2019版中考数学优化复习第2章方程组与不等式组第1节一次方程组及其应用实用课件
- 格式:ppt
- 大小:5.97 MB
- 文档页数:41
2019版中考数学复习 第二章 方程(组)与不等式(组)讲义【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程) ③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
第二章 方程(组)与不等式(组)第一节 一次方程与方程组及应用一次方程(组)的应用(7次)1.(2019河北11题2分)利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10 ①5x -3y =6 ②,下列做法正确的是( D )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×22.(2019河北8题2分)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根据题意,下面所列方程正确的是( A )A .x +5(12-x)=48B .x +5(x -12)=48C .x +12(x -5)=48D .5x +(12-x)=483.(2009河北18题3分)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55 cm ,此时木桶中水的深度是__20__cm.4.(2019河北22题9分)已知n 边形的内角和θ=(n -2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n +x)边形,发现内角和增加了360°,用列方程的方法确定x. 解:(1)甲对,乙不对.∵θ=360°,∴(n -2)×180=360.解得n =4.∵θ=630°,∴(n -2)×180=630,解得n =112.∵n 为整数,∴θ不能取630°;(2)依题意,得(n -2)×180+360=(n +x -2)×180.解得x =2.5.[2019河北20(2)题5分]如图,某市A ,B 两地之间有两条公路,一条是市区公路AB ,另一条是外环公路AD -DC -CB.这两条公路围成等腰梯形ABCD ,其中DC∥AB,AB ∶AD ∶DC =10∶5∶2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A 地出发,沿市区公路去B 地,平均速度是40 km/h.返回时沿外环公路行驶,平均速度是80 km/h ,结果比去时少用了110h .求市区公路的长.解:(1)设AB =10x km ,则AD =5x km ,CD =2x km.∵四边形ABCD 是等腰梯形,∴BC =AD =5x km.∴AD +CD +CB =12x(km).∴外环公路的总长和市区公路长的比为12x∶10x=6∶5;(2)由(1)可知,市区公路的长为10x km ,外环公路的总长为12x km ,由题意得10x 40=12x 80+110,解得x =1,∴10x =10.答:市区公路的长为10 km.6.(2019石家庄新华区模拟)若⎩⎪⎨⎪⎧x =1,y =2是关于x 、y 的二元一次方程ax -3y =1的解,则a 的值为( A )A .7B .2C .-1D .-57.(2019唐山路南区三模)小明在解关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =△,2x -3y =5时,解得⎩⎪⎨⎪⎧x =4,y =⊗,则△和⊗代表的数分别是( B )A .△=1,⊗=5B .△=5,⊗=1C .△=-1,⊗=3D .△=3,⊗=-18.(2019石家庄二模)希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x 人,则下列方程中,正确的是( A )A .2(x -1)+x =49B .2(x +1)+x =49C .x -1+2x =49D .x +1+2x =499.(2019原创)已知关于x ,y 的二元一次方程ax +by =10(ab≠0)的两个解分别为⎩⎪⎨⎪⎧x =-1,y =2和⎩⎪⎨⎪⎧x =-2,y =-4,求1-a 2+4b 2的值. 解:将x =-1,y =2代入方程ax +by =10中得:-a +2b =10,将x =-2,y =-4同样代入方程得:-a -2b =5,∴(-a +2b)(-a -2b)=50,∴-a 2+4b 2=-50,∴1-a 2+4b 2=1-50=-49.,中考考点清单)方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解. 3.求方程__解__的过程叫解方程.等式的基本性质4. 性质1等式两边同时加上(或减去)同一个数或同一个式子,所得的结果仍①__相等__.如果a =b ,那么a±c②__=__b±c.续表性质2等式两边同时乘以(或除以)同一个数(除数不为0),所得结果仍③__相等__.如果a =b ,那么ac =bc(c≠0),a c =bc (c≠0).一次方程(组)5.概念解法一元一 次方程 含有①__一个__未知数且未知数的次数是②__1__,这样的方程叫做一元一次方程.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.续表 二元一 次方程含有两个③__未知数__,并且含有未知数的项的④__次数__都是1的方程叫做二元一次方一般需找出满足方程的整数解即可.程.二元一 次方程组两个⑤__二元一次方程__所组成的一组方程,叫做二元一次方程组.解二元一次方程组的基本思路是⑥__消元__.基本解法有:⑦__代入__ 消元法和⑧__加减__消元法.【易错提示】(1)解一元一次方程去分母时常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b 的形式.列方程(组)解应用题的一般步骤6. (1)审 审清题意,分清题中的已知量、未知量;(2)设设①__未知数__,设其中某个量为未知数,并注意单位,对含有两个未知数的问题,需设两个未知数;续表 (3)列 弄清题意,找出②__相等关系__;根据③__相等关系__,列方程(组); (4)解 解方程(组);(5)验 检验结果是否符合题意; (6)答 答题(包括单位). 【方法点拨】一次方程(组)用到的思想方法:(1)消元思想:将二元一次方程组通过消元使其变成一元一次方程.(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷.(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程. (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题. (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破) 一元一次方程及解法【例1】(1)(2019娄底中考)已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________;(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【学生解答】(1)1;(2)原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.【点拨】(1)把x =2代入即可;(2)先“化零为整”,再按去分母→去括号→移项→合并同类项→系数化为1来解.1.(2019厦门中考)方程x +5=12(x +3)的解是__x =-7__.2.(2019滨州中考)解方程2-2x +13=1+x2.解:去分母得:12-2(2x +1)=3(1+x),去括号得:12-4x -2=3+3x ,解得x =1.二元一次方程组及解法【例2】(2019无锡中考)解方程组:⎩⎪⎨⎪⎧2x -y =5,①x -1=12(2y -1).② 【学生解答】由②得2x -2y =1③.①-③,得y =4.把y =4代入①,得x =92.∴原方程组的解为⎩⎪⎨⎪⎧x =92,y =4.【点拨】解二元一次方程组的两种方法(代入法和加减法)用到的都是“消元”的思想,具体解题时两种方法可根据方程组中未知数系数的特点灵活运用.3.(2019杭州中考)设实数x ,y 满足方程组⎩⎪⎨⎪⎧13x -y =4,13x +y =2,则x +y =__8__.4.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2. 由②,得3x -4y =2.①×2-②,得x =6.把x =6代入①得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一次方程(组)的应用【例3】某公园的门票价格如下表:购票人数 1~50 51~100 100以上 票价(元/人) 10 8 5某校九年级甲、乙两个班共有100多人去该公园举行毕业联欢活动,其中甲班有50多人,乙班不足50人.如果以班为单位分别买门票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要515元.问:甲、乙两班分别有多少人?【解析】由两班单独购票时甲班票价8元/人,乙班票价10元/人,两个班共付920元及购团体票时票价5元/人,共付款515元,可列方程组求解.【学生解答】设甲、乙两班分别有x 人和y 人,得 ⎩⎪⎨⎪⎧8x +10y =920,5x +5y =515.解得⎩⎪⎨⎪⎧x =55,y =48. 答:甲班55人,乙班48人.【方法归纳】综合表格中的信息与文字叙述,理解题意是解决本题的关键.5.(2019江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元,根据题意得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28.解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.6.(2019资阳改编)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元,由题意得2x +3(x -30)=510.解得x =120. 答:一个篮球120元,一个足球90元.,中考备考方略)1.(2019重庆中考)已知关于x 的方程2x +m -8=0的解是x =3,则m 的值为( A ) A .2 B .3 C .4 D .52.(2019邯郸十一中模拟)若2a =3b ,则下列各式中不成立的是( D ) A .4a =6b B .2a +5=3b +5 C.a 3=b2D .a =3b 3.(2019株洲中考)在解方程x -13+x =3x +12时,方程两边同时乘以6,去分母后,正确的是( B )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(x +1)4.(2019广州中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为( B )A .-4B .4C .-2D .25.(2019廊坊二模)已知⎩⎪⎨⎪⎧x =-1,y =2是二元一次方程组⎩⎪⎨⎪⎧3x +2y =m ,nx -y =1的解,则m -n 的值是( D ) A .1 B .2 C .3 D .46.(2019杭州中考)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( C )A .518=2(106+x)B .518-x =2×106C .518-x =2(106+x)D .518+x =2(106-x)7.(2019聊城中考)在如图的2019年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( D )日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30A.27 B .51 C .69 D .728.(2019台湾中考)若二元一次联立方程式⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21的解为x =a ,y =b ,则a +b 的值为( D )A.192B.212C .7D .139.(2019温州中考)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是( A )A.⎩⎪⎨⎪⎧x +y =7,x =2yB.⎩⎪⎨⎪⎧x +y =7,y =2xC.⎩⎪⎨⎪⎧x +2y =7,x =2yD.⎩⎪⎨⎪⎧2x +y =7,y =2x 10.(2019临沂中考)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是( D )A.⎩⎪⎨⎪⎧x +y =78,3x +2y =30B.⎩⎪⎨⎪⎧x +y =78,2x +3y =30C.⎩⎪⎨⎪⎧x +y =30,2x +3y =78D.⎩⎪⎨⎪⎧x +y =30,3x +2y =78 11.(2019深圳中考)某商品的标价为200元,8折销售仍赚40元,则商品进价为________元( B )A .140B .120C .160D .10012.(1)(2019永州中考)方程组⎩⎪⎨⎪⎧x +2y =2,2x +y =4的解是__⎩⎪⎨⎪⎧x =2,y =0__ ,;)(2)(2019温州中考)方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是__⎩⎪⎨⎪⎧x =3,y =1__ ,.)13.(2019扬州中考)以方程组⎩⎪⎨⎪⎧y =2x +2,y =-x +1的解为坐标的点(x ,y)在第__二__象限.14.(2019原创)已知⎩⎪⎨⎪⎧x =3,y =-2是方程组⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则代数式(a +b)(a -b)的值为__-8__.15.(2019石家庄四十二中一模改编)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,求k 的值.解:解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 得⎩⎪⎨⎪⎧x =7k ,y =-2k.代入2x +3y =6中得k =34.16.(2019福州中考)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,那么甲、乙两种票各买了多少张?解:设甲种票买了x 张,则乙种票买了(35-x)张,由题意得24x +18(35-x)=750,解得x =20,∴35-x =15.答:甲种票买了20张,乙种票买了15张.17.(2019原创)按如图的运算程序,能使输出结果为3的x ,y 的值是( D )A .x =5,y =-2B .x =3,y =-3C .x =-4,y =2D .x =-3,y =-918.(2019原创)小亮解二元一次方程组⎩⎪⎨⎪⎧2x +y =●,3x -2y =19的解为⎩⎪⎨⎪⎧x =5,y =★,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则●+★=__6__.19.(2019盐城中考)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55 min ;加工4个甲种零件和9个乙种零件共需85 min ,则李师傅加工2个甲种零件和4个乙种零件共需__40__min.20.(2019石家庄41中一模)定义一种新运算“⊕”:a ⊕b =a -2b ,比如:2⊕(-3)=2-2×(-3)=2+6=8.(1)求(-3)⊕2的值;(2)若(x -3)⊕(x+1)=1,求x 的值.解:(1)(-3)⊕2=(-3)-2×2=-3-4=-7;(2)∵(x-3)⊕(x+1)=1,∴(x -3)-2(x +1)=1.∴x=-6.21.(2019石家庄四十一中模拟)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用x 的代数式分别表示裁剪出的侧面和底面个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解:(1)裁剪出的侧面个数为6x +4(19-x)=(2x +76)个,裁剪出的底面个数为5(19-x)=(-5x +95)个;(2)由题意得2x +763=-5x +952,解得x =7.当x =7时,2x +763=30.答:能做30个盒子.22.(2019沧州八中模拟)P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P 与n 的关系式是:P =n (n -1)24·(n 2-an +b)(其中a ,b 是常数,n ≥4).(1)填空:通过画图可得:四边形时,P =__1__(填数字),五边形时,P =__5__(填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.(注:本题的多边形均指凸多边形)解:将上述值代入公式可得 ⎩⎪⎨⎪⎧4×(4-1)24·(16-4a +b )=1,①5×(5-1)24·(25-5a +b )=5.②化简得⎩⎪⎨⎪⎧4a -b =14,5a -b =19.解得⎩⎪⎨⎪⎧a =5,b =6.23.(2019连云港中考)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?解:(1)设该店有客房x 间,有房客y 人,根据题意得:⎩⎪⎨⎪⎧7x +7=y ,9(x -1)=y ,解得⎩⎪⎨⎪⎧x =8,y =63.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性订客房18间,则需付费20×18×0.8=288钱<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.2019-2020学年数学中考模拟试卷一、选择题1.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n°后能与原来的图案重合,那么n 的值可能是( )A.45B.60C.90D.1202.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF= 3.如图,为了测得高中部教学楼风华楼AB 的高度,小李在风华楼正前方的升旗广场点F 处测得AB 的顶端A 的仰角为22°,接着他往前走30米到达点E ,沿着坡度为3:4的台阶DE 走了10米到达坡顶D 处,继续朝高楼AB 的方向前行18米到C 处,在C 处测得A 的仰角为60°,A 、B 、C 、D 、E 、F 在同一平面内,则高楼AB 的高度为( )米.(结果精确到0.1米,参考数据:3≈1.732,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A .10.3B .12.3C .20.5D .21.34.关于x 的方程(m ﹣2)x 2﹣3m -x+14=0有实数根,则m 的取值范围( ) A .m≤52且m≠2 B .m >52 C .m≤52D .m≤3且m≠25.如图,平行于x 轴的直线与函数y 1=ax (a >0,x >0),y 2=b x(b >0.x >0)的图象分别相交于A 、B 两点,且点A 在点B 的右侧,在X 轴上取一点C ,使得△ABC 的面积为3,则a ﹣b 的值为( )A .6B .﹣6C .3D .﹣36.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.7.分式方程的解是( ) A.3B.-3C. D.98.文艺复兴时期,意大利艺术大师达芬奇曾研究过圆弧所围成的许多图形的面积问题. 如图所示称为达芬奇的“猫眼”,可看成圆与正方形的各边均相切,切点分别为,,,A B C D ,BD 所在圆的圆心为点A (或C ). 若正方形的边长为2,则图中阴影部分的面积为( )A .2B .2C .1π-D .42π-9.下列运算正确的是( ) A.235a a a +=B.248•a a a =C.()3263a ba b = D.22a a a ÷=10.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额1269亿元,1269亿用科学记数法表示为( ) A .1.269×1010 B .1.269×1011 C .12.69×1010D .0.1269×101211.下图是某公司2018年度每月收入与支出情况折线统计图,下列说法中正确的是( )A.该公司12月盈利最多B.该公司从10月起每月盈利越来越多C.该公司有4个月盈利超过200万元D.该公司4月亏损了12.由一些大小相等的小正方体组成的几何体的主视图与左视图相同如图所示,设组成这个几何体的小正方体个数最少为m,最多为n,若以m,n的值分别为某个等腰三角形的两条边长,则该等腰三角形的周长为( )A.11或13 B.13或14 C.13 D.12或13或14或15二、填空题13.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AC时,A′B=___.14.图甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…,OA25这些线段中有___条线段的长度为正整数.的结果是_____.15.计算8216.不等式组21223x xx<+⎧⎪-⎨≤⎪⎩的最大整数解为_____.17.如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是______.18.要使有意义,则的取值范围是__________.三、解答题19.(1)计算:8+(2﹣π)0﹣4cos45°﹣|﹣3|;(2)解分式方程:4122x x=-+.20.如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE CF=;(2)若AE BC=,试探究线段OC与线段DF之间的关系,并说明理由.21.计算:(13)﹣1+2tan45°﹣(π﹣2019)022.(2011•重庆)如图,矩形ABCD中,AB=6,BC=23,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD 在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.23.如图,在▱ABCD中,E、F为边BC上两点,BF=CE,AE=DF.(1)求证:△ABE≌△DCF;(2)求证:四边形ABCD是矩形.24.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于12AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,求线段BE的长.25.如图1,抛物线与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3),抛物线顶点为D,连接AC,BC,CD,BD,点P是x轴下方抛物线上的一个动点,作PM⊥x轴于点M,设点M的横坐标为m.(1)求抛物线的解析式及点D的坐标;(2)试探究是否存在这样的点P,使得以P,M,B为顶点的三角形与△BCD相似?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,PM交线段BC于点Q,过点P作PE∥AC交x轴于点E,交线段BC于点F,请用含m的代数式表示线段QF的长,并求出当m为何值时QF有最大值.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 D A D C A C A B C B D B 二、填空题13.2或72.14.515.216.017.96°.18.三、解答题19.(1)-2;(2)x=-103..【解析】【分析】(1)本题涉及零指数幂、二次根式化简、特殊角三角函数、绝对值化简等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)通过去分母,两边同乘以(x+2)(x-2),即可将原分式方程转化为一个整式方程,解整式方程后要注意检验,即可得到正确结果.【详解】(1)原式=22+1﹣4×22﹣3=1﹣3=﹣2;(2)方程两边同乘以(x+2)(x﹣2),得4(x+2)=x﹣2,解得:x =﹣103, 检验:将 x =﹣103代入(x+2)(x ﹣2)中, (x+2)(x ﹣2)≠0∴x =﹣103是原分式方程的根. 故原分式方程的根为 x =﹣103. 【点睛】本题主要考查了实数的综合运算能力以及解分式方程.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角三角函数等考点的运算.20.(1)见解析;(2)OC ∥DF ,且OC =12DF ,理由见解析. 【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AD =BC ,得出∠ADB =∠CBD ,证明△BOF ≌△DOE ,得出DE =BF ,即可得出结论;(2)证出CF =BC ,得出OC 是△BDF 的中位线,由三角形中位线定理即可得出结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴∠ADB =∠CBD ,∵O 是对角线BD 的中点,∴OB =OD ,在△BOF 和△DOE 中, CBD ADB OB ODBOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BOF ≌△DOE (ASA ),∴DE =BF ,∴DE =AD =BF ﹣BC ,∴AE =CF ;(2)解:OC ∥DF ,且OC =12DF ,理由如下: ∵AE =BC ,AE =CF ,∵OB=OD,∴OC是△BDF的中位线,∴OC∥DF,且OC=12 DF.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.21.4【解析】【分析】直接利用负指数幂的性质以及特殊角的三角函数值和零指数幂的性质分别化简得出答案.【详解】原式=3+2×1﹣1=4.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.(1)t=1;(2)详见解析;(3)当t=3﹣3,t=3+3,t=2,t=4,t=0时,△AOH是等腰三角形.【解析】【分析】(1)当边FG恰好经过点C时,由∠CFB=60°得BF=3﹣t,在Rt△CBF中,根据三角函数求得t的值;(2)根据运动的时间为t不同的取值范围,求等边△EFG和矩形ABCD重叠部分的面积为S的值,当0≤t<1时,重叠部分是直角梯形,面积S等于梯形的面积,当1≤t<3时,重叠部分是S梯形MKFE﹣S△QBF,当3≤t<4时,重叠部分是S梯形MKFE,当4≤t<6时,重叠部分是正三角形的面积;(3)当AH=AO=3时,AM=12AH=32,在R t△AME中,由cos∠MAE=AMAE即cos30°=32AE,得AE=3,即3﹣t=3或t﹣3=3,求出t=3﹣3或t=3+3;当AH=HO时,∠HOA=∠HAO=30°,又因为∠HEO=60°得到∠EHO=90°EO=2HE=2AE,再由AE+2AE =3,求出AE=1,即3﹣t=1或t﹣3=1,求出t=2或t=4;当OH=OA=时∠HOB=∠OAH=30°,所以∠HOB=60°=∠HEB,得到点E和点O重合,从而求出t的值如图1(1),当边FG恰好经过点C时,∵∠CFB=60°,∴BF=3﹣t,在Rt△CBF中,∵BC=23,tan∠CFB=BC BF,∴tan60=23BF,解得BF=2,即3﹣t=2,∴t=1,当边FG恰好经过点C时,t=1;(2)如图2,过点M作MN⊥AB于N,当0≤t<1时,∵tan60°=273 MNEN EN==,∴EN=2,∵EB=3+t,NB=3+t﹣2=1+t,∴MC=1+t,∴S=12(MC+EB)•BC=23t+43;如图3,当1≤t<3时,∵MN=23 EF=OP=6,GH=6×32=33,∴MK GH MN EF GH-=,∴MK=2,∵EB=3+t,BF=3﹣t,BQ=3t﹣3,∴S=S梯形MKFE﹣S△QBF=﹣32t2+33t+732;如图4,当3≤t<4时,∵MN=23,EF=6﹣2(t﹣3)=12﹣2t,∴GH=(12﹣2t)×32=63﹣3t,∴MK GH MNEF GH-=,∴MK=8﹣2t,∴S=﹣43t+203;当4≤t<6时,∵EF=12﹣2t,∴高为:EFsin60°=32EF,∴S=3t2﹣123t+363;(3)存在.在R t△ABC中,tan33BCCABAB==∠,∴∠CAB=30°∵∠HEO=60°,∴∠HAE=∠AHE 30°,∴AE=HE=3﹣t或t﹣3,如图5,当AH=AO=3时,过点E作EM⊥AH与M,则AM=12AH=32,在R t△AME中,cos∠MAE=AMAE即cos30°=32AE,∴AE3,即3﹣t=3或t﹣3=3;∴t=3﹣3或t=3+3;如图6,当AH=HO时,∠HOA=∠HAO=30°,∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE,∵AE+2AE=3,∴AE=1,即3﹣t=1或t﹣3=1,∴t=2或t=4;如图7,当OH=OA=时,∠HOB=∠OAH=30°,∴∠HOB=60°=∠HEB,∴点E和点O重合,∴AE=AO=3,当E刚开始时,3﹣t=3,当E返回时t﹣3=3,∴t=0,t=6(舍去),综上所述当t=3﹣3,t=3+3,t=2,t=4,t=0时,△AOH是等腰三角形.【点睛】此题主要考查了平行四边形的性质、平行四边形的判定、矩形、矩形的性质、矩形的判定、菱形、菱形的性质、菱形的判定等知识点23.(1)见解析;(2)见解析.【解析】【分析】(1)根据平行四边形的性质得到AB=DC.根据全等三角形的判定定理即可得到结论.(2)根据全等三角形的性质得到∠B=∠C.根据平行四边形的性质得到AB∥CD.根据矩形的判定定理即可得到结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB=DC.∵BF=CE,∴BF﹣EF=CE﹣EF,∴BE=CF.在△ABE和△DCF中,∵AB DC AE DC BE CF=⎧⎪=⎨⎪=⎩,∴△ABE≌△DCF(SSS);(2)证明:∵△ABE≌△DCF,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∵四边形ABCD是平行四边形,∠B=90°,∴四边形ABCD是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的性质,正确的识别图形是解题的关键.24.8【解析】【分析】根据作法得到MN是线段AD的垂直平分线,则AE=DE,AF=DF,所以∠EAD=∠EDA,加上∠BAD=∠CAD,得到∠EDA=∠CAD,则可判断DE∥AC,同理DF∥AE,于是可判断四边形AEDF是平行四边形,加上EA=ED,则可判断四边形AEDF为菱形,所以AE=DE=DF=AF=4,然后利用平行线分线段成比例可计算BE的长.【详解】解:根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是平行四边形,而EA=ED,∴四边形AEDF为菱形,∴AE=DE=DF=AF=4,∵DE∥AC,∴BE:AE=BD:CD,即BE:4=6:3,∴BE=8.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定与性质和平行线分线段成比例.25.(1)y=x2﹣2x﹣3,(1,﹣4);(2)见解析;(3)见解析.【解析】【分析】(1)设抛物线解析式为:y=a(x+1)(x﹣3), 将C(0,-3),代入可求出解析式,根据抛物线的顶点坐标公式求出D点即可.(2)由(1)可得BC=3,CD=,BD=,△BCD是直角三角形,∠BCD=90°,再分情况讨论:①当△PMB∽△BCD时,得点P(2,﹣3);②当△BMP∽△BCD时,点P的坐标为(﹣,﹣);(3)设QF为y,作FH⊥PM于点H,先证明△FHP∽△AOC,得出PQ==2y,根据点B、C的坐标得到直线BC的表达式为:y=x﹣3,设点P(m,m2﹣2m﹣3),点Q(m,m﹣3),求出PQ=﹣m2+3m,即可解答.【详解】解:(1)设抛物线解析式为:y=a(x+1)(x﹣3),将C(0,-3),代入可得:﹣3a=﹣3,解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3,根据顶点坐标公式得出D的坐标为∴点D的坐标为(1,﹣4);(2)由(1)知,点B、C、D的坐标分别为(3,0)、(0,﹣3)、(1,﹣4),则BC=3,CD=,BD=,则△BCD是直角三角形,∠BCD=90°,①当△PMB∽△BCD时,则∠MPB=∠DBC,即:tan∠MPB=tan∠DBC=,∵点M(m,0),则点P(m,m2﹣2m﹣3),tan∠MPB=,解得:m=2或3(舍去3),故点P(2,﹣3);②当△BMP∽△BCD时,同理可得:点P(﹣,﹣);故点P的坐标为:(2,﹣3)或(﹣,﹣);(3)设QF为y,作FH⊥PM于点H,∵OB=OC,∴∠OCB=∠OBC=45°则FH=QH=y,∵PE∥AC,PM∥OC,则∠PEM=∠HFP=∠CAO,∴△FHP∽△AOC,则PH=3FH=y,∴PQ==2y,根据点B、C的坐标求出直线BC的表达式为:y=x﹣3,则点P(m,m2﹣2m﹣3),点Q(m,m﹣3),所以PQ=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,即:2y=﹣m2+3m,则y=,.∴当m=时,QF有最大值.【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.2019-2020学年数学中考模拟试卷一、选择题1.如图,在Rt △ABC 中,∠C =30°,AB =4,D ,F 分别是AC ,BC 的中点,等腰直角三角形DEH 的边DE 经过点F ,EH 交BC 于点G ,且DF =2EF ,则CG 的长为( )A .23B .23﹣1C .52D .3+12.四个命题:①有两边和其中一边的对角对应相等的两个三角形全等;②三角形的一条中线能将三角形分成面积相等的两部分;③点P (1,2)关于原点的对称点坐标为(﹣1,﹣2);④两圆的半径分别是3和4,圆心距为d ,若两圆有公共点,则1<d <7.其中正确的是( )A .①②B .①③C .②③D .③④3.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( )A .6℃B .6.5℃C .7℃D .7.5℃4.如图,AB 是☉O 的直径,弦CD ⊥AB 于点E,点P 在☉O 上,PB 与CD 交于点F,∠PBC=∠C.若∠PBC=22.5°,☉O 的半径R=2,则劣弧AC 的长度为 ( )A.πB.C.2πD.π5.如图,正方形ABCD 内接于圆O ,4AB =,则图中阴影部分的面积是( ).A .416π-B .3216π-C .1632π-D .816π-6.如图是由5个相同的小正方体组成的几何体,其左视图是( )A .B .C .D .7.如图是直尺和一个等腰直角三角尺画平行线的示意图,图中∠α的度数为( )A .30°B .45°C .60°D .90°8.下列各数中,最小的实数是( )A.﹣5B.3C.0D.29.如图,在△ABC 中,∠C=90°,AC=BC=3cm ,动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B ,动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC→CB 方向运动到点B ,先到达点B 的点保持与点B 重合,待另一个点到达点B 后同时停止运动。
第二章 方程(组)与不等式(组)第一节 一次方程与方程组及应用一次方程(组)的应用(7次)1.(2019河北11题2分)利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10 ①5x -3y =6 ②,下列做法正确的是( D )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×22.(2019河北8题2分)小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张,设所用的1元纸币为x 张,根据题意,下面所列方程正确的是( A )A .x +5(12-x)=48B .x +5(x -12)=48C .x +12(x -5)=48D .5x +(12-x)=483.(2009河北18题3分)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55 cm ,此时木桶中水的深度是__20__cm.4.(2019河北22题9分)已知n 边形的内角和θ=(n -2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n 边形变为(n +x)边形,发现内角和增加了360°,用列方程的方法确定x. 解:(1)甲对,乙不对.∵θ=360°,∴(n -2)×180=360.解得n =4.∵θ=630°,∴(n -2)×180=630,解得n =112.∵n 为整数,∴θ不能取630°;(2)依题意,得(n -2)×180+360=(n +x -2)×180.解得x =2.5.[2019河北20(2)题5分]如图,某市A ,B 两地之间有两条公路,一条是市区公路AB ,另一条是外环公路AD -DC -CB.这两条公路围成等腰梯形ABCD ,其中DC∥AB,AB ∶AD ∶DC =10∶5∶2.(1)求外环公路总长和市区公路长的比;(2)某人驾车从A 地出发,沿市区公路去B 地,平均速度是40 km/h.返回时沿外环公路行驶,平均速度是80 km/h ,结果比去时少用了110h .求市区公路的长.解:(1)设AB =10x km ,则AD =5x km ,CD =2x km.∵四边形ABCD 是等腰梯形,∴BC =AD =5x km.∴AD +CD +CB =12x(km).∴外环公路的总长和市区公路长的比为12x∶10x=6∶5;(2)由(1)可知,市区公路的长为10x km ,外环公路的总长为12x km ,由题意得10x 40=12x 80+110,解得x =1,∴10x =10.答:市区公路的长为10 km.6.(2019石家庄新华区模拟)若⎩⎪⎨⎪⎧x =1,y =2是关于x 、y 的二元一次方程ax -3y =1的解,则a 的值为( A )A .7B .2C .-1D .-57.(2019唐山路南区三模)小明在解关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧x +y =△,2x -3y =5时,解得⎩⎪⎨⎪⎧x =4,y =⊗,则△和⊗代表的数分别是( B )A .△=1,⊗=5B .△=5,⊗=1C .△=-1,⊗=3D .△=3,⊗=-18.(2019石家庄二模)希望中学九年级1班共有学生49人,当该班少一名男生时,男生的人数恰好为女生人数的一半.设该班有男生x 人,则下列方程中,正确的是( A )A .2(x -1)+x =49B .2(x +1)+x =49C .x -1+2x =49D .x +1+2x =499.(2019原创)已知关于x ,y 的二元一次方程ax +by =10(ab≠0)的两个解分别为⎩⎪⎨⎪⎧x =-1,y =2和⎩⎪⎨⎪⎧x =-2,y =-4,求1-a 2+4b 2的值. 解:将x =-1,y =2代入方程ax +by =10中得:-a +2b =10,将x =-2,y =-4同样代入方程得:-a -2b =5,∴(-a +2b)(-a -2b)=50,∴-a 2+4b 2=-50,∴1-a 2+4b 2=1-50=-49.,中考考点清单)方程、方程的解与解方程1.含有未知数的__等式__叫方程.2.使方程左右两边相等的__未知数__的值叫方程的解. 3.求方程__解__的过程叫解方程.等式的基本性质4. 性质1等式两边同时加上(或减去)同一个数或同一个式子,所得的结果仍①__相等__.如果a =b ,那么a±c②__=__b±c.续表性质2等式两边同时乘以(或除以)同一个数(除数不为0),所得结果仍③__相等__.如果a =b ,那么ac =bc(c≠0),a c =bc (c≠0).一次方程(组)5.概念解法一元一 次方程 含有①__一个__未知数且未知数的次数是②__1__,这样的方程叫做一元一次方程.解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.续表 二元一 次方程含有两个③__未知数__,并且含有未知数的项的④__次数__都是1的方程叫做二元一次方一般需找出满足方程的整数解即可.程.二元一 次方程组两个⑤__二元一次方程__所组成的一组方程,叫做二元一次方程组.解二元一次方程组的基本思路是⑥__消元__.基本解法有:⑦__代入__ 消元法和⑧__加减__消元法.【易错提示】(1)解一元一次方程去分母时常数项不要漏乘,移项一定要变号;(2)二元一次方程组的解应写成⎩⎪⎨⎪⎧x =a ,y =b 的形式.列方程(组)解应用题的一般步骤6. (1)审 审清题意,分清题中的已知量、未知量;(2)设设①__未知数__,设其中某个量为未知数,并注意单位,对含有两个未知数的问题,需设两个未知数;续表 (3)列 弄清题意,找出②__相等关系__;根据③__相等关系__,列方程(组); (4)解 解方程(组);(5)验 检验结果是否符合题意; (6)答 答题(包括单位). 【方法点拨】一次方程(组)用到的思想方法:(1)消元思想:将二元一次方程组通过消元使其变成一元一次方程.(2)整体思想:在解方程时结合方程的结构特点,灵活采取整体思想,使整个过程简捷.(3)转化思想:解一元一次方程最终要转化成ax =b ;解二元一次方程组先转化成一元一次方程. (4)数形结合思想:利用图形的性质建立方程模型解决几何图形中的问题. (5)方程思想:利用其他知识构造方程解决问题.,中考重难点突破) 一元一次方程及解法【例1】(1)(2019娄底中考)已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为________;(2)解方程:0.5x +20.03-x =0.3(0.5x +2)0.2-13112.【学生解答】(1)1;(2)原方程可化为:50x +2003-x =3(x +4)4-13112,解得x =-5.【点拨】(1)把x =2代入即可;(2)先“化零为整”,再按去分母→去括号→移项→合并同类项→系数化为1来解.1.(2019厦门中考)方程x +5=12(x +3)的解是__x =-7__.2.(2019滨州中考)解方程2-2x +13=1+x2.解:去分母得:12-2(2x +1)=3(1+x),去括号得:12-4x -2=3+3x ,解得x =1.二元一次方程组及解法【例2】(2019无锡中考)解方程组:⎩⎪⎨⎪⎧2x -y =5,①x -1=12(2y -1).② 【学生解答】由②得2x -2y =1③.①-③,得y =4.把y =4代入①,得x =92.∴原方程组的解为⎩⎪⎨⎪⎧x =92,y =4.【点拨】解二元一次方程组的两种方法(代入法和加减法)用到的都是“消元”的思想,具体解题时两种方法可根据方程组中未知数系数的特点灵活运用.3.(2019杭州中考)设实数x ,y 满足方程组⎩⎪⎨⎪⎧13x -y =4,13x +y =2,则x +y =__8__.4.解方程组:⎩⎪⎨⎪⎧5x +10=10y , ①15x =20y +10. ②解:由①,得x -2y =-2. 由②,得3x -4y =2.①×2-②,得x =6.把x =6代入①得y =4,所以原方程组的解为⎩⎪⎨⎪⎧x =6,y =4.一次方程(组)的应用【例3】某公园的门票价格如下表:购票人数 1~50 51~100 100以上 票价(元/人) 10 8 5某校九年级甲、乙两个班共有100多人去该公园举行毕业联欢活动,其中甲班有50多人,乙班不足50人.如果以班为单位分别买门票,两个班一共应付920元;如果两个班联合起来作为一个团体购票,一共只要515元.问:甲、乙两班分别有多少人?【解析】由两班单独购票时甲班票价8元/人,乙班票价10元/人,两个班共付920元及购团体票时票价5元/人,共付款515元,可列方程组求解.【学生解答】设甲、乙两班分别有x 人和y 人,得 ⎩⎪⎨⎪⎧8x +10y =920,5x +5y =515.解得⎩⎪⎨⎪⎧x =55,y =48. 答:甲班55人,乙班48人.【方法归纳】综合表格中的信息与文字叙述,理解题意是解决本题的关键.5.(2019江西中考)小锦和小丽购买了价格分别相同的中性笔和笔芯.小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.解:设每支中性笔x 元,每盒笔芯y 元,根据题意得 ⎩⎪⎨⎪⎧20x +2y =56,2x +3y =28.解得⎩⎪⎨⎪⎧x =2,y =8. 答:每支中性笔2元,每盒笔芯8元.6.(2019资阳改编)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.求篮球和足球的单价.解:设一个篮球x 元,则一个足球(x -30)元,由题意得2x +3(x -30)=510.解得x =120. 答:一个篮球120元,一个足球90元.,中考备考方略)1.(2019重庆中考)已知关于x 的方程2x +m -8=0的解是x =3,则m 的值为( A ) A .2 B .3 C .4 D .52.(2019邯郸十一中模拟)若2a =3b ,则下列各式中不成立的是( D ) A .4a =6b B .2a +5=3b +5 C.a 3=b2D .a =3b 3.(2019株洲中考)在解方程x -13+x =3x +12时,方程两边同时乘以6,去分母后,正确的是( B )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(x +1)4.(2019广州中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为( B )A .-4B .4C .-2D .25.(2019廊坊二模)已知⎩⎪⎨⎪⎧x =-1,y =2是二元一次方程组⎩⎪⎨⎪⎧3x +2y =m ,nx -y =1的解,则m -n 的值是( D ) A .1 B .2 C .3 D .46.(2019杭州中考)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( C )A .518=2(106+x)B .518-x =2×106C .518-x =2(106+x)D .518+x =2(106-x)7.(2019聊城中考)在如图的2019年6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( D )日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30A.27 B .51 C .69 D .728.(2019台湾中考)若二元一次联立方程式⎩⎪⎨⎪⎧2x +y =14,-3x +2y =21的解为x =a ,y =b ,则a +b 的值为( D )A.192B.212C .7D .139.(2019温州中考)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x ,乙数为y ,根据题意,列方程组正确的是( A )A.⎩⎪⎨⎪⎧x +y =7,x =2yB.⎩⎪⎨⎪⎧x +y =7,y =2xC.⎩⎪⎨⎪⎧x +2y =7,x =2yD.⎩⎪⎨⎪⎧2x +y =7,y =2x 10.(2019临沂中考)为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x 人,女生有y 人.根据题意,所列方程组正确的是( D )A.⎩⎪⎨⎪⎧x +y =78,3x +2y =30B.⎩⎪⎨⎪⎧x +y =78,2x +3y =30C.⎩⎪⎨⎪⎧x +y =30,2x +3y =78D.⎩⎪⎨⎪⎧x +y =30,3x +2y =78 11.(2019深圳中考)某商品的标价为200元,8折销售仍赚40元,则商品进价为________元( B )A .140B .120C .160D .10012.(1)(2019永州中考)方程组⎩⎪⎨⎪⎧x +2y =2,2x +y =4的解是__⎩⎪⎨⎪⎧x =2,y =0__ ,;)(2)(2019温州中考)方程组⎩⎪⎨⎪⎧x +2y =5,3x -2y =7的解是__⎩⎪⎨⎪⎧x =3,y =1__ ,.)13.(2019扬州中考)以方程组⎩⎪⎨⎪⎧y =2x +2,y =-x +1的解为坐标的点(x ,y)在第__二__象限.14.(2019原创)已知⎩⎪⎨⎪⎧x =3,y =-2是方程组⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则代数式(a +b)(a -b)的值为__-8__.15.(2019石家庄四十二中一模改编)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 的解也是二元一次方程2x +3y =6的解,求k 的值.解:解方程组⎩⎪⎨⎪⎧x +y =5k ,x -y =9k 得⎩⎪⎨⎪⎧x =7k ,y =-2k.代入2x +3y =6中得k =34.16.(2019福州中考)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,那么甲、乙两种票各买了多少张?解:设甲种票买了x 张,则乙种票买了(35-x)张,由题意得24x +18(35-x)=750,解得x =20,∴35-x =15.答:甲种票买了20张,乙种票买了15张.17.(2019原创)按如图的运算程序,能使输出结果为3的x ,y 的值是( D )A .x =5,y =-2B .x =3,y =-3C .x =-4,y =2D .x =-3,y =-918.(2019原创)小亮解二元一次方程组⎩⎪⎨⎪⎧2x +y =●,3x -2y =19的解为⎩⎪⎨⎪⎧x =5,y =★,由于不小心滴上了两滴墨水,刚好遮住了两个数●和★,则●+★=__6__.19.(2019盐城中考)李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55 min ;加工4个甲种零件和9个乙种零件共需85 min ,则李师傅加工2个甲种零件和4个乙种零件共需__40__min.20.(2019石家庄41中一模)定义一种新运算“⊕”:a ⊕b =a -2b ,比如:2⊕(-3)=2-2×(-3)=2+6=8.(1)求(-3)⊕2的值;(2)若(x -3)⊕(x+1)=1,求x 的值.解:(1)(-3)⊕2=(-3)-2×2=-3-4=-7;(2)∵(x-3)⊕(x+1)=1,∴(x -3)-2(x +1)=1.∴x=-6.21.(2019石家庄四十一中模拟)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用x 的代数式分别表示裁剪出的侧面和底面个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?解:(1)裁剪出的侧面个数为6x +4(19-x)=(2x +76)个,裁剪出的底面个数为5(19-x)=(-5x +95)个;(2)由题意得2x +763=-5x +952,解得x =7.当x =7时,2x +763=30.答:能做30个盒子.22.(2019沧州八中模拟)P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P 与n 的关系式是:P =n (n -1)24·(n 2-an +b)(其中a ,b 是常数,n ≥4).(1)填空:通过画图可得:四边形时,P =__1__(填数字),五边形时,P =__5__(填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值.(注:本题的多边形均指凸多边形)解:将上述值代入公式可得 ⎩⎪⎨⎪⎧4×(4-1)24·(16-4a +b )=1,①5×(5-1)24·(25-5a +b )=5.②化简得⎩⎪⎨⎪⎧4a -b =14,5a -b =19.解得⎩⎪⎨⎪⎧a =5,b =6.23.(2019连云港中考)某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?解:(1)设该店有客房x 间,有房客y 人,根据题意得:⎩⎪⎨⎪⎧7x +7=y ,9(x -1)=y ,解得⎩⎪⎨⎪⎧x =8,y =63.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱;若一次性订客房18间,则需付费20×18×0.8=288钱<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.2019-2020学年数学中考模拟试卷一、选择题1.如图所示,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .1处B .2处C .3处D .4处2.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A.B.C.D.3.如果关于x 的一元二次方程x 2﹣kx+2=0中,k 是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率为( ) A.B.C.D.4.如图,直线y =﹣x+b 与双曲线(0)ky x x=> 交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于点M ,BN ⊥x 轴于点N ,有以下结论:①S △AOM =S △BON ;②OA =OB ;③五边形MABNO 的面积22MABNOb S 五边形;④若∠AOB =45°,则S △AOB =2k ,⑤当AB =2 时,ON ﹣BN =1;其中结论正确的个数有( )A .5个B .4个C .3个D .2个5.利用运算律简便计算52×(–999)+49×(–999)+999正确的是 A .–999×(52+49)=–999×101=–100899 B .–999×(52+49–1)=–999×100=–99900 C .–999×(52+49+1)=–999×102=–101898 D .–999×(52+49–99)=–999×2=–19986.若a =326,b =11,则实数a ,b 的大小关系为( )A .a >bB .a <bC .a =bD .a≥b7.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x ,根据题意,可得方程( ) A .81(1+x)2=100 B .81(1﹣x)2=100 C .81(1+x%)2=100D .81(1+2x)=1008.如图,在△ABC 中,点D 在AB 边上,点E 在AC 边上DE ∥BC ,点B 、C 、F 在一条直线上,若∠ACF =140°,∠ADE =105°,则∠A 的大小为( )A .75°B .50°C .35°D .30°9.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =6,D 、E 、F 分别是△ABC 三边的中点,则△DEF 的周长为( )A .24B .16C .14D .1210.如图,在△ABC 中,AB ⊥AC ,AB=5cm ,BC=13cm ,BD 是AC 边上的中线,则△BAD 的面积是( )A.215cmB.230cmC.260cmD.265cm11.正比例函数y =kx(k≠0)的图象上一点A 到x 轴的距离与到y 轴的距离之比为2 : 3,且y 随x 的增大而减小,则k 的值是 ( ) A .23B .32C .32-D .23-12.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,∠ABG =46°,则∠FAE 的度数是( )A.26°.B.44°.C.46°.D.72° 二、填空题13.如图,点是等边的边上的一个动点,连结,将射线绕点顺时针旋转交于点,若,则的最小值是 ___________.14.111ABC A B C △∽△,其中点,,A B C 分别与点111,,A B C 对应,如果11:2:3AB A B =,6AC =,那么11AC =_____.15.不等式组()121231x x x +≤⎧+>-⎨⎩的解集为______. 16.如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE 2CE =,过点C 作CF BE ⊥,垂足为F ,连接OF ,则下列结论正确的是______.BE 210BCF =①,②∽65BEC OF 5=,③17.16的平方根是 .18.计算14893-的结果是_____. 三、解答题19.为奖励表现优秀的学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元.(1)求文具袋和圆规的单价.(2)学校准备购买文具袋20个,圆规若干.文具店给出两种优惠方案:方案一;购买一个文具袋送1个圆规.方案二:购买圆规10个以上时,超出10个的部分按原价的八折优惠,文具袋不打折.若学校购买圆规100个,则选择哪种方案更合算?请说明理由.20.随着生活水平的提高,人们对饮水品质的需求越来越高,某公司根据市场需求代理A ,B 两种型号的净水器,每台A 型净水器比每台B 型净水器进价多200元,用5万元购进A 型净水器与用4.5万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元,试销时A型净水器每台售价2500元,B型净水器每台售价2180元,公司决定从销售A 型净水器的利润中按每台捐献a元作为公司帮扶贫困村饮水改造资金.若公司售完50台净水器并捐献扶贫资金后获得的最大利润不低于20200元但不超过23000元,求a的取值范围.21.已知:如图,点B、F、C、E在同一条直线上,AB∥DE,∠A=∠D,BF=EC.(1)求证:△ABC≌△DEF.(2)若∠A=120°,∠B=20°,求∠DFC的度数.22.已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠DAB=45°.(1)如图①,判断CD与⊙O的位置关系,并说明理由;(2)如图②,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离.23.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA、PB、PC,若有PA2=PB2+PC2则称点P 为△ABC关于点A的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A、B、C、D、E、F、G均在小正方形的顶点上,则点D是△ABC关于点的勾股点;在点E、F、G三点中只有点是△ABC关于点A 的勾股点.(2)如图3,E是矩形ABCD内一点,且点C是△ABE关于点A的勾股点,①求证:CE =CD ;②若DA =DE ,∠AEC =120°,求∠ADE 的度数.(3)矩形ABCD 中,AB =5,BC =6,E 是矩形ABCD 内一点,且点C 是△ABE 关于点A 的勾股点, ①若△ADE 是等腰三角形,求AE 的长;②直接写出AE+56BE 的最小值. 24.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了 名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于 度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为 人.25.解不等式组()5x+33x-113x+46-x 22⎧>⎪⎨≤⎪⎩①②,请结合题意填空,完成本题的解答, I.解不等式①,得_________;II.解不等式②,得________;III.把不等式①和②的解集在数轴上表示出来:IV.原不等式组的解集为_________.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D A B B B A C D A D A二、填空题13.14.915.x≤1.16.①②17.±2.18.3三、解答题19.(1)文具袋的单价为15元/个,圆规的单价为3元/个;(2)选择方案一更合算,理由见解析. 【解析】【分析】(1)设文具袋的单价为x元/个,圆规的单价为y元/个,根据“购买1个文具袋和2个圆规需21元;购买2个文具袋和3个圆规需39元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量结合两种优惠方案,分别求出选择方案一和选择方案二所需费用,比较后即可得出结论.【详解】(1)设文具袋的单价为x元/个,圆规的单价为y元/个,依题意,得:221 2339 x yx y+=⎧⎨+=⎩,解得:153xy=⎧⎨=⎩.答:文具袋的单价为15元/个,圆规的单价为3元/个.(2)选择方案一更合算,理由如下:选择方案一所需费用为15×20+3×(100﹣20)=540(元),选择方案二所需费用为15×20+3×10+3×0.8×(100﹣10)=546(元).∵540<546,∴选择方案一更合算.【点睛】本题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(1)每台A型、B型净水器的进价分别是2000元、1800元;(2)a的取值范围是20≤a≤90.【解析】【分析】(1)根据题意可以列出相应的分式方程,从而可以解答本题;(2)根据题意可以求得x 的取值范围和利润与x 的函数关系式,然后根据一次函数的性质即可解答本题.【详解】(1)设每台A 型的进价为m 元,5000045000200m m =-, 解得,m =2000,经检验,m =2000是原分式方程的解,∴m ﹣200=1800,答:每台A 型、B 型净水器的进价分别是2000元、1800元;(2)2000x+1800(50﹣x )≤98000,解得,x≤40,设公司售完50台净水器并捐款后获得的利润为w 元,w =(2500﹣2000)x+(2180﹣1800)(50﹣x )﹣ax =(120﹣a )x+19000,当a≥120时,w≤19000不合题意,当a <120时,120﹣a <0,当x =40时,w 取得最大值,∴20200≤40(120﹣a )+19000≤23000,解得,20≤a≤90,即a 的取值范围是20≤a≤90.【点睛】本题考查一次函数的应用、一元一次不等式的应用、分式方程的应用,解答本题的关键是明确题意,利用一次函数的性质解答,注意分式方程要检验.21.(1)见解析;(2)∠DFC =40°【解析】【分析】(1)根据题意由全等三角形的性质AAS 可以推出△ABC ≌△DEF(2)由(1)已知△ABC ≌△DEF ,再根据三角形内角和,即可解答【详解】(1)证明:∵AB ∥DE ,∴∠B =∠E ,∵BF =EC∴BF+FC =EC+CF ,即BC =EF ,在△ABC 和△DEF 中,B E BC EF ⎧⎪=⎨⎪=⎩∠A=∠D ∠∠ , ∴△ABC ≌△DEF (AAS );(2)解:∵∠A =120°,∠B =20°,∴∠ACB =40°,由(1)知△ABC ≌△DEF ,∴∠ACB =∠DFE ,∴∠DFE =40°,∴∠DFC =40°.【点睛】此题考查全等三角形的判定和三角形内角和,解题关键在于找到三角形全等的条件22.(1)CD 与圆O 相切,证明见解析;(2)EF =5116. 【解析】【分析】(1)连接OD ,由题意可得∠AOD=90°,由平行线的性质可得OD ⊥CD ,则可得结论;(2)作EF ⊥AB 于F ,连接BE ,由圆周角定理可得∠AEB=90°,由勾股定理可求BE 的长,由三角函数可求EF 的长.【详解】解:(1)CD 与圆O 相切证明:如图①,连接OD ,∵OA =OD∴∠DAB =∠ADO =45°∴∠AOD =90°,∵四边形ABCD 是平行四边形,∴AB ∥DC .∴∠CDO =∠AOD =90°.∴CD与圆O相切(2)如图②,作EF⊥AB于F,连接BE,∵AB是圆O的直径,∴∠AEB=90°,AB=2×3=6∵AE=5∴BE=22226511AB AE-=-=∵sin∠BAE=EF BE AE AB=∴11 56 EF=∴EF=511 6【点睛】本题考查了直线与圆的位置关系,平行四边形的性质,勾股定理,圆的有关知识,利用勾股定理求BE 的长是本题的关键.23.(1)B,F;(2)①见解析,②∠ADE=40°;(3)①AE的长为6105或10,②AE+56BE 5.328≈.【解析】【分析】(1)求AD2=5,DC2=5,DB2=10,得AD2+DC2=DB2,即点D是△ABC关于点B的勾股点;求出FA2,FB2,FC2,得到FA2+FB2=FC2,即点F是△ABC关于点A的勾股点.(2)①由矩形性质得∠ADC=90°,可得AD2+DC2=AC2;根据勾股数得BC2+EC2=AC2,又因为AD=BC,即得CE=CD.②设∠CED=α,根据∠AEC=120°和CE=CD即∠ADC=90°,可用α表示△ADE的三个内角,利用三角形内角和180°为等量关系列方程,即求出α进而求出∠ADE.(3)由条件“点C是△ABE关于点A的勾股点”仍可得CE=CD=5,作为条件使用.①△ADE是等腰三角形需分3种情况讨论,把每种情况画图再根据矩形性质和勾股定理计算,即能求AE的长.②由画图可知,当BE⊥AC时,AE+56BE取得最小值.过点E分别作AB、BC的垂线,通过勾股定理计算即可求出答案.解:(1)∵DA2=12+22=5,DB2=12+32=10,DC2=DA2=5 ∴DB2=DC2+DA2∴点D是△ABC关于点B的勾股点∵EA2=42+42=32,EB2=22+52=29,EC2=4∴点E不是△ABC的勾股点∵FA2=32+42=25,FB2=22+42=20,FC2=12+22=5∴FA2=FB2+FC2∴点F是△ABC关于点A的勾股点∵GA2=42+22=20,GB2=22+32=13,GC2=22+22=8∴点G不是△ABC的勾股点故答案为:B;F.(2)①证明:∵点C是△ABE关于点A的勾股点∴CA2=CB2+CE2∵四边形ABCD是矩形∴AB=CD,AD=BC,∠ADC=90°∴CA2=AD2+CD2=CB2+CD2∴CB2+CE2=CB2+CD2∴CE=CD②设∠CED=α,则∠CDE=∠CED=α∴∠ADE=∠ADC﹣∠CDE=90°﹣α∵∠AEC=120°∴∠AED=∠AEC﹣∠CED=120°﹣α∵DA=DE∴∠DAE=∠DEA=120°﹣α∵∠DAE+∠DEA+∠ADE=180°∴2(120°﹣α)+(90°﹣α)=180°解得:α=50°∴∠ADE=90°﹣50°=40°(3)①∵矩形ABCD中,AB=5,BC=6∴AD=BC=6,CD=AB=5∵点C是△ABE关于点A的勾股点∴CE=CD=5若DE=DA,则DE=6过点E作MN⊥AB于点M,交DC于点N∴∠AME=∠MND=90°∴四边形AMND是矩形∴MN=AD=6,AM=DN设AM=DN=x,则CN=CD﹣DN=5﹣x∵Rt△DEN中,EN2+DN2=DE2;Rt△CEN中,EN2+CN2=CE2∴DE2﹣DN2=CE2﹣CN2∴62﹣x2=52﹣(5﹣x)2解得:x=18 5∴EN=22221824655DE DN⎛⎫-=-=⎪⎝⎭,AM=DN=185∴ME=MN﹣EN=6﹣246 55=∴Rt△AME中,AE=2222186610555 AM ME⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭ii)如图2,若AE=DE,则E在AD的垂直平分线上过点E作PQ⊥AD于点P,交BC于点Q ∴AP=DP=12AD=3,∠APQ=∠PQC=90°∴四边形CDPQ是矩形∴PQ =CD =5,CQ =PD =3∴Rt △CQE 中,EQ =2222534CE CQ -=-=∴PE =PQ ﹣EQ =1∴Rt △APE 中,AE =22223110AP PE +=+=iii )如图3,若AE =AD =6,则AE 2+CE 2=AD 2+CD 2=AC 2∴∠AEC =90°取AC 中点O ,则点A 、B 、C 、D 在以O 为圆心、OA 为半径的⊙O 上∴点E 也在⊙O 上∴点E 不在矩形ABCD 内部,不符合题意综上所述,若△ADE 是等腰三角形,AE 的长为6105或10. ②当BE ⊥AC 时,AE+56BE 取得最小值. 过点E 分别作ER ⊥AB 于点R ,ES ⊥BC 于点S,∴四边形BRES 是矩形,∠EBS 与∠ACB 互余∴∠EBS =∠ACD∴tan ∠EBS =tan ∠ACD =65AD CD = ∴tan ∠EBS =65ES BS = 设ES =6a ,BS =5a ,则BE =()()226a 5=61a a +,CS =6﹣5a ,AR =5﹣6a ∵Rt △CES 中,CS 2+ES 2=CE 2,即(6﹣5a )2+(6a )2=52解得:a 1=30+22961(舍去),a 2=30-22961,61a 2﹣60a =﹣11∴Rt △ARE 中,AE =()()222256a 5AR RE a +=-+=261a 6025=14a -+∴AE+56BE =530-22914+61 5.328661∙∙≈. 【点睛】本题考查勾股定理、勾股定理逆定理的应用,矩形的性质,等腰三角形的性质,解一元一次方程和一元二次方程,圆的定义和圆周角定理.解题关键是对新定义概念的性质运用,第(3)①题等腰三角形的分类讨论需数形结合把图形画出后再解题,②可利用特殊位置试算得到最小值,计算过程较繁琐复杂. 24.(1)本次共调查了50名学生;(2)72°;(3)补全条形统计图见解析;(4)该校2000名学生中最喜爱小品的人数为640人; 【解析】 【分析】(1)用最喜爱相声类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以最喜爱歌曲类人数所占的百分比得到“歌曲”所在扇形的圆心角的度数; (3)先计算出最喜欢舞蹈类的人数,然后补全条形统计图; (4)用2000乘以样本中最喜爱小品类的人数所占的百分比即可; 【详解】(1)14÷28%=50,所以本次共调查了50名学生;(2)在扇形统计图中,“歌曲”所在扇形的圆心角的度数=360°×1050=72°; (3)最喜欢舞蹈类的人数为50﹣10﹣14﹣16=10(人), 补全条形统计图为:(4)2000×1650=640, 估计该校2000名学生中最喜爱小品的人数为640人; 【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(Ⅰ)x 3>-;(Ⅱ).x 1≤;(Ⅲ)数轴表示见解析;(Ⅳ)3x 1-<≤. 【解析】 【分析】(Ⅰ)先去括号、移项,两边同时除以2即可得答案;(Ⅱ)移项,整理,两边同时除以2即可得答案;(Ⅲ)根据不等式解集的表示方法解答即可;(Ⅳ)根据数轴,找出不等式①②的公共解集即可. 【详解】(Ⅰ)5x+3>3(x-1) 去括号得:5x+3>3x-3 移项得:2x>-6 解得:x>-3. 故答案为:x>-3 (Ⅱ)12x+4≤6-32x 移项得:2x≤2 解得x≤1. 故答案为:x≤1(Ⅲ)不等式①和②的解集在数轴上表示如图所示:由数轴可得①和②的解集的公共解集为-3<x≤1, ∴原不等式组的解集为-3<x≤1, 故答案为:-3<x≤1 【点睛】本题考查了解一元一次不等式,解一元一次不等式组,在数轴上表示不等式的解集的应用,能根据不等式的解集求出不等式组的解集是解此题的关键.2019-2020学年数学中考模拟试卷一、选择题1.某商品价格为a 元,降价10%后,又降价10%,因销售量猛增,商店决定再提价20%,提价后这种商品的价格为( ) A.0.96a 元B.0.972a 元C.1.08a 元D.a 元2.(11·钦州)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立体的个数是A.3B.4C.5D.63.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张4.如图,ABC ∆为O 的内接三角形,1tan 2ACB ∠=,且2AB =,则O 的半径为( )A .3B .5C .25D .235.若a 2+2a ﹣3=0,则代数式(a ﹣)的值是( ) A.4B.3C.﹣3D.﹣46.已知二次函数y =ax 2+bx 的图象经过点A (﹣1,1),则ab 有( ) A.最小值0 B.最大值1 C.最大值2D.有最小值﹣7.在△ABC中,点D是AB上一点,△ADC与△BDC都是等腰三角形且底边分别为AC,BC,则∠ACB的度数为( )A.60°B.72°C.90°D.120°8.点G为△ABC的重心(△ABC三条中线的交点),以点G为圆心作⊙G与边AB,AC相切,与边BC相交于点H,K,若AB=4,BC=6,则HK的长为()A.353B.2133C.352D.1329.某赛季甲、乙两名篮球运动员各参加10场比赛,各场得分情况如图,下列四个结论中,正确的是()A.甲运动员得分的平均数小于乙运动员得分的平均数 B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员得分的最小值大于乙运动员得分的最小值 D.甲运动员得分的方差大于乙运动员得分的方差10.如图,一个游戏转盘分成红、黄、蓝三个扇形,其中红、黄两个扇形的圆心角度数分别为90°,120°.让转盘自由转动,停止后,指针落在蓝色区域的概率是()A.14B.13C.512D.无法确定11.A、B、C、D四名同学随机分为两组,两个人一组去參加辩论赛,问A、B两人恰好分到一组的概率()A.14B.13C.16D.1212.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )。
课时训练(七)一元一次不等式(组)及其应用(限时:35分钟)|夯实基础|1.[2019·广安]若m>n,下列不等式不一定成立的是()A.m+3>n+3B.-3m<-3nC.>D.m2>n22.[2019·陇南]不等式2x+9≥ (x+2)的解集是()A.x≤B.x≤-3C.x≥D.x≥-33.[2018·益阳]不等式组211-2的解集在数轴上表示正确的是 ()图K7-14.[2019·德州]不等式组2(-112-1-2的所有非负整数解的和是()A.10B.7C.6D.05.[2019·南充]若关于x的不等式2x+a≤1只有2个正整数解,则a的取值范围为 ()A.-5<a<-3B.- ≤a<-3C.-5<a≤-3D.- ≤a≤-36.[2019·聊城]若不等式组12-1无解,则m的取值范围为()A.m≤2B.m<2C.m≥2D.m>27.[2019·重庆B卷]某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分超过120分,他至少要答对的题的个数为()A.13B.14C.15D.168.[2019·绵阳]红星商店计划用不超过4200元的资金购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种9.[2019·株洲]若a 为有理数,且2-a 的值大于1,则a 的取值范围为 . 10.[2019·益阳]不等式组-1 0 -的解集为 .11.[2019·大庆]已知x=4是不等式ax -3a -1<0的解,x=2不是不等式ax -3a -1<0的解,则实数a 的取值范围是 . 12.[2019·包头]已知不等式组 2 9 - 1 - 1的解集为x>-1,则k 的取值范围是 .13.[2019·宜宾]若关于x 的不等式组-2-12 - 2- 有且只有两个整数解,则m 的取值范围是 .14.[2018·山西]2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高之和不超过115 cm .某厂家生产符合该规定的行李箱,已知行李箱的宽为20 cm,长与高的比为8∶11,则符合此规定的行李箱的高的最大值为cm .15.(1)解不等式:4(x -1)-12<x.(2)[2019·新疆]解不等式组: 2 ( -2 ①22 -②并把解集在数轴上表示出来.16.若不等式组2112(-的整数解是关于x的方程2x-4=ax的解,求a的值.17.[2019·荆州]为拓宽学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生.现有甲、乙两种大型客车,它们的载客量和租金如表所示:2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆.(3)学校共有几种租车方案?最少租车费用是多少? |拓展提升|18.[2019·镇江]下列各数轴上表示的x的取值范围可以是不等式组2(2-1 -0的解集的是()图K7-219.[2019·重庆B卷]若数a使关于x的不等式组-21(--2(1-有且仅有三个整数解,且使关于y的分式方程1-2-11-=-3的解为正数,则所有满足条件的整数a的值之和是() A.-3 B.-2 C.-1 D.1【参考答案】1.D2.A3.A4.A [解析]解不等式5x +2>3(x -1),得x>-2;解不等式12x -1≤ -2x ,得x ≤ ; ∴不等式组的解集为-2<x ≤ .∴不等式组的非负整数解为0,1,2,3,4,这些非负整数解的和为10. 故选A .5.C [解析]解不等式2x +a ≤1 得:x ≤1-2, 不等式有两个正整数解,一定是1和2, 根据题意得:2≤1-2<3,解得:-5<a ≤-3. 故选C .6.A [解析]解不等式1 < 2-1,得x>8,当4m ≤8时,原不等式组无解,∴m ≤2 故选A . 7.C [解析] 设小华答对的题的个数为x 题,则答错或不答的题的个数为(20-x )题,可列不等式10x -5(20-x )>120,解得x>142,即他至少要答对的题的个数为15题.故选C . 8.C [解析]设该店购进甲种商品x 件,则购进乙种商品(50-x )件, 根据题意,得:0 100( 0- 200 10 20( 0- 0解得:20≤x<25,∵x 为整数,∴x=20,21,22,23,24, ∴该店进货方案有5种. 9.a<1 10.x<-311.a ≤-1 [解析]因为x=4是不等式ax -3a -1<0的解,所以4a -3a -1<0,a<1, 因为x=2不是不等式ax -3a -1<0的解, 所以2a -3a -1≥0 所以a ≤-1,所以a ≤-1.12.k ≤-2 [解析] 解2x +9>-6x +1得x>-1.解x -k>1得x>k +1.∵不等式组的解集为x>-1,∴k +1≤-1,解得k ≤-2.13.-2≤m<1 [解析]-2-1 ① 2 - 2- ② 解不等式①得:x>-2, 解不等式②得:x ≤2 ,∴不等式组的解集为-2<x ≤2,∵不等式组只有两个整数解, ∴0≤2 <1,解得:-2≤m<1,故答案为-2≤m<1.14.55 [解析] 设长为8x cm,高为11x cm,由题意可得20+8x +11x ≤11 解得:x ≤ .∴11x ≤ .15.解:(1)化简4(x -1)-12<x 得4x -4-12<x , ∴3x<92,∴x<2,∴原不等式的解集为x<2.(2)解不等式①,得:x<2. 解不等式②,得:x>1.所以,不等式组的解集为:1<x<2. 在数轴上表示如图所示:16.解:解不等式组得-1 -所以不等式组的解集为-3<x<-1, 则满足条件的整数解为-2,把x=-2代入方程2x -4=ax ,得-4-4=-2a ,解得a=4.17.[解析] (1)设参加此次研学活动的老师有x 人,学生有y 人,根据“若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生” 即可得出关于x ,y 的二元一次方程组,解之即可得出结论.(2)利用租车总辆数(至少)=师生人数÷ 结合每辆客车上至少要有2名老师,即可得出租车总辆数为8辆.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆,根据8辆车的座位数不少于师生人数及租车总费用不超过3000元,即可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围,结合m 为正整数即可得出租车方案数.设租车总费用为w 元,根据租车总费用= 00×租用35座客车的数量+ 20×租用30座客车的数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.解:(1)设参加此次研学活动的老师有x 人,学生有y 人, 依题意,得: 1 10 1 - 解得: 1 2答:参加此次研学活动的老师有16人,学生有234人.(2)8 [解析] ∵每辆车上至少要有2名老师,∴客车总数不超过8辆,又要保证所有师生都有车坐,∴客车总数不能小于2 1= 0 (取整为8)辆,综合起来可知租车总辆数为8辆.故答案为:8.(3)设租35座客车m 辆,则需租30座的客车(8-m )辆, 依题意,得: 0(8- 2 1 00 20(8- 000解得:2≤m ≤ 12.∵m 为正整数,∴m=2,3,4,5,∴共有4种租车方案. 设租车总费用为w 元,则w=400m +320(8-m )=80m +2560, ∵80>0,∴w 的值随m 值的增大而增大, ∴当m=2时,w 取得最小值,最小值为2720. ∴学校共有4种租车方案,最少租车费用是2720元. 18.B [解析]由x +2>a 得x>a -2,A .由数轴知x>-3,则a=-1,∴-3x -6<0,解得x>-2,与数轴不符;B .由数轴知x>0,则a=2,∴3x -6<0,解得x<2,与数轴相符合;C .由数轴知x>2,则a=4,∴7x -6<0,解得x<,与数轴不符;D .由数轴知x>-2,则a=0,∴-x -6<0,解得x>-6,与数轴不符;故选B . 19.A [解析] 第一部分:解一元一次不等式组 -2 1( - ①-2 (1- ② 解不等式①,得:x ≤ 解不等式②,得:x> 2 11. 因为有且仅有三个整数解, 所以三个整数解分别为:3,2,1. 所以2 11的范围为0≤2 11<1,解得-2. ≤a<3.第二部分:求分式方程1-2-11-=-3的解,得y=2-a ,根据分式方程的解为正数和分式方程的分母不能为零,得0 1 即 2-0 2- 1解得:a<2且a ≠1. 第三部分:根据第一部分a 的范围和第二部分a 的范围,找出a 的公共范围:-2. ≤a<2且a ≠1所以满足条件的整数a 为-2,-1,0. 它们的和为:-2-1+0=-3. 故选A .。