组成型突变株 调节基因发生突变
产生无效的阻遏物而不 能与操纵基因结合
操纵基因突变
突变操纵基因不 能与阻遏物结合
结构基因不受控制地转录,酶的 生成将不再需要诱导剂或不再被 末端产物或分解代谢物阻遏。
组成型突变
5.条件致死 例如在抗生素和酶制剂生产过程中的应用。 6.细胞膜通透性突变体的应用
使胞内的代谢产物迅速渗漏出去,解除末端产物的反馈抑制。 1. 用生理学手段—— 直接抑制膜的合成或使膜受缺损 如: 在Glu发酵中把生物素浓度控制在亚适量可大量分泌Glu; 控制生物素的含量可改变细胞膜的成分,进而改变膜透性; 当培养液中生物素含量较高时采用适量添加青霉素的方法; 再如:产氨短杆菌的核苷酸发酵中控制因素是Mn2+; Mn2+的作用与 生物素相似。 2. 利用膜缺损突变株 ——油酸缺陷型、甘油缺陷型 如:用谷氨酸生产菌的油酸缺陷型,培养过程中,有限制地添加油酸, 合成有缺损的膜,使细胞膜发生渗漏而提高谷氨酸产量。 甘油缺陷型菌株的细胞膜中磷脂含量比野生型菌株低,易造成谷氨酸 大量渗漏。应用甘油缺陷型菌株,就是在生物素或油酸过量的情况下, 也可以获得大量谷氨酸。
7.增加有关基因的数量
增加结构基因或操纵基因的数量 例如,β-半乳糖苷酶、青霉素酶、氯 霉素转酰氨酶等可借助含有相应结构基因 的质粒转移给受体培养物来增加产量;利 用含有对苯丙氨酸的结构基因的转导噬菌 体可使该酶产量增加15倍。 通过操作基因与传统诱变技术和代谢调 控相结合提高产量。
启动基因的突变增加RNA聚合酶和 DNA的亲和力,增加转录速率。
如
A
B
C
D
E
限量添加E,就会造成C大量积累
枯草芽孢杆菌的精氨酸营养缺陷型,鸟氨 酸积累量可到到25g/L.