有机光电材料
- 格式:doc
- 大小:67.50 KB
- 文档页数:8
目录目录 ------------------------------------------------------------------------------------------- 1 1前言----------------------------------------------------------------------------------------- 2 2 有机光电材料 ------------------------------------------------------------------------------ 22.1光电材料的分类 --------------------------------------------------------------------- 22.2有机光电材料的应用 ---------------------------------------------------------------- 32.2.1有机太阳能电池材料--------------------------------------------------------- 32.2.2有机电致发光二极管和发光电化学池 --------------------------------------- 42.2.3有机生物化学传感器--------------------------------------------------------- 42.2.4有机光泵浦激光器 ----------------------------------------------------------- 42.2.5有机非线性光学材料--------------------------------------------------------- 52.2.6光折变聚合物材料与聚合物信息存储材料 ---------------------------------- 52.2.7聚合物光纤------------------------------------------------------------------- 62.2.8光敏高分子材料与有机激光敏化体系 --------------------------------------- 62.2.9 有机光电导材料 ------------------------------------------------------------- 62.2.10 能量转换材料 -------------------------------------------------------------- 72.2.11 染料激光器----------------------------------------------------------------- 72.2.12 纳米光电材料 -------------------------------------------------------------- 73 光电转化性能原理 ------------------------------------------------------------------------- 74 光电材料制备方法 ------------------------------------------------------------------------- 84.1 激光加热蒸发法 ------------------------------------------------------------------- 84.2 溶胶-凝胶法 ---------------------------------------------------------------------- 84.3 等离子体化学气相沉积技术(PVCD)------------------------------------------ 94.4 激光气相合成法 ------------------------------------------------------------------ 95 光电材料的发展前景---------------------------------------------------------------------- 101前言有机光电材料是一类具有光电活性的特殊有机材料。
有机光电材料有机光电材料是一种在有机化学领域中新兴的材料类型。
它们具有与传统无机光电材料不同的性质和应用优势。
有机光电材料主要由富含共轭结构的有机分子构成,这些分子能够通过电子共轭传导电荷和光激发。
有机光电材料具有以下几个主要特点:第一,有机光电材料可以通过合成方法进行精确控制,能够获得不同结构和性质的材料,以适应不同的应用需求。
由于有机物的结构多样性,可以通过合理设计和合成合适的分子结构来调控其光电性质。
第二,有机光电材料具有较高的色散率和较低的吸收率,使其在光电器件中具有更高的效率。
它们通常能够吸收比较窄的光谱范围,并能够将吸收的能量转化为可用的电能或光能。
第三,有机光电材料具有较低的制备成本和工艺灵活性。
相对于传统的无机光电材料,有机光电材料在制备过程中不需要高温或高压条件,且可以采用溶液法直接涂覆在不同的基底材料上制备器件。
第四,有机光电材料具有良好的机械柔性和可塑性。
这使得它们可以用于柔性光电器件的制备,例如柔性太阳能电池和柔性显示器件。
有机光电材料在光电器件中具有广泛的应用。
其中,最常见的应用是有机太阳能电池。
有机太阳能电池采用有机光电材料作为吸光层,以吸收光能并将其转化为电能。
有机太阳能电池具有相对较高的光电能量转换效率,并且可以在低光照条件下进行工作。
此外,有机光电材料还可以用于有机发光二极管(OLED)、有机光电传感器、有机薄膜晶体管等器件的制备。
这些器件在显示、光通信、光检测等领域具有广泛的应用前景。
总的来说,有机光电材料作为一种新型的光电材料,在能源转换和信息显示等领域表现出良好的应用潜力。
随着对其性能和制备工艺的不断研究和改进,有机光电材料的性能将得到进一步提升,且其应用领域将不断扩大。
文献综述:有机光电材料的研究现状及挑战有机光电材料是一类具有光电活性的有机材料,其研究涉及到材料科学、物理化学、生物学等多个领域。
近年来,有机光电材料的研究成果越来越丰富,大量的新型有机光电材料不断涌现。
本文将简要综述有机光电材料的研究现状及挑战。
一、有机光电材料的研究现状1. 有机发光材料有机发光材料具有高亮度、高效率、长寿命等优点,广泛应用于显示器、照明、传感器等领域。
目前,有机发光材料的研究主要集中在发展新型的荧光染料和荧光聚合材料,以及探索其在太阳能电池、生物成像、信息存储等领域的应用。
2. 有机光电检测材料有机光电检测材料是另一类研究热点。
随着数字化和智能化的加速发展,光电检测材料已成为高科技领域的关键材料之一。
目前常见的有机光电检测材料有聚合物、小分子、富勒烯等,其在光电器件、生物传感器、光伏器件等领域展现出良好的应用前景。
3. 有机光催化材料有机光催化材料是指通过光催化反应来实现化学反应的材料。
在光催化材料领域,通过改变有机半导体材料的组成、晶体结构等方面来提高材料的光催化性能,从而实现更高效、更经济的应用。
此外,有机光催化材料还可以用于环境修复、污水处理、空气净化等领域。
二、有机光电材料的挑战1. 稳定性问题尽管有机光电材料具有许多优点,但其稳定性问题是限制其广泛应用的主要因素之一。
有机光电材料的稳定性主要受到环境因素(如温度、湿度、氧气)的影响,同时也与其自身的化学结构有关。
因此,如何提高有机光电材料的稳定性是其研究的重要方向。
2. 效率问题尽管有机光电材料的发光效率和光电转换效率较高,但在实际应用中仍存在效率问题。
这主要是由于有机光电材料的载流子传输性能和界面效应等问题引起的。
因此,如何提高有机光电材料的效率也是其研究的重要方向。
3. 制造成本问题有机光电材料的制造成本较高,这也是限制其广泛应用的原因之一。
因此,如何降低有机光电材料的制造成本,如通过改进制造工艺、优化器件结构等方法,也是其研究的重要方向。
有机光电材料
有机光电材料是一种具有潜在应用前景的新型材料,它们具有较高的光电转换效率、柔韧性和可塑性,适用于太阳能电池、有机发光二极管(OLED)、有机场效应晶体管(OFET)等领域。
有机光电材料的研究和开发对于推动可再生能源技术的发展、提高电子产品的性能和降低制造成本具有重要意义。
首先,有机光电材料在太阳能电池领域具有广阔的应用前景。
相比传统的硅基太阳能电池,有机光电材料具有较低的制造成本和更高的柔韧性,可以制成卷曲的太阳能电池片,适用于建筑物表面、车辆外壳等曲面结构的应用场景,具有良好的可塑性和适应性。
其次,有机光电材料在OLED领域也有着重要的应用价值。
OLED作为一种新型的平面光源,具有较高的亮度、对比度和色彩饱和度,而且可以制成柔性显示器件,适用于可穿戴设备、柔性屏幕等领域。
有机光电材料的研究和开发,可以进一步提高OLED的光电转换效率和延长器件的使用寿命,推动OLED技术在电子产品中的广泛应用。
此外,有机光电材料还可以用于制备OFET,用于柔性电子器件和柔性电路的制备。
有机光电材料的高载流子迁移率和较低的加工温度,使得它们适用于柔性基板上的电子器件制备,可以实现弯曲、折叠和拉伸等多种形变状态下的稳定工作,具有重要的应用潜力。
总的来说,有机光电材料具有广阔的应用前景和重要的科研价值,研究人员应该加强对其性能和制备工艺的研究,推动其在太阳能电池、OLED、OFET等领域的应用,为新能源技术和电子产品的发展做出贡献。
希望有机光电材料的研究和开发能够取得更多的突破,为人类社会的可持续发展和科技进步做出更大的贡献。
有机光电功能材料
有机光电功能材料是指结构为有机分子的光电功能材料,它们的主要性质是具有光电功能的正孔(即电子)和负孔(即空穴)的双重效应。
因此,有机光电功能材料同时具有光传感器的特性和电子器件的器件特性,因而对于计算机、移动设备、传感器、汽车等高科技系统具有重大的应用价值。
有机光电功能材料在结构上比传统的无机材料更复杂,其功能相对复杂。
它在电子和光电领域中同时具有良好的电子传导性和光学性能,可以用于制备多种光学和电子器件。
在电子方面,它可以用作光电探测器、晶体探测器、光电二极管和光电开关等器件;在光学方面,它可以用作发光二极管、光电转换器和可见光传感器等电气设备。
有机光电功能材料的主要构成成分是有机半导体(OSC)和有机磷光材料(OLEDs)。
有机半导体可以用来制备光电探测器、晶体探测器等电子器件,同时具有较高的光电转换效率。
由于有机半导体的制备方法简单,可以大量生产,大大降低了制备有机光电功能元件的成本。
有机磷光材料是一种聚合物类的发光元件,具有高效、节能、可调节亮度等优点,可以用来制备发光二极管和可见光传感器。
目前,有机光电功能材料的研究和应用正在不断发展,主要在以下几个方面:首先,在材料化学方面,研究者正在研究如何改善有机材料的分子结构以改善性能;其次,在器件方面,研究者正在研究如何设计新的有机光电功能器件;再次,在应用上,有机光电功能材料正在被用于生物传感、汽车照明、量子计算机等新兴应用领域。
总的来说,有机光电功能材料的发展具有重要的战略意义,可以有效地推动光电技术的发展,为能源、环境和人类和社会发展做出贡献。
随着有机光电功能材料的技术不断成熟,在新型能源、智能系统、交通安全等诸多领域发挥着重要作用。
有机光电材料的研制与应用一、前言有机光电材料是指由有机分子为基础的光电材料。
有机光电材料与传统的无机光电材料相比具有许多优点,如便于合成、易于加工、柔性可塑性强等等。
有机光电材料的研究与应用已经进入了一个快速发展的时期,尤其是在有机太阳能电池、有机光电显示器等领域,已经取得了一些显著的成果。
本文旨在介绍有机光电材料的相关知识。
二、有机光电材料的种类有机光电材料按其用途和性质可分为多种类型,包括有机光电导体、有机半导体、有机电致变色材料、有机发光材料等等。
(一)有机光电导体有机光电导体的主要特点是导电性能好,能够有效地传递电子和能量。
有机光电导体广泛应用于光电器件、光伏电池、光电传感等方面。
用于隔离污染物和杂质物质污染物时,也可以有效地清除烟气、噪音等,甚至可以用于净化水和空气。
(二)有机半导体有机半导体主要包括有机晶体管材料、有机薄膜晶体管材料、有机光电探测器材料、有机薄膜电容器等等。
有机半导体的特点是具有一定的半导体特性,可用于制备高性能的光电器件和传感器等。
(三)有机电致变色材料有机电致变色材料是指通过电场作用改变材料的光学特性,例如改变其吸收波长、透明度、色度等等。
有机电致变色材料可应用于智能遮阳窗、信息显示器、光学开关等方面,有广泛的应用前景。
(四)有机发光材料有机发光材料具有发光性能,包括有机荧光材料、有机磷光材料、有机电致发光材料等。
有机发光材料可用于制备有机白光LED光源、柔性显示器等领域,被认为是未来新一代照明光源的发展方向。
三、有机光电材料的研制有机光电材料的研制主要包括化学合成、形态控制、材料运输等方面。
其中,化学合成是最为基础的研究领域,目前已经发展出了一系列的有机分子合成方法。
形态控制则是指通过化学方法、合理的晶化步骤等方式,控制材料的晶体形态、尺寸和界面性质等。
材料运输则是指研究材料在隧道、通道、管道等微观空间中的输运规律,可提高材料电子传输的效率。
四、有机光电材料的应用有机光电材料已经广泛应用于多个领域。
Design, Fabrication, and Performance Investigation of OrganicOptoelectronic DevicesChong-an DiABSTRACTOrganic optoelectronic materials and devices, which is also called …plastic electronics‟, att rached focus attention in past decade due to their potential application in large area and low cost flexible displays, solid-state lighting, radio frequency identification (RFID) cards and electronic papers etc. As important parts of organic optoelectronic devices, organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic light-emitting transistors (OLEFTs) have made great achievements. The performance of these optoelectronic devices depends not only on the properties of the organic semiconductors involved, but is also dramatically affected by the properties of other functional layers and the nature of the interfaces present. Therefore, interface engineering, a novel approach towards high-performance OFETs, is a vital task for organic optoelectronic devices. Electrode/organic interfaces, dielectric/organic interfaces, organic/organic interfaces and organic/atmosphere interfaces are the three frequently reported interfaces in organic devices. In this dissertation, a systematic research has been carried out centering on the interface engineering of organic optoelectronic devices. With investigation of interface phenomenon and effective interface modification, dramatic decrease of power consumption and cost, obvious ehancement of device performance and improvement of stability are achieved. The main results are obtained as follows:1: Exploration of novel anode modification approach for OLEDs to reduce the power consumption and enhance the efficiency.Power consumption and light emitting property are the key parameters for the real application of organic light-emitting diodes. In fact, modification of electrodes is a widely applied approach to improve device performance of OLEDs since it can optimize the devices performance without change of organic functional materials. We demonstrated that the improvement of interface contact between ITO anode and organic semiconductor layer can be realized by the introduction of ultrathinhexadecafluoro copper phthalocyanine (F16CuPc) layer. Besides, The modification brings on formation of dipole layer on the ITO surface, which in turn leads to workfunction enhancement of ITO anode and dramatic decrease of hole injection barrier. With device design and optimization, we fabricated high performance low-operation voltage single-layer, double-layer and multi-layer OLEDs with tris(8-quinolinolato)aluminum (Alq3) as emissive layer. For the single layer Alq3 devices, the modification of the anode results in the significant enhancement in the current efficiency by about 30 times. The operation voltage decrease obviously for double layer devices, with minimum turn-on voltage of 2.6 V. As for multilayer OLEDs, the maximum current efficiency up to 7.63 cd/A and low turn-on voltage of 2.89 V are obtained by improving carrier density in the combination zone and optimization of carrier balance. The performance is one of the best one for OLEDs with Alq3 light emitting layer(Patent Number:ZL 200510126485.X; Di CA, et al. Appl. Phys. Lett. 2007, 90, 133508;Di CA, et al. Appl. Phys. Lett. 2006, 89, 033502).2: Development of novel organic light-emitting transistor structure and realization of light emission under ambient atmosphere.Organic light-emitting transistor is a highly integrated organic optoelectronic devices since both field-effect and light emitting can be realized in the same channel simultaneously. With optimized photolithograph techniques, we fabricated OFETs with Au and Al serves as source and drain electrode, respectively. Then, the laterally arranged heterojunction structures are achieved by successively inclined deposition of the field-effect and light-emitting materials. It has been observed that introduction of Au-Al source-drain electrodes and laterally arranged heterojunction structures result in enhancement of electron injection and improved carrier density of both holes and electrons. Besides, the designed device structure offers an ideal and widely applicable one to realize effective integration of field-effect property and light emission. It is because the two kind of organic semiconductors could take full use of their own advantages. We fabricated both small molecular and polymer based OLEFTs with pentacene, Alq3and TPA-PPV, respectively(Patent Number: ZL 200610089448.0;ZL 200510130758.8; Di CA, et al. Appl. Phys. Lett. 2006, 88, 121907;Di CA, et al.Adv. Funct. Mater. 2007, 17, 1567.). The results constitute first demonstration of organic light-emitting transistor under ambient atmosphere(Cicoira, F. et al. Adv. Funct. Mater. 2007, 17, 3421;Cicoira, F. et al. J. Mater. Chem. 2008, 18, 158).3: Exploration of novel approach to fabricate high performance low-cost OFETs.Low cost plays dominant role in determining the further development of OFETs. Source-drain electrodes are important parts in OFETs. Gold has been the most widely applied source–drain electrode for OFETs to date, due to its high conductivity, good stability, and formation of excellentcontact with many p-type organic semiconductors. However, the high cost of gold is an adverse factor in practical applications. On the other hand, low-cost electrodes such as Cu and Ag, are unsuitable for most p-type OFETs due to their relatively low workfunction. We provide a simple method to modify the bottom contact Cu or Ag electrodes with organic charge transfer compounds (Cu-TCNQ or Ag-TCNQ). The modification enhanced the workfunction of electrodes and improved the electrode/organic semiconductor contact which results in dramatic improvement of carrier injection. Therefore, we fabricated low cost Cu or Ag based OFETs with device performance comparable with the one of Au based OFETs. Besides, we investigated the influence of electrode morphology on the device performance by the formation of nanosized Cu electrodes. It has been discovered that introduction of source-drain electrodes with proper roughness is helpful to reduce the contact resistance. Fabrication of OFETs based on many organic semiconductors proved that it is a universal approach to improve the performance of bottom contact devices(Patent Number: 200610089591.X;Di CA, et al. J. Am. Chem. Soc. 2006, 128, 16418; Di CA, et al. Phys. Chem. Phys. Chem.2008, 10, 2302 (Front Cover)). The result possess potential application in the patterning of organic crystals and construction of corresponding devices(Di CA et al. Chem. Mater. 2009, 21, 4873).4: Discovery and investigation of high performance top contact OFETs with Cu electrodes. The typical OFET electrode structure, with a bottom gate, can be divided into top-contact and bottom-contact configurations. With varied electrode deposition sequence, the OFETs with different electrode structure required different modification techniques and exhibit varied device performance. Top-contact OFETs usually have a good electrode/organic layer contact and exhibit high device performance. We discovered that many organic semiconductors based OFETs with Cu top-contact electrodes show comparable device performance with the one of Au top-contact devices. The most excellent performance up to 0.8 cm2V-1s-1 can be obtained for pentacene FETs with Cu top-contact. The high performance is result from good electrode/organic layer contact and the formation of Cu x O during the electrode deposition process or device storage in air. The spontaneous formed Cu x O possess matched energy level with many organic semiconductors and bring on improved device performance (Patent Application Number: 200710118153.6;Di CA, et al. Adv. Mater. 2008, 20, 1286.). The results thus provide an effective way towards high performance low cost top-contact OFETs (High-tech Materials Alert, 2008, 25, 9).5: Development of novel graphene patterning method and its applications in OFETs. Graphene, single or few layer of two dimensional graphite, received great interest among condensed physics and material sciences due to its unusual and stable structure. We developed a novel vapor deposition method with ethanol as the carbon source to fabricate patterned gragheneusing the patterned copper or silver and demonstrated its application in OFETs. The patterned graphene exhibit good contact with organic semiconductors, with low carrier injection barrier for p-type OFETs and can serve as excellent source-drain electrodes for OFETs. The pentacene based bottom-contact devices with channel length of 5 m can reach high mobility of 0.53 cm2V-1s-1 which is one of the best result for pentacene bottom contact devices with bare SiO2 dielectric layer (Patent Application Number: 200710177814.2; Di CA, et al.Adv. Mater. 2008, 20, 3289). The result demonstrates novel approach to fabricate patterned graphene and open a new application of graphene in OFETs (NPG, Asia Materials, /asia-materials/highlight.php?id=291;Pang, SP et al. Adv. Mater. 2009, 21, 3488;Cao Y, et al. Adv. Funct. Mater. 2009, 19, 2743). The result is the first experimental step towards integrating graphene and conjugated organics (Burghard, M. et al. Adv. Mater. 2009, 21,2586.).6: Discovery of relationship between the device stability and dielectric/organic layer interfaces and fabrication of high performance pentacene FETs.Device stability, a hot topic in the organic optoelectronic device field, is widely believed to be related to the properties of organic semiconductors. Pentacene is the most widely investigated organic semiconductor for OFETs. However, poor device stability is the key shortcomings that impede its real application. We discovered that the device stability of pentacene OFETs in air is strongly related to the properties of dielectric layers. The device performance of pentacene FETs with bare SiO2 can maintain for 7 months. By the investigation of relationship between the device stability and dielectric layer surface energy, we suggest the pentacene aggregation and phase transfer should be responsible for the device performance degradation for devices with low surface energy dielectric layer (OTS modified SiO2). We obtained high performance pentancene FETs with high mobility up to 1.8 cm2V-1s-1 and excellent stability by the optimization of dielectric layer(Di CA, et al. Phys. Chem. Chem. Phys. 2009, 11, 7268.).In summary, centering on investigation of interface phenomenon, we fabricated high performance OLEDs, OFETs and OLEFTs by the device design and optimization. Also, a series of novel interface approaches were explored to improving the device performance and stability, lowering the the fabrication cost and power consumption (Di CA, et al.J. Phys. Chem. B 2007, 111, 14083(Feature Article, Front Cover), Di CA, et al. Acc. Chem. Res. 2009,42,1573). These results might boost further development of organic optoelectronic devices towards real applications.Key words: organic light-emitting diodes, organic field-effect transistors, organiclight-emitting transistors, interface, electrode modification中文摘要被称为“塑料电子学”的有机光电材料与器件因其在大面积和低成本的柔性显示、平板照明、射频标签和电子纸等方面的广阔应用前景在过去二十年中备受关注。