2019年福建省泉州市晋江市东石中学中考数学二模试卷(含精品解析)
- 格式:doc
- 大小:414.50 KB
- 文档页数:18
福建省2019年中考数学二模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.下列各数中,比﹣2小的数是()A. 2B. 0C. ﹣1D. ﹣3【答案】D【解析】根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.解:比-2小的数是应该是负数,且绝对值大于2的数;分析选项可得,只有D符合.故选D.“点睛”本题考查实数大小的比较,是基础性的题目.2.港珠澳大桥是连接香港、珠海、澳门的超大型跨海通道,全长约55000米,把55000用科学记数法表示为()A. 55×103B. 5.5×104C. 5.5×105D. 0.55×105【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】55000是5位整数,小数点向左移动4位后所得的数即可满足科学记数法的要求,由此可知10的指数为4,所以,55000用科学记数法表示为5.5×104,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 如图,下列几何体的左视图不是矩形的是()A. B. C. D.【答案】B 【解析】A 、圆柱的左视图是矩形,不符合题意;B 、圆锥的左视图是等腰三角形,符合题意;C 、三棱柱的左视图是矩形,不符合题意;D 、长方体的左视图是矩形,不符合题意. 故选B . 试题解析:考点:简单几何体的三视图. 【此处有视频,请去附件查看】4.如图,直线m ∥n ,点A 在直线m 上,点B 、C 在直线n 上,AB =CB ,∠1=70°,则∠BAC 等于( )A. 40°B. 55°C. 70°D. 110°【答案】C 【解析】试题解析:∵m ∥n , ∴170ACB ∠=∠=, ∵AB =BC ,∴70BAC ACB ∠=∠=, 故选C.点睛:平行线的性质:两直线平行,内错角相等.5.已知三角形三边长分别为5、a、9,则数a可能是()A. 4B. 6C. 14D. 15【答案】B【解析】【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,先求出a的取值范围,再根据取值范围选择.【详解】∵5+9=14,9﹣5=4,∴4<x<14.故选:B.【点睛】本题主要考查三角形的三边性质,需要熟练掌握.6.计算97a b a a a b b b+++个个=() A. 97a b B. 97a b C. 79a b D. 97a b【答案】C【解析】分析:分子根据合并同类项计算,分母根据同底数幂的乘法计算.详解:原式=79ab.故选C.点睛:本题考查了合并同类项和同底数幂的乘法计算,合并同类项的方法是系数相加,字母和字母的指数不变;同底数的幂相乘,底数不变,把指数相加.7.如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是AB上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A. (sinα,sinα)B. (cosα,cosα)C. (cosα,sinα)D. (sinα,cosα)【答案】C【解析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=PQOP,cosα=OQOP,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【此处有视频,请去附件查看】8.关于x的一元二次方程mx2﹣(m+1)x+1=0有两个不等的整数根,m为整数,那么m的值是()A. ﹣1B. 1C. 0D. ±1【答案】A【解析】分析:把方程mx2﹣(m+1)x+1=0的左边用式子相乘法分解因式,再结合m≠0和m为整数求出m的值. 详解:∵mx2﹣(m+1)x+1=0,∴(mx-1)(x-1)=0,∴x1=1,x2=1m,又∵方程有两个不等的整数根,m为整数,∴m=-1.故选A.点睛:本题考查了一元二次方程的解法,熟练掌握十字相乘法是解答本题的关键.9.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A. 甲超市的利润逐月减少B. 乙超市的利润在1月至4月间逐月增加C. 8月份两家超市利润相同D. 乙超市在9月份的利润必超过甲超市【答案】D 【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.10.如图,已知A(3,6)、B(0,n)(0<n≤6),作AC⊥AB,交x轴于点C,M为BC的中点,若P(32,0),则PM的最小值为()A. 3B.C.D. 【答案】D【解析】【分析】作AH⊥y轴于H,CE⊥AH于E,作MN⊥OC于N,易得△AHB∽△CEA从而36BHAE=,设BH=x,则AE=2x,可得PM2=PN2+MN2=x2+(62x-)2=54x2﹣3x+9=54(x﹣65)2+365即可求出PM最小值【详解】如图,作AH⊥y轴于H,CE⊥AH于E,作MN⊥OC于N.则四边形CEHO是矩形,OH=CE=4,∵∠BAC=∠AHB=∠AEC=90°,∴∠ABH+∠HAB=90°,∠HAB+∠EAC=90°,∴∠ABH=∠EAC,∴△AHB∽△CEA,∴AH BH EC AE=,∴36BHAE =,∴AE=2BH,设BH=x,则AE=2x,∴OC=HE=3+2x,OB=6﹣x,∴B(0,6﹣x),C(3+2x,0)∵BM=CM,∴M(322x+,62x-),∵P(32,0),∴PN=ON﹣OP=322x+﹣32=x,∴PM2=PN2+MN2=x2+(62x-)2=54x2﹣3x+9=54(x﹣65)2+365,∴x=65时,PM2有最小值,最小值为365,∴PM故选:D.【点睛】此题主要考查平面内两点之间最小值,涉及到相似三角形以及二次函数的性质二、填空题(本大题共6小题,每小题4分,共24分)11.计算:|﹣3|+112-⎛⎫⎪⎝⎭=_____.【答案】5【解析】【分析】根据绝对值,负整数指数幂的法则计算即可.【详解】解:原式=3+2=5.故答案为:5.【点睛】本题考查绝对值,负整数指数幂,解题的关键是熟练掌握负整数指数幂的法则.12.甲、乙袋中各装有2个相同的小球,分别标有数字1、2和2、3.现从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是_____.【答案】1 4【解析】【分析】直接根据题意画出树状图,再利用概率公式求出答案.【详解】如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:14.故答案为:14.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比13.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若49DECABCSS=△△,AC=3,则DC=_____.【答案】2 【解析】【分析】由DE∥AB可得出△DEC∽△ABC,根据相似三角形的性质可得出249DECABCS DCS AC⎛⎫==⎪⎝⎭,再结合AC=3即可求出DC的长度.【详解】∵DE∥AB,∴△DEC∽△ABC,∴249 DECABCS DCS AC⎛⎫==⎪⎝⎭,∴23 DCAC=.又∵AC=3,∴DC =2. 故答案为:2.【点睛】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理找出△DEC ∽△ABC 是解题的关键.14.已知扇形的圆心角为120°,弧长为4π,则它的半径为_____. 【答案】6 【解析】 【分析】根据弧长的公式:l =n r180π进行计算即可. 【详解】由扇形的弧长公式l =n r180π,得4π=120180r π⨯⨯,解得:r =6. 故答案为:6.【点睛】本题考查了扇形的弧长的计算,掌握扇形的弧长公式:l =n r180π(弧长为l ,圆心角度数为n ,圆的半径为R )是解题的关键.15.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x 里,依题意,可列方程为_____. 【答案】2481632378x x x x x x +++++=; 【解析】 【分析】设第一天走了x 里,则第二天走了2x 里,第三天走了4x 里…第六天走了32x 里,根据总路程为378里列出方程可得答案.【详解】解:设第一天走了x 里, 则第二天走了2x 里,第三天走了4x 里…第六天走了32x 里,依题意得:3782481632x x x x x x +++++=, 故答案:3782481632x x x x xx +++++=. 【点睛】本题主要考查由实际问题抽象出一元一次方程.16.在平面直角坐标系中,已知抛物线y =x 2﹣2ax +b 的顶点在x 轴上,P (x 1,m ),Q (x 2,m )(x 1<x 2)是此抛物线上的两点.若存在实数c ,使得x 1≤c ﹣1,且x 2≥c +7成立,则m 的取值范围是_____. 【答案】m ≥16 【解析】 【分析】根据题意得出b =a 2,然后解x 2﹣2ax +a 2=m 可得出PQ =x 1、x 2的范围可得出关于m 的不等式,解之即可得出m 的取值范围.【详解】∵顶点在x 轴上,24(2)04b a --=,∴b =a 2.∴x 2﹣2 ax +a 2=0,解得x 1=ax 1=a∴PQ =又x 1≤c ﹣1,x 1≥c +7 ∴≥(c +7)﹣(c ﹣1), ∴m ≥16.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征,解题的关键是:通过解一元二次方程求出x 1、x 2的值.三、解答题(本大题共9小题,共86分)17.求不等式组21223x x x <+⎧⎪-⎨≤⎪⎩的整数解.【答案】不等式组的解集为﹣4≤x<1,整数解为﹣4,﹣3,﹣2,﹣1,0.【解析】【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出整数解.【详解】21223x x x<+⎧⎪⎨-≤⎪⎩①②,,解不等式①,得x<1,解不等式②,得x≥﹣4,在同一数轴上表示不等式①②的解集,如图∴原不等式组的解集为﹣4≤x<1,则原不等式组的整数解为﹣4,﹣3,﹣2,﹣1,0.【点睛】此题考查了一元一次不等式的整数解,求出不等式组的解集是解本题的关键.18.如图,点C,E,F,B在同一直线上,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【答案】见解析.【解析】试题分析:根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.试题解析:证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∵∠A=∠D,∠B=∠C,AE=DF,∴△ABE≌△DCF,∴AB=CD.点睛:本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.19.化简:216422a a a a a a -⎛⎫-÷⎪--⎝⎭. 【答案】42a a +-. 【解析】【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果. 【详解】原式=216(4)(4)4(2)4(2)42a a a a a a a a a a a a a -+-+⋅=⋅=-----. 【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【答案】(1)答案见解析;(2)45°.【解析】【分析】(1)分别以A 、B 为圆心,大于12AB 长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF =∠ABD ﹣∠ABF 计算即可;【详解】(1)如图所示,直线EF 即为所求;(2)∵四边形ABCD 是菱形,∴∠ABD =∠DBC 12=∠ABC =75°,DC ∥AB ,∠A =∠C , ∴∠ABC =150°,∠ABC +∠C =180°,∴∠C =∠A =30°.∵EF 垂直平分线段AB ,∴AF =FB ,∴∠A =∠FBA =30°,∴∠DBF =∠ABD ﹣∠FBE =45°.【点睛】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.21.如图,已知AC ⊥BC ,垂足为C ,AC =4,BC =AC 绕点A 按逆时针方向旋转60°,得到线段AD ,连接DC ,DB .(1)线段DC = ;(2)求线段DB 的长度.【答案】(1)4;(2)【解析】试题分析:(1)证明ACD 是等边三角形,据此求解;(2)作D E B C ⊥于点E ,首先在Rt CDE △中利用三角函数求得DE 和CE 的长,然后在Rt BDE △中利用勾股定理求解.试题解析:(1)60AC AD CAD ,,=∠=︒ ACD ∴是等边三角形,4DC AC ∴==.故答案是:4;(2)作DE BC ⊥于点E ,∵ACD 是等边三角形,60ACD ∴∠=︒,又AC BC ⊥,906030DCE ACB ACD ,∴∠=∠-∠=︒-︒=︒ ∴Rt CDE △中,122DE DC ==,cos304CE DC =⋅︒==BE BC CE ∴=-== ∴Rt BDE △中,BD ===22.根据某小区书法兴趣小组成员的年龄情况,绘制如下不完整的统计图:(1)该兴趣小组成员年龄的平均数是 岁,众数是 岁;(2)平均数能较好地反映该兴趣小组成员的年龄特征吗?说明你的理由.【答案】(1)14、9;(2)见解析.【解析】【分析】(1)先求出被调查的总人数,再求出7岁和9岁的人数,继而根据众数和平均数的定义计算可得; (2)根据平均数容易受极端值影响求解可得.【详解】(1)∵被调查的总人数为2÷20%=10(人),则7岁的有10×20%=2人,9岁的有10﹣(2+2+1+1)=4(人),所以该兴趣小组成员年龄的平均数是72829410164110⨯+⨯+⨯+⨯+⨯=14(岁),众数为9岁;故答案为:14、9.(2)平均数不能较好地反映该兴趣小组成员的年龄特征,因为该兴趣小组成员年龄的平均数受极端数据64的影响.【点睛】本题主要考查众数和平均数,解题的关键是熟练掌握众数和平均数的定义.23.某公司将农副产品运往市场销售,记汽车行驶时间为t(h),平均速度为v(km/h)(汽车行驶速度不超过100km/h),v随t的变化而变化.t与v的一组对应值如表:(1)写出一个符合表格中数据,v(km/h)关于t(h)的函数解析式;(2)汽车上午7:30出发,能否在上午10:00之前到达市场?请说明理由.【答案】(1)v=300t;(2)上午10:00前汽车不能到达市场.【解析】【分析】(1)根据表格中的数据可以写出v(km/h)关于t(h)的函数解析式;(2)将t=2.5代入(1)中的函数解析式,求出v的值,然后与100比较大小即可解答本题.【详解】(1)由表格中的数据可得,vt=300,则v=300t,即v(km/h)关于t(h)的函数解析式是v=300t;(2)上午10:00前汽车不能到达市场,理由:∵当t=2.5时,v=3002.5=120>100,∴上午10:00前汽车不能到达市场.【点睛】本题考查反比例函数的应用,解答本题的关键是明确题意,利用反比例函数的性质解答.24.如图1,AB、EF是⊙O的直径,点C、F在弧AB上,且F是弧BC的中点,弦BC与FE交于点D,连接AC、BC、FC、FB、AE.(1)求证:AC∥EF;(2)如图2,过点C作FB的平行线,交EF于点N,M为线段CF的中点,连接MD并延长MD交AB于点H,连接FH.若EN=2,AB=6,求FH的长.【答案】(1)证明见解析;(2)2.【解析】【分析】(1)由F为弧BC中点,且EF为圆的直径,利用垂径定理的逆定理得到EF与BC垂直,再由直径所对的圆周角为直角,得到一对直角相等,即可得证;(2)由CN与FB平行,以及等边对等角得到内错角相等,进而得到AE与FB平行,可得出AE与CN平行,得到四边形AENC为平行四边形,得到AC=EN=2,利用垂径定理的逆定理得到BC与EF垂直,由AB=6,得到半径为3,利用勾股定理求出BD的长,再证明三角形OFH与三角形OBD全等,即可求出FH的长.【详解】(1)∵点F是弧BC的中点,EF是直径,∴EF⊥BC, ∴∠BDE=90°∵AB是直径∴∠ACB=90°∴∠ACB=∠BDE,∴AC∥EF;(2)如图2,∵CN∥FB,OA=OE=OB=OF,∴∠CNF=∠OFB=∠OBF=∠E,∴AE∥FB,∴CN∥AE,∵AC∥EF,∴四边形AENC是平行四边形,∴AC=EN=2,∵点F是弧BC的中点,EF是直径,∴DC=DB,OD⊥BC于点D,∵DC=DB,AO=BO∴OD是△ABC的中位线,∴OD=12AC=1,∵OB=3,∴BD=,又∵M为线段CF的中点,CD=BD∴MD是△BCF的中位线,∴MH∥FB,∴∠ODH=∠OFB,∠OBF=∠DHO,又∵OF=OB∴∠OFB=∠OBF∴∠ODH=∠DHO,∴OD=OH,又∠DOH公共角,∠ODB=∠FHO=90°∴△FOH≌△BOD,∴FH=BD=.【点睛】此题考查了圆周角定理,全等三角形的判定与性质,平行线的判定与性质,以及平行四边形的判定与性质,熟练掌握各自的性质是解本题的关键.25.抛物线y =ax 2﹣2x +b 的顶点为A (m ,n ),过点A 的直线y =kx ﹣1与抛物线的另一交点为B (p ,q ).(1)当a =b =1时,求k 的值;(2)若b =m ,当﹣3≤a <1时,求p 的取值范围.【答案】(1)1;(2)p ≤23或p >2. 【解析】【分析】(1)将a =b =1代入抛物线的解析式确定直线经过的点A 的坐标,从而确定k 的值;(2)表示出直线的解析式:y =ax ﹣1,然后根据当﹣3≤a <0和当0<a <1时利用反比例函数的性质确定P 的取值范围即可.【详解】(1)当a =b =1时,抛物线y =x 2﹣2x +1的顶点为A (1,0),直线y =kx ﹣1过点A (1,0),k =1(2)∵y =ax 2﹣2x +b 的顶点为A (m ,n ),∴m =1.a∵b =m ,∴抛物线y =ax 2﹣2x +1.a ∴顶点为(1a,0), ∵直线y =kx ﹣1过顶点为(1a ,0), ∴k a﹣1=0,k =a . 从而直线的解析式为:y =ax ﹣1ax 2﹣2x +1a=a x ﹣1 21(2)0a ax a x a+-++= x 1=1a ,x 2=1+1a . ∵B 与A 是不同的两点∴p =1+1a. 对于﹣3≤a <1, ①当﹣3≤a <0时,利用反比例函数性质得:112,33p a -剟②当0<a<1时,利用反比例函数性质得:1a>1,p>2综上所述,p≤23或p>2.【点睛】本题考查了二次函数的性质及函数图象上的点的坐标特征的知识,解题的关键是得到p与a的关系,难度不大.。
晋江市2019年初中学业质量检查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分.每小题有四个答案,其中有且只有一个答案是正确的, 请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.) 1.9的算术平方根是( ). A .3B .3-C .3±D .9±2.计算()32b a 的结果是( ). A .b a 23B .32b aC .35b aD .36b a3.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是( ). A .⎩⎨⎧>+>-0201x xB .⎩⎨⎧>+-0201x xC .⎩⎨⎧->+0 201x xD .⎩⎨⎧<-+020 1x x 4.在四个实数2-,0,3-,5中,最小的实数是( ).A .2-B .0C .3-D .55.学校美术作品展中,九年级8个班参展的作品(单位:件)分别为:3、5、2、4、3、2、3、4,则这组数据的中位数是( ).A .2B .3C .5.3D .46.如图,ABC Rt ∆中,︒=∠90ABC ,点D 为斜边AC 的中点,6=BD cm ,则AC 的长为( ).A .3B .6C .36D .127.点O 是ABC ∆的外心,若︒=∠80BOC ,则BAC ∠的度数为( ). A .40° B .100° C .40°或140° D .40°或100° 二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.2016的相反数是 . 9.计算:___________2422=---m m m . 10.崖城13-1气田是我国海上最大合作气田,年产气约为0000004003立方米,将数据(第3题图)3210-1-2 A(第6题图)DBC≤ ≤ ≥0000004003用科学记数法表示为 .11.如图,已知︒=∠115B ,如果BE CD //,那么︒=∠____1. 12.因式分解:__________3=-x x . 13.方程)4(35-=x x 的解为 .14.如图,在ABC Rt ∆中,︒=∠90C ,6=BC ,10=AB ,则=A tan .15.如图,在□ABCD 中,BD AE ⊥于点E ,︒=∠30EAC ,12=AC ,则AE 的长为 . 16.已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:x… 0 1 2 3 4 … y… 3 4 3 0 -5 …则此二次函数图象的对称轴为直线 ;当0>y 时,x 的取值范围是 . 17.如图1,将半径为2的圆形纸片沿圆的两条互相垂直的直径AC 、BD 两次折叠....后,得到如图2所示的扇形OAB ,然后再沿OB 的中垂线EF 将扇形OAB 剪成左右两部分,则︒=∠OEF ;右边部分经过两次展开....并压平后所得的图形的周长为.三、解答题(共89分):在答题卡上相应题目的答题区域内作答. 18.(9分)计算:2)55(21841601----÷+⨯-.19.(9分)先化简,再求值:)34()32(2--+x x x ,其中51-=x .(第11题图)ED CBA1α°(第20题图)12F AB CD E 20.(9分)如图,在ABC ∆中,点D 、E 分别在AB 、AC 边上,BE 与CD 相交于点F ,且AE AD =,21∠=∠.求证:FCB FBC ∠=∠.21.(9分)将三张质地相同并分别标有数字1、2、3的卡片,背面朝上放在桌面上,洗匀后,甲同学从中随机抽取一张卡片.(1)甲同学抽到卡片上的数恰好是方程0342=+-x x 的根的概率为 ;(2)甲乙两人约定:甲先随机抽取一张卡片后,背面朝上放回桌面洗匀,然后乙再随机抽取一张卡片,若两人所抽取卡片上的数字恰好是方程0342=+-x x 的两个根...,则甲获胜;否则乙获胜.请你通过列表或画树状图的方法,说明这个游戏是否公平?22.(9分)某学校计划开设A 、B 、C 、D 四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如下所示的两个不完整统计图表.选修课程所占百分比A a %B 25%C b %D20%请根据图表信息,解答下列问题:校本课程选修意向统计表 校本课程选修意向条形统计图 401510 20 30 40 50 A B CD 课程人数(名) 25(1)参与调查的学生有 名;(2)在统计表中,=a ,=b ,请你补全条形统计图; (3)若该校共有2000名学生,请你估算该校有多少名学生选修A 课程?23.(9分)如图,在平面直角坐标系中,O 是坐标原点,菱形OABC 的顶点)4,3(A ,C 在x 轴的负半轴,抛物线k x y +--=2)2(34过点A . (1)求k 的值; (2)若把抛物线k x y +--=2)2(34沿x 轴向左平移m 个单位长度,使得平移后的抛物线经过菱形OABC 的顶点C .试判断点B 是否落在平移后的抛物线上,并说明理由.24.(9分)某微店销售甲、乙两种商品,卖出6件甲商品和4件乙商品可获利120元;卖出10件甲商品和6件乙商品可获利190元. (1)甲、乙两种商品每件可获利多少元?(2)若该微店甲、乙两种商品预计..再次进货200件,全部卖完后总获利不低于2300元,已知甲商品的数量不少于120件.请你帮忙设计一个进货方案,使总获利最大.(第23题图)yO A B C x25.(13分)如图,在矩形ABCD 中,k AB 8=,k BC 5=(k 为常数,且)0>k ,动点P 在AB 边上(点P 不与A 、B 重合),点Q 、R 分别在BC 、DA 边上,且1:2:3::=DR BQ AP .点A 关于直线PR 的对称点为'A ,连接'PA 、'RA 、PQ . (1)若4=k ,15=PA ,则四边形'PARA 的形状是 ;(2)设x DR =,点B 关于直线PQ 的对称点为'B 点.①记'PRA ∆的面积为1S ,'PQB ∆的面积为2S .当21S S <时,求相应x 的取值范围及12S S -的最大值;(用含k 的代数式表示)②在点P 的运动过程中,判断点'B 能否与点'A 重合?请说明理由.26.(13分)如图,已知直线x y -=和双曲线x k y =(0>k ),点)0)(,(>m n m A 在双曲线xk y =上. (1)当2==n m 时,①直接写出k 的值;②将直线x y -=作怎样的平移能使平移后的直线与双曲线xky =只有一个交点. (2)将直线x y -=绕着原点O 旋转,设旋转后的直线与双曲线xky =交于点),(b a B()0,0>>b a 和点C .设直线AB ,AC 分别与x 轴交于D ,E 两点,试问:AD AB 与AEAC的值存在怎样的数量关系?请说明理由.yxA (m ,n )Oy=-x(第25题图) y x(第A (m ,n )O y=-xQ A'RP D CBA(以下空白作为草稿纸)晋江市2019年初中学业质量检查(二)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.A 2.D 3.C 4.A 5. B 6.D 7.C 二、填空题(每小题4分,共40分)8.2016- 9.2 10.9104.3⨯ 11.65 12.()()11-+x x x13.6-=x 14.4315.33 16.1=x ;31<<-x 17.90; 3434+π. 三、解答题(共89分) 18.(本小题9分) 解:原式=2134--+ …………………………………………………………………………………………8分4= …………………………………………………………………………………………………… 9分19.(本小题9分) 解:原式=x x x x 34912422+-++ ……………………………………………………………………………4分=915+x ………………………………………………………………………………………………6分 当51-=x 时,原式95115+⎪⎭⎫⎝⎛-⨯= ………………………………………………………………………7分6=………………………………………………………………………………………9分20.(本小题9分)证明:∵AE AD =,21∠=∠,A A ∠=∠,∴ABE ∆≌ACD ∆, …………………………………………………………………6分 ∴AC AB =,∴ACB ABC ∠=∠ ,∴21∠-∠=∠-∠ACB ABC ,∴FCB FBC ∠=∠.……………………………………………………………………9分21.(本小题9分) 解:(1)32;……………………………………………………………………………3分 (2)方法一:画树状图如下:…………………………………………………………………………………………………………………6分由树状图可知,共有9种等可能的结果,其中甲获胜有2种,乙获胜有7种.∵P (甲获胜)=92,P (乙获胜)=97, ∴P (甲获胜)<P (乙获胜),∴游戏不公平. ………………………………………………………………………………………………9分 方法二:列表如下:1 23 1 2 3 1 23 甲 1 2 3 乙 (第20题图)12FAB CDE…………………………………………………………………………………………………………………6分由上表可知,共有9种等可能的结果,其中甲获胜有2种,乙获胜有7种.∵P (甲获胜)=92,P (乙获胜)=97, ∴P (甲获胜)<P (乙获胜),∴游戏不公平. ………………………………………9分22.(本小题9分)解:(1)100; ………………………………………3分 (2)40=a ,15=b ,补全条形统计图如图所示:…………………………………………………6分 (3)8002000%40=⨯(名)答:该校有800名学生选修A 课程. ………………9分23.(本小题9分) 解:(1)∵k x y +--=2)2(34经过点)4,3(A ∴4)23(342=+-⨯-k 解得,316=k ;………………………………………………………………………………………………3分 (2)设AB 与y 轴交于点D ,则y AD ⊥轴,3=AD ,4=OD ,1 231 ()1,1 ()2,1 ()3,1 2()1,2 ()2,2()3,2 3()1,3()2,3()3,3401510 20 30 40 50 A B CD 课程人数(名) 2025校本课程选修意向条形统计图 yABD5432222=+=+=OD AD OA∵四边形OABC 是菱形,5===∴OC AB OA , 2=-=AD AB BD ,∴)4,2(-B ,……………………………………………………5分 令0=y ,得0316)2(342=+--x , 解得:01=x ,42=x ,∴抛物线316)2(342+--=x y 与x 轴交点为)0,0(O 和)0,4(E ,4=OE , 当5==OC m 时,平移后的抛物线为316)3(342++-=x y ,令2-=x 得,4316)32(342=++--=y , ∴点B在平移后的抛物线316)3(342++-=x y 上;…………………………………………………8分 当9==CE m 时,平移后的抛物线为316)7(342++-=x y , 令2-=x 得,4316)72(342≠++--=y , ∴点B 不在平移后的抛物线316)7(342++-=x y 上.综上,当5=m 时,点B 在平移后的抛物线上;当9=m 时,点B 不在平移后的抛物线上.…………………………………………………9分24.(本小题9分)解:(1)设甲商品每件获利x 元、乙商品每件获利y 元,由题意,得 ⎩⎨⎧=+=+19061012046y x y x ,解得:⎩⎨⎧==1510y x .答:甲商品每件获利10元,乙商品每件获利15元.……………………………………………………4分(2)设甲商品进货a 件,总获利为w 元,由题意,得 )200(1510a a w -+=30005+-=a由230030005≥+-a 解得:140≤a .∴a 的取值范围为140120≤≤a ,且a 是整数; ∵05<-,∴w 随a 增大而减小,∴当120=a 时,w 最大,此时80200=-a . ∴进货方案为甲商品进货120件,乙商品进货80件.…………………………………………………9分25.(本小题13分)(1)正方形;………………………………………………………………………………………………3分(2)解:①由题意可知,x BQ 2=,x PA 3=,x k AR -=5,x k BP 38-=,∵2111153(5)32222PRA S S AR AP k x x kx x ∆==⋅=-⋅=-, 22382)38(2121x kx x x k BQ BP S S PQB -=⋅-=⋅==∆,由21S S <可得,223823215x kx x kx -<-,∵0>x ,∴x 取值范围为k x 310<<.kx x S S 2123212+-=-22241)6(23k k x +--=∴当6k x =时,12S S -有最大值,最大值为2241k .…………………………………………………8分②点'B 不能与点'A 重合.理由如下:如图, 假设点'B 与点'A 重合,则有︒=∠+∠+∠+∠180''BPQ PQ B PR A APR , 由对称的性质可得,APR PR A ∠=∠',BPQ PQ B ∠=∠',∴︒=︒⨯=∠+∠9018021BPQ APR , 由︒=∠90A 可得,︒=∠+∠90PRA APR ,∴PRA BPQ ∠=∠, 又∵︒=∠=∠90B A ∴PAR Rt ∆∽QBP Rt ∆,(第25题图)ABCD PQRA' (B' )∴BPARQB PA =,即QB AR BP PA ⋅=⋅. ∴x x k x k x 2)5()38(3⋅-=-,解得,01=x (不合题意舍去),k x 22=,………………………11分又∵'PA PA =,''PA PB PB ==, ∴PB PA =,∴x k x 383-=,解得k k x 234≠=故点'B 不能与点'A重合.…………………………………………………………………………………13分26.(本小题13分)解:(1)① 4=k ; …………………………………………………………………………………………3分② 设平移后的直线为1b x y +-=,由⎪⎩⎪⎨⎧=+-=x k y b x y 1可得,x b x 41=+-, 整理可得,0412=+-x b x .当0414)(21=⨯⨯--=∆b ,即41±=b 时,方程0412=+-x b x 有两个相等的实数根,此时直线1b x y +-=与双曲线只有一个交点,∴只要将直线x y -=向上或向下平移4个单位长度,所得到的直线与双曲线只有一个交点.………8分 (2)2=±ADABAE AC ,理由如下:……………………9分分两种情况讨论:由双曲线的对称性可知,),(b a C --i)当点A 在直线BC 的上方时,如图所示, 过A 、B 、C 分别作y 轴的垂线,垂足分别为F 、G 、H .则n OF =,b OH OG ==,∴b n OG OF FG -=-=,b n OH OF FH +=+=,yxHG FE DCB (a ,b )(第26题图)A (m ,n )O y=-x∵x BG AF ////轴,∴n bn FO FG AD AB -==. ∵x AF //轴CH //, ∴nbn FO FH AE AC +==. ∴2=++-=+nbn n b n AD AB AE AC .…………………11分 ii) 当点A 在直线BC 的下方时,同理可求:n n b AD AB -=,nnb AE AC +=, ∴2=--+=-nnb n n b AD AB AE AC . 综上所述,2=±ADAB AE AC .…………………………………………………………………………………13分。
晋江市2019年初中学业质量检查(第二次)数 学 试 题(试卷满分:150分;考试时间:120分钟)一、选择题(每小题3分,共21分.每小题有四个答案,其中有且只有一个答案是正确的, 请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.) 1.9的算术平方根是( ). A .3B .3-C .3±D .9±2.计算()32b a 的结果是( ). A .b a 23B .32b aC .35b aD .36b a3.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是( ). A .⎩⎨⎧>+>-0201x xB .⎩⎨⎧>+-0201x xC .⎩⎨⎧->+0 201x xD .⎩⎨⎧<-+020 1x x 4.在四个实数2-,0,3-,5中,最小的实数是( ).A .2-B .0C .3-D .55.学校美术作品展中,九年级8个班参展的作品(单位:件)分别为:3、5、2、4、3、2、3、4,则这组数据的中位数是( ). A .2 B .3 C .5.3 D .4 6.如图,ABC Rt ∆中,︒=∠90ABC ,点D 为斜边AC 的中点,6=BD cm ,则AC 的长为( ). A .3B .6C .36D .127.点O 是ABC ∆的外心,若︒=∠80BOC ,则BAC ∠的度数为( ). A .40° B .100° C .40°或140° D .40°或100° 二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答. 8.2016的相反数是 . 9.计算:___________2422=---m m m . 10.崖城13-1气田是我国海上最大合作气田,年产气约为0000004003立方米,将数据0000004003用科学记数法表示为 .(第3题图)3210-1-2 A(第6题图)DBC≤ ≤ ≥11.如图,已知︒=∠115B ,如果BE CD //,那么︒=∠____1. 12.因式分解:__________3=-x x . 13.方程)4(35-=x x 的解为 .14.如图,在ABC Rt ∆中,︒=∠90C ,6=BC ,10=AB ,则=A tan .15.如图,在□ABCD 中,BD AE ⊥于点E ,︒=∠30EAC ,12=AC ,则AE 的长为 . 16.已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:x… 0 1 2 3 4 … y…343-5…则此二次函数图象的对称轴为直线 ;当0>y 时,x 的取值范围是 . 17.如图1,将半径为2的圆形纸片沿圆的两条互相垂直的直径AC 、BD 两次折叠....后,得到如图2所示的扇形OAB ,然后再沿OB 的中垂线EF 将扇形OAB 剪成左右两部分,则︒=∠OEF ;右边部分经过两次展开....并压平后所得的图形的周长为.三、解答题(共89分):在答题卡上相应题目的答题区域内作答. 18.(9分)计算:2)55(21841601----÷+⨯-.19.(9分)先化简,再求值:)34()32(2--+x x x ,其中51-=x .(第11题图)ED CBA1α°(第20题图)12F AB CD E 20.(9分)如图,在ABC ∆中,点D 、E 分别在AB 、AC 边上,BE 与CD 相交于点F ,且AE AD =,21∠=∠.求证:FCB FBC ∠=∠.21.(9分)将三张质地相同并分别标有数字1、2、3的卡片,背面朝上放在桌面上,洗匀后,甲同学从中随机抽取一张卡片.(1)甲同学抽到卡片上的数恰好是方程0342=+-x x 的根的概率为 ;(2)甲乙两人约定:甲先随机抽取一张卡片后,背面朝上放回桌面洗匀,然后乙再随机抽取一张卡片,若两人所抽取卡片上的数字恰好是方程0342=+-x x 的两个根...,则甲获胜;否则乙获胜.请你通过列表或画树状图的方法,说明这个游戏是否公平?22.(9分)某学校计划开设A 、B 、C 、D 四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如下所示的两个不完整统计图表.选修课程所占百分比A a %B 25%C b %D20%请根据图表信息,解答下列问题: (1)参与调查的学生有 名;(2)在统计表中,=a ,=b ,请你补全条形统计图; (3)若该校共有2000名学生,请你估算该校有多少名学生选修A 课程?校本课程选修意向统计表 校本课程选修意向条形统计图 401510 20 30 40 50 A B CD 课程人数(名) 2523.(9分)如图,在平面直角坐标系中,O 是坐标原点,菱形OABC 的顶点)4,3(A ,C 在x 轴的负半轴,抛物线k x y +--=2)2(34过点A . (1)求k 的值;(2)若把抛物线k x y +--=2)2(34沿x 轴向左平移m 个单位长度,使得平移后的抛物线经过菱形OABC 的顶点C .试判断点B 是否落在平移后的抛物线上,并说明理由.24.(9分)某微店销售甲、乙两种商品,卖出6件甲商品和4件乙商品可获利120元;卖出10件甲商品和6件乙商品可获利190元. (1)甲、乙两种商品每件可获利多少元?(2)若该微店甲、乙两种商品预.计.再次进货200件,全部卖完后总获利不低于2300元,已知甲商品的数量不少于120件.请你帮忙设计一个进货方案,使总获利最大.(第23题图)yO A B C x25.(13分)如图,在矩形ABCD 中,k AB 8=,k BC 5=(k 为常数,且)0>k ,动点P 在AB 边上(点P 不与A 、B 重合),点Q 、R 分别在BC 、DA 边上,且1:2:3::=DR BQ AP .点A 关于直线PR 的对称点为'A ,连接'PA 、'RA 、PQ . (1)若4=k ,15=PA ,则四边形'PARA 的形状是 ;(2)设x DR =,点B 关于直线PQ 的对称点为'B 点.①记'PRA ∆的面积为1S ,'PQB ∆的面积为2S .当21S S <时,求相应x 的取值范围及12S S -的最大值;(用含k 的代数式表示)②在点P 的运动过程中,判断点'B 能否与点'A 重合?请说明理由.26.(13分)如图,已知直线x y -=和双曲线x k y =(0>k ),点)0)(,(>m n m A 在双曲线xk y =上. (1)当2==n m 时,①直接写出k 的值;②将直线x y -=作怎样的平移能使平移后的直线与双曲线xky =只有一个交点. (2)将直线x y -=绕着原点O 旋转,设旋转后的直线与双曲线xky =交于点),(b a B()0,0>>b a 和点C .设直线AB ,AC 分别与x 轴交于D ,E 两点,试问:AD AB 与AEAC的值存在怎样的数量关系?请说明理由.(以下空白作为草稿纸)yxA (m ,n )O y=-x(第26题图)yA (m ,n )y=-x (第25题图)y x(第A (m ,n )Oy=-xQ A'RP D CBA晋江市2019年初中学业质量检查(二)数学试题参考答案及评分标准说明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分. (二)如解答的某一步出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数. 一、选择题(每小题3分,共21分) 1.A 2.D 3.C 4.A 5. B 6.D 7.C 二、填空题(每小题4分,共40分)8.2016- 9.2 10.9104.3⨯ 11.65 12.()()11-+x x x13.6-=x 14.4315.33 16.1=x ;31<<-x 17.90; 3434+π. 三、解答题(共89分) 18.(本小题9分) 解:原式=2134--+ …………………………………………………………………………………………8分 4= …………………………………………………………………………………………………… 9分19.(本小题9分) 解:原式=x x x x 34912422+-++ ……………………………………………………………………………4分=915+x ………………………………………………………………………………………………6分 当51-=x 时,原式95115+⎪⎭⎫⎝⎛-⨯= ………………………………………………………………………7分6=………………………………………………………………………………………9分20.(本小题9分)证明:∵AE AD =,21∠=∠,A A ∠=∠,12FAB CDE∴ABE ∆≌ACD ∆, …………………………………………………………………6分 ∴AC AB =,∴ACB ABC ∠=∠ ,∴21∠-∠=∠-∠ACB ABC ,∴FCB FBC ∠=∠.……………………………………………………………………9分21.(本小题9分) 解:(1)32;……………………………………………………………………………3分 (2)方法一:画树状图如下:…………………………………………………………………………………………………………………6分由树状图可知,共有9种等可能的结果,其中甲获胜有2种,乙获胜有7种.∵P (甲获胜)=92,P (乙获胜)=97, ∴P (甲获胜)<P (乙获胜),∴游戏不公平. ………………………………………………………………………………………………9分 方法二:列表如下:…………………………………………………………………………………………………………………6分由上表可知,共有9种等可能的结果,其中甲获胜有2种,乙获胜有7种. ∵P (甲获胜)=92,P (乙获胜)=97,1 231 ()1,1 ()2,1 ()3,12 ()1,2 ()2,2()3,2 3()1,3()2,3()3,31 23 1 2 3 1 23 甲 1 2 3 乙∴P (甲获胜)<P (乙获胜),∴游戏不公平. ………………………………………9分22.(本小题9分)解:(1)100; ………………………………………3分 (2)40=a ,15=b ,补全条形统计图如图所示:…………………………………………………6分 (3)8002000%40=⨯(名)答:该校有800名学生选修A 课程. ………………9分23.(本小题9分) 解:(1)∵k x y +--=2)2(34经过点)4,3(A ∴4)23(342=+-⨯-k 解得,316=k ;………………………………………………………………………………………………3分 (2)设AB 与y 轴交于点D ,则y AD ⊥轴,3=AD ,4=OD ,5432222=+=+=OD AD OA∵四边形OABC 是菱形,5===∴OC AB OA ,2=-=AD AB BD ,∴)4,2(-B ,……………………………………………………5分 令0=y ,得0316)2(342=+--x , 解得:01=x ,42=x ,∴抛物线316)2(342+--=x y 与x 轴交点为)0,0(O 和)0,4(E ,4=OE , 当5==OC m 时,平移后的抛物线为316)3(342++-=x y ,401510 20 30 40 50 A B CD 课程人数(名) 2025校本课程选修意向条形统计图 yO ABC(第23题图)DxE令2-=x 得,4316)32(342=++--=y , ∴点B在平移后的抛物线316)3(342++-=x y 上;…………………………………………………8分 当9==CE m 时,平移后的抛物线为316)7(342++-=x y , 令2-=x 得,4316)72(342≠++--=y , ∴点B 不在平移后的抛物线316)7(342++-=x y 上.综上,当5=m 时,点B 在平移后的抛物线上;当9=m 时,点B 不在平移后的抛物线上.…………………………………………………9分24.(本小题9分)解:(1)设甲商品每件获利x 元、乙商品每件获利y 元,由题意,得 ⎩⎨⎧=+=+19061012046y x y x ,解得:⎩⎨⎧==1510y x .答:甲商品每件获利10元,乙商品每件获利15元.……………………………………………………4分(2)设甲商品进货a 件,总获利为w 元,由题意,得 )200(1510a a w -+=30005+-=a 由230030005≥+-a 解得:140≤a .∴a 的取值范围为140120≤≤a ,且a 是整数; ∵05<-,∴w 随a 增大而减小,∴当120=a 时,w 最大,此时80200=-a . ∴进货方案为甲商品进货120件,乙商品进货80件.…………………………………………………9分25.(本小题13分)(1)正方形;………………………………………………………………………………………………3分(2)解:①由题意可知,x BQ 2=,x PA 3=,x k AR -=5,x k BP 38-=,∵2111153(5)32222PRA S S AR AP k x x kx x ∆==⋅=-⋅=-, (第25题图)ABCDPQRA' (B' )22382)38(2121x kx x x k BQ BP S S PQB -=⋅-=⋅==∆, 由21S S <可得,223823215x kx x kx -<-,∵0>x ,∴x 取值范围为k x 310<<.kx x S S 2123212+-=-22241)6(23k k x +--=∴当6k x =时,12S S -有最大值,最大值为2241k .…………………………………………………8分②点'B 不能与点'A 重合.理由如下:如图, 假设点'B 与点'A 重合,则有︒=∠+∠+∠+∠180''BPQ PQ B PR A APR , 由对称的性质可得,APR PR A ∠=∠',BPQ PQ B ∠=∠',∴︒=︒⨯=∠+∠9018021BPQ APR , 由︒=∠90A 可得,︒=∠+∠90PRA APR ,∴PRA BPQ ∠=∠, 又∵︒=∠=∠90B A ∴PAR Rt ∆∽QBP Rt ∆,∴BPARQB PA =,即QB AR BP PA ⋅=⋅. ∴x x k x k x 2)5()38(3⋅-=-,解得,01=x (不合题意舍去),k x 22=, (11)分又∵'PA PA =,''PA PB PB ==, ∴PB PA =,∴x k x 383-=,解得k k x 234≠=故点'B 不能与点'A重合.…………………………………………………………………………………13分26.(本小题13分)解:(1)① 4=k ; …………………………………………………………………………………………3分② 设平移后的直线为1b x y +-=,由⎪⎩⎪⎨⎧=+-=x k y b x y 1可得,x b x 41=+-, 整理可得,0412=+-x b x .当0414)(21=⨯⨯--=∆b ,即41±=b 时,方程0412=+-x b x 有两个相等的实数根,此时直线1b x y +-=与双曲线只有一个交点,∴只要将直线x y -=向上或向下平移4个单位长度,所得到的直线与双曲线只有一个交点.………8分(2)2=±ADAB AE AC ,理由如下:……………………9分 分两种情况讨论:由双曲线的对称性可知,),(b a C -- i)当点A 在直线BC 的上方时,如图所示, 过A 、B 、C 分别作y 轴的垂线,垂足分别为F 、G 、H . 则n OF =,b OH OG ==, ∴bn OG OF FG -=-=,b n OH OF FH +=+=,∵x BG AF ////轴, ∴nb n FO FG AD AB -==. ∵x AF //轴CH //, ∴nb n FO FH AE AC +==. ∴2=++-=+nb n n b n AD AB AE AC .…………………11分 ii) 当点A 在直线BC 的下方时,同理可求:n n b AD AB -=,nn b AE AC +=, ∴2=--+=-nn b n n b AD AB AE AC . 综上所述,2=±ADAB AE AC .…………………………………………………………………………………13分y x HGF E D CB (a ,b )(第26题图)A (m ,n )O y=-x。
福建泉州晋江市中考二模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】9的算术平方根是()A.3 B.﹣3 C.±3 D.±9【答案】A.【解析】试题分析:根据开方运算,可得一个正数的算术平方根.9的算术平方根是3.故选:A.【考点】算术平方根.【题文】计算(a2b)3的结果是()A.a6b3 B.a2b3 C.a5b3 D.a6b【答案】A.【解析】试题分析:根据幂的乘方和积的乘方的运算方法:①(am)n=amn(m,n是正整数);②(ab)n=anbn(n 是正整数);求出(a2b)3的结果(a2b)3=(a2)3•b3=a6b3即计算(a2b)3的结果是a6b3.故选:A.【考点】幂的乘方与积的乘方.【题文】如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是()A. B. C. D.【答案】D.【解析】试题分析:∵,∴这个不等式组的解集为:﹣1<x≤2,A、解不等式组得:x>1,故本选项错误;B、解不等式组得:﹣2<x≤1,故本选项错误;C、解不等式组得:﹣1≤x<2,故本选项错误;D、解不等式组得:﹣1<x≤2,故本选项正确.故选D.评卷人得分【考点】在数轴上表示不等式的解集.【题文】在四个实数﹣2,0,,5中,最小的实数是()A.﹣2 B.0 C. D.5【答案】A.【解析】试题分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.根据实数比较大小的方法,可得﹣2<<0<5,故在四个实数﹣2,0,,5中,最小的实数是﹣2.故选:A.【考点】实数大小比较.【题文】学校美术作品展中,九年级8个班参展的作品(单位:件)分别为:3、5、2、4、3、2、3、4,则这组数据的中位数是()A.2 B.3 C.3.5 D.4【答案】B.【解析】试题分析:先把这些数从小到大排列,再找出最中间的数,然后根据中位数的定义即可得出答案.【解答】解:把这些数从小到大排列为:2、2、3、3、3、4、4、5,最中间的数是=3,则这组数据的中位数是3;故选B.【考点】中位数.【题文】如图,Rt△ABC中,∠ABC=90°,点D为斜边AC的中点,BD=6cm,则AC的长为()A.3 B.6 C. D.12【答案】D.【解析】试题分析:∵∠ABC=90°,点D为斜边AC的中点,根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD,∵BD=6cm,∴AC=12cm,故选:D.【考点】直角三角形斜边上的中线.【题文】点O是△ABC的外心,若∠BOC=80°,则∠BAC的度数为()A.40° B.100° C.40°或140° D.40°或100°【答案】C.试题分析:如图所示:∵O是△ABC的外心,∠BOC=80°,∴∠A=40°,∠A′=140°,故∠BAC的度数为:40°或140°.故选:C.【考点】三角形的外接圆与外心;圆周角定理.【题文】2016的相反数是.【答案】﹣2016.【解析】试题分析:根据只有符号不同的两个数互为相反数.2016的相反数是﹣2016.故答案为:﹣2016.【考点】相反数.【题文】计算: = .【答案】2.【解析】试题分析:根据同分母分式相加减,分母不变,只把分子相加减求解即可.【解答】解:原式===2.故答案为2.【考点】分式的加减法.【题文】崖城13﹣1气田是我国海上最大合作气田,年产气约为3400000000立方米,将数据3400000000用科学记数法表示为.【答案】3.4×109.【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3400000000=3.4×109,故答案为:3.4×109.【考点】科学记数法—表示较大的数.【题文】如图,已知∠B=115°,如果CD∥BE,那么∠1=°.【答案】65.试题分析:∵CD∥BE,∴∠B=∠CGB=115°,∴∠1=180°﹣∠CGB=180°﹣115°=65°,故答案为:65.【考点】平行线的性质.【题文】因式分解:x3﹣x=.【答案】x(x+1)(x﹣1)【解析】试题分析:原式=x(x2﹣1)=x(x+1)(x﹣1),故答案为:x(x+1)(x﹣1)【考点】提公因式法与公式法的综合运用.【题文】方程5x=3(x﹣4)的解为.【答案】x=﹣6【解析】试题分析:去括号得:5x=3x﹣12,移项合并得:2x=﹣12,解得:x=﹣6,故答案为:x=﹣6【考点】一元一次方程的解.【题文】如图,在Rt△ABC中,∠C=90°,BC=6,AB=10,则tanA=.【答案】【解析】试题分析:∵∠C=90°,BC=6,AB=10,∴AC==8,∴tanA==.故答案为:.【考点】锐角三角函数的定义.【题文】如图,在▱ABCD中,AE⊥BD于点E,∠EAC=30°,AC=12,则AE的长为.【答案】3.【解析】试题分析:∵在▱ABCD中,AC=12,根据平行四边形对角线互相平分,∴OA=AC=6,∵AE⊥BD,∠EAC=30°,∴AE=OA•cos30°=6×=3.故答案为:3.【考点】平行四边形的性质.【题文】已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则此二次函数图象的对称轴为直线__;当y>0时,x的取值范围是__.【答案】x=1;﹣1<x<3.【解析】试题分析:直接利用图表中数据进而结合二次函数对称性分析得出对称轴以及x的取值范围.【解答】解:如图表所示:可得x=1时,y的值最大,则此二次函数图象的对称轴为直线:x=1;可得,当x=﹣1,以及x=3时,y=0,且图象开口向下,则当y>0时,x的取值范围是:﹣1<x<3.故答案为:x=1;﹣1<x<3.【考点】二次函数的性质.【题文】如图1,将半径为2的圆形纸片沿圆的两条互相垂直的直径AC、BD两次折叠后,得到如图2所示的扇形OAB,然后再沿OB的中垂线EF将扇形OAB剪成左右两部分,则∠OEF=°;右边部分经过两次展开并压平后所得的图形的周长为.【答案】90, +4.【解析】试题分析:如图3,∵EF是OB的中垂线,∴∠OEF=90°,OE=OB=OF,∴∠EFO=30°,∠EOF=60°,由勾股定理得:EF==,由折叠得:∠F′OF=120°,∴∠FOA=30°,∴∠FOG=60°,则右边部分经过两次展开并压平后所得的图形的周长为:2+2F′F=×2+2×=+4.故答案为:90, +4.【考点】剪纸问题;弧长的计算.【题文】计算:【答案】4.【解析】试题分析:根据零指数幂运算、绝对值,二次根式化简进行计算即可.试题解析:原式=16×+3÷﹣1﹣2=4+3﹣1﹣2=4.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【题文】先化简,再求值:(2x+3)2﹣x(4x﹣3),其中.【答案】6.【解析】试题分析:原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=4x2+12x+9﹣4x2+3x=15x+9,当时,原式=﹣3+9=6.【考点】整式的混合运算—化简求值.【题文】如图,在△ABC中,点D、E分别在AB、AC边上,BE与CD相交于点F,且AD=AE,∠1=∠2.求证:∠FBC=∠FCB.【答案】证明见试题解析【解析】试题分析:由AAS证明△ABE≌△ACD,得出AB=AC,由等腰三角形的性质得出∠ABC=∠ACB,即可得出结论.试题解析:在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠1=∠ACB﹣∠2,∴∠FBC=∠FCB.【考点】全等三角形的判定与性质.【题文】将三张质地相同并分别标有数字1、2、3的卡片,背面朝上放在桌面上,洗匀后,甲同学从中随机抽取一张卡片.(1)甲同学抽到卡片上的数恰好是方程x2﹣4x+3=0的根的概率为;(2)甲乙两人约定:甲先随机抽取一张卡片后,背面朝上放回桌面洗匀,然后乙再随机抽取一张卡片,若两人所抽取卡片上的数字恰好是方程x2﹣4x+3=0的两个根,则甲获胜;否则乙获胜.请你通过列表或画树状图的方法,说明这个游戏是否公平?【答案】(1);(2)游戏不公平.【解析】试题分析:(1)解方程求出方程的根,即可求出甲同学抽到卡片上的数恰好是方程x2﹣4x+3=0的根的概率;(2)列表或画树形图,然后根据概率公式计算出甲获胜和乙获胜的概率,再利用概率的大小来判断游戏是否公平.试题解析:(1)∵x2﹣4x+3=0,∴x=1或3,∴甲同学抽到卡片上的数恰好是方程x2﹣4x+3=0的根的概率=,故答案为:;(2)列表如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)由上表可知,共有9种等可能的结果,其中甲获胜有2种,乙获胜有7种.∵P(甲获胜)=,P(乙获胜)=,∴P(甲获胜)<P(乙获胜),∴游戏不公平.【考点】游戏公平性;概率公式;列表法与树状图法.【题文】某学校计划开设A、B、C、D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如下所示的两个不完整统计图表.校本课程选修意向统计表选修课程所占百分比Aa%B25%Cb%D20%请根据图表信息,解答下列问题:(1)参与调查的学生有名;(2)在统计表中,a=,b=,请你补全条形统计图;(3)若该校共有2000名学生,请你估算该校有多少名学生选修A课程?【答案】(1)100;(2)40,15,图见试题及解析;(3)该校有800名学生选修A课程.【解析】试题分析:(1)根据条形统计图和表格可知选B的有25人占调查学生的25%,从而可以求得参与调查的学生数;(2)根据调查的学生数可以求得a、b的值,以及选D的学生数,从而可以将条形统计图补充完整;(3)根据表格总选A的学生所占的百分比,可以估算该校有多少名学生选修A课程.试题解析:(1)根据条形统计图和表格可知,选B的有25人占调查学生的25%,∴参与调查的学生有:25÷25%=100(名),故答案为:100;(2)由(1)和表格可得,a%=40÷100×100%=40%,b%=15÷100×100%=15%,故答案为:40,15,选D的学生有:100×20%=20(名)补全条形统计图如右图所示,(3)由题意可得,40%×2000=800(名)即该校有800名学生选修A课程.【考点】条形统计图;用样本估计总体.【题文】如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C在x轴的负半轴,抛物线y=﹣(x﹣2)2+k过点A.(1)求k的值;(2)若把抛物线y=﹣(x﹣2)2+k沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点C.试判断点B是否落在平移后的抛物线上,并说明理由.【答案】(1)(2)当m=5时,点B在平移后的抛物线上;当m=9时,点B不在平移后的抛物线上.【解析】试题分析:(1)将点A的坐标代入二次函数解析式中,可得出关于k的一元一次方程,解方程即可得出结论;(2)设AB与y轴交于点D,结合勾股定理以及菱形的性质找出点B、C的坐标,根据二次函数的解析式求出该抛物线与x轴的交点坐标,再根据平移的性质找出平移后过C点的二次函数的解析式,代入B点的坐标来验证其是否在平移后的函数图象上即可得出结论..试题解析:(1)∵经过点A(3,4),∴,解得:;(2)如图所示,设AB与y轴交于点D,则AD⊥y轴,AD=3,OD=4,.∵四边形OABC是菱形,∴OA=AB=OC=5,BD=AB﹣AD=2,∴B(﹣2,4).令y=0,得,解得:x1=0,x2=4,∴抛物线与x轴交点为O(0,0)和E(4,0),OE=4,当m=OC=5时,平移后的抛物线为,令x=﹣2得,,∴点B在平移后的抛物线上;当m=CE=9时,平移后的抛物线为,令x=﹣2得,,∴点B不在平移后的抛物线上.综上,当m=5时,点B在平移后的抛物线上;当m=9时,点B不在平移后的抛物线上.【考点】二次函数图象与几何变换;菱形的性质.【题文】某微店销售甲、乙两种商品,卖出6件甲商品和4件乙商品可获利120元;卖出10件甲商品和6件乙商品可获利190元.(1)甲、乙两种商品每件可获利多少元?(2)若该微店甲、乙两种商品预计再次进货200件,全部卖完后总获利不低于2300元,已知甲商品的数量不少于120件.请你帮忙设计一个进货方案,使总获利最大.【答案】(1)甲商品每件获利10元,乙商品每件获利15元.(2)进货方案为甲商品进货120件,乙商品进货80件.【解析】试题分析:(1)设甲商品每件获利x元、乙商品每件获利y元,列出方程组即可解决问题.(2)设甲商品进货a件,总获利为w元,构建一次函数,利用一次函数性质解决问题.试题解析:(1)设甲商品每件获利x元、乙商品每件获利y元,由题意,得,解得:.答:甲商品每件获利10元,乙商品每件获利15元.(2)设甲商品进货a件,总获利为w元,由题意w=10a+15(200﹣a)=﹣5a+3000由﹣5a+3000≥2300解得:a≤140.∴a的取值范围为120≤a≤140,且a是整数;∵﹣5<0,∴w随a增大而减小,∴当a=120时,w最大,此时200﹣a=80.∴进货方案为甲商品进货120件,乙商品进货80件.【考点】一次函数的应用;二元一次方程组的应用.【题文】如图,在矩形ABCD中,AB=8k,BC=5k(k为常数,且k>0),动点P在AB边上(点P不与A、B 重合),点Q、R分别在BC、DA边上,且AP:BQ:DR=3:2:1.点A关于直线PR的对称点为A′,连接PA′、RA′、PQ.(1)若k=4,PA=15,则四边形PARA′的形状是;(2)设DR=x,点B关于直线PQ的对称点为B′点.①记△PRA′的面积为S1,△PQB′的面积为S2.当S1<S2时,求相应x的取值范围及S2﹣S1的最大值;(用含k的代数式表示)②在点P的运动过程中,判断点B′能否与点A′重合?请说明理由.【答案】(1)正方形;(2)当x=时,S2﹣S1有最大值,最大值为k2.(3)点B′不能与点A′重合.理由见解析.【解析】试题分析:(1)先证明四边形PARA′是菱形,再根据∠A=90°l(2)①由题意可知,BQ=2x,PA=3x,AR=5k ﹣x,BP=8k﹣3x,∵S1=S△PRA=•AR•AP=•(5k﹣x)•3x=﹣x2+kx,S2=S△PQB=•BP•BQ=(8k﹣3x)•2x=﹣3x2+8kx,由S1<S2可得,﹣ x2+<﹣3x2+8kx,∵x>0,∴x取值范围为0<x<k,∴S2﹣S1=﹣x2+kx=﹣(x﹣)2+k2,∴当x=时,S2﹣S1有最大值,最大值为k2.②点B’不能与点A’重合.理由如下:如图,假设点B’与点A’重合,则有∠APR+∠A’PR+∠B’PQ+∠BPQ=180°,由对称的性质可得,∠A’PR=∠APR,∠B’PQ=∠BPQ,∴∠APR+∠BPQ=×180°=90°,由∠A=90°可得,∠APR+∠PRA=90°,∴∠PRA=∠BP Q,又∵∠A=∠B=90°∴Rt△PAR∽Rt△QBP,∴,即PA•BP=AR•QB.∴3x(8k﹣3x)=(5k﹣x)•2x,解得,x1=0(不合题意舍去),x2=2k,又∵PA=PA’,PB=PB’=PA’,∴PA=PB,∴3x=8k﹣3x,解得x=k≠2k,故点B’不能与点A’重合.【考点】四边形综合题.正方形的判定和性质、相似三角形的判定和性质、勾股定理等知识,二次函数的性质.【题文】如图,已知直线y=﹣x和双曲线(k>0),点A(m,n)(m>0)在双曲线上.(1)当m=n=2时,①直接写出k的值;②将直线y=﹣x作怎样的平移能使平移后的直线与双曲线只有一个交点.(2)将直线y=﹣x绕着原点O旋转,设旋转后的直线与双曲线交于点B(a,b)(a>0,b>0)和点C.设直线AB,AC分别与x轴交于D,E两点,试问:与的值存在怎样的数量关系?请说明理由.【答案】(1)①k=4;②只要将直线y=﹣x向上或向下平移4个单位长度,所得到的直线与双曲线只有一个交点;(2)综上所述,.理由见试题解析.【解析】试题分析:(1)①当m=n=2时,得出A(2,2),把点A(2,2)代入双曲线(k>0)求出k的值即可;②设平移后的直线解析式为y=﹣x+b1,由直线和双曲线解析式组成方程组,整理可得方程:x2﹣b1x+4=0,当判别式=0时,求出b1=±4即可;(2)分两种情况讨论:由双曲线的对称性可知,C(﹣a,﹣b),①当点A在直线BC的上方时,过A、B 、C分别作y轴的垂线,垂足分别为F、G、H,则OF=n,OG=OH=b,得出FG=OF﹣OG=n﹣b,FH=OF+OH=n+b,由平行线得出比例式,即可得出结论;②当点A在直线BC的下方时,同理可得出结论;即可得出结果.试题解析:(1)①当m=n=2时,A(2,2),把点A(2,2)代入双曲线(k>0)得:k=2×2=4;②设平移后的直线解析式为y=﹣x+b1,由可得,,整理可得:x2﹣b1x+4=0,当△=-4×1×4=0,即b1=±4时,方程x2﹣b1x+4=0有两个相等的实数根,此时直线y=﹣x+b1与双曲线只有一个交点,∴只要将直线y=﹣x向上或向下平移4个单位长度,所得到的直线与双曲线只有一个交点;(2)=2,理由如下:分两种情况讨论:由双曲线的对称性可知,C(﹣a,﹣b)①当点A在直线BC的上方时,如图所示:过A、B、C分别作y轴的垂线,垂足分别为F、G、H,则OF=n,OG=OH=b,∴FG=OF﹣OG=n﹣b,FH=OF+OH=n+b,∵AF∥BG∥x轴,∴,∵AF∥x轴∥CH,∴,∴=2;②当点A在直线BC的下方时,同理可求:,,∴;综上所述,.【考点】反比例函数综合题.根的判别式、平行线分线段成比例定理.。
福建省泉州市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>02.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限3.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.64.汽车刹车后行驶的距离s(单位:m)关于行驶的时间t(单位:s)的函数解析式是s=20t﹣5t2,汽车刹车后停下来前进的距离是()A.10m B.20m C.30m D.40m5.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1056.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+7.在0,π,﹣3,0.6,2这5个实数中,无理数的个数为()A.1个B.2个C.3个D.4个8.估计10﹣1的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A =24°,则∠BDC的度数为()A.42°B.66°C.69°D.77°10.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是()A.()2016B.()2017C.()2016D.()201711.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m,将0.000 000 04用科学记数法表示为()A.0.4×108B.4×108C.4×10﹣8D.﹣4×10812.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.米B.米C.米D.米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,点A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1,再将点A1向下平移4个单位,得到点A2,则点A2的坐标是_________.14.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.15.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=kx的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.16.如果点A (-1,4)、B (m ,4)在抛物线y =a (x -1)2+h 上,那么m 的值为_____.17.如图,在矩形ABCD 中,过点A 的圆O 交边AB 于点E ,交边AD 于点F ,已知AD=5,AE=2,AF=1.如果以点D 为圆心,r 为半径的圆D 与圆O 有两个公共点,那么r 的取值范围是______.18.如图,点A (m ,2),B (5,n )在函数k y x=(k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′.图中阴影部分的面积为8,则k 的值为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,▱ABCD 中,点E ,F 分别是BC 和AD 边上的点,AE 垂直平分BF ,交BF 于点P ,连接EF ,PD .求证:平行四边形ABEF 是菱形;若AB =4,AD =6,∠ABC =60°,求tan ∠ADP 的值.20.(6分)(1)计算:(12)﹣3×[12﹣(12)3]﹣4cos30°12; (2)解方程:x (x ﹣4)=2x ﹣821.(6分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.(1)求AB 的长(精确到0.13 1.732 1.41≈≈,);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.22.(8分)某商场计划购进A ,B 两种新型节能台灯共100盏,这两种台灯的进价、售价如下表: 类型 价格 进价(元/盏) 售价(元/盏)A 型30 45 B 型 50 70(1)若商场预计进货款为3500元,则这两种台灯各进多少盏.(2)若设商场购进A 型台灯m 盏,销售完这批台灯所获利润为P ,写出P 与m 之间的函数关系式. (3)若商场规定B 型灯的进货数量不超过A 型灯数量的4倍,那么A 型和B 型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.23.(8分)如图,抛物线y=﹣12x 2﹣x+4与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C . (1)求点A ,点B 的坐标;(2)P 为第二象限抛物线上的一个动点,求△ACP 面积的最大值.24.(10分)已知,抛物线2:23L y x bx =--(b 为常数).(1)抛物线的顶点坐标为( , )(用含b 的代数式表示);(2)若抛物线L 经过点()2,1M --且与k y x=图象交点的纵坐标为3,请在图1中画出抛物线L 的简图,并求k y x=的函数表达式; (3)如图2,规矩ABCD 的四条边分别平行于坐标轴,1AD =,若抛物线L 经过,A C 两点,且矩形ABCD 在其对称轴的左侧,则对角线AC 的最小值是 .25.(10分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.26.(12分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式.27.(12分)如图,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200米范围内为原始森林保护区,在MN 上的点A 处测得C 在A 的北偏东45°方向上,从A 向东走600米到达B 处,测得C 在点B 的北偏西60°方向上.(1)MN 是否穿过原始森林保护区,为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故选:C.2.D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.3.C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.4.B【解析】【分析】利用配方法求二次函数最值的方法解答即可.【详解】∵s=20t-5t2=-5(t-2)2+20,∴汽车刹车后到停下来前进了20m.故选B.【点睛】此题主要考查了利用配方法求最值的问题,根据已知得出顶点式是解题关键.5.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.7.B【解析】【分析】分别根据无理数、有理数的定义逐一判断即可得.【详解】解:在0,π,-3,0.6这5个实数中,无理数有π这2个,故选B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.8.B【解析】【分析】<<.【详解】<∴34<,∴213<<﹣1的值在2和3之间.故选B.【点睛】的大小,在确定答案的范围.9.C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°. 故选C.10.C【解析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1.则正方形A2017B2017C2017D2017的边长是:()2.故选C.“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.11.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】0.000 000 04=4×10-8,故选C【点睛】此题考查科学记数法,难度不大12.D【解析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米.故选D二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(-1, -6)【解析】【分析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.【详解】∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴A1(-1,-2),∵将点A1向下平移4个单位,得到点A2,∴点A2的坐标是:(-1,-6).故答案为:(-1, -6).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.14.1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=1.即旗杆的高是1米.故答案为1.考点:相似三角形的应用.15.﹣1【解析】【详解】∵OD=2AD,∴23 ODOA=,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴23 DC OC ODAB OB OA===,∴22439 ODCOABSS⎛⎫==⎪⎝⎭VV,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.16.1【解析】【分析】根据函数值相等两点关于对称轴对称,可得答案.【详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.17r<<【解析】【分析】因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|<d<R+r,求得圆D与圆O的半径代入计算即可.【详解】连接OA、OD,过O点作ON⊥AE,OM⊥AF.AN=12AE=1,AM=12AF=2,MD=AD-AM=3∵四边形ABCD是矩形∴∠BAD=∠ANO=∠AMO=90°,∴四边形OMAN是矩形∴OM=AN=1∴=∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交r<<【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.18.2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A(2,2),∴k=2×2=2.故答案为2.考点:2.反比例函数系数k的几何意义;2.平移的性质;3.综合题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)tan∠ADP=.【解析】【分析】(1)根据线段垂直平分线的性质和平行四边形的性质即可得到结论;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.【详解】(1)证明:∵AE垂直平分BF,∴AB=AF,∴∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠FAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∴AF=BE.∵AF∥BC,∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形;(2)解:作PH ⊥AD 于H ,∵四边形ABEF 是菱形,∠ABC =60°,AB =4,∴AB =AF =4,∠ABF =∠AFB =30°,AP ⊥BF ,∴AP =AB =2,∴PH =,DH =5,∴tan ∠ADP ==.【点睛】本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大. 20.(1)3;(1)x 1=4,x 1=1.【解析】【分析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8×(12﹣18)﹣4×323 =8×38﹣33=3;(1)移项得:x (x ﹣4)﹣1(x ﹣4)=0,(x ﹣4)(x ﹣1)=0,x ﹣4=0,x ﹣1=0,x 1=4,x 1=1.【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.21.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒==,在Rt△BDC中,CDBDtan60===︒,∴AB=AD-BD=14 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.22.(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B 型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【解析】【分析】(1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;(2)根据题意列出方程即可;(3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.【详解】解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利P元,则P=(45﹣30)m+(70﹣50)(100﹣m),=15m+2000﹣20m,=﹣5m+2000,即P=﹣5m+2000,(3)∵B型台灯的进货数量不超过A型台灯数量的4倍,∴100﹣m≤4m,∴m≥20,∵k=﹣5<0,P随m的增大而减小,∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.【点睛】本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用. 23.(1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.【解析】【分析】(1)令y=0,得到关于x 的一元二次方程﹣12x2﹣x+4=0,解此方程即可求得结果;(2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣12t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=12PD×OA=12PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.【详解】(1)解:设y=0,则0=﹣12x2﹣x+4∴x1=﹣4,x2=2∴A(﹣4,0),B(2,0)(2)作PD⊥AO交AC于D设AC解析式y=kx+b∴404b k b=⎧⎨=-+⎩ 解得:14k b =⎧⎨=⎩∴AC 解析式为y=x+4.设P (t ,﹣12t 2﹣t+4)则D (t ,t+4) ∴PD=(﹣12t 2﹣t+4)﹣(t+4)=﹣12t 2﹣2t=﹣12(t+2)2+2 ∴S △ACP =12PD×4=﹣(t+2)2+4 ∴当t=﹣2时,△ACP 最大面积4.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.24.(1)2,3b b --;(2)图象见解析,6y x =或9y x=-;(3 【解析】【分析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M ,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式; (3)设出A 的坐标,表示出C,D 的坐标,得到CD 的长度,根据题意找到CD 的最小值,因为AD 的长度不变,所以当CD 最小时,对角线AC 最小,则答案可求.【详解】解:(1)()2222222323()3y x bx x bx b b x b b =--=-+--=--+Q , ∴抛物线的顶点的坐标为2(,3)b b --.故答案为:2(,3)b b --(2)将(2,1)M --代入抛物线的解析式得:4431b +-=- 解得:12b =-, ∴抛物线的解析式为23y x x =+-.抛物线L 的大致图象如图所示:将3y =代入23y x x =+-得: 233x x +-=,解得:2x =或3x =-∴抛物线与反比例函数图象的交点坐标为(2,3)或()3,3-.将(2,3)代入k y x=得:6k =, 6y x∴=. 将()3,3-代入k y x=得:9k =-, 9y x=-∴. 综上所述,反比例函数的表达式为6y x =或9y x=-. (3)设点A 的坐标为()2,23x x bx --,则点D 的坐标为()21,23x x bx +--, C 的坐标为21,(22)2)2(x x b x b ++---.()2223(22)22221DC x bx x b x b x b ⎡⎤∴=---+---=-+-⎣⎦ DC ∴的长随x 的增大而减小.Q 矩形ABCD 在其对称轴的左侧,抛物线的对称轴为x b =,1x b ∴+≤1x b ∴≤-∴当1x b =-时,DC 的长有最小值,DC 的最小值2(1)211b b =--+-=.AD Q 的长度不变,∴当DC 最小时,AC 有最小值.AC ∴的最小值222AD DC +=.【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.25.不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.【详解】根据题意列表如下:所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,∴P (甲获胜)=516,P (乙获胜)=1﹣516=1116, 则该游戏不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.26.(1)一件A 型、B 型丝绸的进价分别为500元,400元;(2)①1625m ≤≤,②7512500(50100)5000(100)6611600(100150)n n w n n n -+≤<⎧⎪==⎨⎪-+<≤⎩.【解析】【分析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m 的不等式组,求m 的取值范围;②本问中,首先根据题意,可以先列出销售利润y 与m 的函数关系,通过讨论所含字母n 的取值范围,得到w 与n 的函数关系.【详解】(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为()100x +元,根据题意得:100008000100x x=+,解得400x =,经检验,400x =为原方程的解,100500x ∴+=,答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:5016m m m -⎧⎨⎩„…, m ∴的取值范围为:1625m 剟,②设销售这批丝绸的利润为y ,根据题意得:()()()8005002600400?50y n m n m =--+---,()1001000050n m n =-+-50150n Q 剟,∴(Ⅰ)当50100n <„时,1000n ->,25m =时,销售这批丝绸的最大利润()2510010000507512500w n n n =-+-=-+;(Ⅱ)当100n =时,1000n -=,销售这批丝绸的最大利润5000w =;(Ⅲ)当100150n <„时,1000n -<当16m =时,销售这批丝绸的最大利润6611600w n =-+.综上所述:7512500(50100)50001006611600(100150)n n w n n n -+<⎧⎪==⎨⎪-+<⎩„„.【点睛】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.27.(1)MN 不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.【解析】试题分析:(1)要求MN 是否穿过原始森林保护区,也就是求C 到MN 的距离.要构造直角三角形,再解直角三角形;(2)根据题意列方程求解.试题解析:(1)如图,过C 作CH ⊥AB 于H ,设CH=x,由已知有∠EAC=45°, ∠FBC=60°则∠CAH=45°, ∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=CH HB∴HB=tan30CHo=3=3x,∵AH+HB=AB∴x+3x=600解得x≈220(米)>200(米).∴MN不会穿过森林保护区.(2)设原计划完成这项工程需要y天,则实际完成工程需要y-5根据题意得:15y=(1+25%)×1y,解得:y=25知:y=25的根.答:原计划完成这项工程需要25天.。
福建省泉州市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.32.若分式方程1x aax-=+无解,则a的值为()A.0 B.-1 C.0或-1 D.1或-13.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC 相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M4.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图35.如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口,4小时后货船在小岛的正东方向,则货船的航行速度是( )A.2海里/时B.3/时C.6海里/时D.2海里/时66的相反数是()A.-6B.6C.16D.6-7.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对8.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1C.这组数据的平均数是6 D.这组数据的方差是109.如图,△ABC中,DE∥BC,13ADAB=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm 10.在下列实数中,﹣3,2,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.2D.﹣1 11.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.3﹣5B.12(5+1)C.5﹣1 D.12(5﹣1)12.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF 离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若向北走5km记作﹣5km,则+10km的含义是_____.14.若一个棱柱有7个面,则它是______棱柱.15.在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A′,则cos∠AOA′=__.16.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为_____.17.将抛物线y =2x 2平移,使顶点移动到点P (﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____. 18.如果23a b =,那么b a a b -+=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB 为⊙O 的直径,AC 、DC 为弦,∠ACD=60°,P 为AB 延长线上的点,∠APD=30°.求证:DP 是⊙O 的切线;若⊙O 的半径为3cm ,求图中阴影部分的面积.20.(6分)先化简,再求值:2336m m m --÷522m m ⎛⎫+- ⎪-⎝⎭,其中m 是方程x 2+2x -3=0的根. 21.(6分)计算:2sin30°﹣|1﹣3|+(12)﹣1 22.(8分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y (台)与销售单价x (元)的关系为y =﹣2x+1.(1)该公司每月的利润为w 元,写出利润w 与销售单价x 的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?23.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x 天后每千克苹果的价格为p 元,写出p 与x 的函数关系式;若存放x 天后将苹果一次性售出,设销售总金额为y 元,求出y 与x 的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?24.(10分)解不等式组:,并把解集在数轴上表示出来.25.(10分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?26.(12分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径作⊙O 交AB 于点D ,取AC 的中点E ,边结DE ,OE 、OD ,求证:DE 是⊙O 的切线.27.(12分)先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【详解】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k 成立的x 值恰好有三个.故选:D.2.D【解析】试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,当1-a=0时,即a=1,整式方程无解,当x+1=0,即x=-1时,分式方程无解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故选D.点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.3.C【解析】【分析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC的各边分别为3,只能F是M或N时,其各边是6、△ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键4.C【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.5.A【解析】试题解析:设货船的航行速度为x 海里/时,4小时后货船在点B 处,作PQ AB ⊥于点Q .由题意56AP =海里,4PB x =海里,在Rt APQ △中, 60APQ ∠=o,所以28.PQ =在Rt PQB △中, 45BPQ ∠=o , 所以2cos45.PQ PB x =⨯=o 所以2282x =, 解得:7 2.x =故选A.6.A【解析】【分析】根据相反数的定义即可判断.【详解】 6 的相反数是6【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.7.B【解析】【详解】解方程212350x x -+=得:x=5或x=1.当x=1时,3+4=1,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B .8.A【解析】【分析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10, 它的平均数为15(1+2+6+6+10)=5, 数据的中位数为6,众数为6,数据的方差=15 [(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1. 故选A .考点:方差;算术平均数;中位数;众数.9.C【解析】【分析】由DE ∥BC 可得△ADE ∽△ABC ,再根据相似三角形的性质即可求得结果.【详解】∵DE ∥BC∴△ADE ∽△ABC ∴13AD AE AB AC == ∵2cm =AE∴AC=6cm考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.10.B【解析】|﹣3|=3,,|0|=0,|2|=2,|﹣1|=1,∵3>2>1>0,∴绝对值最小的数是0,故选:B .11.C【解析】【分析】根据黄金分割点的定义,知BC 为较长线段;则 AB ,代入数据即可得出BC 的值. 【详解】解:由于C 为线段AB=2的黄金分割点,且AC <BC ,BC 为较长线段;则BC=2×12..【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 32-倍,较长的线段=原线段的倍. 12.D 【解析】【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.向南走10km【解析】【分析】【详解】分析:与北相反的方向是南,由题意,负数表示向北走,则正数就表示向南走,据此得出结论.详解:∵向北走5km记作﹣5km,∴ +10km表示向南走10km.故答案是:向南走10km.点睛:本题考查对相反意义量的认识:在一对具有相反意义的量中,先规定一个为正数,则另一个就要用负数表示.14.5【解析】分析:根据n棱柱的特点,由n个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.15.【解析】【分析】依据点A(1,2)在x轴上的正投影为点A′,即可得到A'O=1,AA'=2,cos∠AOA′的值.【详解】如图所示,点A(1,2)在x轴上的正投影为点A′,∴A'O=1,AA'=2,∴AO=5,∴cos∠AOA′=55A OAO'==,故答案为:5.【点睛】本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.16.1:1【解析】【分析】根据矩形性质得出AD=BC,AD∥BC,∠D=90°,求出四边形HFCD是矩形,得出△HFG的面积是1 2CD×DH=12S矩形HFCD,推出S△HFG=S△DHG+S△CFG,同理S△HEF=S△BEF+S△AEH,即可得出答案.【详解】连接HF,∵四边形ABCD为矩形,∴AD=BC,AD∥BC,∠D=90°∵H、F分别为AD、BC边的中点,∴DH=CF,DH∥CF,∵∠D=90°,∴四边形HFCD是矩形,∴△HFG 的面积是12CD×DH=12S 矩形HFCD , 即S △HFG =S △DHG +S △CFG ,同理S △HEF =S △BEF +S △AEH ,∴图中四个直角三角形面积之和与矩形EFGH 的面积之比是1:1,故答案为1:1.【点睛】本题考查了矩形的性质和判定,三角形的面积,主要考查学生的推理能力.17.y =2(x+3)2+1【解析】【分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y =2x 2平移,使顶点移到点P (﹣3,1)的位置,所得新抛物线的表达式为y =2(x+3)2+1. 故答案为:y =2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.15【解析】 试题解析:2,3a b =Q设a=2t ,b=3t ,321.235b a t t a b t t --∴==++ 故答案为:1.5三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(223()2cm p . 【解析】【分析】(1)连接OD ,求出∠AOD ,求出∠DOB ,求出∠ODP ,根据切线判定推出即可.(2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD ⊥DP .∵OD 为半径,∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm ,∴OP=6cm ,由勾股定理得:3cm . ∴图中阴影部分的面积221603933333()236022ODP DOB S S S cm p p 创=-=创=V 扇形 20.原式=()133m m +,当m=l 时,原式=112【解析】先通分计算括号里的,再计算括号外的,化为最简,由于m 是方程x 2+3x-1=0的根,那么m 2+3m-1=0,可得m 2+3m 的值,再把m 2+3m 的值整体代入化简后的式子,计算即可. 解:原式=()()()()()2345321•322323333m m m m m m m m m m m m m -----÷==---+-+ ∵x 2+2x-3=0, ∴x 1=-3,x 2 =1∵‘m 是方程x 2 +2x-3=0的根, ∴m=-3或m=1∵m+3≠0, ∴.m≠-3, ∴m=1当m=l 时,原式: ()()11133311312m m ==+⨯⨯+ “点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入.21.43【解析】【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.【详解】原式=2×12 ﹣1)+2=1=4【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(1)w=(x ﹣200)y=(x ﹣200)(﹣2x+1)=﹣2x 2+1400x ﹣200000;(2)令w=﹣2x 2+1400x ﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x 2+1400x ﹣200000=﹣2(x ﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.【解析】试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;(2)令y=40000代入解析式,求出满足条件的x 的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x 2+1400x-200000;(2)令w=-2x 2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x 2+1400x-200000=-2(x-350)2+45000,当x=250时y=-2×2502+1400×250-200000=25000; 故最高利润为45000元,最低利润为25000元.23.()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯Q25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.24.无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.试题解析:由①得x≥4,由②得x <1,∴原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集.25.(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.【解析】分析:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.详解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得:63600500.8400.755200x y x y +⎧⎨⨯+⨯⎩==,解得:40120x y ⎧⎨⎩==. 答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.26.详见解析.【解析】试题分析:由三角形的中位线得出OE ∥AB ,进一步利用平行线的性质和等腰三角形性质,找出△OCE 和△ODE 相等的线段和角,证得全等得出答案即可.试题解析:证明:∵点E 为AC 的中点,OC=OB ,∴OE ∥AB ,∴∠EOC=∠B ,∠EOD=∠ODB .又∵∠ODB=∠B ,∴∠EOC=∠EOD .在△OCE 和△ODE 中,∵OC=OD ,∠EOC=∠EOD , OE=OE ,∴△OCE ≌△ODE (SAS ),∴∠EDO=∠ECO=90°,∴DE ⊥OD ,∴DE 是⊙O 的切线.点睛:此题考查切线的判定.证明的关键是得到△OCE ≌△ODE .27.1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值. 试题解析:原式=21(2)2111x x x x x x x x x -+⋅-+-+=+ ∵x 2−x−1=0,∴x 2=x+1,则原式=1.。
2019年福建省泉州市晋江市中考数学二模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.计算:20180﹣|﹣3|的结果是()A.﹣3B.﹣2C.4D.20152.2018年我国将新增高速公路通车里程5000公里,将数据5000用科学记数法表示为()A.0.5×103B.0.5×104C.5×103D.5×1043.同一条数轴上三个点A、B、C所表的数分别是﹣1、2、5,则下列结论正确的是()A.A、B两点到原点的距离相等B.B、C两点到原点的距离相等C.A、B两点到点C的距离相等D.A、C两点到点B的距离相等4.一个正方体的表面展开图如图所示,则原正方体中字“享”所在面的对面所标的字是()A.数B.学C.之D.美5.去年某市7月1日至7日的最高气温变化如折线图所示,则关于这组数据的描述不正确的是()A.最高温度是35°C B.众数是33°CC.中位数是34°C D.平均数是33°C6.已知命题“关于x的不等式无解”,这个命题是假命题的反例是()A.k=﹣1B.k=1C.k=1.2D.k=27.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x个,买苦果y个,则下列关于x、y的二元一次方程组中符合题意的是()A.B.C.D.8.一个正多边形的边长为2,每个外角为30°,则这个多边形的半径是()A.sin15°B.tan15°C.D.9.不论a为何值,点A(a,4a+3)都在直线l上,若B(m,n)是直线l上的一点,则(4m﹣n+1)2的值是()A.﹣3B.﹣2C.9D.410.方程2x﹣x2=的正根的个数为()A.3个B.2个C.1个D.0个二、填空题(本小题共6小题,每小题4分,共24分)11.计算:(+)(﹣)=.12.八边形的内角和为.13.一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出一个,摸到黄球的概率是,则n=.14.已知是方程组的解,则a2﹣b2=.15.如图,在△ABC中,∠A=30°,D为边AB上的点,且DA=DC=2,若△DCB绕点D逆时针旋转,使DB、DC分别与线段AC相交于M、N,则当△DMN为等边三角形时,DM的长值为.16.在平面直角坐标系中,点A的坐标为(m,n),其中m≠0,点B的坐标为(0,5),若AB=3,记||=a,则a的取值范围为.三、解答题(本题共86分)17.(8分)解方程:﹣=1.18.(8分)解不等式组:,并把解集在数轴上表示出来.19.(8分)求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)20.(8分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)请你补全两个统计图,并观察补全后的统计图,写出一条你发现的结论;(3)若老师想从四次成绩总分前三名的一男两女中选拔两个人参加学校代表队,请你用画树状图或列表的方法求恰好选中两女的概率.21.(8分)如图,已知正六边形ABCDEF,(1)按要求画出图形:正六边形ABCDEF的内部画以FA为边的正方形AFPQ;(2)求∠AEP的度数.22.(10分)如图,△ABC是边长为2的等边三角形,以BC为直径的半圆与AB交于点D,与AC交于点E,连接DE.(1)求线段DE的长;(2)若分别以B、C为圆心,2为半径画和,求以BC为直径的半圆与、围成的图形(图中阴影部分)的面积.23.(10分)某天上午7:30,小芳在家通过滴滴打车软件打车前往动车站搭乘当天上午8:30的动车.记汽车的行驶时间为t小时,行驶速度为v千米/小时(汽车行驶速度不超过60千米/小时).根据经验,v,t的一组对应值如下表:V(千米/小时)2030405060 T(小时)0.60.40.30.250.2(1)根据表中的数据描点,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)若小芳从开始打车到上车用了10分钟,小芳想在动车出发前半小时到达动车站,若汽车的平均速度为32千米/小时,小芳能否在预定的时间内到达动车站?请说明理由;(3)若汽车到达动车站的行驶时间t满足0.3<t<0.5,求平均速度v的取值范围.24.(12分)如图,在菱形ABCD中,点P是对角线AC上的一个动点,过P作AC的垂线FG分别与直线AB,直线AD相交于点F和点G,连结CF和CG,若=n,AB=AC=3.(1)直接写出CF的最小值,并求出此时n的值;(2)当<n<1时,直线FG与直线BC的交点记为E,求(BF+DG)•EC的最大值.25.(14分)已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.2019年福建省泉州市晋江市中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.【分析】直接利用绝对值的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=1﹣3=﹣2.故选:B.【点评】此题主要考查了实数运算,正确化简各数是解题关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5000=5×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】依据三个点A、B、C所表的数分别是﹣1、2、5,可得A、C两点到点B的距离都为3,据此可得正确结论.【解答】解:∵三个点A、B、C所表的数分别是﹣1、2、5,∴A、B两点到原点的距离分别为1和2,故A选项错误;B、C两点到原点的距离分别为2和5,故B选项错误;A、B两点到点C的距离分别为6和3,故C选项错误;A、C两点到点B的距离都为3,故D选项正确;故选:D.【点评】本题主要考查了数轴,解决问题的关键是掌握两点间距离公式的运用.4.【分析】利用正方体及其表面展开图的特点解题.注意相对面之间一定隔着一个正方形.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“享”与面“学”相对.故选:B.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.【分析】将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.【解答】解:由图知这7个数据从小到大排列为:31、32、33、33、33、34、35,所以最高温度是35℃,故A选项正确;众数是33℃,故B选项正确;中位数是33℃,故C选项错误;平均数为=33℃,故D选项正确;故选:C.【点评】本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.6.【分析】根据不等式的解集得出k的取值范围,进而解答即可.【解答】解:解不等式,可得:x≤2,x>k+1,∵关于x的不等式无解,所以可得:k+1≥2,解得:k≥1,故这个命题是假命题的反例是k=﹣1,故选:A.【点评】此题考查命题问题,关键是根据不等式的解集得出k的取值范围.7.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:D.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【分析】先求出多边形的边数,再求出∠AOB的度数,即可求出答案.【解答】解:,∵一个正多边形的边长为2,每个外角为30°,∴此正多边形的边数为=12,即多边形为12边形,如图,连接OA、OB,过O作ON⊥AB,边AB对的圆心角AOB的度数为=30°,∵OA=OB,ON⊥AB,∴∠NOB=∠AOB=15°,AN=BN=AB==1,∴OB==,即这个多边形的半径是,故选:C.【点评】本题考查了正多边形与圆和解直角三角形,能求出多边形的边数是解此题的关键.9.【分析】设直线l的解析式为y=kx+b(k≠0),再分别令a=1,a=2求出A点坐标,进而可得出直线l的解析式,再把点B(m,n)代入代数式即可得出结论.【解答】解:设直线l的解析式为y=kx+b(k≠0),∵无论a取什么实数,点A(a,4a+3)都在直线l上,∴当a=1时,A(1,7),当a=2时,A(2,11),∴,解得:,∴直线l的解析式为y=4x+3.∵点B(m,n)也是直线l上的点,∴4m+3=n,∴4m﹣n=﹣3,∴(4m﹣n+1)2的值是4故选:D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.【分析】在同一平面直角坐标系中作出二次函数y=﹣x2+2x与反比例函数y=的图象,然后根据交点的情况即可得解.【解答】解:如图,二次函数y=﹣x2+2x与反比例函数y=在第一象限只有两个交点,∴方程2x﹣x2=的正根的个数为2.故选:B.【点评】本题主要考查了二次函数图象与反比例函数图象的交点问题,作出图象,数形结合利用交点问题求方程的解是解题的关键.二、填空题(本小题共6小题,每小题4分,共24分)11.【分析】利用平方差公式进行计算.【解答】解:原式=()2﹣()2=3﹣5=﹣2.故答案为﹣2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.112.【分析】根据多边形的内角和公式(n﹣2)•180°进行计算即可得解.【解答】解:(8﹣2)•180°=6×180°=1080°.故答案为:1080°.【点评】本题考查了多边形的内角和,熟记内角和公式是解题的关键.13.【分析】用黄球的个数除以总球的个数得出黄球的概率,从而求出n的值.【解答】解:根据题意知=,解得:n=3,经检验n=3是方程的解,故答案为:3.【点评】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】根据是方程组的解,可以求得a+b和a﹣b的值,从而可以解答本题.【解答】解:∵是方程组的解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.【点评】本题考查二元一次方程组的解,解答本题的关键是明确二元一次方程组的解得意义,巧妙变形,利用平方差公式解答.15.【分析】作出图形,过点D作DE⊥AC于E,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=AD,再根据等边三角形的性质求解即可.【解答】解:如图,过点D作DE⊥AC于E,∵∠A=30°,DA=DC=2,∴DE=AD=×2=1,∵△DMN为等边三角形,∴DM=DE÷=1÷=.故答案为:.【点评】本题考查了旋转的性质,主要利用了直角三角形30°角所对的直角边等于斜边的一半以及等边三角形的性质,作辅助线构造出直角三角形是解题的关键.16.【分析】当OA⊥AB时,a取最小值,在Rt△OAB中,利用勾股定理可得出OA的值,再通过解直角三角形可求出a的最小值,此题得解.【解答】解:依照题意画出图象,如图所示.当OA⊥AB时,a取最小值.在Rt△OAB中,OB=5,AB=3,∴OA==4,∴tan∠OBA==.∴a=||==tan∠AOC=tan∠OBA=.故答案为:a≥.【点评】本题考查了解直角三角形,利用极限法求出a的最小值是解题的关键.三、解答题(本题共86分)17.【分析】根据解一元一次方程的一般步骤,可得答案.【解答】解:去分母,得2(2x﹣3)﹣(x+2)=6去括号,得4x﹣6﹣x﹣2=6移项,得4x﹣x=6+6+2合并同类项,得3x=14系数化为1,得x=.【点评】本题考查了解一元一次方程,去括号是解题关键,不含分母的项也要乘分母的最小公倍数,分子要加括号.18.【分析】先分别解两个不等式得到x>﹣3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.【解答】解:,解①得x>﹣3,解②得x≤2,所以不等式组的解集为﹣3<≤2,用数轴表示为:【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.【分析】写出已知、求证.连接AC,由平行线的性质得出内错角相等∠1=∠2,由SAS证明△ABC≌△CDA,得出∠3=∠4,证出AD∥BC,由平行四边形的定义即可证出结论.【解答】已知:如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:∵AB∥CD,∴∠1=∠2,在△ABC和△CDA中,,∴△ABC≌△CDA(SAS),∴∠3=∠4,∴AD∥BC,∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).【点评】本题考查了平行四边形的判定、三角形全等的判定与性质;熟练掌握平行线的性质和平行四边形的判定,并能进行推理论证是解决问题的关键.20.【分析】(1)用第一次人数及其所占百分比可得总人数;(2)根据“优秀率=优秀人数÷总人数”求解可得;(3)列表表示所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)该班总人数为28÷70%=40人,故答案为:40人;(2)第二次的优秀率为×100%=55%,第三次优秀的人数为40×80%=32人,补全图形如下:由折线统计图知第四次考的最好;(3)列表:共有6种等可能的结果,其中恰好选取两名女生的情况有2种,∴恰好选中两女的概率为=.【点评】本题考查的是条形统计图和扇形统计图以及求随机事件的概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】(1)连接DF、AC,分别截取FP=AQ=AF即可;(2)根据∠AEP=∠FEP﹣∠FEA计算即可;【解答】解:(1)如图正方形AFPQ如图所示;(2)在正六边形ABCDEF中,∵EF=ED,∠FED=120°,∴∠EFD=∠FEA=30°,∵FE=FP,∴∠FEP=∠FPE=75°,∴∠AEP=∠FEP﹣∠FEA=75°﹣30°=45°.【点评】本题考查作图﹣复杂作图,正六边形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.【分析】(1)根据题意和等边三角形的性质可以得到DE是△ABC的中位线,从而可以求得DE的长;(2)根据题意和图形可以得到阴影部分的面积是两个弓形的面积与等边三角形的面积之和减去小半圆的面积,从而可以解答本题.【解答】解:(1)取线段BC的中点O,连接OD、OE,由题意可得,OB=OD=OE=OC,∠B=∠C=60°,AB=BC=AC,∴△ODB和△OEC都是等边三角形,∴BD=CE=OB=OC=BC,∴点D、E是AB边和AC边的中点,∴DE是△ABC的中位线,∵△ABC是边长为2的等边三角形,∴DE=;(2)由题意可得,以BC为直径的半圆与、围成的图形(图中阴影部分)的面积是:()×2+=.【点评】本题考查扇形面积的计算、等边三角形的性质、三角形的中位线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.【分析】(1)根据表格中数据,可知v是t的反比例函数,设v=,利用待定系数法求出k 即可;(2)根据时间t=小时,求出速度,即可判断;(3)根据自变量的取值范围,求出函数值的取值范围即可.【解答】解:(1)根据表格中数据,可知v=,∵v=20时,t=0.6,∴k=20×0.6=12,∴v=(t≥0.2).(2)∵1﹣﹣=,∴t=时,v==36>32,∴若汽车的平均速度为32千米/小时,小芳不能在预定的时间内到达动车站;(3)∵0.3<t<0.5,∴24<v<40,答:平均速度v的取值范围是24<v<40.【点评】本题考查反比例函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于基础题.24.【分析】(1)根据垂线段最短即可解决问题;(2)正确画出图形,构建二次函数即可解决问题;【解答】解:(1)∵四边形ABCD是菱形,∴AB=BC,∵AB=AC=3,∴AB=BC=AC=3,∴△ABC,△ADC都是等边三角形,∴∠BAC=∠DAC=60°,∵FG⊥AC,∴∠AFP=∠AGP=30°,∴AF=AG,当CF⊥AB时,CF的值最小,此时AF=,PA=,∴n==.(2)如图,当<n<1时,易知:PA=3n.AF=AG=6n,BF=DG=BE=6n﹣3,CE=3﹣(6n ﹣3)=6﹣6n∴(BF+DG)•EC=×(12n﹣6)×(3+3﹣6n)=﹣108(n﹣)2+,∵﹣108<0,∴n=时,(BF+DG)•EC的最大值为.【点评】本题考查菱形的性质、等边三角形的判定和性质、解直角三角形等、二次函数的性质知识,解题的关键是学会构建二次函数解决最值问题,属于中考常考题型,有一定的难度.25.【分析】先求出该抛物线的对称轴,然后根据对称轴的位置即可求出a的取值范围.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0∴c≤,∵a≥3,∴﹣<c≤.【点评】本题考查二次函数的性质,解题的关键是熟练运用二次函数的图象,本题属于中等题型.。
福建省泉州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.二次函数y=ax 2+bx ﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a ﹣b ﹣2,则t 值的变化范围是( )A .﹣2<t <0B .﹣3<t <0C .﹣4<t <﹣2D .﹣4<t <02.下列计算正确的是( )A .﹣2x ﹣2y 3•2x 3y =﹣4x ﹣6y 3B .(﹣2a 2)3=﹣6a 6C .(2a+1)(2a ﹣1)=2a 2﹣1D .35x 3y 2÷5x 2y =7xy3.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-34.已知a=12(7+1)2,估计a 的值在( ) A .3 和4之间B .4和5之间C .5和6之间D .6和7之间 5.如图,点M 是正方形ABCD 边CD 上一点,连接MM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE ,若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A .21313B .31313C .23D .13136.在解方程12x --1=313x +时,两边同时乘6,去分母后,正确的是( ) A .3x -1-6=2(3x +1) B .(x -1)-1=2(x +1)C .3(x -1)-1=2(3x +1)D .3(x -1)-6=2(3x +1) 7.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( )A .0.334B .C .D .8.下列命题是真命题的是( )A .如果a+b =0,那么a =b =0B 16±4C .有公共顶点的两个角是对顶角D .等腰三角形两底角相等9.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A .1个B .2个C .3个D .4个10.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是( ) A .圆锥 B .圆柱 C .球 D .正方体11.如图,AB 是⊙O 的切线,半径OA=2,OB 交⊙O 于C ,∠B=30°,则劣弧»AC 的长是( )A .12πB .13πC .23πD .43π 12.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A .12B .14C .16D .112二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为______.14.已知三个数据3,x+3,3﹣x 的方差为23,则x=_____. 15.如图,在Rt △ABC 中,∠ACB =90°,AB =5,AC =3,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当△DEB 是直角三角形时,DF 的长为_____.16.两个等腰直角三角板如图放置,点F 为BC 的中点,AG=1,BG=3,则CH 的长为__________.17.如图,BC=6,点A为平面上一动点,且∠BAC=60°,点O为△ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形△ABD与△ACE,连接BE、CD交于点P,则OP的最小值是_____18.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组:3(2)4 21152x xx x≥-+⎧⎪-+⎨<⎪⎩并把解集在数轴上表示出来.20.(6分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(I)AC的长等于_____.(II)若AC边与网格线的交点为P,请找出两条过点P的直线来三等分△ABC的面积.请在如图所示的网格中,用无刻度的直尺,画出这两条直线,并简要说明这两条直线的位置是如何找到的_____(不要求证明).21.(6分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.22.(8分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
2019年福建省泉州市晋江市东石中学中考数学二模试卷一.选择题(共10小题,满分40分,每小题4分)1.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣12.地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109B.5.1×108C.5.1×109D.51×1073.若有理数a、b在数轴上的对应点的位置如图所示,则下列结论中错误的是()A.ab<0B.a<0<b C.a+b<0D.﹣a<04.图1是一个小正方体的表面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是()A.信B.国C.友D.善5.去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是()A.最低温度是32℃B.众数是35℃C.中位数是34℃D.平均数是33℃6.下列命题,其中是真命题的为()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形7.《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.B.C.D.8.将边长均为2的正六边形ABCDEF与正方形BCGH如图所示放置,则∠AHB的余角的正切值为()A.﹣1B.2﹣C.+1D.2+9.若点P(a﹣3,a)在正比例函数y=﹣x的图象上,则a的值为()A.﹣B.C.﹣1D.110.已知m≠0,函数y=﹣mx2+n与y=在同一直角坐标系中的大致图象可能()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.计算=.12.十边形的内角和的度数是.13.在一个不透明的口袋内放入红球8个,黑球4个,黄球n个,这些球除颜色外无任何差别,摇匀后随机摸出一个恰好是黄球的概率为,则放入口袋中的黄球个数是.14.已知方程组的解满足x+y=2,则k的值为.15.如图,线段AB=4,M为AB的中点,动点P到点M的距离是1,连接PB,线段PB绕点P逆时针旋转90°得到线段PC,连接AC,则线段AC长度的最大值是.16.在正方形网格中,△ABC的位置如图所示,则cos A的值为.三.解答题(共9小题,满分86分)17.解方程(1)=1.(2)x﹣(3x﹣5)=2(5+x)18.解不等式组,并把解集在数轴上表示出来.19.如图,在四边形ABCD中,若AC=10cm,BD=8cm,那么当AO=cm,BO=cm时,四边形ABCD为平行四边形,因为.20.又到一年丰收季,重庆外国语学校“国内中考、高考、国内保送、出国留学”捷报频传.作为准初三的初二年级学生希望抓紧暑期更好的提升自我.张同学采用随机抽样的方式对初二年级学生此次暑期生活的主要计划进行了问卷调查,并将调查结果按照“A社会实践类、B学习提高类、C游艺娱乐类、D其他”进行了分类统计,并绘制了如图1和如图2两幅不完整的统计图.(接受调查的每名同学只能在四类中选择其中一种类型,不可多选或不选.)请根据图中提供的信息完成以下问题.(1)扇形统计图中表示B类的扇形的圆心角是度,并补全条形统计图;(2)张同学已从被调查的同学中确定了甲、乙、丙、丁四名同学进行开学后的经验交流,并计划在这四人中选出两人的宝贵经验刊登在本班班刊上.请利用画树状图或列表的方法求出甲同学的经验刊登在班刊上的概率.21.(1)已知一个多边形的内角和是外角和的两倍,求它的边数.(2)如图,①请仅用无刻度的直尺,作△ABC的边AC上的中线BD,②BD是否为△ABC的边AC上的高(不必说明理由)?22.(10分)在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).①如图1,若BC=4m,则S=m2.②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变则在BC的变化过程中,当S取得最小值时,边BC的长为m.23.(10分)为了方便孩子入学,小王家购买了一套学区房,交首付款15万元,剩余部分向银行贷款,贷款及贷款利息按月分期还款,每月还款数相同.计划每月还款y万元,x个月还清贷款,若y是x的反比例函数,其图象如图所示:(1)求y与x的函数解析式;(2)若小王家计划180个月(15年)还清贷款,则每月应还款多少万元?24.(12分)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF 于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.25.(14分)当1≤x≤1时,求抛物线y=x2+bx﹣上到x轴的距离最大的点的坐标(用含有b的代数式表示)2019年福建省泉州市晋江市东石中学中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】直接利用零指数幂的性质以及绝对值的性质化简得出答案.【解答】解:原式=1+1=2.故选:A.【点评】此题主要考查了实数运算,正确化简各数是解题关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:510000000=5.1×108,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据数轴得出a<0<b,|a|>|b|,进而可得出ab<0,a+b<0,﹣a>0,对比后即可得出选项.【解答】解:从数轴可知:a<0<b,|a|>|b|,∴ab<0,a+b<0,﹣a>0,即选项A,B,C均正确;选项D错误,故选:D.【点评】本题考查了数轴和有理数的运算,能根据数轴得出a<0<b和|a|>|b是解此题的关键.4.【分析】根据两个面相隔一个面是对面,再根据翻转的规律,可得答案.【解答】解:第一次翻转诚在下面,第二次翻转爱在下面,第三次翻转国在下面,信与国相对,故选:A.【点评】本题考查了正方体相对两个面上的文字,两个面相隔一个面是对面,注意翻转的顺序确定每次翻转时下面是解题关键.5.【分析】将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.【解答】解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是=33℃,故选:D.【点评】本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.6.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、例如等腰梯形,故本选项错误;B、根据菱形的判定,应是对角线互相垂直的平行四边形,故本选项错误;C、对角线相等且互相平分的平行四边形是矩形,故本选项错误;D、一组邻边相等的矩形是正方形,故本选项正确.故选:D.【点评】本题主要考查平行四边形的判定与命题的真假区别.正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理,难度适中.7.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选:A.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.8.【分析】如图作AM⊥BH于M,连接AH.解直角三角形求出AM、HM,根据tan∠AHB=计算即可;【解答】解:如图作AM⊥BH于M,连接AH.∵六边形ABCDEF是正六边形,四边形BCGH是正方形,∴∠ABC=120°,∠HBC=90°,AB=BH=2,∴∠ABH=30°,在Rt△ABM中,∵AB=2,∠ABM=30°,∴AM=AB=1,BM=AM=,∴HM=2﹣,∴tan∠AHB===2+,故选:D.【点评】本题考查正多边形与圆、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.9.【分析】根据点P(a﹣3,a)在正比例函数y=﹣x的图象上,可以求得a的值.【解答】解:∵点P(a﹣3,a)在正比例函数y=﹣x的图象上,∴a=﹣×(a﹣3)解得,a=1,故选:D.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.10.【分析】分m>0和m<0两种情况分类讨论即可确定正确的选项.【解答】解:A、该函数图象中,抛物线开口方向向下,则﹣m<0,即m>0.抛物线与y轴交于正半轴,则n>0,所以mn>0,则双曲线y=应该位于第一、三象限,故本选项错误;B、该函数图象中,抛物线开口方向向上,则﹣m>0,即m<0.抛物线与y轴交于负半轴,则n<0,所以mn>0,则双曲线y=位于第一、三象限,故本选项正确;C、该函数图象中,抛物线开口方向向下,则﹣m<0,即m>0.抛物线与y轴交于负半轴,则n<0,所以mn<0,则双曲线y=应该位于第二、四象限,故本选项错误;D、该函数图象中,抛物线开口方向向上,则﹣m>0,即m<0.抛物线与y轴交于负半轴,则n<0,所以mn>0,则双曲线y=应该位于第一、三象限,故本选项错误;故选:B.【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.二.填空题(共6小题,满分24分,每小题4分)11.【分析】先进行二次根式的乘法运算,再把各二次根式化为最简二次根式,然后合并同类二次根式即可.【解答】解:原式=2﹣﹣=2﹣﹣=﹣.故答案为﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.【分析】n边形的内角和是(n﹣2)•180°,代入公式就可以求出十边形的内角和.【解答】解:十边形的内角和是(10﹣2)•180°=1440°.故答案为:1440°.【点评】考查了多边形内角与外角,正确记忆多边形的内角和公式是解决本题的关键.13.【分析】根据概率公式列出关于n的分式方程,解方程即可得.【解答】解:因为摇匀后随机摸出一个恰好是黄球的概率为,所以=,解得:n=3,经检验n=3是分式方程的解,即黄球有3个,故答案为:3.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.【分析】方程组两方程相加表示出x+y,代入x+y=2中求出k的值即可.【解答】解:,①+②得:3(x+y)=k+4,即x+y=,代入x+y=2中得:k+4=6,解得:k=2,故答案为:2【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.15.【分析】以O为坐标原点建立坐标系,过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x轴于点F,设点P的坐标为(x,y),则x2+y2=1.然后证明△ECP≌△FPB,由全等三角形的性质得到EC=PF=y,FB=EP=2﹣x,从而得到点C(x+y,y+2﹣x),最后依据两点间的距离公式可求得AC=,最后,依据当y=1时,AC有最大值求解即可.【解答】解:如图所示:过点C作CD⊥y轴,垂足为D,过点P作PE⊥DC,垂足为E,延长EP交x 轴于点F.∵AB=4,O为AB的中点,∴A(﹣2,0),B(2,0).设点P的坐标为(x,y),则x2+y2=1.∵∠EPC+∠BPF=90°,∠EPC+∠ECP=90°,∴∠ECP=∠FPB.由旋转的性质可知:PC=PB.在△ECP和△FPB中,,∴△ECP≌△FPB.∴EC=PF=y,FB=EP=2﹣x.∴C(x+y,y+2﹣x).∵AB=4,O为AB的中点,∴AC==.∵x2+y2=1,∴AC=.∵﹣1≤y≤1,∴当y=1时,AC有最大值,AC的最大值为=3.故答案为:3.【点评】本题主要考查的是旋转的性质、全等三角形的性质和判定,两点间的距离公式的应用,列出AC 的长度与点P的坐标之间的关系式是解题的关键.16.【分析】勾股定理可以求出AC的长,再根据余弦的定义即可求出cos A的值.【解答】解:如图,在Rt△ACE中,CE=3,AE=4,∴AC==5∴cos A=故答案为:【点评】本题考查了锐角三角函数的定义以及勾股定理的运用,解题的关键是构造直角三角形.三.解答题(共9小题,满分86分)17.【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【解答】解:(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=,(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.18.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:,由①得:x≤0,由②得:x<﹣1,∴不等式组的解集为x<﹣1,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.19.【分析】根据对角线互相平分的四边形是平行四边形即可得出结果.【解答】解:根据平行四边形的判定:对角线互相平分的四边形是平行四边形;可得:AO=AC=5cm,DO=BD=4cm.故答案为:5,4,对角线互相平分的四边形是平行四边形.【点评】本题考查了平行四边形的判定,能正确运用平行四边形的各种判定方法是解此题的关键.20.【分析】(1)先根据A类型人数及其所占百分比求得总人数,继而根据各类型人数之和等于总人数求得B的人数,再用360°乘以B类型人数所占比例可得;(2)列表得出所有等可能结果,从中找打符合条件的结果数,再利用概率公式可得答案.【解答】解:(1)∵被调查的人数为45÷30%=150人,∴B等级人数为150﹣(45+15+30)=60人,则扇形统计图中表示B类的扇形的圆心角是360°×=144°,补全图形如下:故答案为:144;(2)列表如下:由树状图(或表格)可知,所有等可能的结果共12种,其中包含甲同学的有6种,所以P(甲同学的经验刊登在班刊上的概率)==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图.21.【分析】(1)设这个多边形的边数为n,根据多边形的内角和公式和外角和定理可得(n﹣2)•180°=360°,然后解方程即可;(2)①利用网格特点可找到AC的中点D,然后连结BD即可;②由于AB=AC≠BC,则可判断BD不垂直AC.【解答】解:(1)设这个多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=6,所以这个多边形的边数为6;(2)①如图,②BD不是△ABC的边AC上的高.【点评】本题考查了作图:复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了多边形内角与外角.22.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10﹣x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【解答】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,∴S=×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10﹣x,∴S=•π•102+•π•x2+•π•(10﹣x)2=(x2﹣5x+250)=(x﹣)2+,当x=时,S取得最小值,∴BC=,故答案为:.【点评】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.23.【分析】(1)直接利用待定系数法求出反比例函数解析式;(2)把x=180代入求出答案.【解答】解:(1)设y与x的函数关系式为:y=(k≠0),把P(144,0.5),代入得:0.5=,解得:k=72,∴y与x的函数解析式为:y=;(2)当x=180时,y==0.4(万元),答:则每月应还款0.4万元.【点评】此题主要考查了反比例函数的应用,正确得出反比例函数解析式是解题关键.24.【分析】(1)根据直角三角形的性质得到AE=FE,根据相似三角形的性质得到∠EAG=∠ADG,求得∠DAG=∠FEG,根据菱形的性质得到AD∥BC,求得∠DAG=∠AFB=90°,于是得到结论;(2)由AE=EF,AE2=EG•ED,得到FE2=EG•ED,推出△FEG∽△DEF,根据相似三角形的性质得到∠EFG=∠EDF,根据相似三角形的判定和性质即可得到结论.【解答】(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴=,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴=,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴=,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.【点评】本题考查了相似三角形的判定和性质,菱形的性质,直角三角形的性质,正确的识别图形是解题的关键.25.【分析】先确定抛物线y=x2+bx﹣的对称轴为直线x=﹣,利用二次函数的图象与性质,分类讨论:①当﹣1≤﹣<0,即0≤b≤2时,易得抛物线上与x轴距离最大的点为P(1,b+),②当﹣≤﹣1,即b≥2时,易得抛物线与x轴距离最大的点为P(1,b+);③当0<﹣≤1,即﹣2≤b<0时,易得抛物线上与x轴距离最大的点为P(﹣1,﹣b);当﹣>1,即b<﹣2时,易得抛物线上与x轴距离最大的点为P(﹣1,﹣b),综上所述,抛物线y=x2+bx﹣上到x轴的距离最大的点的坐标为(1,b+)或(﹣1,﹣b).【解答】解:抛物线y=x2+bx﹣的对称轴为直线x=﹣,①当﹣1≤﹣<0,即0≤b≤2时,所以在x轴上方,抛物线y=ax2+bx+c上与x轴距离最大的点为P(1,y0),此时y0=1+b﹣=b+,所以P(1,b+);②当﹣≤﹣1,即b≥2时,所以在x轴上方,抛物线y=ax2+bx+c上与x轴距离最大的点为P(1,y0),此时y0=1+b﹣=b+,所以P(1,b+);③当0<﹣≤1,即﹣2≤b<0时,所以在x轴上方,抛物线y=ax2+bx+c上与x轴距离最大的点为P(﹣1,y0),此时y0=1﹣b﹣=﹣b,所以P(﹣1,﹣b);④当﹣>1,即b<﹣2时,所以在x轴上方,抛物线y=ax2+bx+c上与x轴距离最大的点为P(﹣1,y0),此时y0=1﹣b﹣=﹣b,所以P(﹣1,﹣b),综上所述,抛物线y=x2+bx﹣上到x轴的距离最大的点的坐标为(1,b+)或(﹣1,﹣b).【点评】本题考查了二次函数图象上点的坐标特征和二次函数的性质;理解坐标与图形性质;运用数形结合和分类讨论的思想是解题的关键.。