图像数字处理6-图像分割
- 格式:ppt
- 大小:903.50 KB
- 文档页数:69
第一章1、数字图像处理的目的是什么?1.提升图像的视觉质量以提供人眼主观满意或较满意的效果。
2.提取图像中目标的某些特征,以便于计算机分析或机器人识别。
3.为了存储和传输庞大的图像和视频信息。
4.信息的可视化。
5.信息安全的需要。
2、试简述数字图像处理的特点。
1.处理精度高2.重现性能好3.灵活性高4.图像信号占用频带较宽5.处理费时3、习题1.3数字图像处理主要包括哪些研究内容?1.图像获取与数字化2.图像增强3.图像复原4.图像重建5.图像变换6.图像编码与压缩7.图像分割8.图像融合4、习题1.4图像、视频、图形及动画等视觉信息之间的联系和区别?图形和图像:图形和图像都是多媒体中的可视元素。
图形是指从点、线、面到三维空间的黑白或彩色几何图形,也称为矢量图形。
图像是由称为像素的点构成的矩阵图,也称为位图。
图像和视频:最大区别就是图像是静止的图像信号,而视频则是连续的。
视频和动画:最大区别就是视频是一组真实图像数据连续播放形成而动画则是由计算机模拟的连续图像播放而成。
第二章5、习题2.2色调、色饱和度、亮度的定义是?在表征图像中一点的颜色时,起什么作用?色调表示颜色的种类,用角度来标定,用-180~180或0 0~360度量。
色饱和度表示颜色的深浅,在径向方向上的用离开中心线的距离表示。
用百分比来度量,从0%到完全饱和的100%。
亮度表示颜色的明亮程度,用垂直轴表示。
也通常用百分比度量,从0%(黑)到100%(白)。
6、习题2.6常见的数字图像处理开发工具有哪些?各有什么特点?1.Visual C++2.MATLAB的图形处理工具箱VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发出来的Win 3 2 程序有着运行速度快、可移植能力强等优点。
VC++所提供的Micr osoft基础类库MFC对大部分与用户设计有关的Wi n 32应用程序接口API 进行了封装,提高了代码的可重用性,大大缩短了应用程序开发周期,降低了开发成本。
实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。
实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。
3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。
通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。
2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
图像的处理原理图像处理的原理是指通过一系列的算法和技术对图像进行分析、增强、编码、压缩等操作,以提取图像信息,改善图像质量,实现对图像的特定处理和应用。
图像处理的基本原理可以概括为以下几个方面:1. 图像获取图像的获取是图像处理的第一步,常见的图像获取方式包括数码相机、摄像机、扫描仪等设备。
通过这些设备,可以将现实世界中的光学信息转换为数字化的图像信息,形成数字图像。
2. 图像采样和量化图像采样是指将连续的图像信号离散化为离散的像素点阵,采集图像在空间上的信息。
采样的方式包括点采样、区域采样等。
图像量化是指将图像的每个像素点的灰度值等离散化为有限的取值范围,常见的灰度值量化范围为0~255。
3. 图像增强图像增强是指利用各种技术和方法,改善图像的质量、增强图像的可视性和可识别性。
图像增强技术主要包括直方图均衡化、模糊与锐化、滤波器应用等。
图像增强的目标是提高图像的对比度、亮度、清晰度等视觉效果。
4. 图像复原与去噪图像复原是指通过恢复或近似原始图像的原始信息,以减少图像模糊、失真等质量损失。
图像复原常用的方法有逆滤波、最小二乘法等。
图像去噪是指消除图像中的噪声干扰,提高图像质量。
图像去噪方法有中值滤波、小波去噪等。
5. 图像分割图像分割是将图像分成不同的区域,每个区域具有一定的特征或相似性质。
图像分割的目的是将图像中感兴趣的目标从背景中提取出来,常用的图像分割算法包括阈值法、区域生长法、边缘检测等。
6. 特征提取与识别特征提取是指从图像中提取出包含有用信息的特征,用于下一步的目标识别、分类等应用。
常用的特征提取方法包括边缘检测、纹理特征、颜色特征等。
特征提取后,可以利用机器学习、模式识别等方法进行目标识别。
7. 压缩与编码图像压缩是指通过去除冗余信息,将图像数据从原始表示转换为更紧凑的表示形式,以减少存储空间和传输带宽。
图像压缩方法有无损压缩和有损压缩两种。
图像编码是压缩的一种手段,将图像数据编码为比特流,以实现对图像的存储和传输。
图像处理流程图像处理是指对数字图像进行一系列的操作和处理,以达到特定的目的。
图像处理流程是指在图像处理过程中,按照一定的步骤和方法进行处理,以获得所需的结果。
下面将介绍图像处理的基本流程。
首先,图像获取是图像处理的第一步。
图像可以通过摄像头、扫描仪等设备获取,也可以从已有的图像文件中读取。
在获取图像的过程中,需要注意图像的分辨率、色彩深度等参数,以及光照、对比度等因素对图像质量的影响。
接着,图像预处理是图像处理的重要环节。
在图像预处理中,通常包括图像去噪、图像增强、图像平滑、图像锐化等操作。
去噪是指去除图像中的噪声,以提高图像的质量;图像增强是指增强图像的对比度、亮度等,使图像更加清晰;图像平滑是指去除图像中的毛刺和颗粒,使图像更加平滑;图像锐化是指增强图像的边缘和细节,使图像更加清晰。
然后,图像分割是图像处理的关键步骤之一。
图像分割是指将图像分成若干个不同的区域,以便对每个区域进行单独的处理。
图像分割的方法有很多种,包括阈值分割、边缘检测、区域生长等。
图像分割的目的是提取出图像中的目标,为后续的处理和分析提供基础。
接着,特征提取是图像处理的重要环节之一。
在特征提取中,通常会提取图像的颜色、纹理、形状等特征,以描述图像中的信息。
特征提取的方法有很多种,包括直方图、小波变换、形状描述子等。
特征提取的目的是将图像转换成易于分析和识别的形式,为图像识别和分类提供基础。
最后,图像识别和分类是图像处理的最终目标。
在图像识别和分类中,通常会利用机器学习、模式识别等方法,对图像进行分析和判断,以实现对图像中目标的识别和分类。
图像识别和分类的应用非常广泛,包括人脸识别、车牌识别、医学影像识别等。
总之,图像处理流程包括图像获取、图像预处理、图像分割、特征提取、图像识别和分类等步骤。
在实际应用中,根据具体的需求和目标,可以灵活选择和组合这些步骤,以实现对图像的有效处理和分析。
图像处理技术的不断发展和创新,将为各行各业带来更多的应用和机会。
数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。
1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。
2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。
根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。
图像处理着重强调在图像之间进行的变换。
比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。
图像处理主要在图像的像素级上进行处理,处理的数据量非常大。
图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。
图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。
图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。
图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。
第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。
Image Segmentation诸薇娜zhuweina@Image Segmentation•数字图像处理的目的之一是图像识别,图像分割与测量是图像识别工作的基础。
•图像分割将图像分为一些有意义的区域,然后可以对这些区域进行描述,相当于提取出某些目标区域图像的特征,判断图像中是否有感兴趣的目标。
图像分割举例•图像分割是把图像分解成构成的部件和对象的过程•把焦点放在增强感兴趣对象–汽车牌照•排除不相干图像成分:–非矩形区域图像分割的策略•图像分割的基本策略是基于灰度值的两个基本特性:–不连续性•是基于亮度的不连续变化分割图像,如图像的边缘–区域内部的相似性•通过选择阈值,找到灰度值相似的区域•区域的外轮廓就是对象的边Image Segmentation•间断检测• 点检测• 线检测• 边缘检测 寻找间断的一般方法:模板检测 点检测•使用如图所示的模板,如果|R| >=T,则在模板中心位置检测到一个点–其中,T是阈值,R是模板计算值•基本思想:如果一个孤立点与它周围的点不同,则可以使用上述模板进行检测。
•注意:如果模板响应为0,则表示在灰度级为常数的区域TRImage SegmentationImage Segmentation线检测: 通过比较典型模板的计算值,确定一个点是否在某个方向的线上4个线检测模板• 第一个模板对水平线有最大响应• 第二个模板对45方向线有最大响应• 第三个模板对垂直线有最大响应• 第四个模板对-45方向线有最大响应Image Segmentation用R1,R2,R3和R4分别代表水平、45、垂直和-45方向线的模板响应,在图像中心的点,如果|Ri| >|Rj| , j !=i则此点被认为与在模板i方向上的线更相关例:如果|R1| > |R j| , j = 2,3,4则该点与水平线有更大的关联•在灰度恒定的区域,上述4个模板的响应为零•可以设计其它模板:•模板系数之和为0•感兴趣的方向系数值较大Image Segmentation边缘检测边缘检测•一阶–在边缘斜面上,一阶导数为正,–其它区域为零•二阶–在边缘与黑色交界处,二阶导数为正–在边缘与亮色交界处,二阶导数为负–沿着斜坡和灰度为常数的区域为零Image Segmentation边缘检测•结论– 一阶导数可用于检测图像中的一个点是否在–边缘上– 二阶导数可以判断一个边缘像素是在边缘亮–的一边还是暗的一边– 一条连接二阶导数正值和负值的虚构直线将–在边缘中点附近穿过零点– 一阶导数使用梯度算子,二阶导数使用拉普–拉斯算子边缘检测•一阶导数:用梯度算子来计算Image Segmentation边缘检测边缘检测边缘检测边缘检测•结论–Prewitt和Sobel算子是计算数字梯度时最常–用的算子–Prewitt模板比Sobel模板简单,但Sobel模–板能够有效抑制噪声Image SegmentationImage SegmentationImage SegmentationImage Segmentation边缘检测•二阶导数:通过拉普拉斯来计算边缘检测•拉普拉斯算子总结– 缺点:• 拉普拉斯算子对噪声具有敏感性• 拉普拉斯算子的幅值产生双边缘• 拉普拉斯算子不能检测边缘的方向– 优点:• 可以利用零交叉的性质进行边缘定位• 可以确定一个像素是在边缘暗的一边还是亮的一边边缘检测Image Segmentation边缘检测•高斯型拉普拉斯算子总结–高斯型函数的目的是对图像进行平滑处理–拉普拉斯算子的目的是提供一幅用零–交叉确定边缘位置的图像平滑处理减少了噪声的影响Image Segmentation边缘检测•对比二阶拉普拉斯算子和一阶Sobel梯度算子– 缺点• 边缘由许多闭合环的零交叉点决定• 零交叉点的计算比较复杂– 优点• 零交叉点图像中的边缘比梯度边缘细• 抑制噪声的能力和反干扰性能• 结论:梯度算子具有更多的应用边缘连接和边界检测• 为什么需要边缘连接?• 局部处理• 整体处理之霍夫变换边缘连接和边界检测•为什么需要边缘连接?–由于噪声、照明等产生边缘间断,使得一组像素难以完整形成边缘–因此,在边缘检测算法后,使用连接过程将间断的边缘像素组合成完整边缘边缘连接和边界检测•局部处理– 分析图像中每个边缘点(x,y)的一个邻域内的像素,根据某种准则将相似点进行连接,由满足该准则的像素连接形成边缘– 如何确定边缘像素的相似性• 边缘像素梯度算子的响应强度• 边缘像素梯度算子的方向边缘连接和边界检测Image Segmentation边缘连接和边界检测•通过Hough变换进行整体处理•Hough变换– 问题的提出– Hough变换的基本思想– 算法实现– Hough变换的扩展•Hough变换问题的提出– 在找出边界点集之后,需要连接,形成完整的边界图形描述•Hough变换的基本思想–对于边界上的n个点的点集,找出共线的点集和直线方程。
图像数字化处理常用方法1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4 )图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
5 )图像描述:图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
图像处理即图像识别过程图像处理(imageProcessing)利用计算机对图像进行分析,以达到所需的结果。
图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。
这种处理大多数是依赖于软件实现的。
其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。
l)图像采集图像采集是数字图像数据提取的主要方式。
数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。
图像的提取是将一个图像变换为适合计算机处理的形式的第一步。
2)图像增强图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。
为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。
通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。
图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。
图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。
3)图像复原图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。
图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。
4)图像编码与压缩数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。
但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。
为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。
目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。