电磁感应专题复习
- 格式:ppt
- 大小:4.50 MB
- 文档页数:18
电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
第2讲 法拉第电磁感应定律、自感、涡流知识巩固练1.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s 时间拉出,外力所做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.9 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则 ( )A.W 1<W 2,q 1<q 2B.W 1<W 2,q 1=q 2C.W 1>W 2,q 1=q 2D.W 1>W 2,q 1>q 2【答案】C 【解析】第一次用0.3 s 时间拉出,第二次用0.9 s 时间拉出,两次速度比为3∶1,由E =BLv ,两次感应电动势比为3∶1,两次感应电流比为3∶1,由于F 安=BIL ,两次安培力比为3∶1,由于匀速拉出匀强磁场,所以外力比为3∶1,根据功的定义W =Fx ,所以W 1∶W 2=3∶1.根据电量q =I Δt ,感应电流I =E R ,感应电动势E =ΔΦΔt ,得q =ΔΦR ,所以q 1∶q 2=1∶1,故W 1>W 2,q 1=q 2,故C 正确.2.如图所示,abcd 为水平放置的平行“”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω 的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程中金属杆与导轨始终接触良好,金属杆单位长度的电阻为r .则在金属杆转动的过程中 ( )A.M 、N 两点电势相等B.金属杆中感应电流的方向由N 流向MC.电路中感应电流的大小始终为Bl ω2rD.电路中通过的电荷量为Bl 2rtan θ 【答案】A 【解析】根据题意可知,金属杆MN 为电源,导轨为外电路,由于导轨电阻不计,外电路短路,M 、N 两点电势相等,A 正确;转动过程中磁通量减小,根据楞次定律可知金属杆中感应电流的方向是由M 流向N ,B 错误;由于切割磁场的金属杆长度逐渐变短,感应电动势逐渐变小,回路中的感应电流逐渐变小,C 错误;因为导体棒MN在回路中的有效切割长度逐渐减小,所以接入电路的电阻逐渐减小,不计算通过电路的电荷量,D错误.能根据q=ΔΦR3.(多选)如图所示的电路中,电感L的自感系数很大,电阻可忽略,D为理想二极管,则下列说法正确的有()A.当S闭合时,L1立即变亮,L2逐渐变亮B.当S闭合时,L1一直不亮,L2逐渐变亮C.当S断开时,L1立即熄灭,L2也立即熄灭D.当S断开时,L1突然变亮,然后逐渐变暗至熄灭【答案】BD4.(2023年江门一模)汽车使用的电磁制动原理示意图如图所示,当导体在固定通电线圈产生的磁场中运动时,会产生涡流,使导体受到阻碍运动的制动力.下列说法正确的是()A.制动过程中,导体不会发热B.制动力的大小与导体运动的速度无关C.改变线圈中的电流方向,导体就可获得动力D.制动过程中导体获得的制动力逐渐减小【答案】D【解析】由于导体中产生了涡流,根据Q=I2Rt知,制动过程中,导体会发热,A错误;导体运动速度越大,穿过导体中回路的磁通量的变化率越大,产生的涡流越大,则所受安培力,即制动力越大,即制动力的大小与导体运动的速度有关,B错误;根据楞次定律可知,原磁场对涡流的安培力总是要阻碍导体的相对运动,即改变线圈中的电流方向,导体受到的安培力仍然为阻力,C错误;制动过程中,导体的速度逐渐减小,穿过导体中回路的磁通量的变化率变小,产生的涡流变小,则所受安培力,即制动力变小,D正确5.(2023年北京东城一模)如图所示电路中,灯泡A、B的规格相同,电感线圈L的自感系数足够大且电阻可忽略.下列说法正确的是()A.开关S由断开变为闭合时,A,B同时变亮,之后亮度都保持不变B.开关S由断开变为闭合时,B先亮,A逐渐变亮,最后A,B一样亮C.开关S由闭合变为断开时,A,B闪亮一下后熄灭D.开关S由闭合变为断开时,A闪亮一下后熄灭,B立即熄灭【答案】D【解析】开关S由断开变为闭合时,根据电感线圈的自感现象可知,A、B同时变亮,随着线圈上的电流逐渐增大,最终稳定时,线圈为可视为导线.则A灯逐渐变暗直至熄灭,电路中总电阻减小,则B灯逐渐变亮,A、B错误;开关S由闭合变为断开时,B立即熄灭,电感线圈电流不能突变为0,则会充当电源,回路中A灯变亮,之后线圈中电流减小,直至A灯熄灭,C错误,D正确.6.(多选)涡流检测是工业上无损检测的方法之一.如图所示,线圈中通以一定频率的正弦式交变电流,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化.下列说法正确的是()A.涡流的磁场总是要阻碍穿过工件磁通量的变化B.涡流的频率等于通入线圈的交变电流的频率C.通电线圈和待测工件间存在恒定的作用力D.待测工件可以是塑料或橡胶制品【答案】AB综合提升练7.(多选)一跑步机的原理图如图所示,该跑步机水平底面固定有间距L=0.8 m的平行金属电极,电极间充满磁感应强度大小B=0.5 T、方向竖直向下的匀强磁场,且接有理想电压表和阻值为8 Ω的定值电阻R,匀速运动的绝缘橡胶带上镀有电阻均为2 Ω的平行细金属条,金属条间距等于电极长度为d且与电极接触良好.某人匀速跑步时,电压表的示数为0.8 V.下列说法正确的是()A.通过电阻R的电流为0.08 AB.细金属条的速度大小为2.5 m/sC.人克服细金属条所受安培力做功的功率为0.2 WD.每2 s内通过电阻R的电荷量为0.2 C【答案】BD【解析】由题知单根细金属条电阻为R1=2 Ω,匀速跑步时,始终只有一根细金属条在切割磁感线,其产生的电动势为E=BLv,电压表测量R两端电压,由题知其示数为0.8 V,即U=E·R=0.8 V,解得E=1 V,v=2.5 m/s,通过电阻R的电流R+R1=0.1 A,A错误,B正确;人克服细金属条所受安培力做功的功率为为I=ER+R1P=F A v=BILv=0.1 W,C错误;每2 s内通过电阻R的电荷量为q=It=0.1×2 C=0.2 C,D 正确.8.目前,许多停车场门口都设置车辆识别系统,在自动栏杆前、后的地面各自铺设相同的传感器线圈A 、B ,两线圈各自接入相同的电路,电路a 、b 端与电压有效值恒定的交变电源连接,如图所示.工作过程回路中流过交变电流,当以金属材质为主体的汽车接近或远离线圈时,线圈的自感系数会发生变化,导致线圈对交变电流的阻碍作用发生变化,使得定值电阻R 的c 、d 两端电压就会有所变化,这一变化的电压输入控制系统,控制系统就能做出抬杆或落杆的动作.下列说法正确的是 ( )A.汽车接近线圈A 时,该线圈的自感系数减少B.汽车离开线圈B 时,回路电流将减小C.汽车接近线圈B 时,c 、d 两端电压升高D.汽车离开线圈A 时,c 、d 两端电压升高【答案】D 【解析】汽车上有很多钢铁,当汽车接近线圈时,相对于给线圈增加了铁芯,所以线圈的自感系数增大,感抗也增大,在电压不变的情况下,交流回路的电流将减小,所以R 两端电压将减小,即c 、d 两端电压将减小,A 、B 、C 错误,D 正确.9.(2023年江苏调研)如图所示,边长为L 的正方形导线框abcd 放在纸面内,在ad 边左侧有足够大的匀强磁场,磁感应强度大小为B ,方向垂直纸面向里,导线框的总电阻为R .现使导线框绕a 点在纸面内顺时针匀速转动,经时间Δt 第一次转到图中虚线位置.求:(1)Δt 内导线框abcd 中平均感应电动势的大小和通过导线截面的电荷量;(2)此时线框的电功率.解:(1)Δt 时间内穿过线框的磁通量变化量为ΔΦ=BL 2-12BL 2=12BL 2,由法拉第电磁感应定律得E =ΔΦΔt =BL 22Δt , 平均感应电流I =E R ,通过导线的电荷量为Q =I ·Δt =BL 22R .(2)线框中瞬时电动势为E =12B ω(√2L )2=B ωL 2,其中ω=π4Δt ,线框的电功率为P =E 2R =B 2ω2L 4R =π2B 2L 416R Δt 2.。
电磁感应现象楞次定律目标要求 1.知道电磁感应现象的产生条件并会分析解决实际问题。
2.会根据楞次定律判断感应电流的方向,会应用楞次定律的推论分析问题。
3.能够综合应用安培定则、左手定则、右手定则和楞次定律解决实际问题。
考点一对电磁感应现象的理解和判断1.磁通量(1)定义:磁感应强度B与面积S的□1乘积。
(2)公式:Φ=□2BS。
(3)适用条件:①匀强磁场;②S为垂直磁场的□3有效面积。
(4)磁通量是□4标量(填“标量”或“矢量”)。
(5)物理意义:穿过某一面积的□5磁感线的条数。
(6)标矢性:磁通量是□6标量,但有正负。
(7)磁通量变化:ΔΦ=Φ2-Φ1。
2.电磁感应现象(1)定义:只要穿过闭合导体回路的□7磁通量发生变化,闭合导体回路中就有感应电流。
(2)条件:穿过□8闭合电路的□9磁通量发生变化。
(3)实质:产生□10感应电动势,如果电路闭合,则有感应电流;如果电路不闭合,则只有□11感应电动势而无感应电流。
【判断正误】1.穿过线圈的磁通量与线圈的匝数无关。
(√)2.电路中磁通量发生变化时,就一定会产生感应电流。
(×)3.当导体切割磁感线运动时,导体中一定产生感应电流。
(×)1.判断感应电流有无的方法2.判断磁通量是否变化的方法(1)根据公式Φ=BS sinθ(θ为B与S间的夹角)判断。
(2)根据穿过平面的磁感线的条数是否变化判断。
3.产生感应电流的三种常见情况【对点训练】1.(磁通量及其变化)如图所示,线框abdc的左侧放置一通有恒定电流的长直导线,线框从位置Ⅰ按照以下四种方式运动(位置Ⅰ和位置Ⅲ关于MN对称),磁通量变化量的绝对值最大的是()A.平移到位置ⅡB.平移到位置ⅢC.以MN为转轴转到位置ⅢD.以bd为转轴转到位置Ⅱ解析:B由图可知,通电直导线电流方向向上,由安培定则可知,导线右侧磁场的方向向里,左侧磁场的方向向外,靠近导线磁感应强度增大,远离导线磁感应强度减小,设线框的面积为S,位置Ⅰ处和位置Ⅲ处的平均磁感应强度为B1,位置Ⅱ处的磁感应强度为B2,线框从位置Ⅰ平移到位置Ⅱ,磁通量的变化量的大小为ΔΦ1=(B1-B2)S,线框从位置Ⅰ平移到位置Ⅲ,磁通量的变化量的大小为ΔΦ2=(B1+B1)S=2B1S,以MN为转轴转到位置Ⅲ,磁通量的变化量的大小为ΔΦ3=0,以bd为转轴转到位置Ⅱ,磁通量的变化量的大小为ΔΦ4=(B1+B2)S,由以上分析可知,线框从位置Ⅰ平移到位置Ⅲ,磁通量的变化量绝对值最大。
第九章 电磁感应知识网络:第1单元 电磁感应 楞次定律一、电磁感应现象1.产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。
以上表述是充分必要条件。
不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。
当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比较方便。
2.感应电动势产生的条件。
感应电动势产生的条件是:穿过电路的磁通量发生变化。
这里不要求闭合。
无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。
这好比一个电源:不论外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
二、右手定则伸开右手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿过手心,使大拇指指向导体的运动方向,这时四指所指的方向就是感应电流的方向。
三、楞次定律1.楞次定律——感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
( 阻碍 原磁场增加时,反抗, 原磁场减小时,补充 )2.对“阻碍”意义的理解:(1)阻碍原磁场的变化。
“阻碍”不是阻止,而是“延缓”(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场变化,必须有外力克服这一“阻碍”而做功,从而导致R其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的具体应用从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。
【本讲教育信息】一. 教学内容:电磁感应考点例析【典型例题】问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
[例5]两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Q,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。
解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E 1= E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:上尸因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F2=IBd。
及二三二艺二二 3.2五由以上各式并代入数据得" N(2)设两金属杆之间增加的距离为△£,则两金属杆共产生的热量为如代入数据得Q =1.28X10-J。
2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
[例6]两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m,电阻皆为H,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
期末复习之电磁感应1.电磁学的基本现象和规律在生产生活中有着广泛的应用。
下列哪些电器件在工作时,主要应用了电磁感应现象的是 ( )A .质谱仪B .日光灯C .动圈式话筒D .磁带录音机20.如图所示,在水平地面下有一条沿东西方向铺设的水平直导线,导线中通有自东向西稳定、强大的直流是流。
现用一闭合的检测线圈(线圈中串有灵敏的检流计,图中未画出)检测此通电直导线的位置,若不考虑地磁场的影响,在检测线圈位于水平面内,从距直导线很远处由北向南沿水平地面通过导线的止方并移至距导线很远处的过程中,俯视检测线圈,其中的感应电流的方向是 ( )A .先顺时针后逆时针B .先逆时针后顺时针C .先逆时针后顺时针,然后再逆时针D .先顺时针后逆时针,然后再顺时针3.如图,线圈M 和线圈N 绕在同一铁芯上。
M 与电源、开关、滑动变阻器相连,P 为滑动变阻器的滑动端,开关S 处于闭合状态。
N 与电阻R 相连。
下列说法正确的是( )A .当P 向右移动,通过R 的电流为b 到aB .当P 向右移动,通过R 的电流为a 到bC .断开S 的瞬间,通过R 的电流为b 到aD .断开S 的瞬间,通过R 的电流为a 到b4.如图所示是穿过某闭合回路的磁通量Φ随时间t 变化的规律图象。
t 1时刻磁通量Φ1最大,t 3时刻磁通量Φ3=0,时间Δt 1=t 2-t 1和Δt 2=t 3-t 2相等,在Δt 1和Δt 2时间内闭合线圈中感应电动势的平均值分别为1E 和2E ,在t 2时刻感应电动势瞬时值为E .则( )A .1E >2EB .1E <2EC .1E >E >2ED .2E >E >1E5.用一条形金属板折成一狭长的矩形框架,框架右边是缺口,如图所示.框架在垂直纸面向里的匀强磁场中以速度v 1向右匀速运动,此时从框架右方的缺口处射入一速度为v 2、方向向左的带电油滴.若油滴恰好在框架内做匀速圆周运动,则下列说法正确的是( )A .油滴带正电B .油滴带负电C .油滴做匀速圆周运动,半径为v 12/gD .油滴做匀速圆周运动,半径为v 1v 2/g6.如图所示,导体棒ab 长为4L ,匀强磁场的磁感应强度为B ,导体绕过O 点垂直纸面的轴以角速度ω匀速转动,aO =L .则a 端和b 端的电势差U ab 的大小等于( )A .2BL 2ωB .4BL 2ωC .6BL 2ωD .8BL 2ω7.如图甲所示是日光灯的电路图,它主要是由灯管、镇流器和启动器组成的,镇流器是一个带铁芯的线圈,启动器的构造如图乙所示,为了保护启动器常在启动器的两极并上一纸质电容器C 。
电磁感应复习2姓名:___________班级:___________学号:___________一、单选题1.在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采取了双线绕法,如图所示,其道理是()A.当电路中的电流变化时,两股导线中产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线中产生的感应电流相互抵消C.当电路中的电流变化时,电流的变化量相互抵消D.当电路中的电流变化时,两股导线中产生的磁通量相互抵消2.如图甲所示,半径为r,匝数为n的线圈,其两极分别与固定在水平位置的平行金属板A,B相连,线圈处于匀强磁场之中,磁场的方向垂直于线圈平面,磁感t=时刻,应强度随时间变化的规律如图乙所示(垂直纸面向里为正方向,忽略虚线右侧的感生电场),在0q q>,重力不计的粒子从平行金属板中正位置由静止将一质量为m,电荷量为(0)释放,对粒子在0~T时间的运动,正确的判断是()A.粒子可能一直向下做加速运动B.粒子可能一直向上做加速运动C.粒子可能先向下加速运动接着向下减速运动且恰好到达下极板D.粒子可能先向上加速运动接着向上减速运动且恰打到达上极板3.如图所示,通电螺线管N置于闭合金属环M的轴线上,当N中的电流突然减小时,则()A.环M无任何变化 B.环M有扩张的趋势C.螺线管N有缩短的趋势 D.螺线管N有伸长的趋势二、多选题4.下列现象中利用的原理主要是电磁感应的有()A.如图甲所示,真空冶炼炉外有线圈,线圈中通入高频交流电,炉内的金属能迅速熔化B.如图乙所示,安检门可以检测金属物品,如携带金属刀具经过时,会触发报警C.如图丙所示,放在磁场中的玻璃皿内盛有导电液体,其中心放一圆柱形电极,边缘内壁放一环形电极,通电后液体就会旋转起来D.如图丁所示,用一蹄形磁铁接近正在旋转的铜盘,铜盘很快静止下来5.下列现象中与事实相符的是()A.甲图中,李辉用多用电表测量带铁芯的线圈的电阻。
电磁感应复习训练一、单选题1.如图所示,外表绝缘的电阻丝构成正弦波形的闭合线圈MPQN,MN长为2d。
线圈在外力作用下以恒定的速度v0沿MN方向垂直进入有界匀强磁场,磁场的宽度为d。
线圈从N端进入磁场到M端穿出磁场的过程中,线圈中的感应电流i及其受到的安培力F A随时间t变化的图像可能正确的是()A.B.C.D.2.如图所示,L1、L2为两个相同的灯泡,线圈L的直流电阻不计,下列说法中正确的是()A.闭合开关S后,L1会逐渐变亮B.闭合开关S稳定后,L1、L2亮度相同C.断开S的瞬间,L1会逐渐熄灭D.断开S的瞬间,a点的电势比b点高3.如图所示,在半径为0.5m圆形轨道(粗细均匀)内存在着垂直轨道平面的匀强磁场,磁感应强度大小为1T,导体棒ab在外力作用下沿轨道平面做匀速运动,速度大小为3m/s。
已知轨道总电阻为4Ω,导体棒总电阻为2Ω。
运动过程中导体棒与轨道良好接触,忽略阻力及摩擦,当导体棒通过圆心时,a、b两点的电势差为()A.3V B.2V C.1V D.0.5V4.在水平光滑绝缘桌面上有一边长为L 的正方形线框abcd ,被限制在沿ab 方向的水平直轨道自由滑动。
bc 边右侧有一正直角三角形匀强磁场区域efg ,直角边ge 和ef 的长也等于L ,磁场方向竖直向下,其俯视图如图所示,线框在水平拉力作用下向右以速度v 匀速穿过磁场区,若图示位置为t=0时刻,设逆时针方向为电流的正方向.则感应电流i -t 图像正确的是(时间单位为L v)( )A .B .C .D .二、多选题 5.如图所示,光滑的足够长平行金属导轨宽度1m L =,导轨所在的平面与水平面夹角37θ=︒,导轨下端电阻 1.8ΩR =,导轨放在竖直向上的匀强磁场中,磁感应强度0.5T B =。
电阻为0.2Ωr =,质量为0.1kg m =的金属棒ab 从上端由静止开始下滑,下滑距离为9md =时速度达到最大()2sin370.6,10m /s g ︒==,从释放到运动到最大速度的过程中,下列说法正确的是( )A .金属棒的最大速度为7.5m/sB .通过电阻R 的电荷量为2.25C C .系统产生的热量为4.248JD .所用的时间为2.45s6.如图所示,电阻忽略不计的两根平行光滑金属导轨竖直放置,其上端接一阻值为R 的定值电阻。
高考物理电磁感应现象压轴题专项复习一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。
一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。
ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。
重力加速度为g 。
求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。
【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=2.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L=-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-(金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即2204B L at f R= 得:02s t =3.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。