剪力滞后效应概念普及
- 格式:docx
- 大小:16.19 KB
- 文档页数:1
英文名称:SectionDayton-MuLeightoneffect 简单的说:墙体上开洞形成的空腹筒体又称框筒,开洞以后,由于横梁变形使剪力传递存在滞后现象,使柱中正应力分布呈抛物线状,称为剪力滞后现象。
剪力滞后现象使框筒结构的角柱应力集中。
目录例子效应特点忽略剪力滞效应造成的事故大跨度薄壁箱梁剪力滞效应编辑本段例子如:在结构设计中往往全长加密角柱箍筋,目的之一就是增加角柱的抗剪能力,增加延性。
1、剪力滞后现象越严重,框筒结构的整体空间作用越弱;2、剪力滞后的大小与梁的刚度、柱距、结构长宽比等有关。
梁刚度越大、柱距越小、结构长宽比越小,剪力滞后越小;3、框筒结构的整体空间作用只有在结构高宽较大时才能发挥出来。
此外梁柱的刚度比、平面形状及建筑物高宽比对剪力滞后影响很大。
概念设计时一定考虑全编辑本段效应特点剪力滞后效应在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后现象。
剪力滞后,有时也叫剪切滞后,从力学本质上说,是圣维南原理,它严格地符合弹性力学的三大方程,即几何方程、物理方程、平衡方程。
具体表现是,在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪切滞后。
剪力滞后效应通常出现在T型、工型和闭合薄壁结构中如筒结构和箱梁,在这些结构中通常把整体结构看成一个箱形的悬臂构件。
在结构水平力作用下,主要反应是一种应力不均匀现象,柱子之间的横梁会产生沿着水平力方向的剪切变形,从而引起弯曲时远离肋板的翼板的纵向位移滞后于肋板附近的纵向位移,从而使得翼缘框架中各柱子的轴力不相等:远离腹板框架的柱轴力越来越小,翼缘框架中各柱轴力呈抛物线形,同时腹板框架中柱子的轴力也不是线性规律。
这就是一种剪力滞后效应。
当翼板与腹板交接处的正应力大于按初等梁的计算值,称为正剪力滞,反之为负剪力滞。
编辑本段忽略剪力滞效应造成的事故忽略剪力滞效应的影响,就会低估箱梁腹板和翼板交接处的挠度和应力,从而导致不安全:如1969-1971年在欧洲不同地方相继发生了四起箱梁失稳或破坏事故。
薄壁箱梁的剪力滞效应浅析薄壁箱梁由于具有良好的结构性能,与肋板式截面相比,箱形截面具有抗扭刚度大,能有效抵抗正负弯矩等优点,因而在现代各种桥梁中得到广泛应用,尤其是各种结构形式的预应力混凝土桥梁,采用箱形截面更能适应构造和现代化施工要求。
近几年来,薄壁箱梁在我国大跨径桥梁、城市立交桥中得到了广泛应用,箱梁剪力滞效应也越来越引起重视。
一、剪力滞效应基本概念及产生机理剪力滞效应最早是在T梁探讨翼缘有效分布宽度问题时提出的。
T梁受弯时,翼缘在横向力与偏心的边缘剪力流作用下,将产生剪切扭转变形,则已不服从平截面理论的假定。
剪切扭转变形随翼缘在水平面内的形状与纵向边缘剪力流的分布有关。
狭窄翼缘的剪切扭转变形不大,其受力性能接近于简单梁理论的假定,而宽翼缘因这部分变形的存在,而使远离梁肋的翼缘不参与承弯工作,也即受压翼缘上的压应力随着离肋的距离增加而减小。
在薄壁箱梁中,产生弯曲的横向力通过肋板传递给翼板,而剪应力在翼板上的分布是不均匀的,在肋板与翼板的交接处最大,随着离开肋板而逐渐减小,因此,剪切变形沿翼板的分布是不均匀的。
由于翼板剪切变形的不均匀性,引起弯曲时远离肋板的翼板的纵向位移滞后于近肋板的翼板的纵向位移,所以其弯曲正应力的横向分布呈曲线形状,这个现象就称为“剪力滞后”,也称为“剪力滞效应” [1]。
为了更好的解释剪力滞效应,取固端悬臂箱梁在自由端的梁肋处作用一对集中力P如上图所示。
理论上,应用初等梁弯曲理论,在悬臂上板得到均匀分布的弯曲拉应力,但实际并非如此。
由于腹板传递的剪力流在边缘上受拉要大一些,而向板内传递的过程,由于上下板均会发生剪切变形,故实际上上板的拉应力在横截面分布式不均匀的,呈现板的中间小而两边大的应力状态。
剪力流在横向传递过程有滞后现象,故称之谓“剪力滞后现象”或称“剪力滞效应”。
如果初等梁理论算出的应力为,而实际截面上发生的应力为σ,那么式中:λ---剪力滞系数。
如果翼缘与腹板交界处的正应力大于初等梁理论计算的理论值,称之为“正剪力滞”;如果翼缘与腹板处交界的正应力小于初等梁理论计算的理论值,称之为“负剪力滞”。
特殊支承箱梁剪力滞效应的有限元分析特殊支承箱梁剪力滞效应的有限元分析引言:随着现代桥梁结构设计的不断发展,特殊支承箱梁在跨越大跨径、高速公路以及城市轨道交通等领域中得到了广泛应用。
然而,由于特殊支承箱梁结构的复杂性,其受剪切力作用时会产生剪力滞现象,这给结构的性能与安全性带来了挑战。
本文将通过有限元分析的方法,对特殊支承箱梁剪力滞效应进行详细研究,探索其产生机制及对结构的影响,为后续的设计与施工提供参考。
1. 特殊支承箱梁剪力滞效应的定义和机制在特殊支承箱梁中,当剪力加载到一个特定值时,结构出现非线性行为,剪力-切变曲线呈现出一种明显的滞后现象。
这种滞后现象就是剪力滞效应。
其主要机制可以归结为材料非线性和结构非线性两方面。
材料非线性是指材料内部力学性能的变化,主要表现为剪切强度和刚性的非线性关系。
结构非线性是指支承箱梁在受力作用下产生的位移、变形和应力等因素之间的相互作用,导致结构整体性能的变化。
2. 影响特殊支承箱梁剪力滞效应的因素特殊支承箱梁剪力滞效应的产生受到多种因素的影响,包括材料性能、截面形状、结构的几何参数以及荷载施加方式等。
首先,材料的刚性和强度是影响剪力滞效应的重要因素。
相对于刚性材料,弹性模量较低的材料更容易产生滞后现象。
其次,截面形状也对剪力滞效应有一定影响。
一般来说,T形截面和箱形截面在受剪作用下更容易出现滞后现象。
另外,结构的几何参数,如跨径、高度、界面性能等也会直接影响剪力滞效应的产生和发展。
最后,施工过程中的荷载施加方式也是产生剪力滞效应的重要因素之一。
3. 有限元分析在研究特殊支承箱梁剪力滞效应中的应用有限元分析作为一种计算力学方法,在研究特殊支承箱梁剪力滞效应方面具有广泛的应用。
首先,有限元分析可以通过建立结构的数学模型,模拟剪力加载过程中的结构反应,包括位移、变形、应力等。
其次,有限元分析可以通过改变结构参数和材料参数,模拟特殊支承箱梁在不同条件下的滞后行为,以探究剪力滞效应的机制。
箱梁的剪力滞效应(抓住“剪力”这个核心)● 剪力滞现象:宽翼缘箱梁在弯剪作用下,由于剪切变形的存在和沿宽度方向的变化,受压翼缘上的正应力随着离梁肋的距离增加而减小,这个现象就称为“剪力滞后”,简称剪力滞效应。
● 造成该现象的原因:翼缘的剪应力变化引起正应力的变化。
(因此剪力越大,剪力变化越剧烈的截面剪力滞越明显,比如支点、集中力作用点,但有的情况下支点弯矩小,因此总应力还是)● 剪力滞系数λ:考虑剪力滞/不考虑剪力滞。
λ是个沿翼缘板宽度变化的量,一般只考虑腹板与翼缘板相交位置的λ● 正剪力滞,负剪力滞。
● 广义位移函数:挠度函数,纵向变形函数。
● 考虑剪力滞,翼缘板不满足平截面假定,但腹板仍然满足平截面假定。
最小势能原理变分得到带位移函数的微分方程。
● 考虑剪力滞,梁的挠度增加。
剪力滞降低梁的刚度。
因为考虑剪力滞的曲率表达式为:1''[()]F w M x M EI=-+ 正剪力滞,MF>0,因此造成曲率偏大,挠度增大,负剪力滞,MF<0,因此挠度减小● 悬臂箱梁在均布荷载作用下,离固定端约1/4跨位置会产生负剪力滞效应(邻近腹板的翼板位移滞后于远离腹板的翼板位移)。
M F 为负时,属于负剪力滞。
● 有效宽度:最大应力×有效宽度=实际应力沿总宽度的积分●规范规定,结构整体分析采用全截面,截面应力验算,采用有效宽度。
●承受纯弯曲荷载的箱梁截面,是否也存在剪力滞现象?材料进入塑性状态后,箱梁截面剪力滞将如何变化?●本节主要介绍剪弯状态下剪力滞问题,如果是压弯状态下(如预应力筋直线布置)截面是否存在剪力滞现象?箱梁的扭转效应(抓住关键:扭转=偏载×偏心距)●自由扭转:纵向不受约束,不产生纵向正应力。
公式推导:(闭口截面抗扭性能强的原因:剪力流的力臂大)q=τk t●自由扭转剪切变形:(综合考虑纵向变形和扭转角变形)●自由扭转惯矩:与截面包围面积、壁厚有关。
一、剪力滞后效应的力学本质剪力滞后(有时也叫剪切滞后)效应,在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后现象。
剪力滞后,从力学本质上说,是圣维南原理,它严格地符合弹性力学的三大方程,即几何方程、物理方程、平衡方程。
具体表现是,在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪力滞后。
例如:一长方形平板(长度远大于宽度),在两个短边受到一对平衡集中力。
由圣维南原理可知,在板的中部,应力是均匀分布的,而在靠近短边的端部,就出现了剪力滞后现象。
由于正应力是靠剪力的作用逐渐由集中力转化为均匀的,而由于剪力传递正应力有一个逐渐的过程,所以在端部,剪力的所能起的作用还很有限,而正应力分布还不均匀,这种现象就称为剪力滞后。
二、剪力滞后效应在具体工程中的表现1、拉杆、宽梁的翼缘第一部分所举的例子其实就是一根拉杆,它出现了剪力滞后现象。
陈绍藩在《钢结构设计原理》的第5.2章节中详细描述了有孔拉杆因为剪力滞后效应和其他因素造成承载力降低的现象。
另外宽梁的翼缘中正应力分布不均匀,也是剪力滞后效应造成的,陈绍藩在《钢结构设计原理》的11.1.4章节讲述此问题,并提出采用有效宽度代替实际宽度的方法来计算。
钢砼组合梁计算时,混凝土翼板取有效宽度而不取实际宽度,也是对剪力滞后效应的考虑。
2、薄壁构件(主要是桥梁结构构件)许多学者对薄壁杆件理论进行了广泛的研究,Vlasov、Timoshenko等提出了薄壁杆件分析的经典方法,并作了两个基本假定(1)’薄壁杆件横截面的外形轮廓线在其自身平面内保持刚性,即不变形;(2)薄壁杆件中面的剪应变为零(开口截面)或剪力流为常数(闭口截面)。
由于第二个假定经典方法不能反映薄壁杆件的剪力滞后现象,所以不具有一般性。
剪力滞后效应通常出现在T型、工型和闭合薄壁结构中如筒结构和箱梁,在对称弯曲荷载作用下,如果箱梁具有初等弯曲理论中所假定的无限抗剪刚度(即时变形的平截面假定),那么弯曲正应力沿梁宽方向是均匀分布的。
剪力滞后效应知识科普
剪力滞后效应在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后现象.剪力滞后有时也叫剪切滞后,具体表现是,在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪切滞后.例如在墙体上开洞以后,由于横梁变形使剪力传递存在滞后现象,使柱中正应力分布呈抛物线状,称为剪力滞后效应.
剪力滞后效应的概念是在箱梁中提出的.剪力滞后效应在T 型、工型和闭合薄壁结构中(如筒结构和箱梁)表现得较为典型,在这些结构中通常把整体结构看成一个箱形的悬臂构件.当结构处于水平力作用下时,主要反应是一种应力不均匀现象,柱子之间的横梁会产生沿着水平力方向的剪切变形,由此引起弯曲时远离肋板的翼板的纵向位移滞后于肋板附近的纵向位移,当翼板与腹板交接处的正应力大于按初等梁的计算值,称为正剪力滞,反之为负剪力滞.
剪力滞概念与有效分布宽度相同,前者用不均匀应力表示,后者用一等效板宽表示.为了使简单梁理论能够用于宽翼缘梁的分析,故对翼缘定出个“有效翼缘宽度”翼缘的有效宽度为假设的翼缘宽度,沿其宽度上受均匀压缩,其压缩值如同在同样的边缘剪
力作用下的实际翼缘的受载边缘数值一样.另外,有效宽度可以视为理论的翼缘宽度,该理论翼缘承受具有均匀应力的压力.该均匀应力与原型宽翼缘处的应力峰值相等,而且总压力值相等.
在框筒结构中,结构整体可以看成一个箱形的悬臂构件.在水平力作用下,柱子之间的横梁会产生沿着水平力方向的剪切变形,从而使得翼缘框架中各柱子的轴力不相等:远离腹板框架的柱轴力越来越小,翼缘框架中各柱轴力呈抛物线形,同时腹板框架中柱子的轴力也不是线性规律.这就是一种剪力滞后效应.。
箱梁剪力滞随着现代建筑技术的不断发展,箱梁结构越来越广泛地应用于桥梁、建筑等领域。
箱梁结构的优点在于其强度高、稳定性好、方便施工等特点,然而在实际工程中,箱梁结构的剪力滞效应却成为了设计和施工中需要解决的重要问题。
剪力滞现象是指在箱梁结构受到外力作用时,由于结构的非线性特性,导致结构内部的剪力出现滞后效应,使得结构的抗震性能降低。
在地震等自然灾害中,剪力滞效应可能导致结构破坏,给人们的生命财产带来巨大的损失。
因此,研究和解决箱梁剪力滞问题具有重要的理论和实际意义。
箱梁结构的剪力滞特性主要受到结构材料、截面形状、受力方式等因素的影响。
在实际工程中,箱梁结构通常采用混凝土、钢筋等材料进行构造,且其截面形状多样。
在受力方式上,箱梁结构可能受到单向或双向剪力作用,或者同时受到剪力和弯矩的复合作用。
这些因素的不同组合可能导致结构的剪力滞特性差异较大。
针对不同类型的箱梁结构,学者们提出了一系列的剪力滞理论模型和计算方法。
其中,常用的有弹塑性模型、简化模型、有限元模型等。
这些模型和方法的基本思路是将结构的非线性特性进行模拟和计算,从而得到结构的剪力滞特性。
这些模型和方法在实际工程中得到了广泛应用,为设计和施工提供了重要的参考。
除了理论模型和计算方法外,工程实践中还需要采取一些措施来降低箱梁结构的剪力滞效应。
例如,可以采用钢筋混凝土箱梁结构,增强结构的抗震性能;采用合适的截面形状和受力方式,减小结构的非线性特性;采用剪力加强措施,提高结构的抗剪强度等。
这些措施可以有效地降低箱梁结构的剪力滞效应,提高结构的抗震性能和安全性。
总之,箱梁剪力滞是现代建筑技术中需要解决的重要问题之一。
通过理论分析和工程实践,我们可以有效地降低结构的剪力滞效应,提高结构的抗震性能和安全性。
在未来的工程设计和施工中,我们需要继续深入研究和探索箱梁剪力滞问题,为建设更加安全、可靠、持久的建筑和桥梁作出贡献。
箱梁的剪力滞效应分析文章类型:论述文剪力滞效应是指箱梁在承受剪力作用时,剪切力和剪切变形之间的关系出现滞后现象。
这种现象对箱梁的承载能力和正常使用有着重要影响。
本文将介绍箱梁剪力滞效应的基本概念和分析方法,并探讨如何采取有效的措施应对剪力滞效应的影响。
一、箱梁剪力滞效应概述箱梁是一种常见的桥梁结构形式,具有结构强度高、刚度大等特点,被广泛应用于公路、铁路、城市轨道交通等领域。
箱梁在承受剪力作用时,剪切力和剪切变形之间的关系通常应该是线性的,但在某些情况下,剪切力与剪切变形之间的关系会出现滞后现象,即所谓的剪力滞效应。
剪力滞效应会对箱梁的结构性能产生不利影响,降低桥梁的承载能力和使用性能。
当剪力滞效应较严重时,可能导致桥梁出现裂缝、变形过大等现象,影响行车安全和桥梁寿命。
因此,对箱梁剪力滞效应进行分析和研究,采取有效的应对措施,具有重要意义。
二、箱梁剪力滞效应分析方法1、有限元法有限元法是一种常用的结构分析方法,通过将结构离散成多个小的单元,利用数学方法近似求解结构整体的力学行为。
对于箱梁的剪力滞效应分析,可以采用有限元法进行数值模拟,通过调整箱梁的几何尺寸、材料参数等因素,模拟剪力滞效应的产生和变化规律。
2、解析法解析法是通过理论建模和推导,得出结构的力学响应的解析解。
对于箱梁的剪力滞效应分析,可以采用解析法建立简化的力学模型,从而得到剪力滞效应的近似解。
解析法具有计算速度快、成本低等优点,但精度较有限元法低。
三、箱梁剪力滞效应应对措施1、优化结构设计通过优化箱梁的结构设计,可以降低剪力滞效应的影响。
例如,可以合理布置箱梁的横隔板和竖向肋板,增加结构的整体性和抗扭刚度;同时,可以通过选用高强度材料,提高结构的强度和稳定性。
2、增加配筋率增加箱梁的配筋率可以增强结构的抗剪能力,降低剪力滞效应引起的变形和裂缝等问题。
同时,合理的配筋设计还可以提高箱梁的承载能力和使用寿命。
3、采用新型材料采用新型材料如高性能混凝土、纤维增强混凝土等,可以提高箱梁的抗剪性能和耐久性,降低剪力滞效应的影响。
(shear-lag effect)在结构工程中是一个普遍存在的力学现象,小至一个构件,大至一栋超高层建筑,都会有剪力滞后现象。
剪力滞后有时也叫剪切滞后,具体表现是,在某一局部范围内,剪力所能起的作用有限,所以正应力分布不均匀,把这种正应力分布不均匀的现象叫剪切滞后。
例如在墙体上开洞以后,由于横梁变形使剪力传递存在滞后现象,使柱中正应力分布呈抛物线状,称为剪力滞后效应。
剪力滞后效应的概念是在箱梁中提出的。
剪力滞后效应在T型、工型和闭合薄壁结构中(如筒结构和箱梁)表现得较为典型,在这些结构中通常把整体结构看成一个箱形的悬臂构件。
当结构处于水平力作用下时,主要反应是一种应力不均匀现象,柱子之间的横梁会产生沿着水平力方向的剪切变形,由此引起弯曲时远离肋板的翼板的纵向位移滞后于肋板附近的纵向位移,当翼板与腹板交接处的正应力大于按初等梁的计算值,称为正剪力滞,反之为负剪力滞。
剪力滞概念与有效分布宽度相同,前者用不均匀应力表示,后者用一等效板宽表示。
为了使简单梁理论能够用于宽翼缘梁的分析,故对翼缘定出个“有效翼缘宽度”翼缘的有效宽度为假设的翼缘宽度,沿其宽度上受均匀压缩,其压缩值如同在同样的边缘剪力作用下的实际翼缘的受载边缘数值一样。
另外,有效宽度可以视为理论的翼缘宽度,该理论翼缘承受具有均匀应力的压力。
该均匀应力与原型宽翼缘处的应力峰值相等,而且总压力值相等。
在框筒结构中,结构整体可以看成一个箱形的悬臂构件。
在水平力作用下,柱子之间的横梁会产生沿着水平力方向的剪切变形,从而使得翼缘框架中各柱子的轴力不相等:远离腹板框架的柱轴力越来越小,翼缘框架中各柱轴力呈抛物线形,同时腹板框架中柱子的轴力也不是线性规律。
这就是一种剪力滞后效应。