光的力学效应-光镊原理及应用 《大学物理》系列讲座74页PPT
- 格式:ppt
- 大小:9.40 MB
- 文档页数:74
1.1光镊技术简介光镊是以激光的力学效应为基础的一种物理工具,是利用强会聚的光场与微粒相互作用时形成的光学势阱来俘获粒子的【4】。
1969年,A. Ashkin等首次实现了激光驱动微米粒子的实验。
此后他又发现微粒会在横向被吸入光束(微粒的折射率大于周围介质的折射率)。
在对这两种现象研究的基础上,Ashkin提出了利用光压操纵微粒的思想,并用两束相向照射的激光,首次实现了对水溶液中玻璃小球的捕获,建立了第一套利用光压操纵微粒的工具。
1986年,A. Ashkin等人又发现,单独一束强聚焦的激光束就足以形成三维稳定的光学势阱,可以吸引微粒并把它局限在焦点附近,于是第一台光镊装置就诞生了【5,6】。
也因此,(single-beam optical gradient force trap)。
光镊的正式名称为“单光束梯度力势阱” 由于使用光镊来捕获操纵样品具有非接触性、无机械损伤等优点,这使得光镊在生物学领域表现出了突出的优势。
这些年来,随着研究的深入和技术的不断完善,光镊在生物学的应用对象由细胞和细胞器逐步扩展到了大分子和单分子等。
目前,光镊常被用来研究生物过程中的细胞和分子的运动过程【7-10】,也常被用来测量生物过程中的一些力学特征【11-14】。
1.2光镊的原理与特点众所周知,光具有能量和动量,但是在实际应用中人们经常利用了光的能量,却很少利用光的动量。
究其原因,这主要是因为在生活中我们接触到的自然光和照明光等的力学效应都很小,无法引起人们可以直接感受到或观察到的宏观效应。
而科学家们利用激光所具有的高亮度和优良的方向性,使得光的力学效应在显微镜下显现了出来,在这里我们要介绍的光镊技术正是以这种光的力学效应为基础发展起来的。
1.2.1光压与单光束梯度力光阱光与物质相互作用的过程中既有能量的传递,也有动量的传递,动量的传递常常表现为压力,简称光压。
1987年,麦克斯韦根据电磁波理论论证了光压的存在,并推导出了光压力的计算公式。
激光光镊技术的原理应用及发展激光光镊技术是一种利用激光束对微小颗粒进行操控的技术,其原理基于光与物质的相互作用。
激光光镊技术已经在生物医学、材料科学、纳米技术等领域得到了广泛应用,并且在未来有着广阔的发展前景。
激光光镊技术的原理基于光的力学效应。
当激光束聚焦到一个小区域内时,光束中的光子与物质发生相互作用,使得物质受到一个力的作用。
这个力被称为光力学力,它可以通过调节激光束的强度、频率和偏振等参数来控制。
当激光束聚焦到一个微小颗粒上时,光力学力可以使得颗粒受到一个稳定的力,从而实现对其位置的精确控制。
激光光镊技术的应用领域非常广泛。
在生物医学领域,激光光镊技术可以用于细胞操控、细胞分离、细胞注射等操作。
通过激光光镊技术,可以实现对单个细胞的精确操控,从而进行细胞实验、药物筛选等研究。
在材料科学领域,激光光镊技术可以用于纳米材料的制备和操控。
通过激光光镊技术,可以实现对纳米材料的精确操控,从而制备出具有特定结构和功能的纳米材料。
在纳米技术领域,激光光镊技术可以用于纳米的操控和纳米设备的制造。
通过激光光镊技术,可以实现对纳米的精确操控,从而实现纳米设备的制造和操作。
激光光镊技术的发展前景非常广阔。
随着激光技术的不断进步,激光光镊技术的精度和稳定性将会得到进一步提升。
同时,激光光镊技术的应用领域也将不断拓展,将会在更多领域发挥重要作用。
例如,在生物医学领域,激光光镊技术可以用于癌症治疗、基因编辑等前沿研究。
在材料科学领域,激光光镊技术可以用于纳米材料的合成和改性。
在纳米技术领域,激光光镊技术可以用于纳米的制造和应用。
激光光镊技术是一种利用激光束对微小颗粒进行操控的技术,其原理基于光与物质的相互作用。
激光光镊技术在生物医学、材料科学、纳米技术等领域得到了广泛应用,并且在未来有着广阔的发展前景。
随着激光技术的不断进步,激光光镊技术的精度和稳定性将会得到进一步提升,其应用领域也将不断拓展。
激光光镊技术的原理应用及发展激光光镊技术是一种利用激光束对微小颗粒进行操控的技术,其原理基于光与物质的相互作用。
【实验装置】图3为本实验所用装置(称之为激光力学参数测量装置)的示意图,包括一个作为光图3 激光力学参数测量装置1 光镊光源2 光学耦合器3 自动样品台4 双色分束镜5 聚焦物镜(NA1.25)6 样品池 7聚光镜 8照明光源 9 反射镜 10.数码摄象头 11.计算机主机 12.显示器镊光源的半导体激光器,显微镜,自动样品台,激光器与显微镜的光学耦合光路,以及一套观察和记录光阱对微粒的操作过程的实时监测系统。
由半导体激光发出的激光束,经过光学耦合光路扩束整形后,入射到双色分束镜上,被反射至物镜聚焦在样品池中形成光阱。
捕获和操控过程的观察,类似于普通的显微镜。
照明光通过聚光镜照明样品池,池中的微粒被捕获和操控的图象经物镜后,透过双色分束镜,被反射镜反射到CCD数码摄像头,由显示器显示。
也可通过目镜进行观察。
数码摄像头获取的信息可以由计算机采集和处理。
实验中所用的样品有很大的挑选余地。
只要对所用的激光吸收很小,折射率比周围液体的小,尺度在微米量级就可以。
我们实验中用的是悬浮于液体中的1-3微米的聚本乙烯小球或4-5微米的酵母细胞。
【实验步骤】一、清洗:1、清洗样品池先用蒸馏水将样品池表明冲洗干净,再用洗耳球将水吹出凹槽,用滤纸将旁边的水吸干2、清洗盖玻片先用镊子小心夹住,再用蒸馏水冲洗干净,然后用洗耳球将水吹到边缘,最后用滤纸吸干3、制备活酵母菌样本先量取约20mL蒸馏水倒进烧瓶中,再从活酵母菌小瓶轻嗑10几粒酵母菌入烧瓶中,摇匀后放入超声波清洗器中5分钟,中间最后再摇匀几次使酵母菌分散,便于观察4、放入样本将样品池放在显微镜架子上,滴入2滴活酵母菌溶液,小心用盖玻片盖上二、仪器操作及测量:1、打开显微镜,然后打开激光源,以1mA/2s的速率增加激光功率(防止脉冲电流损坏仪器)。
本实验采用的λ=780nm的近红外光,当激光器电流升至30-40mA,激光器出光,由于出射光波长有一定范围,所以为红光。