余弦函数的图象和性质
- 格式:ppt
- 大小:927.00 KB
- 文档页数:20
余弦函数的图像和性质课题名称 5.6(1)余弦函数的图像和性质课时 1 课型新授一教学目标知识与技能:1.会用“五点法”作余弦函数在一个周期内的图像.2.借助余弦函数的图像,理解余弦函数的性质(单调性,最大值;最小值,图像与x 轴的交点),理解余弦函数的周期性,奇偶性.3.运用余弦函数的性质解决一些简单的问题.过程与方法:通过主动思考,主动发现,在作余弦函数的图像中亲历知识的形成过程,使学生对余弦函数的性质有一定的理解,培养学生的观察、分析、归纳和表达能力以及数形结合和化归转化的数学思想方法.情感态度与价值观:1.在学习余弦函数的图像时要培养学生类比的能力.2.渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点.二教学重点与难点教学重点:1.“五点法”画长度为一个周期的闭区间上的余弦函数图像.2. 余弦函数的性质.教学难点:余弦函数性质的理解与应用.三教学方法比较学习的方法与启发式教学. 四教学手段利用多媒体课件sj09、黑板等. 五教学过程【新课导入】任意一个实数x ,有唯一确定的值sin x 与之相对应.由这个对应法则所确定的函数sin y x =叫做正弦函数.学习了正弦函数的图像和性质以后,采用类比的方法,很容易掌握余弦函数图像的画法和性质.【双基讲解】先用“五点法”画出余弦函数cos y x =在[]0,2π上的图像.第一步:列表第二步:描点,并用光滑的曲线连接.因为()cos 2cos k x x π+=,k ∈,所以cos y x =是周期函数.将cos y x =在 []0,2π上的图像向左、向右平移,即得cos y x =()x ∈的图像.余弦函数的图像叫做余弦曲线.1. 余弦函数的性质:(1)定义域和值域见下表:(2)奇偶性定义域:x ∈. ()()cos cos f x x x -=-=.所以cos y x=()x ∈是偶函数. 如图:图像关于y 轴对称(3)单调性当[]()2,2x k k k πππ∈-∈时,函数cos y x =单调递增; 当[]()2,2x k k k πππ∈+∈时,函数cos y x =单调递减.如图:(4)周期性由()()cos 2cos x k x k π+=∈知:函数cos y x =是周期函数,()20k k k π∈≠且都是它的周期,最小正周期是2π.【示范例题】例1求下列函数的周期、最大值和最小值.(1) cos2y x =-; (2) 2cos 24x y π⎛⎫=+ ⎪⎝⎭.解 (1) 因为()()()()cos2cos 22cos2f x x x x f x πππ=-=-+=-+=+,所以函数cos2y x =-的周期T π=.因为1cos21x -≤-≤,所以函数cos2y x =-的最大值max 1y =,最小值min 1y =-.(2) 因为()()()12cos 2cos 22cos 44242424x x f x x f x ππππππ⎛⎫⎛⎫⎡⎤=+=++=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以函数2cos 24x y π⎛⎫=+⎪⎝⎭的周期4T π=. 因为22cos 224x π⎛⎫-≤+≤ ⎪⎝⎭, 所以函数2cos 24x y π⎛⎫=+⎪⎝⎭的最大值max 2y =, 最小值min 2y =-.求函数()()cos 0f x x ωω=≠的周期,可运用公式2T πω=.【巩固练习】1. 已知函数1cos y x =-.(1)用“五点法”画出这个函数在[]0,2π上的图像;(2) 求出这个函数的最大值和最小值;(3) 判断这个函数的奇偶性;(4)讨论这个函数在[]0,2π上的单调性.2. 求下列函数的周期、最大值和最小值.(1) 1cos 2y x =; (2) 2cos 23x y π⎛⎫=+ ⎪⎝⎭.六课堂小结1.余弦函数的定义;2. 余弦函数的图像;3. 余弦函数的性质;4.会画余弦函数的图像,并根据余弦函数的性质求解相关问题.七布置作业由老师根据学生的具体情况灵活布置八教学后记根据上课的具体情况,由老师书写教案编制人:。
[核心必知]余弦函数的图像与性质[问题思考]1.如何由y =cos x ,x ∈R 的图像得到y =sin x ,x ∈R 的图像?提示:只需将y =cos x ,x ∈R 的图像向右平移π2个单位即可得到y =sin x ,x ∈R 的图像,并且方法不唯一.2.余弦函数在第一象限内是减函数吗?提示:不是.余弦函数y =cos x 在[0,π2]内是减函数,但不能说在第一象限是减函数,如390°和60°都是第一象限的角,虽然390°>60°,但cos 60°=12,cos 390°=32.却有cos 60°<cos 390°.所以函数y =cos x 在第一象限内不是减函数.3.余弦函数是轴对称图形,不是中心对称图形,这句话对吗?提示:不对.余弦函数与正弦函数一样既是轴对称图形,也是中心对称图形.它的对称轴有无数条,其方程是x =k π(k ∈Z );它的对称中心有无数个,其坐标为(k π+π2,0)(k ∈Z ).讲一讲1.画出函数y =1-cos x ,x ∈[0,2π]的图像. [尝试解答] 按五个关键点列表:如图所示:1.画余弦函数的图像,与画正弦函数图像的方法一样,关键要确定五个点.这五个点的坐标是(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). 2.形如y =a cos x +b ,x ∈[0,2π]的函数,也可由五点法画图像. 练一练1.用“五点法”画出y =3+2cos x (x ∈[0,2π])的图像. 解:(1)列表(2)讲一讲2.(1)求下列函数的定义域. ①y =32-cos x ; ②y =log 12(2cos x -2).(2)求函数y =3-2cos(2x -π3),x ∈⎣⎢⎡⎦⎥⎤π6,π2的值域. [尝试解答] (1)①要使函数有意义,则有32-cos x ≥0, ∴cos x ≤32.可得2k π+π6≤x ≤2k π+11π6,k ∈Z . 故所求函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π+π6≤x ≤2k π+11π6,k ∈Z .②要使函数有意义,则有2cos x -2>0, ∴cos x >22,故所求定义域为 ⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π-π4<x <2k π+π4,k ∈Z .(2)∵π6≤x ≤π2,∴0≤2x -π3≤2π3.∵y =cos x 在[0,π]上单调递减, ∴-12≤cos(2x -π3)≤1,∴1≤3-2cos(2x -π3)≤4,故函数的值域为[1,4].1.求三角函数的定义域,应归结为解三角不等式,其关键就是建立使函数有意义的不等式(组),利用三角函数的图像直观地求得解集.2.求三角函数的值域,要充分利用sin x 和cos x 的有界性,对于x 有限制范围的,可结合图像求值域.练一练2. 求函数y =3cos 2x -4cos x +1,x ∈⎣⎢⎡⎦⎥⎤π3,2π3的最值.解:y =3cos 2x -4cos x +1=3(cos x -23)2-13.∵x ∈⎣⎢⎡⎦⎥⎤π3,2π3,cos x ∈⎣⎢⎡⎦⎥⎤-12,12,从而当cos x =-12,即x =2π3时,y max =154;当cos x =12,即x =π3时,y min =-14.∴函数在区间⎣⎢⎡⎦⎥⎤π3,2π3上的最大值为154,最小值为-14.讲一讲3.(1)判断函数f (x )=cos(π-x )-x cos(π2-x )的奇偶性.(2)求函数y =cos(π6-x )的单调减区间.[尝试解答] (1)∵f (x )=cos(π-x )-x cos(π2-x )=-cos x -x sin x ,∴f (-x )=-cos(-x )-(-x )sin(-x ) =-cos x -x sin x =f (x ). ∴函数f (x )是偶函数.(2)y =cos(π6-x )=cos(x -π6),令2k π≤x -π6≤π+2k π(k ∈Z ),得π6+2k π≤x ≤7π6+2k π(k ∈Z ). ∴函数y =cos ⎝ ⎛⎭⎪⎫π6-x 的单调减区间是⎣⎢⎡⎦⎥⎤π6+2k π,7π6+2k πk ∈Z .1.判断三角函数的奇偶性,首先要观察定义域是否关于原点对称,在定义域关于原点对称的前提下,再根据f (-x )与f (x )的关系确定奇偶性.2.确定三角函数的单调区间,在理解基本三角函数的单调性的前提下,运用整体代换的思想求解.练一练3.比较下列各组值的大小. (1)cos ⎝ ⎛⎭⎪⎫-7π8与cos 7π6;(2)sin 194°与cos 160°.解:(1)cos ⎝ ⎛⎭⎪⎫-7π8=cos 7π8=cos ⎝ ⎛⎭⎪⎫π-π8 =-cos π8.而cos 7π6=-cos π6∵0<π8<π6<π2.∴cos π8>cos π6.∴cos ⎝ ⎛⎭⎪⎫-7π8<cos 7π6.(2)∵sin 194°=sin(180°+14°) =-sin 14°=-cos 76°, cos 160°=cos(180°-20°) =-cos 20°.∵0°<20°<76°<90°, ∴cos 20°>cos 76°, ∴-cos 20°<-cos 76°, ∴sin 194°>cos 160°.函数y =2cos x (0≤x ≤2π)的图像和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π [解析] 法一:作出函数y =2cos x ,x ∈[0,2π]的图像,函数y =2cos x ,x ∈[0,2π]的图像与直线y =2围成的平面图形,如图(1)所示的阴影部分.利用图像的对称性可知该平面图形的面积等于矩形OABC 的面积, 又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π. 法二:利用余弦曲线的特点,该平面图形的面积等于三角形ABC 的面积(如图(2)). ∵|AC |=2π,B 到AC 距离等于4.∴S 平面图形=S △ABC = 12×2π×4=4π.法三:利用余弦曲线的特点,该平面图形的面积等于矩形ABCD 的面积(如图(3)) ∵|AB |=π,|AD |=4. ∴S 平面图形=S 矩形ABCD =4π. [答案] D1.函数y =2cos x -1的最大值、最小值分别是( ) A .2,-2 B .1,-3 C .1,-1 D .2,-1解析:选B ∵-1≤cos x ≤1∴-2≤2cos x ≤2, ∴-3≤2cos x -1≤1, ∴最大值为1,最小值为-3.2.函数y =-cos x 在区间[-π,π]上是( ) A .增加的 B .减少的C .先增加后减少D .先减少后增加解析:选D 作出y =-cos x 的图像可得选项D 正确. 3.函数y =sin x 和y =cos x 都是减少的区间是( ) A.⎣⎢⎡⎦⎥⎤2k π-π2,2k π(k ∈Z ) B.⎣⎢⎡⎦⎥⎤2k π-π,2k π-π2(k ∈Z )C.⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π(k ∈Z )D.⎣⎢⎡⎦⎥⎤2k π,2k π+π2(k ∈Z )解析:选 C 在同一坐标系中作出y =sin x 和y =cos x 的图像,由图像可知在⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π上,y =sin x 和y =cos x 都是减少的.4.函数y =cos x1+cos x 的定义域是________.解析:由1+cos x ≠0得cos x ≠-1 ∴x ≠π+2k π,k ∈Z∴ 定义域是{}x |x ≠π+2k π,k ∈Z . 答案: {}x |x ≠π+2k π,k ∈Z5.当x ∈[0,2π]时,方程sin x =cos x 的解集是________. 解析:在同一坐标系内画出y =sin x 和y =cos x ,x ∈[0,2π]的图像,如图,可得x =π4或x =5π4.答案: {π4,5π4}6.比较cos ⎝ ⎛⎭⎪⎫-23π5与cos ⎝ ⎛⎭⎪⎫-17π4的大小.解:cos ⎝ ⎛⎭⎪⎫-23π5=cos 23π5=cos 3π5. cos ⎝⎛⎭⎪⎫-17π4=cos 17π4=cos π4. 因为0<π4<3π5<π,且函数y =cos x ,x ∈[0,π]是减少的. 所以cos π4>cos 3π5即cos ⎝ ⎛⎭⎪⎫-23π5<cos ⎝ ⎛⎭⎪⎫-17π4.一、选择题1.下列对y =cos x 的图像描述错误的是( )A .在[0,2π]和[4π,6π]上的图像形状相同,只是位置不同B .介于直线y =1与直线y =-1之间C .关于x 轴对称D .与y 轴仅有一个交点 答案:C2.函数y =|cos x |的一个单调减区间是( )A.⎣⎢⎡⎦⎥⎤-π4,π4B.⎣⎢⎡⎦⎥⎤π4,3π4C.⎣⎢⎡⎦⎥⎤π,3π2D.⎣⎢⎡⎦⎥⎤3π2,2π解析:选C 作出函数y =|cos x |的图像如图所示,由图像可知,A 、B 都不是单调区间,D 是单调增区间,C 是单调减区间. 3.函数y =cos(x +π6),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是( )A .(-32,12] B.⎣⎢⎡⎦⎥⎤-12,32 C.⎣⎢⎡⎦⎥⎤32,1 D.⎣⎢⎡⎦⎥⎤12,1解析:选B ∵0≤x ≤π2,∴π6≤x +π6≤2π3, ∵y =cos x 在[0,π]上为减函数. ∴-12≤cos(x +π6)≤32.4.设方程cos 2x =1的解集为M ,方程sin 4x =0的解集为P ,则M 与P 的关系为( ) A .MP B .M PC .M =PD .M ∩P =∅解析:选A 由cos 2x =1得2x =2k π(k ∈Z ),即x =k π(k ∈Z );由sin 4x =0得4x =k π(k ∈Z ),即x =k π4(k ∈Z ).∴MP .二、填空题5.函数y =x cos x 的奇偶性是________.解析:∵f (-x )=-x ×cos(-x )=-x cos x =-f (x ), ∴此函数是奇函数. 答案:奇函数6.比较大小:sin 3π5________cos π5.解析:∵sin 3π5=sin(π-2π5)=sin 2π5=sin(π2-π10)=cos π10,0<π10<π5<π2. ∴cos π10>cos π5,即sin 3π5>cos π5.答案:>7.方程x 2=cos x 的解的个数是________.解析:在同一坐标系中画出函数y =cos x 与y =x 2的图像(如图),可知有两个交点.答案:28.函数y =11-cos x 的值域是________.解析:∵0<1-cos x ≤2. ∴11-cos x ≥12.∴ 函数的值域为⎣⎢⎡⎭⎪⎫12,+∞. 答案:⎣⎢⎡⎭⎪⎫12,+∞三、解答题9.求函数y =cos(3x -π4)的单调减区间. 解:由2k π≤3x -π4≤2k π+π,k ∈Z , 得2k π+π4≤3x ≤2k π+5π4,k ∈Z , ∴2k π3+π12≤x ≤2k π3+5π12,k ∈Z . ∴单调递减区间是⎣⎢⎡⎦⎥⎤2k π3+π12,2k π3+5π12(k ∈Z ). 10.求函数y =cos 2x +cos x +1的最大、最小值及使y 取最值的x 的集合.解:令t =cos x ,则t ∈[-1,1].∴y =t 2+t +1,对称轴t =-12. ①当t =-12,即x ∈{x |x =±23π+2k π,k ∈Z }时,y min =34. ②当t =1,即x ∈{x |x =2k π,k ∈Z }时,y max =3.。
定义编辑角A的邻边比斜边叫做∠A的余弦,记作cosA(由余弦英文cosine简写得来),即cosA=角A的邻边/斜边(直角三角形)。
记作cos=x/r。
余弦是三角函数的一种。
它的定义域是整个实数集,值域是[-1,1]。
它是周期函数,其最小正周期为2π。
在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1。
余弦函数是偶函数,其图像关于y轴对称。
2定理编辑简介三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.即在余弦定理中,令C=90°,这时cosC=0,所以(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边;(3)已知三角形两边及其一边对角,可求其它的角和第三条边。
(见解三角形公式,推导过程略。
)性质对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——(物理力学方面的平行四边形定则中也会用到)第一余弦定理(任意三角形射影定理)设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cos C+c·cos B,b=c·cos A+a·cos C,c=a·cos B+b·cos A。
两根判别法若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值①若m(c1,c2)=2,则有两解;②若m(c1,c2)=1,则有一解;③若m(c1,c2)=0,则有零解(即无解)。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。
角边判别法1、当a>bsinA时①当b>a且cosA>0(即A为锐角)时,则有两解;②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解);③当b=a且cosA>0(即A为锐角)时,则有一解;④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解);⑤当b<a时,则有一解2、当a=bsinA时①当cosA>0(即A为锐角)时,则有一解;②当cosA<=0(即A为直角或钝角)时,则有零解(即无解);3、当a<bsinA时,则有零解(即无解)3证明方法编辑平面向量证法∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小)∴c·c=(a+b)·(a+b)∴c2=a·a+2a·b+b·b∴c2=a2+b2+2|a||b|Cos(π-θ)(以上粗体字符表示向量)又∵Cos(π-θ)=-CosC∴c2=a2+b2-2|a||b|Cosθ(注意:这里用到了三角函数公式)再拆开,得c2=a2+b2-2abCosC即CosC=同理可证其他,而下面的CosC=(c2-b2-a2)/(2ab)就是将CosC移到左边表示一下。
余弦函数的性质与应用余弦函数是数学中的一种常见的三角函数,具有许多重要的性质和广泛的应用。
本文将就余弦函数的基本性质、图像特点以及其在物理、工程、图像处理等领域中的应用进行探讨。
一、余弦函数的基本性质余弦函数可以用一个周期为2π的周期函数来表示,它的定义域为所有实数,值域在[-1, 1]之间变化。
余弦函数的定义如下:f(x) = cos(x)余弦函数具有以下几个基本性质:1. 周期性:余弦函数的最基本的特点就是周期性。
对于任意实数x,都有cos(x+2π) = cos(x),即在图像上表现为一条周期为2π的波形。
2. 对称性:余弦函数是偶函数,即cos(-x) = cos(x)。
这意味着余弦函数图像关于y轴对称。
3. 奇偶性:余弦函数的性质中,除了对称性,还具有奇偶性。
若x为偶数倍的π,则有cos(x) = cos(2kπ) = 1,其中k为整数。
而当x为奇数倍的π时,有cos(x) = cos((2k+1)π) = -1。
4. 单调性:余弦函数在定义域内呈现出周期性振荡的特点,因此在一个周期内,它既不是上升函数,也不是下降函数。
二、余弦函数的图像特点余弦函数的图像呈现为一条连续的曲线,它的图像具有以下几个特点:1. 幅值:余弦函数的幅值为1,即函数的最大值和最小值分别为1和-1。
2. 峰值点:余弦函数在x = 0时取得最大值1,在x = π/2时取得最小值-1,在x = π时再次取得最大值1。
3. 波形:余弦函数的波形是平滑的曲线,它的变化率在整个定义域上都是连续的。
4. 对称轴:余弦函数的对称轴为y轴,图像关于y轴对称。
三、余弦函数的应用余弦函数在自然科学和应用数学中有广泛的应用,以下是几个典型的应用领域:1. 物理学应用:余弦函数在波动和振动的描述中起到至关重要的作用。
例如,在光学中,余弦函数可以描述光的振动和传播;在声学中,余弦函数可以描述声波的传播和振荡。
2. 工程学应用:余弦函数在工程学中的应用非常广泛。