AHP(层次分析法)具体步骤
- 格式:docx
- 大小:20.59 KB
- 文档页数:2
AHP层次分析模型简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的决策分析方法,通过将复杂的决策问题层次化,逐步进行比较和评估,最终得出相对权重,从而支持决策者做出合理的决策。
AHP方法最初由美国运筹学家托马斯·L·塞蒂(Thomas L. Saaty)于20世纪70年代提出,并逐渐在决策科学和管理领域得到广泛应用。
AHP模型步骤AHP模型主要分为以下几个步骤:1.建立层次结构:首先,需要将复杂的决策问题分解为不同层次的因素,并建立层次结构。
层次结构由目标、准则和方案组成。
目标是决策问题的最终目标,准则是实现目标所需要满足的条件,方案是用来实现目标的具体选择。
2.构建判断矩阵:在AHP中,判断矩阵是决策者对不同因素之间的比较矩阵。
决策者需要对每个因素进行配对比较,用1至9的尺度来表示两个因素之间的重要性差异。
例如,如果因素A相对于因素B非常重要,则可以给予A和B之间的比较矩阵一个较高的权重。
3.计算权重向量:通过对判断矩阵进行计算,可以得到不同因素的权重向量。
在AHP中,利用特征向量法来计算权重向量。
特征向量是归一化后的最大特征值对应的特征向量。
4.一致性检验:在AHP中,一致性是指决策者的意见和决策结果之间的一致性程度。
通过计算一致性比率(CR),可以评估决策者对判断矩阵的一致性程度。
一致性比率的值应该小于0.1,表示决策者对判断矩阵的一致性程度较高。
5.综合评估:根据权重向量,可以对不同方案进行综合评估。
将不同方案的得分与其权重相乘,并进行加权求和,得出最终的评估结果。
AHP模型的应用范围AHP模型在各个领域都有广泛的应用,以下是几个典型的应用案例:1.项目选择:在项目管理中,AHP模型可以帮助项目经理确定项目目标、评估不同项目方案的优劣,并选择最适合的项目方案。
通过对不同因素的权重进行评估,可以避免主观决策的影响,提高项目管理的效果。
层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析步骤汇总层次分析法(Analytic Hierarchy Process, AHP)是一种常用的决策分析方法,主要适用于多目标、多因素的决策问题。
该方法通过对决策问题进行分层和层次化处理,并对不同层次的因素进行权重分配和层次决策,最终得到最优方案。
以下是层次分析的步骤汇总:步骤一:问题建模首先需要把复杂的决策问题建模,将问题分解成多层的结构,将决策问题描述为一组准则和指标,同时建立每个指标与标准的关系,从而形成决策层次结构。
这个过程需要对决策问题进行严格的描述,而且对问题模型的建立需要考虑实际问题的特点、复杂程度以及数据的可获得性等多个因素。
步骤二:构造判断矩阵在建立完层次结构后,需要对层次结构中每一对相邻的因素进行比较,得出判断矩阵。
判断矩阵是一个关于因素之间关系的数学表达式,揭示了因素之间的相对重要性,最终形成一个权重矩阵。
步骤三:计算判断一致性因为判断矩阵的构造存在主观性,所以需要对判断矩阵的一致性进行检验。
通过计算一致性指标 CR(Consistency Ratio),来评估判断矩阵的一致性。
如果 CR 值小于等于0.1,则可以认为该矩阵是具有较高信度和一致性的。
步骤四:计算权重向量根据判断矩阵和 CR 值计算权重向量,用于表示每个因素相对于上一级因素的重要程度。
具体计算出来的权重向量可以用于计算每个因素在目标指标集中具有的综合得分。
步骤五:计算一致性检验在计算权重向量之后,可以通过计算一致性检验来检测上述步骤是否有误,包括判断矩阵、CR 和权重向量。
如果检验结果符合要求,则可用于评估因素的重要性及最终的决策结果。
步骤六:进行灵敏度分析当权重矩阵中存在误差时,就需要进行灵敏度分析,探讨这种误差对决策结果的影响。
通过改变权重矩阵的自变量,可以测量对因变量的影响。
在错误或违反合理性的情况下,灵敏度分析可以揭示某些因素对最终决策结果具有明显的影响。
总结层次分析法是一种多因素、多目标决策问题应用比较广泛的方法,可以广泛应用于各种涉及多个因素的决策问题中。
AHP层次分析法原理一. AHP 层次分析法介绍•AHP 层次分析法简介AHP,即层次分析法(Analytic Hierarchy Process,AHP)是一种系统化的、层次化的多目标综合评价方法。
在评价对象的待评价属性复杂多样,结构各异,难以量化的情况下AHP层次分析法也能发挥作用。
•AHP 基本思想AHP 把复杂的问题分解为各个组成因素,又将这些因素按支配关系分组形成地递阶层次结构。
通过两两比较的方式确定方式确定层次中诸因素的相对重要性。
然后综合有人员的判断,确定备选方案相对重要性的总排序。
整个过程体现了入门分解问题—判断—综合,的思想特征。
•AHP 步骤1)分析问题,明确需求,确定评价指标,并建立评价层次关系。
2)构造上一层每个节点与下一层的判断矩阵。
3)由判断矩阵得出层间的相对权重(层次单排序及一致性检验)。
4)计算各层对总评价目标的总权重(层次总排序),得出各备选方案的评估结果。
二. AHP 的实际问题应用案例本章节我们将在选择购买空调的过程中使用 AHP 来完成决策。
为了从三种空调,空调A、空调B、空调C,中选购最合适的空调,我们采用 AHP法对我们的需求进行分析与评估,最终完成决策。
1. 确定评价指标,建立层次关系为了选出最合适的空调,我们确定从四个指标来对空调进行评估,分别是:价格、噪声、功耗、寿命。
在AHP 中,要构建三层层次关系:目标层、准则层、方案层。
•目标层只有一个要素,是分析问题的预期结果或期望实现的最终目标,是评价的最高准则,可称为目的或目标层•准则层准则层可以是多层构成,其包括所要考虑的准则,子准则等。
•方案层表示实现目标所提供的各种方案与措施,是最终评价对象,决策的结果将从中选出。
2. 构造上一层每个节点与下一层的判断矩阵对一层的每一个节点,与其下层的所有与其有关联的节点构建判断矩阵。
判断矩阵描述了下一层节点之间的相对重要性或优越性。
为了量化节点间的优劣先后,将用到以下判断矩阵标度定义。
AHP层次分析法AHP层次分析法是一种解决多目标复杂问题的定性和定量相结合进行计算决策权重的研究方法。
层次分析法基本原理AHP层次分析法是将定量分析与定性分析结合起来,用决策者的经验判断各衡量目标之间能否实现的标准之间的相对重要程度,并合理地给出每个决策方案的每个标准的权数,利用权数求出各方案的优劣次序,比较有效地应用于那些难以用定量方法解决的课题。
AHP层次分析法的操作步骤完整的AHP层次分析法通常包括五个步骤:第一步:建立层次结构模型在深入分析问题的基础上,将决策的目标、考虑的因素和决策对象按相关关系分为最高层、中间层和最低层。
●最高层:决策的目的、要解决的问题●中间层(若干层):考虑的因素、决策的准则●最底层:决策时的备选方案比如现在想选择一个最佳旅游景点,当前有三个选择标准(分别是景色,门票和交通),并且对应有三种选择方案。
现通过旅游专家打分,希望结合三个选择标准,选出最佳方案,层次模型大致如下图:第二步:标度确定和构造判断矩阵通过各因素之间的两两比较确定合适的标度。
在建立层次结构之后,需要比较因子及下属指标的各个比重,为实现定性向定量转化需要有定量的标度,此过程需要结合专家打分最终得到判断矩阵表格。
比如对旅游景点选择的4个影响因素(分别是景色,门票,交通和拥挤度)进行评价(即专家评价),最终得出四个影响因素的权重。
采用1-5分标度法(也或者1-9标度法),即比如门票相对景色更加重要,此时门票打3分,那么景色相对于门票就是取其倒数1/3即0.3333分。
交通相对于景色来更重要为2分,景色相对于交通就是0.5分等。
如果A因素相对B因素非常重要,此时打5分(最高5分),那么B因素相对于A因素就是1/5即0.2分如果使用SPSSAU进行分析,操作此步骤时,需要设置【判断矩阵阶数】,可以理解为需要评价权重的因素个数,并且在白色单元格处输入各项分别的名字以及专家打分,蓝色底纹处会自动变化,不需要输入。
AHP层次分析法算法流程AHP(Analytic Hierarchy Process)层次分析法是一种用于决策问题的数学模型和方法,它通过对问题进行分析和层次化处理,准确地确定各影响因素的权重,从而帮助决策者做出最佳选择。
下面是AHP层次分析法的算法流程:1.确定决策的目标:明确待解决问题的最终目标。
例如,选择供应商、评估项目风险等。
2.建立层次结构:将问题分解成若干个层次,从最终目标开始逐级向下,形成一个层次结构。
最终目标位于最顶层,中间层次为各个子目标,最底层是各个可选方案或决策因素。
3.构建判断矩阵:对于每个相邻的层次,评价它们之间的相对重要性。
在层次结构矩阵中,将每一对子目标之间的相对重要性填入,构建一个判断矩阵。
判断矩阵的大小等于层次中的层数的平方。
4.设置标准化比较尺度:由于决策者往往无法准确比较不同层次之间的重要性,AHP引入了一套标准化比较尺度来帮助决策者进行判断。
常用的标准化比较尺度包括9级尺度和4级尺度。
5.一致性检验:在判断矩阵中填入各个单元格后,需要进行一致性检验,判断矩阵是否满足一致性。
一致性是指判断矩阵的矩阵元素之间的相互关系是否合理。
6.层次单排序:利用判断矩阵计算每个子目标的权重向量,通过对判断矩阵的特征向量进行归一化来获得权重向量。
7.一致性检验:再次进行一致性检验,验证计算得到的权重向量的一致性。
8.综合决策:将各个子目标的权重向量与它们对应的可选方案或决策因素进行综合,得出最终的决策。
9.灵敏度分析:根据实际情况进行灵敏度分析,检验得出的权重向量对最终决策的影响,以及各个决策因素的敏感程度。
10.结果分析与解释:对最终决策进行分析和解释,确保决策的科学性和合理性,为问题的解决和决策的执行提供支持。
AHP层次分析法通过逐层比较,将问题分解为易于理解和处理的小块,通过判断矩阵和权重向量计算,确定各个子目标的重要性和最终的决策。
它能够提供量化的决策依据,并具有一定的灵活性和可解释性。
层次分析法的基本原理和步骤层次分析法(Analytic Hierarchy Process, AHP)是一种定量分析方法,用于多准则决策问题的分析和决策。
它的基本原理是将复杂的决策问题层次化,通过对准则和方案的比较与评价,得出优先级权重,进而得到最佳方案。
1.确定决策目标:确定决策问题的目标,明确要达到的结果。
2.构建层次结构:将决策问题分解成一个层次结构,包括目标层、准则层和方案层。
目标层表示最终要达到的目标,准则层表示影响目标实现的准则因素,方案层表示可供选择的决策方案。
3.构建判断矩阵:在准则层和方案层中,两两比较各个准则或方案之间的重要性或优劣程度。
根据专家判断或个人主观意见,使用尺度(1-9)对两两比较进行评分,构建判断矩阵。
4.计算准则权重:根据判断矩阵的评分,使用特征值法或最大特征向量法计算准则权重。
首先对判断矩阵的列向量进行归一化处理,然后计算归一化后的特征向量,最后将特征向量的元素相加,并按比例得到准则的权重。
5.一致性检验:通过计算一致性指标和一致性比率来检验判断矩阵的一致性。
一致性指标表示判断矩阵与一致性判断矩阵之间的差异程度,一致性比率表示判断矩阵的一致性程度。
如果一致性指标小于一定阈值,且一致性比率接近1,则认为判断矩阵具有满足一致性的权重。
6.计算方案权重:将计算得到的准则权重与判断矩阵相乘,计算每个方案的权重。
权重值越大,表示方案的优先级越高。
7.一致性检验:对方案权重进行一致性检验,与准则权重的一致性检验类似。
8.敏感性分析:通过增加或减少一些因素的权重,分析结果的稳定性和可靠性。
敏感性分析可以帮助决策者了解权重对决策结果的影响程度。
9.最终决策:根据方案的权重和准则的权重,对各个方案的优先级进行排序,选择权重最高的方案作为最终决策。
层次分析法的基本原理是将决策问题逐层分解,通过两两比较和权重计算,理性地确定各个因素的优先级和权重。
通过分析和评价不同方案,辅助决策者做出最佳选择。
层次分析法步骤层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于多准则决策的定量分析工具,可以帮助决策者以一种系统化的方法比较和评估不同准则和选择之间的重要性。
它由美国数学家托马斯·L·塞蒂(Thomas L. Saaty)于20世纪70年代初提出,并逐渐得到广泛应用。
层次分析法的基本思想是将复杂的决策问题分解为多个层次,并在每个层次上进行比较和评估,最后得出一个综合的决策方案。
整个分析过程包括以下几个步骤:1.确定目标和准则:首先需要明确决策的目标以及与之相关的准则。
目标是决策问题的总体要求,而准则则是用来评估和比较不同选择的标准。
2.建立层次结构:将决策问题分解为层次结构,利用层次结构可以清晰地表示不同层次之间的关系。
层次结构由目标层、准则层和选择层组成。
目标层位于最高层,准则层位于中间层,选择层位于最底层。
3.构建判断矩阵:通过对不同层次的元素两两进行比较,构建判断矩阵。
判断矩阵中的每个元素表示一些准则或选择相对于其他准则或选择的重要性。
判断矩阵需要满足一致性要求,即矩阵的特征向量要满足一致性指标。
4.计算权重向量:通过对判断矩阵进行特征值分解,可以得到特征向量。
特征向量表示各个准则或选择的重要性权重,可以用于比较和评估不同准则和选择之间的优先级关系。
5.一致性检验:对于判断矩阵的一致性要求需要进行检验,通常使用一致性指标和一致性比率来评估判断矩阵的一致性程度。
如果判断矩阵的一致性指标超过了一些阈值,就需要重新调整判断矩阵,直到满足一致性要求为止。
6.综合评估和决策:根据权重向量可以对不同准则和选择进行综合评估,计算出每个选择的得分。
最终选择具有最高得分的方案作为决策方案。
7.灵敏度分析:对比不同决策方案的得分,可以进行灵敏度分析,评估权重向量的变动对决策结果的影响程度。
层次分析法兼容主观和客观因素,能够定量评估和比较不同准则和选择之间的重要性,提高决策的科学性和准确性。
层次分析法的基本步骤和要点层次分析法(Analytic Hierarchy Process, AHP)是一种用于解决复杂决策问题的定量分析方法,它通过构建一个层次结构,对不同因素进行定量比较和权重分配,以便对不同方案进行排序和选择。
以下是层次分析法的基本步骤和要点:1.确定问题及目标:首先要明确决策问题,并确定具体的目标。
问题应该明确、具体和可操作,目标要清晰明确,以便为后续步骤提供指导。
2.建立层次结构:将决策问题按照一定的层次结构进行划分和组织,形成一个决策层次结构。
层次结构应该包含目标层、准则层和方案层,每一层包含若干个因素或指标。
3.构建判断矩阵:对于每一层的因素或指标,通过一对一的比较,构建判断矩阵。
判断矩阵是一个正互反矩阵,矩阵中的元素表示各个因素之间的相对重要性。
比较的方式可以用语言描述、对比法、比例尺法或者问卷调查等方法。
4.计算特征向量:对于判断矩阵,可以通过特征值分解的方法求得其最大特征值和对应的特征向量,特征向量表示各个因素的权重。
5. 一致性检验:通过计算一致性指标(Consistency Index, CI)和一致性比率(Consistency Ratio, CR),检验判断矩阵的一致性。
如果CR小于0.1,则判断矩阵合理,否则需要进行修正。
6.权重分配:将特征向量中的权重归一化,得到各个因素的权重比例。
从目标层到准则层再到方案层,逐层进行权重分配。
7.一致性检验和修正:对层次结构中的不同层次进行一致性检验,并修正不一致的地方。
8.综合评价和排序:通过加权求和的方式,将各个方案得到的权重与各个层次的权重进行综合,得到各个方案的最终得分,从而对方案进行排序和选择。
要点:-层次分析法是逐层进行的,每层次的因素必须具备互斥、完备和排他的性质。
在构建层次结构时,应注意每一层次的因素之间的关系和层次之间的逻辑关系。
-在比较因素之间的重要性时,应该主观客观相结合,充分考虑专家经验和实际情况。
AHP-TOPSIS评价体系一、AHP层次分析法层次分析法(Analytic Hierarchy Process,简称AHP)是一种定性与定量相结合的决策分析方法。
它通过将复杂问题分解为多个层次,对各层次进行比较和判断,从而为决策提供依据。
在AHP中,每个层次的目标和准则都被赋予相应的权重,这些权重是通过专家打分和一致性检验得到的。
二、TOPSIS评价体系TOPSIS(Technique for Order Preference by Similarity to Ideal Solution)是一种多目标决策方法。
它通过计算各方案与理想解的相对接近度,对方案进行排序和选择。
TOPSIS的核心思想是利用理想解和负理想解的距离来评价各方案的优劣。
三、AHP-TOPSIS评价体系将AHP和TOPSIS结合起来,可以形成一个综合的评价体系。
在这个评价体系中,首先使用AHP确定各指标的权重,然后利用TOPSIS对各方案进行排序和选择。
具体步骤如下:确定指标权重:使用AHP确定各指标的权重。
这可以通过专家打分和一致性检验来完成。
构建决策矩阵:根据各指标的权重,构建决策矩阵。
决策矩阵中的每一行代表一个方案,每一列代表一个指标。
确定理想解和负理想解:根据决策矩阵,确定每个指标的理想解和负理想解。
理想解是所有方案中最优的解,负理想解是所有方案中最差的解。
计算距离:计算每个方案与理想解的距离以及与负理想解的距离。
距离越近,表示方案越接近理想解。
排序与选择:根据每个方案与理想解的距离和与负理想解的距离,对方案进行排序和选择。
距离理想解越近且距离负理想解越远的方案被认为是最好的方案。
四、总结AHP-TOPSIS评价体系是一种综合的评价方法,它结合了AHP的定性和TOPSIS的定量分析特点。
通过这种方法,可以更全面、更准确地评价各个方案的优劣,为决策者提供有力的支持。
在实际应用中,可以根据具体问题和背景,对AHP-TOPSIS评价体系进行适当的调整和优化,以更好地满足实际需求。
用人话讲明白AHP层次分析法(非常详细原理+简单工具实现)文章目录1、前言与算法简述2、AHP层次分析法过程 2.1 构建层次评价模型 2.2 构造判断矩阵2.3 层次单排序与一致性检验 2.3.1 层次单排序 2.3.2 求解最大特征根与CI值 2.3.3 根据CI、RI值求解CR值,判断其一致性是否通过。
2.4 层次总排序与一致性检验3、案例以及工具实现 3.1 外出旅游最重视的因素3.1.1 使用工具 3.1.2 案例操作 3.1.3 分析结果解读 3.1.4 小结 3.2 选择最佳外出旅游地 3.2.1 使用工具 3.2.2 案例操作3.1.3 分析结果解读 3.2.4 小结4、代码实现1、前言与算法简述今天应粉丝要求,梳理一下层次分析法。
层次分析法,即Analytic HierarchyProcess(AHP) ,是美国运筹学家 Saaty 于20世纪70年代初期提出的一种主观赋值评价方法。
层次分析法将与决策有关的元素分解成目标、准则、方案等多个层次,并在此基础上进行定性和定量分析,是一种系统、简便、灵活有效的决策方法。
这个算法是一个多指标综合评价算法,由于这个算法简单、实用,因此在经管类或者实际生活中应用的非常多,其一般有两个用途:指标定权给指标制定权重,打个比方,例如选择旅游地这个决策,可能一般我们由以下5个因素组成,但是每个人(主观)对因素的重视程度不一,ahp可以实现在无需搜集数据的情况下,给这些指标制定权重。
量化方案选择同样是选择旅游地这个决策,可能我们有一些方案,例如苏杭、北戴河、桂林这三个方案,层次分析法可以综合以上5个因素,给这些方案计算得出一个量化得分,例如苏杭0.3分、北戴河0.35分、桂林0.45分,这样根据分值大小,我们就可以选择得到内心或者经验上最心怡的方案了。
通过上面讲解层次分析法的作用,在生活、工作中其实我们可以应用这个模型的渠道是非常广的,特别是那些需要主观决策的、或者需要用经验判断的决策方案,例如:买房子(主观决策)选择旅游地(主观决策)给员工进行绩效评估(经验判断)选择开店地址(经验判断)2、AHP层次分析法过程层次分析法的原理,是在分析一个现象或问题之前,首先将现象或问题根据它们的性质分解为有关因素,并根据它们之间的关系分类而形成一个多层次的结构模型。
ahp算法流程AHP算法流程一、引言AHP(Analytic Hierarchy Process)是一种层次分析法,用于解决多准则决策问题。
它是由美国数学家Thomas Saaty在1970年提出的,被广泛应用于各个领域,如经济、管理、工程等。
AHP算法的核心思想是通过对准则和方案进行比较和权重分配,以便做出最佳决策。
本文将介绍AHP算法的流程,以便读者更好地理解和应用该算法。
二、AHP算法流程AHP算法流程主要包括以下几个步骤:1. 确定决策目标:首先,需要明确待解决的问题和决策目标。
例如,假设我们需要选择一家供应商提供原材料,决策目标可以是"选择最佳供应商"。
2. 构建层次结构:根据决策目标,建立一个层次结构,将问题分解为不同的层次和准则。
例如,在选择供应商的问题中,可以将层次结构划分为"供应商评价准则"和"供应商候选名单"两个层次。
3. 确定判断矩阵:对于每一对准则(包括层次结构中的每个层次),需要构建一个判断矩阵,用于比较准则之间的重要程度。
判断矩阵是一个方阵,其中每个元素表示两个准则之间的比较结果。
比较结果可以用1-9的整数表示,其中1表示两个准则具有相同的重要程度,9表示一个准则比另一个准则重要程度高出很多。
判断矩阵的构建可以通过专家判断、问卷调查等方式获得。
4. 计算权重向量:通过对判断矩阵进行特征向量的计算,得到每个准则的权重向量。
特征向量是判断矩阵对应的最大特征值所对应的特征向量。
权重向量表示每个准则在决策中的重要程度,可以用于后续的决策分析。
5. 一致性检验:为了保证判断矩阵的一致性,需要进行一致性检验。
一致性检验可以通过计算一致性指标(CI)和一致性比率(CR)来完成。
一致性指标越小,一致性程度越高。
通常情况下,如果一致性比率小于0.1,则认为判断矩阵具有较好的一致性。
6. 综合评价:根据权重向量和准则的评价结果,可以进行综合评价。
AHP层次分析法计算原理AHP(Analytic Hierarchy Process)层次分析法是由Thomas L. Saaty于1970年提出的一种多准则决策方法,用于解决复杂的决策问题。
该方法将决策问题分解为多层次的结构,通过对不同层次的准则和方案进行比较和权重赋值,最终得出最优方案。
AHP方法的计算原理可以分为以下几个步骤:1.层次分解:将决策问题分解为多个层次的结构,包括目标层、准则层和方案层。
目标层是最高层,准则层是对实现目标的准则进行评估的层次,方案层是各个可选方案。
2.构建判断矩阵:在准则层中,通过两两比较准则的相对重要性,构建一个判断矩阵。
判断矩阵的元素表示两个准则之间的相对重要性比较,它是一个正互反矩阵,即对角线元素为1,其他元素表示两个准则之间的相对重要性比较的权重。
3.计算权重向量:通过计算判断矩阵的特征向量,可以得到一个权重向量,表示各个准则的相对重要性。
特征向量是判断矩阵对应于最大特征值的单位特征向量。
4. 一致性检验:为了确保判断矩阵的可靠性,需要进行一致性检验。
一致性指标CI(Consistency Index)表示判断矩阵中的一致性程度,RI (Random Index)是一个根据判断矩阵的维度大小预先计算得到的随机一致性指标。
通过计算CI和RI的比值CR(Consistency Ratio),可以判断判断矩阵的一致性程度。
如果CR小于0.1,则认为判断矩阵具有可接受的一致性。
5.构建权重矩阵:将权重向量进行归一化处理,构建一个权重矩阵。
权重矩阵的每一行表示一个准则的权重,每一列表示一个方案的权重。
6.计算综合评估值:在方案层中,通过两两比较方案的相对重要性,构建一个判断矩阵,并进行一致性检验。
然后,将方案的权重矩阵与方案的评分矩阵相乘,得到一个综合评估值向量。
综合评估值向量表示各个方案的综合评估结果。
7.敏感性分析:根据综合评估值向量,可以对决策结果进行敏感性分析。
层次分析法实施的步骤概述层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决复杂决策问题的数学模型和方法。
它通过层次化的结构来分析问题,并对各个因素进行权重的判断和排序,最终得出最佳的决策结果。
在实施AHP时,按照以下步骤进行操作。
步骤一:明确问题及目标在实施AHP之前,首先需要明确解决的问题以及所需达到的目标。
这个步骤是决策过程的起点,只有明确了问题和目标,才能有效地进行后续的分析和判断。
步骤二:建立层次结构在明确了问题和目标后,接下来需要建立问题的层次结构。
层次结构是将问题划分为一系列具有层次关系的因素和子因素,形成一个树状结构。
这样做的目的是为了明确问题的结构和因素之间的依赖关系,便于后续的分析和权重判断。
步骤三:构造判断矩阵判断矩阵是AHP的核心工具,用于判断不同因素和子因素之间的相对重要性。
在这一步骤中,需要对每个因素和子因素进行两两比较,根据相对重要性进行评分。
为了进行比较,需要设置一个评分标准,通常使用1到9的数字表示相对重要性,其中1表示相对重要性相等,9表示相对重要性极高。
根据个人对比较的感觉,对每个因素和子因素进行配对比较,填写判断矩阵。
步骤四:计算权重向量在构造判断矩阵后,需要对判断矩阵进行计算,得出每个因素和子因素的权重。
一般使用特征向量法来计算权重向量。
首先,将判断矩阵的每一列进行归一化处理,然后计算归一化后矩阵的特征向量。
特征向量的计算可以使用特征值法或一致性指标法。
最后,得出的特征向量即为权重向量。
步骤五:一致性检验在计算权重向量后,需要进行一致性检验。
一致性检验是判断所构造的判断矩阵是否满足一致性要求的过程。
如果一致性比率超过一定阈值,则需要调整判断矩阵,重新进行计算。
一般情况下,可以计算判断矩阵的一致性指标CI和一致性比例CR。
如果CR 小于0.1,则判断矩阵通过一致性检验,可以继续进行后续的分析和决策。
步骤六:综合判断和决策在计算了权重向量并通过一致性检验后,可以将得到的权重向量应用于问题的层次结构中。
层次分析法的具体实施步骤引言层次分析法(Analytic Hierarchy Process,AHP)是一种用于多因素决策的定量方法。
它于1970年由美国运筹学家托马斯·L·赛蒂斯(Thomas L. Saaty)提出,被广泛应用于决策分析、评估以及资源分配等领域。
本文将介绍层次分析法的具体实施步骤,以帮助读者快速理解和应用该方法。
步骤一:明确决策目标在使用层次分析法进行决策之前,首先需要明确决策的目标。
这个目标应该是明确的、可操作的,并且对于决策者来说具有一定的重要性。
步骤二:构建层次结构在明确了决策目标之后,下一步是构建层次结构。
层次结构是指将决策问题拆分为一系列层级的因素,以及这些因素之间的关系。
通常,层次结构由目标层、准则层和方案层组成。
2.1 目标层目标层是决策问题的最高层级,代表决策的最终目标。
在这一层级上,需要明确决策的总体目标是什么。
2.2 准则层准则层是决策目标下一级的层次,代表实现目标的准则和要素。
在这一层级上,需要列出能够影响决策目标实现的所有准则,并对其进行量化。
2.3 方案层方案层是决策问题的最底层,代表可选择的决策方案。
在这一层级上,需要列出所有可以选择的方案,并且对每个方案进行量化和评估。
步骤三:建立判断矩阵建立判断矩阵是层次分析法的核心步骤之一。
判断矩阵用于评估在不同层级之间的因素之间的相对重要性。
通过对判断矩阵的填写和计算,可以确定每个因素相对于其他因素的权重。
3.1 构建准则层判断矩阵在准则层,需要对每个准则两两进行比较,以确定它们之间的相对重要性。
比较可以用数字(1-9)来表示,其中1表示两个因素完全相同的重要性,9表示其中一个因素比另一个因素极其重要。
3.2 构建方案层判断矩阵在方案层,需要对每个方案两两进行比较,以确定它们之间的相对优劣。
同样地,比较可以用数字来表示。
步骤四:计算权重向量在建立了判断矩阵之后,下一步是计算权重向量。
权重向量用于表示每个因素相对于其他因素的重要性,是决策结果的依据。
AHP方法步骤层次分析法(Analytic Hierarchy Process,AHP)是一种定量分析方法,用于解决复杂的多准则决策问题。
它的核心思想是将问题分解为层次结构,然后对不同层次的准则进行比较和权重分配,最终得出最优的决策。
AHP方法的步骤如下:1.确定问题:首先,明确问题的目标和准则。
确定需要进行决策的问题,并明确各个准则的重要性。
2.构建层次结构:将问题分解为层次结构。
将问题的目标作为最高层次,然后将准则和子准则分别作为下一层次,逐级划分,直到最底层为可选方案。
3.构造判断矩阵:对每一层次的准则进行两两比较,构造判断矩阵。
判断矩阵是一个方阵,其中的元素代表了不同准则之间的相对重要性。
根据专家的主观判断,使用1到9的尺度对准则进行比较,其中1表示两个准则具有相同的重要性,9表示一个准则比另一个准则重要性更高。
4.计算权重向量:通过对判断矩阵进行一致性检验,计算出每个准则的权重向量。
一致性检验可以评估专家的一致性程度,如果一致性比率超过一定的阈值,则需要重新进行判断。
5.计算一致性指标:通过计算判断矩阵的最大特征值和一致性指标,判断判断矩阵是否满足一致性条件。
如果一致性指标小于0.1,则认为判断矩阵满足一致性条件。
6.计算权重:通过对判断矩阵进行特征向量的计算,得到每个准则的权重。
将判断矩阵的每一列除以列向量的和,得到归一化的权重向量。
7.一致性检验:对于每一层次的判断矩阵,都需要进行一致性检验。
如果一致性指标小于0.1,则认为判断矩阵满足一致性条件。
8.综合评估:将各个层次的权重乘以相应的准则值,得到最终的综合评估结果。
根据综合评估结果,可以进行最优方案的选择。
9.敏感性分析:对于判断矩阵中的一些值进行敏感性分析,可以评估这些值对最终结果的影响。
如果一些值的改变导致最终结果发生较大的变化,说明这些值对决策结果具有较大的影响。
AHP方法可以帮助决策者在面对复杂的多准则决策问题时做出科学的决策。
AHP 法是将各要素配对比较,根据要素的相对重要程度进行判断,然后通过计算判断矩阵的特征值获得权重向量。
对于各级指标P k (k =1,2,…,m)将同级指标配对比较构成判断矩阵为:
A =[a 11
a 12a 21a 22…a 1n
…a 2n ……a n1
a n2
………a nn
] (1) 其中a ij (i =1,2,…,n ;j =1,2,…,n)的标度方法[9]如下
表1 九级标度
标度 含义
1 表示两个因素相比,具有同样重要性
3 表示两个因素相比,一个因素比另外一个因素稍微重要 5 表示两个因素相比,一个因素比另外一个因素明显重要 7 表示两个因素相比,一个因素比另外一个因素强烈重要 9 表示两个因素相比,一个因素比另外一个因素极端重要
2,4,6,8 上述两相邻判断的中值
倒数
因素i 和就j 比较的判断a ij ,则因素j 和i 比较判断a ij =1
a ji
通过解矩阵A 的特征值,可求得相应的特征向量,经归一化后得到的权重向量为:
w =(w 1,w 2,w 3,…,w n )T
(2)
其中w i (i =1,2,…,n)就是不同指标的相对权重。
为了度量判断的可靠程度,可以计算一致性指标[10]: max 1
n
CI n λ-=
- (3)
○
1CI =0,有完全的一致性 ○
2CI 接近于0,有满意的一致性 ○
3CI 越大,不一致越严重 为了衡量CI 的大小,引入随机一致性指标RI :
表2随机一致性指标
r 1 2 3 4 5 6 7 8 9 10 11 RI
0.58
0.90
1.12
1.24
1.32
1.41
1.45
1.49
1.51
得到一致性比率[11]:
CR=CI
RI
(4)
当一致性比率0.1
CR 时,认为P k(k=1,2,…,n)的不一致程度在容许范围内,有满意的一致性,通过一致性检验,可用其归一化特征向量作为全向量,否则要重新构造成对比较矩阵P k(k=1,2,…,r),对a ij加以调整。
运用以上方法求得每个指标的权重矩阵:
W=[w1,w2,⋯,w n]
(5)。