毫升溶液含1μg RNA 的光吸收值相当于~。
小牛胸腺DNA 钠盐的ε(P) 260nm ()为6 600,含磷量为%,因此每毫升溶液含1μg DNA 钠盐的光吸收值相当于。
测出260nm 处的光吸收值,可计算出核酸的含量。
当核酸变性降解时,其紫外吸收强度显著增加,称为增色效应。
蛋白质也有紫外吸收,通常蛋白质的吸收高峰在280nm 波长处,在260nm 处的吸收值仅为核酸的1/10或更低,因此对于含有微量蛋白质的核酸样品,测定误差较小。
若待测的核酸制品中混有大量的具有紫外吸收的杂质,则测定误差较大,应设法除去。
不纯的样品不能用紫外吸收值作定量测定。
从A 260/ A 280的比值可判断样品的纯度。
纯RNA 的A 260/ A 280≥;DNA 的A 260/ A 280≥。
当样品中蛋白质含量较高时,则比值下降。
RNA 和DNA 的比值分别低于和时,表示此样品不纯。
pH 对核酸紫外吸收性有影响,所以在测定时要固定溶液的pH 值。
本实验采用常用的比消光系数法来测定核酸含量。
[方法和步骤]1、测定取洁净离心管甲乙两支,分别准确加入 DNA/RNA 样液,然后向甲管加入蒸馏水,向乙管加入过氯酸-钼酸铵沉淀剂,摇匀后置冰箱内30min ,使沉淀完全。
3000r/min 离心10min ,各吸取上清液转入相应的甲乙两容量瓶内,定容至50mL 。
以蒸馏水作空白对照,使用紫外光度计分别测定上述甲乙两稀释A 260值。
核酸含量的测定——紫外吸收法[原理]核苷、核苷酸、核酸的组成成分中都有嘌呤、嘧啶碱基,这些碱基都具有共轭双键 ( -C-C=C-C=C-),在紫外光区的250-280nm 处有强烈的光吸收作用,最大吸收值在260nm 左右。
常利用核酸的紫外吸收性进行核酸的定量测定。
核酸的摩尔消光系数ε(P)表示为每升溶液中含有1摩尔原子磷的光吸收值。
RNA 的ε(P)260nm (pH7.0)为7 700~7 800,RNA 的含磷量约9.5%,因此每毫升溶液含1μg RNA 的光吸收值相当于0.022~0.024。
小牛胸腺DNA 钠盐的ε(P) 260nm (pH7.0)为6 600,含磷量为9.2%,因此每毫升溶液含1μg DNA 钠盐的光吸收值相当于0.020。
测出260nm 处的光吸收值,可计算出核酸的含量。
当核酸变性降解时,其紫外吸收强度显著增加,称为增色效应。
蛋白质也有紫外吸收,通常蛋白质的吸收高峰在280nm 波长处,在260nm 处的吸收值仅为核酸的1/10或更低,因此对于含有微量蛋白质的核酸样品,测定误差较小。
若待测的核酸制品中混有大量的具有紫外吸收的杂质,则测定误差较大,应设法除去。
不纯的样品不能用紫外吸收值作定量测定。
从A 260/ A 280的比值可判断样品的纯度。
纯RNA 的A 260/ A 280≥2.0;DNA 的A 260/ A 280≥1.8。
当样品中蛋白质含量较高时,则比值下降。
RNA 和DNA 的比值分别低于2.0和1.8时,表示此样品不纯。
pH 对核酸紫外吸收性有影响,所以在测定时要固定溶液的pH 值。
本实验采用常用的比消光系数法来测定核酸含量。
[方法和步骤]1、测定取洁净离心管甲乙两支,分别准确加入 1.0mL DNA/RNA 样液,然后向甲管加入1.0mL 蒸馏水,向乙管加入1.0ml 过氯酸-钼酸铵沉淀剂,摇匀后置冰箱内30min ,使沉淀完全。
3000r/min 离心10min ,各吸取上清液0.5mL 转入相应的甲乙两容量瓶内,定容至50mL 。
核酸的定量分析【目的】1 .掌握定糖法、定磷法和紫外吸收法分别定量分析 DNA 或 RNA 的方法。
2 .熟悉定糖法、定磷法和紫外吸收法分别定量分析 DNA 或 RNA 的原理。
【原理】核酸分子中含有戊糖、磷酸与含氮碱,测定三者之一即可推算出核酸含量。
1 .定糖法通过测定 DNA 或 RNA 分子中戊糖的含量,从而计算出 DNA 或 RNA 含量的方法。
RNA 在强酸环境中加热可水解产生核糖。
核糖在浓酸作用下脱水形成糠醛,糠醛能与 3 , 5 - 二羟基甲苯(地衣酚)缩合成绿色化合物(反应式见第 3 篇实验 11 ),其最大吸收峰波长为 670nm , fe 3+ 或 Cu 2+ 可作为催化剂催化反应,与同样处理的核糖标准液进行比色即可测定出 RNA 的含量。
DNA 在强酸环境中加热水解生成的脱氧核糖与浓酸共热脱水生成ω- 羟基γ- 酮基戊醛,后者与能与二苯胺反应生成蓝色化合物(反应式见实验 11 ),其最大吸收峰波长为 595nm ,与同样处理的脱氧核糖标准液进行比色即可测定出DNA 的含量。
2 .定磷法通过测定核酸中磷的含量,从而计算出 DNA 或 RNA 含量的方法。
核酸含磷量平均为 8.73% ( RNA 含磷量为 8.5~9% ; DNA 含磷量为 9.2% )。
用强酸使核酸分子中的有机磷消化成无机磷,在酸性溶液中磷酸与钼酸作用生成磷钼酸,后者在还原剂(如抗坏血酸、α-1 , 2 , 4- 氨基萘酚磺酸等)存在时,立即被还原为蓝色的钼蓝(反应式见实验 11 ),其最大吸收峰波长为660nm 。
当无机磷浓度在 2.5~25μg/ml 范围内时,溶液的吸光度值与磷含量成正比。
本法测得的磷含量为样品中的总磷量,需同时测定未消化样品中无机磷的含量,将测得的总磷量减去原无机磷含量即为样品中核酸的含磷量,进而计算核酸的含量。
3 .紫外吸收法核酸分子中的嘌呤环和嘧啶环的共轭双键具有吸收紫外光的性能,最大吸收峰波长为 260nm ,不论是核苷、核苷酸或核酸,在此波段内都具有吸收紫外光的特性。
核酸的定量与纯度的测定在分子生物学实验中,核酸提取需要进行其纯度和浓度的测定。
目前实验室常用的测定方法主要有分光光度法、荧光染料法、PCR法和杂交定量法等。
分光光度法分光光度法主要包括紫外分光光度法、定糖定磷法及基于酶催化的核酸定量方法等。
(1)紫外分光光度法紫外分光光度法基于DNA链上碱基的苯环结构在紫光区具有较强吸收,DNA/RNA在260nm 处有最大的吸收峰,蛋白质在280nm处有最大的吸收峰,盐和小分子则集中在230nm处。
因此,可以用260nm波长进行分光测定核酸浓度,OD值为1相当于大约50μg/ml双链DNA,单链DNA浓度约为33µg / ml,RNA约为40μg/ml,寡核苷酸约为35μg/ml。
如用1cm光径,用H2O稀释DNA/RNA样品n倍并以H2O为空白对照,根据此时读出的OD260值即可计算出样品稀释前的浓度:DNA(mg/ml)=50×OD260读数×稀释倍数/1000RNA(mg/ml)=40×OD260读数×稀释倍数/1000。
A280nm是蛋白和酚类物质最高吸收峰的吸收波长,比值可进行核酸样品纯度评估:纯DNA 的A260/A280比值为1.8,纯RNA为2.0。
假如比值低,表示受到蛋白(芳香族)或分类物质的污染,需要纯化样品。
比值=1.5相当于50%蛋白质/DNA溶液。
A230nm是碳水化合物最高吸收峰的吸收波长,比值可进行核酸样品纯度评估:纯DNA和RNA的A260/A230比值为2.5。
若比值小于2.0标明样品被碳水化合物(糖类)、盐类或有机溶剂污染,需要纯化样品。
A320nm或A340nm为检测溶液样品的浊度,该值应该接近0.0。
假如不足,标明溶液中有悬浮物,需要纯化样品。
实验步骤1、将制备的DNA悬浮溶解于TE缓冲液中pH8.0,10mmo1/L的Tris缓冲液,内含(1mmol/L EDTA)或悬浮溶解在灭菌水中(依据DNA含量加水)。
检测核酸的方法
核酸检测是一种常见的生物学检测方法,它可以用来检测DNA 或RNA的存在和数量。
在医学、科研和法医领域,核酸检测被广泛应用于疾病诊断、基因分析、病毒检测等方面。
本文将介绍几种常见的核酸检测方法,包括PCR法、原位杂交法和基因芯片法。
首先,PCR法是一种常用的核酸检测方法。
它利用DNA聚合酶酶链反应(PCR)技术,通过不断复制DNA片段来扩增目标DNA的数量,从而实现对目标DNA的检测。
PCR法具有高灵敏度、高特异性和高效率的特点,因此在病毒检测、基因突变分析等方面得到了广泛应用。
其次,原位杂交法是另一种常见的核酸检测方法。
它通过将标记有荧光或放射性同位素的DNA或RNA探针与待检测样品中的靶标DNA或RNA结合,然后利用显微镜或放射自显影等技术来检测目标核酸的存在和位置。
原位杂交法适用于细胞遗传学研究、病毒感染检测等领域。
最后,基因芯片法是一种高通量的核酸检测方法。
它利用微阵列芯片上固定的数千至数百万个核酸探针,可以同时对样品中的大
量核酸进行检测和分析。
基因芯片法在基因表达分析、基因型鉴定、病毒检测等领域具有广泛的应用前景。
综上所述,核酸检测是一项重要的生物学检测技术,在医学、
科研和法医领域都有着广泛的应用。
不同的核酸检测方法各有特点,选择合适的方法取决于具体的检测需求和实验条件。
希望本文介绍
的几种核酸检测方法能够为相关领域的研究人员和实验人员提供参考,促进科学研究和临床诊断的发展。