三角形全部知识点的总结
- 格式:doc
- 大小:112.00 KB
- 文档页数:6
图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
4、三角形的面积三角形的面积= 1 ×底×高2考点二、全等三角形1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
2、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“S A S”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“A S A”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“AA S”)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有 HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“H L”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论 1:等腰三角形顶角平分线平分底边并且垂直于底边。
什么是三角形知识点总结一、三角形的形状与性质1. 三角形的定义三角形是一个由三条边和三个角组成的多边形。
每个角的度数都是180度。
根据边的长度、角的大小和形状,三角形可以分为不同的种类。
2. 三角形的性质(1)三角形的内角和等于180度。
(2)三角形的外角和等于360度。
(3)三角形的两边之和大于第三边。
(4)三角形的两角之和大于第三角。
(5)三角形的任意一边都小于其余两边之和。
二、三角形的分类1. 根据边的长度(1)等边三角形:三条边的长度相等。
(2)等腰三角形:两条边的长度相等。
(3)普通三角形:三条边的长度各不相同。
2. 根据角的大小(1)锐角三角形:三个角都小于90度。
(2)直角三角形:一个角为90度,另外两个角之和为90度。
(3)钝角三角形:至少有一个角大于90度。
3. 根据边和角的关系(1)等腰锐角三角形:两个角相等且都小于90度。
(2)等腰直角三角形:一边为90度,另外两边相等。
(3)等腰钝角三角形:两个角相等且至少有一个角大于90度。
三、三角形的周长和面积计算公式1. 周长的计算三角形的周长为三条边的和,即P=a+b+c。
2. 面积的计算(1)正弦定理:S=1/2*a*b*sinC。
(2)余弦定理:S=1/2*a*b*cosC。
(3)海伦公式:S=√p*(p-a)*(p-b)*(p-c),其中p为半周长。
四、三角形的重心、外心、内心和垂心1. 重心三角形内的一点,使其到三个顶点的距离的平方和最小,这个点叫做三角形的重心。
重心离三个顶点的距离成比例为1:1:1。
2. 外心三角形外接圆的圆心叫做外心。
外心是垂直于三角形的三条边的交点。
3. 内心三角形内切圆的圆心叫做内心。
内心到三角形三条边的距离相等。
4. 垂心三角形三条高的交点叫做垂心。
垂心到三条边的距离的积最小。
五、三角形的基本定理和应用1. 勾股定理勾股定理是三角形中的一条重要定理,它描述了直角三角形中三条边的关系。
勾股定理的表达式为a²+b²=c²。
三角形知识点全面总结1、三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、HL (RtA^RtA)2、等腰三角形的判定及性质性质:①两腰相等②等边对等角(即“等腰三角形的两个底角相等”)③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)判定:①有两边相等的三角形是等腰三角形②有两个角相等的三角形是等腰三角形(等角对等边)结论总结:等腰三角形底边上的任意一点到两腰的距离之和等于一腰【即:DE+DF=CP,(D为BC上的任意一点)】3、等边三角形的性质及判定定理性质:①三条边都相等②三个角都相等,并且每个角都等于60度③三线合一(即“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)④等边三角形是轴对称图形,有3条对称轴。
判定:①三条边都相等的三角形是等边三角形②三个角都相等的三角形是等边三角 形。
③有一个角是60度的等腰三角形是等边三角形。
结论总结:①高二亘边【即: AD =巨AB 】 2 2②面积二三3边2【即:S=三3AB 2】4 A ABC 4 4、直角三角形的性质及判定 性质:①两锐角互余②勾股定理③30°角所对的直角边等于斜边的一半。
④斜边中 线等于斜边一半判定:①有一个内角是直角的三角形是直角三角形②勾股定理的逆定理(即“如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
”)5、线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:①定义法②到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质③一边中线等于这边一半的三角形是直角三角形结论总结:直角三角形斜边上的高二 直角边的乘积 斜边(1)线段垂直平分线的性质及判定【即:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线:分别以线段的两个端点人、B 为圆心, 以大于AB 的一半长为半径作弧,两弧交于点乂、N ;作直线MN ,则直线MN 就是线段 AB 的垂直平分线。
三角形知识梳理1、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
2、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
3、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的角关系三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
等角的补角相等,等角的余角相等。
5、三角形的面积三角形的面积=21×底×高应用:经常利用两个三角形面积关系求底、高的比例关系或值 6、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。
7、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
高中所有三角形知识点总结一、三角形的分类根据三角形的边长和角度的不同,三角形可以分为以下几种类型:1.按边长分类(1)等边三角形:三条边长度相等的三角形。
(2)等腰三角形:两条边长度相等的三角形。
(3)普通三角形:三条边长度都不相等的三角形。
2.按角度分类(1)锐角三角形:三个内角都小于90°的三角形。
(2)直角三角形:一个内角为90°的三角形。
(3)钝角三角形:一个内角大于90°的三角形。
二、三角形的性质1. 三角形的内角和为180°。
2. 三角形两边之和大于第三边,任意两边之差小于第三边。
3. 等边三角形的三个内角均为60°,等腰三角形的两个内角相等。
4. 直角三角形的斜边是两条直角边的最大边,可以利用勾股定理进行计算。
三、三角形的相关定理1. 直角三角形的勾股定理:设直角三角形的两个直角边分别为a和b,斜边为c,则有a²+b²=c²。
2. 余弦定理:对于任意三角形ABC,设∠A=a,∠B=b,∠C=c,对应的边长分别为a,b,c,则有c²=a²+b²-2abcosC。
3. 正弦定理:对任意三角形ABC,设∠A=a,∠B=b,∠C=c,对应的边长分别为a,b,c,则有a/sinA=b/sinB=c/sinC=2R(其中R为三角形外接圆的半径)。
4. 解三角形的方法:包括正弦定理、余弦定理、正弦定理、高度定理等。
四、三角形的相关计算和应用1.计算三角形的面积:常用的方法包括海伦公式、正弦定理求面积、底边高求面积等。
2.求三角形的外心、内心、重心、垂心等相关点的坐标和性质。
3.三角形的应用:主要包括角的平分线、高、中线、垂直平分线定理、科斯特切尔定理等。
通过以上对三角形的知识点总结,我们可以看出三角形是高中数学中的重要内容,具有许多基本概念和定理。
同时,三角形的相关计算和应用也在数学和实际生活中具有重要意义。
完整版)解三角形知识点归纳总结第一章解三角形一、正弦定理:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即 sinA/a = sinB/b = sinC/c = 2R (其中R是三角形外接圆的半径)。
变形:1) sinA/sinB/sinC = (a/b/c)/(2R),化边为角;2) a:b:c = = sinA/sinB,化角为边;3) a = 2RsinA,b = 2RsinB,c = 2RsinC,化边为角;4) sinA = a/2R,sinB = b/2R,sinC = c/2R,化角为边。
利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意一边,求其他两边和另一角;例:已知角B,C,a,求解:由A+B+C=180°,求角A,由正弦定理求出b与c。
②已知两边和其中一个角的对角,求其他两个角及另一边。
例:已知边a,b,A,求解:由正弦定理求出角B,由A+B+C=180°求出角C,再使用正弦定理求出c边。
4.在△ABC中,已知锐角A,边b,则①a<bsinA时,B无解;②a=bsinA或a≥b时,B有一个解;③bsinA<a<b时,B有两个解。
二、三角形面积1.SΔABC = absinC = bcsinA = acsinB;2.SΔABC = (a+b+c)r,其中r是三角形内切圆半径;3.SΔABC = p(p-a)(p-b)(p-c),其中p=(a+b+c)/2;4.SΔABC = abc/4R,R为外接圆半径;5.SΔABC = 2R²sinAsinBsinC,R为外接圆半径。
三、余弦定理余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的2倍,即 a² = b² + c² -2bccosA,b² = a² + c² - 2accosB。
三角形知识点总结一、基础知识1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.(三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点)2、三角形的表示三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.三个顶点用大写字母A,B,C来表示。
(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)注意:△ABC是三角形ABC的符号标记,单独的△没有意义3、三角形的分类:(1)按边分类:等腰三角形、等边三角形、不等边三角形(2)按角分类:锐角三角形、直角三角形、钝角三角形4、三角形的主要线段的定义:(1)三角形的中线:三角形中,连结一个顶点和它对边中点的线段.如图:(1)AD是△ABC的BC上的中线.(2)BD=DC= BC.注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部且交于三角形内部一点(重心)③中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段如图:(1)AD是△ABC的∠BAC的平分线.(2)∠1=∠2= ∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部且交于三角形内部一点(内心)③角平分线上的点到角的两边距离相等(3)三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.如图:①AD是△ABC的BC上的高线;②AD⊥BC于D;③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形的三条高的交点在三角形内部;钝角三角形的三条高的交点在三角形的外部:直角三角形的三条高的交点在直角顶点上。
三角形三条高所在直线交于一点(垂心)③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)(4)三角形的中垂线:过三角形一条边中点所做的垂直于该条边的线段如图:DE是△ABC的边BC的中垂线;DE⊥BC于D;BD=DC注意:①三角形的中垂线是直线;②三角形的三条中垂线交于一点(外心)小总结:内心:三条角平分线的交点,也是三角形内切圆的圆心.性质:到三边距离相等.外心:三条中垂线的交点,也是三角形外接圆的圆心.性质:到三个顶点距离相等.重心:三条中线的交点.性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍.垂心:三条高所在直线的交点.5、三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是任意两边之和大于第三边.6、三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.7、三角形的内角和定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
(完整版)三角形全章知识点总结三角形全章知识点总结
1.三角形的定义
三角形是由三条边和三个内角组成的图形。
2.三角形的分类
- 根据边长分类:
- 等边三角形:三条边长度相等。
- 等腰三角形:两条边长度相等。
- 普通三角形:三条边长度都不相等。
- 根据角度分类:
- 直角三角形:有一个内角为直角(90度)。
- 钝角三角形:有一个内角大于直角。
- 锐角三角形:三个内角都小于直角。
3.三角形的性质
- 三角形内角和等于180度。
- 三角形的任意两边之和大于第三边。
- 等边三角形的三个角都相等,每个角为60度。
- 等腰三角形的两个底角相等,顶角大于底角。
- 直角三角形的两个锐角的正弦、余弦、正切关系等于对边、邻边和斜边的比值。
4.三角形的计算公式
- 周长(P):P = a + b + c,其中a、b、c分别为三角形的三边长度。
- 面积(A):A = 1/2 * 底 * 高,其中底为底边长度,高为顶点到底边的垂直距离。
5.三角形的重要定理
- 正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的三边长度,A、B、C为对应的内角。
- 余弦定理:c^2 = a^2 + b^2 - 2ab * cosC,其中a、b、c为三角形的三边长度,C为对应的内角。
- 正切定理:tanA = sinA/cosA,其中A为三角形的一个内角。
以上是关于三角形的全章知识点总结。
希望能对您的学习有所帮助!。
第一章图形的初步认识考点一、线段垂直平分线,角的平分线,垂线1、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
3 垂线的性质:性质 1 :过一点有且只有一条直线与已知直线垂直。
性质 2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
考点二、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
同一平面内,两条直线的位置关系只有两种:相交或平行。
4、平行线的性质(1)两直线平行,同位角相等; (2)两直线平行,内错角相等; (3)两直线平行,同旁内角互补。
考点三、投影与视图1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。
2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指主视图、俯视图、左视图。
主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。
俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。
左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。
第二章三角形考点一、三角形1、三角形的分类三角形按边的关系分类如下:不等边三角形底和腰不相等的等腰三角形三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)三角形斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
三角形知识点总结一、三角形的分类1.三角形的定义:由不在同一条直线上的三条线段首尾顺次相连组成的图形叫做三角形.2.三角形的基本元素:3.(1)三角形的三条边:即组成三角形的线段.4.(2)三角形的角:即相邻两边所组成的角叫做三角形的内角;三角形的一边与另一边的延长线所组成的角叫做三角形的外角.5.(3)三角形的顶点:即相邻两边的公共端点.6.三角形的特征:7.(1)三条线段不在同一直线上,且首尾顺次相接;8.(2)三角形是一个封闭的图形.9.三角形的符号:三角形用符号“△”表示.顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”.注意:(1)△ABC是三角形ABC的符号标记,单独的△没有意义;(2)三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.(3)平时所说的三角形的角是指三角形的内角.(4)三角形三个顶点的字母的次序可以任意调换.△ABC也可以写成“△BAC”“△BCA”“△ACB”等.10.三角形的分类按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底边和腰不相等的等腰三角形等腰三角形等边三角形按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形注意:(1)三角形的两种分类方法是各自独立的,同一个三角形可能同时属于两个不同的类别.如等腰直角三角形按边分类属于等腰三角形,而按角分类则属于直角三角形.(2)一个三角形中,最多有三个锐角,最少有两个锐角,最多有一个直角,最多有一个钝角. (3)从角的方面判断一个三角形的形状的方法:①若最大内角为锐角,则该三角形是锐角三角形;②若最大内角为直角,则该三角形是直角三角形;③若最大内角为钝角,则该三角形是纯角三角形.二、三角形三边关系1. 定理:三角形任意两边之和大于第三边:在ABC △中,a ,b ,c 为三边长,则有a b c +>,b c a +>,a c b +>2. 推论:三角形任意两边之差小于第三边.在ABC △中,a ,b ,c 为三边长,则有a b c -<,b c a -<,c a b -<.3. 应用:①判断三条线段能否组成三角形;②已知三角形的两边,求第三边的取值范围.三、三角形的高、中线、角平分线 定义 如图,从ABC △的顶点A 向它所对的边BC 所在的直线画垂线,垂足为D ,所得线段AD 叫做ABC △的边BC 上的高.如图,连接ABC △的顶点A 和它所对的边BC 的中点D ,所得线段AD 叫做ABC △的边BC 上的中线.如图,画BAC ∠的平分线AD 交BAC ∠所对的边BC 于点D ,所得线段AD 叫做ABC△的角平分线.四、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.五、三角形的内角1. 三角形内角和定理:三角形内角和等于180°.2. 直角三角形的性质及判定性质:直角三角形两锐角互余.判定:有两个角互余的三角形是直角三角形.°=90A B ABC +⇔∠∠△是直角三角形六、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角,叫作三角形的外角.2.性质:三角形的外角等于与它不相邻的两个内角的和.3.结论:三角形一个顶点处有2个外角,三角形共有6个外角,可推出其中三个不相邻的外角和为360°.七、三角形中的角度计算1. “8字”形结论:∠A+∠B=∠C+∠D ;2. 双垂直结论:∠CAD=∠CBE ;结论:∠A=∠BCD ,∠B=∠ACD ;BC结论:∠CAD=∠CBE.3.与角平分线有关条件:∠1=∠2,∠3=∠4,结论:∠BOC=90°+12∠A;条件:∠1=∠2,∠3=∠4,结论:∠O=12∠A;DB CC条件:∠1=∠2,∠3=∠4,结论:∠BOC=90°-12∠A ;4. 四边形的外角∠1与∠2是四边形ABCD 的外角,结论:∠1+∠2=∠A+∠B ;结论:∠BOC=∠A+∠B+∠CBC八、多边形的内角和、外角和1.在同一平面内,由一些线段首尾顺次连接组成的图形叫多边形.2.n边形对角线条数:()32 n n-3.n边形的内角和:(n-2)×180°4.多边形的外角和:360°。
关于三角形的所有知识点总结一、三角形的概念。
1. 定义。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 基本元素。
- 边:组成三角形的线段叫做三角形的边。
三角形有三条边。
- 顶点:相邻两边的公共端点叫做三角形的顶点。
三角形有三个顶点。
- 角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。
三角形有三个内角。
二、三角形的分类。
1. 按角分类。
- 锐角三角形:三个角都是锐角(即每个角都小于90°)的三角形。
- 直角三角形:有一个角是直角(等于90°)的三角形。
直角三角形中,夹直角的两条边叫做直角边,直角所对的边叫做斜边。
- 钝角三角形:有一个角是钝角(大于90°小于180°)的三角形。
2. 按边分类。
- 不等边三角形:三条边都不相等的三角形。
- 等腰三角形:有两条边相等的三角形。
相等的两条边叫做腰,另一条边叫做底边;两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。
- 等边三角形:三条边都相等的三角形。
等边三角形是特殊的等腰三角形,它的三个角都相等,并且每个角都等于60°。
三、三角形的性质。
1. 三角形内角和定理。
- 三角形的内角和等于180°。
可以通过多种方法证明,如剪拼法、作平行线法等。
2. 三角形的外角性质。
- 三角形的一个外角等于与它不相邻的两个内角的和。
- 三角形的一个外角大于任何一个与它不相邻的内角。
3. 三角形的三边关系。
- 三角形两边之和大于第三边。
- 三角形两边之差小于第三边。
可以根据这个关系判断三条线段能否组成三角形。
4. 等腰三角形的性质。
- 等腰三角形的两腰相等。
- 等腰三角形的两底角相等(简称为“等边对等角”)。
- 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称为“三线合一”)。
5. 等边三角形的性质。
- 等边三角形的三条边相等。
- 等边三角形的三个内角都相等,并且每一个角都等于60°。
三角形(一)1.三角形的分类:⑴按角分类:分为锐角三角形、直角三角形,钝角三角形⑵按边分类:分为普通三角形和等腰三角形,等腰三角形的相等的两条边叫做腰,另外一条边叫做底边,腰和底边的夹角叫做底角;三边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形,2.三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
3.三角形的高:⑴高的定义:从三角形的一个顶点向它的对边所在直线画垂线,顶点和垂足之间的线段就是高。
⑵三角形有三个顶点,有且只有三条高。
锐角三角形的三条高都在三角形内部,直角三角形两条直角边就是两条高,第三条高在三角形内部,钝角三角形两条高在外部一条高在内部。
⑶任意三角形三条高所在的直线都交于一点。
4.三角形的中线:⑴中线的定义,把三角形的一个顶点和它的对边中点连接起来的线段叫做中线。
⑵中线分割开的三角形面积相等,等底同高的三角形面积相等⑶三角形有且只有三条中线,三条中线交于一点5.三角形的角平分线:⑴三角形有且只有三条角平分线,三条角平分线交于一点⑵在等腰三角形中,底边上的高线,中线,角平分线重合为一条,叫做三线合一,是等腰三角形的一条重要性质,在等边三角形中三条边上的高线,中线和角平分线三线合一。
6.三角形的稳定性:三角形具有稳定性三角形(二)——全等三角形1.能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形。
2.在一组全等三角形中重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
3.全等三角形表示方法:⑴对于两个全等三角形,只要确定了对应关系后,我们就可以用一个新的符号——全等号(≌)来表示两个三角形全等,读作全等于。
⑵书写全等的时候顶点的顺序一定要按照顶点的对应关系表示,假设有三角形ABC和三角形DEF全等,再假设A重合D,B重合E,C重合F,那么就应该写作“△ABC ≌ △DEF”,4.全等三角形的性质:全等三角形的对应边相等,对应角也相等,所有对应的一切都相等5.判定全等:⑴SSS判定全等:三边分别相等的两个三角形全等,简称SSS⑵SAS判定全等:两边和它们的夹角分别相等的两个三角形全等,简称SAS;两边和一边的邻角分别相等的两个三角形不一定全等。
三角形全部知识点的总结三角形是几何学中的重要概念,其形式多样,内容包括角度、边长、面积等多个方面。
本文将从不同角度对三角形的全部知识点进行总结,包括基本概念、性质、分类、相似三角形、勾股定理、三角形的面积公式等内容。
一、基本概念1. 三角形定义:三角形是由三条线段组成的图形。
2. 顶点、边、内角:三角形有三个顶点和三条边,每个三角形内部有三个内角。
3. 内角和:三角形的内角和为180°,即三个内角的度数之和等于180度。
4. 根据内角的大小,三角形可以分为锐角三角形、直角三角形和钝角三角形。
二、性质1. 外角性质:三角形的一个内角和与其相邻的一个外角的度数之和为180°。
2. 等边三角形:三条边都相等的三角形称为等边三角形,其三个内角均为60°。
3. 等腰三角形:两边相等的三角形称为等腰三角形,其两个底角(底边所对的两个内角)相等。
4. 直角三角形:一个内角为90°的三角形称为直角三角形,其中直角边为直角的对边。
5. 锐角三角形:三个内角都小于90°的三角形称为锐角三角形。
6. 钝角三角形:三个内角中有一个大于90°的三角形称为钝角三角形。
三、分类1. 根据边长:三角形可以分为等边三角形、等腰三角形和普通三角形。
2. 根据角度:三角形可以分为锐角三角形、直角三角形和钝角三角形。
四、相似三角形1. 相似三角形定义:如果两个三角形的对应角相等,则这两个三角形是相似三角形。
2. 相似三角形的性质:具有相似性质的三角形,其对应边的比值相等。
3. AAA相似判定:如果两个三角形的对应角相等,则这两个三角形是相似三角形。
4. SSS相似判定:如果两个三角形的对应边的比值相等,则这两个三角形是相似三角形。
5. SAS相似判定:如果两个三角形的一个对应角相等,而另外两个对应边的比值相等,则这两个三角形是相似三角形。
五、勾股定理勾股定理是三角形中一条重要的定理,可以用于计算三角形边长。
解三角形最全知识点总结一、基本概念1. 三角形的定义三角形是由三条边和三个角组成的平面几何图形。
它是三边相交于三个顶点而成的基本图形,常用符号Δ表示。
2. 三角形的分类根据三角形的边长和角度大小,三角形可以分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形等5种类型。
3. 三角形的元素三角形的元素包括三边、三角、三个顶点、三个内角和三个外角等。
4. 三角形的性质三角形中的基本性质有:两边之和大于第三边、两角之和大于第三角、外角等于两个不相邻内角之和等。
二、性质定理1. 三角形内角和定理三角形内角和定理是几何学中的经典定理之一,它指出任意三角形内角的和等于180°。
2. 三角形外角和定理三角形的外角和定理是指三角形外角等于它对应内角的和,即三角形的一个外角等于与它相对的两个内角之和。
3. 直角三角形的性质直角三角形是一个内含有一个直角的三角形,它的两条边相对于直角的边长满足勾股定理。
4. 等腰三角形的性质等腰三角形是指两边边长相等的三角形,它的两条边角度相等,即底角相等。
5. 等边三角形的性质等边三角形是指三条边和三个角都相等的三角形,它是所有内角相等的三角形。
6. 中位线定理在三角形中,连接边上中点的直线称为中位线,中位线定理指出中位线的中点构成的线段等于底边的一半。
7. 外心定理外心定理是指三角形外接圆的圆心,外接圆定理指出外心是三角形三边的平分线的交点。
8. 内切圆定理内切圆定理是指三角形内切圆和三角形三边接触点构成的线段等于三角形的半周长。
9. 海伦公式海伦公式是指用三角形三边的长度来求三角形面积的公式,其中s为半周长。
10. 正弦定理正弦定理是三角形中用角的正弦比例来求边长的公式,可表示为a/sinA=b/sinB=c/sinC。
11. 余弦定理余弦定理是三角形中用边长和角度的余弦比例来求边长的公式,可表示为a²=b²+c²-2bc*cosA。
三角形全部知识点的总结(一)引言概述:三角形是平面几何中重要的图形之一,研究三角形的性质和定理对于解决与角度、边长和面积相关的问题具有重要意义。
本文将总结三角形的全部知识点,包括三角形的定义、分类、性质、定理以及重要的角关系等。
正文内容:一、三角形的定义和分类:1. 三角形的定义及其基本要素2. 根据边长分类:等边三角形、等腰三角形和普通三角形3. 根据角度分类:锐角三角形、直角三角形、钝角三角形二、三角形的性质:1. 内角和外角的关系2. 三角形的对顶边和对顶角关系3. 同位角和内错角的性质4. 三角形的中线、角平分线和高线的性质5. 三角形的外心、内心、垂心和重心的性质三、三角形的重要定理:1. 直角三角形的勾股定理2. 正弦定理3. 余弦定理4. 角平分线定理5. 高线定理四、三角形的重要角关系:1. 同旁内角和对顶角的关系2. 三角形内角和的性质3. 外角和的性质4. 同旁外角和内角和的关系5. 共顶角和公共角的关系五、三角形的面积公式和解题技巧:1. 三角形面积公式的推导和应用2. 海伦公式计算三角形面积3. 类比法求解三角形面积4. 利用相似三角形求解三角形面积5. 解决实际问题的三角形面积应用技巧总结:综上所述,本文总结了三角形的全部知识点,包括定义、分类、性质、定理以及重要的角关系等。
掌握和运用这些知识点能够帮助我们更深入地理解三角形的特性,解决与三角形相关的各类问题。
在实际应用中,我们可以通过运用相应的定理和公式,结合解题技巧来解决复杂的三角形问题,提高数学解题的效率和准确性。
关于三角形的知识点总结三角形是几何学中研究的一个基本图形,它由三条线段组成,并且它是平面上最简单的多边形之一、三角形具有许多重要的性质和定理,对于理解几何学以及应用数学、物理学等领域都具有重要意义。
下面是关于三角形的一些重要知识点的总结。
一、基本概念1.三角形的定义:三角形是由三条线段组成的平面图形。
2.三角形的元素:三角形的元素包括三个顶点、三条边、三个内角和三个外角。
3.三角形的边长:三角形的边长可以用线段表示,分别用a、b、c表示。
4.三角形的内角和:三角形的内角和为180°。
二、分类1.根据边长分类:(1)等边三角形:三条边的长度相等。
(2)等腰三角形:两条边的长度相等。
(3)直角三角形:一个内角为90°。
(4)钝角三角形:一个内角大于90°。
(5)锐角三角形:三个内角都小于90°。
2.根据角度分类:(1)锐角三角形:三个内角都小于90°。
(2)直角三角形:一个内角为90°。
(3)钝角三角形:一个内角大于90°。
3.根据边和角的关系分类:(1)等腰直角三角形:两条等边等角。
(2)等腰钝角三角形:两条等边等角。
三、性质和定理1.三角形的内角和定理:三角形的三个内角的和等于180°。
2.直角三角形性质:(1)勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
(2)勾股数:满足勾股定理的整数称为勾股数。
3.等腰三角形性质:(1)基本等腰三角形定理:在等腰三角形中,两底角相等。
(2)等腰三角形的高:等腰三角形的高是它的一条边上的高线。
4.等边三角形性质:(1)基本等边三角形定理:在等边三角形中,三个内角都是60°。
5.等腰直角三角形性质:(1)等腰直角三角形的斜边:等腰直角三角形的斜边等于直角边的根号2倍。
(2)等腰直角三角形的高:等腰直角三角形的高等于直角边的一半。
6.三角形的外角性质:(1)外角和定理:三角形的外角等于它的两个相邻内角的和。
三角形全部知识点的总结三角形是平面几何中的重要概念,它的性质和定理在数学中有广泛的应用。
下面,我将对三角形的全部知识点进行总结,并提供例题和应用案例,希望能够帮助读者更好地理解和掌握这一内容。
一、基本概念:1.三角形的定义:由三条线段组成的图形称为三角形。
2.三角形的元素:三个顶点、三条边、三个内角、三个外角。
3.三角形的分类:根据边长,可以分类为等边三角形、等腰三角形、普通三角形;根据角度,可以分类为锐角三角形、直角三角形、钝角三角形。
4.三角形的性质:任意两边之和大于第三边;任意两角之和小于180°;对顶角相等。
二、三角形的角:1.内角和定理:三角形的内角和为180°。
2.内角的关系:在任意三角形中,两个锐角和的差等于第三个角的度数。
3.平行线与三角形内角的关系:平行线与一条边所构成的内角和为180°。
4.外角和定理:三角形的一个外角等于其两个未被延长的相邻内角之和。
三、三角形的边:1.边长关系:在任意三角形中,任意两边之和大于第三边,任意两边之差小于第三边。
2.等边三角形:三边相等的三角形。
三个内角均为60°。
3.等腰三角形:两边相等的三角形。
顶角度数相等。
4.直角三角形:一个角为90°的三角形。
满足勾股定理。
5.正弦定理:三角形中,各边和所对的角的正弦比相等。
6.余弦定理:三角形中,各边的平方和等于两倍的两边的乘积与它们的夹角余弦的乘积之和。
7.正切定理:在直角三角形中,两直角边的比等于较长的非直角边的正切值。
四、三角形的面积:1.面积的公式:三角形的面积等于底边与高的乘积的一半:S=1/2*a*h。
2.海伦公式:已知三角形三边长求面积的公式:S=√(p*(p-a)*(p-b)*(p-c)),其中p为半周长。
五、三角形的相似:1.相似三角形:对应角相等,对应边成比例的三角形。
2.相似三角形的性质:相似三角形的两对对应边成比例,比例系数为它们两个相等的对应边的比值;相似三角形的面积成比例,比例系数为对应边的比例的平方。
三角形知识点总结(已整理)三角形是几何学中的基本图形,具有很多有用的性质和定理。
以下是三角形的一些重要知识点总结:三角形的定义三角形是由三条线段构成的闭合图形。
三角形的内部有三个角,外部有三个顶点。
三角形的分类三角形可以根据边长和角度来分类:- 根据边长:- 等边三角形:三条边的长度相等。
- 等腰三角形:两个边的长度相等。
- 普通三角形:三条边的长度都不相等。
- 根据角度:- 锐角三角形:三个角都是锐角。
- 直角三角形:一个角为直角(90度)。
- 钝角三角形:一个角为钝角(大于90度)。
三角形的性质和定理以下是一些与三角形相关的重要性质和定理:- 三角形的内角和定理:三角形的内角和等于180度。
- 直角三角形的性质:直角三角形的斜边最长,勾股定理成立。
- 等腰三角形的性质:等腰三角形的两边相等的角也相等。
- 等边三角形的性质:等边三角形的三个角都是60度。
- 三角形的外角和定理:三角形的外角等于其不相邻内角的和。
- 正弦定理:在任意三角形ABC中,边长a、b、c对应的角A、B、C的正弦之比相等,即sin(A)/a = sin(B)/b = sin(C)/c。
- 余弦定理:在任意三角形ABC中,边长a、b、c对应的角A、B、C的余弦之间有关系:c^2 = a^2 + b^2 - 2ab*cos(C)。
- 正切定理:在任意三角形ABC中,边长a、b、c对应的角A、B、C的正切之间有关系:tan(A) = (a*sin(C))/(b-a*cos(C))。
总结三角形是几何学中一个重要的图形,具有丰富的性质和定理。
通过对三角形的分类和研究,我们能更好地理解和应用三角形的知识。
以上是对三角形知识点的简要总结,希望对您有所帮助。
第一章图形的初步认识考点一、线段垂直平分线,角的平分线,垂线1、线段垂直平分线的性质定理及逆定理垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线。
线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等。
逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
2、角的平分线及其性质一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
角的平分线有下面的性质定理:(1)角平分线上的点到这个角的两边的距离相等。
(2)到一个角的两边距离相等的点在这个角的平分线上。
3垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
简称:垂线段最短。
考点二、平行线1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
同一平面内,两条直线的位置关系只有两种:相交或平行。
4、平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补。
考点三、投影与视图1、投影投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。
平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。
中心投影:由同一点发出的光线所形成的投影称为中心投影。
2、视图当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。
物体的三视图特指主视图、俯视图、左视图。
主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。
俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。
左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。
第二章三角形考点一、三角形1、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
2、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
3、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
4、三角形的面积三角形的面积=21×底×高 考点二、全等三角形1、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
2、三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
2、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
第三章 解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90° BD AD CD ∙=2⇒ AB AD AC ∙=2CD ⊥AB AB BD BC ∙=26、常用关系式由三角形面积公式可得:AB ∙CD=AC ∙BC考点二、锐角三角函数的概念 (3~8分)1、如图,在△ABC 中,∠C=90°①ca sin =∠=斜边的对边A A ②cb cos =∠=斜边的邻边A A③ba tan =∠∠=的邻边的对边A A A ④ab cot =∠∠=的对边的邻边A A A(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A),tanA=cot(90°—A),cotA=tan(90°—A)(2)平方关系:1cos sin 22=+A A(3)倒数关系:tanA ∙tan(90°—A)=1(4)弦切关系:tanA=AA cos sin 第四章 图形的相似考点一、比例线段1、比例的性质(1)基本性质①a :b=c :d ⇔ad=bc②a :b=b :c ac b =⇔2(2)更比性质(交换比例的内项或外项)db c a =(交换内项) ⇒=d c b a ac bd =(交换外项)ab c d =(同时交换内项和外项) (3)反比性质(交换比的前项、后项):cd a b d c b a =⇒= (4)合比性质:dd c b b a d c b a ±=±⇒= (5)等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 3、黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB 考点二、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。
考点三、相似三角形1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示2、相似三角形的基本定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
相似三角形的等价关系:(1)反身性:对于任一△ABC ,都有△ABC ∽△ABC ;(2)对称性:若△ABC ∽△A ’B ’C ’,则△A ’B ’C ’∽△ABC(3)传递性:若△ABC ∽△A ’B ’C ’,并且△A ’B ’C ’∽△A ’’B ’’C ’’,则△ABC ∽△A ’’B ’’C ’’。
3、三角形相似的判定(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法①以上各种判定方法均适用②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似4、相似三角形的性质(1)相似三角形的对应角相等,对应边成比例(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比(3)相似三角形周长的比等于相似比(4)相似三角形面积的比等于相似比的平方。
5、相似多边形(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比(或相似系数)(2)相似多边形的性质①相似多边形的对应角相等,对应边成比例②相似多边形周长的比、对应对角线的比都等于相似比③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比④相似多边形面积的比等于相似比的平方6、位似图形如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。
性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。
由一个图形得到它的位似图形的变换叫做位似变换。
利用位似变换可以把一个图形放大或缩小。