直线参数方程-知识讲解
- 格式:doc
- 大小:183.00 KB
- 文档页数:6
直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2.(3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85.答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝ ⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a消去参数t 后得y =x -a . 椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x . (2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。
直线的参数方程
直线的参数方程:
1、定义:直线的参数方程是一种表示直线的数学表达式,它是由一个普通方程式参数化而来,能够用简单的数学公式描述一条直线。
2、形式:直线的普通方程式为Ax+By+C=0,参数方程式表示为
\begin{cases}x=at+b\\y=ct+d\end{cases},其中a,b,c,d是常数,这条线的开始点和终止点分别是A(b,d),B(a+b,c+d),这条线的斜率为
m=\frac{c}{a}。
3、应用:直线的参数方程式可以用来解决一些数学的实际问题,如确定直线的斜率、表示直线空间平面内的位置关系以及描述两点之间的距离、判断两点间的方位以及计算直线上任意一点到直线两端点的距离等等。
4、解法:可以通过以下方法求解参数方程式:
(1)找出直线上的两点A、B;
(2)计算出直线的斜率m=\frac{y_2-y_1}{x_2-x_1};
(3)把斜率带入参数方程式,求出a和c的值,即:a=m, c=-m;(4)用A点求出b和d的值,即:b= x_1, d= y_1;
(5)完成求解。
直线的标准参数方程直线是平面几何中的基本图形之一,它具有许多重要的性质和应用。
在直角坐标系中,直线的方程有多种表示形式,其中标准参数方程是一种常用的形式。
本文将介绍直线的标准参数方程的定义、推导方法和应用示例。
一、定义。
直线的标准参数方程是指用参数形式表示直线的方程。
设直线L上有一点P(x, y),则点P到直线L上某一固定点A的距离与点P到直线L的方向垂直的距离成比例。
这里引入参数t,点P的坐标可以表示为x=x0+mt,y=y0+nt,其中m和n是常数,称为参数。
二、推导方法。
1. 已知直线上的两点A(x1, y1)和B(x2, y2),求直线的标准参数方程。
设直线上任一点P(x, y),则向量AP=(x-x1, y-y1),向量AB=(x2-x1, y2-y1)。
由于向量AP与向量AB垂直,根据向量的垂直条件可得(x-x1, y-y1)·(x2-x1, y2-y1)=0,展开得到(x-x1)(x2-x1)+(y-y1)(y2-y1)=0,整理可得直线的标准参数方程。
2. 已知直线的斜率k和截距b,求直线的标准参数方程。
直线的斜率k定义为k=(y2-y1)/(x2-x1),截距b定义为y=kx+b。
将y=kx+b代入直线方程中,整理可得x=(x1-kt)/(1-k),y=(y1-kt)/(1-k),即为直线的标准参数方程。
三、应用示例。
1. 求直线通过两点A(1, 2)和B(3, 4)的标准参数方程。
根据推导方法1,代入已知点的坐标得到(x-1)(3-1)+(y-2)(4-2)=0,整理得到直线的标准参数方程。
2. 求直线的斜率为2,截距为3的标准参数方程。
根据推导方法2,代入已知斜率和截距得到x=(1-2t)/(1-2),y=(2-2t)/(1-2),即为直线的标准参数方程。
综上所述,直线的标准参数方程是一种常用的表示形式,通过已知直线上的点或斜率和截距可以求得直线的标准参数方程。
在实际问题中,标准参数方程可以方便地描述直线的性质和运动规律,具有重要的应用价值。
直线参数方程标准形式直线是平面几何中的基本概念,而直线的参数方程标准形式是描述直线的一种重要方式。
在学习直线参数方程标准形式之前,我们首先要了解直线的一般方程和点斜式方程,这样才能更好地理解参数方程标准形式的概念和应用。
一、直线的一般方程和点斜式方程。
1. 直线的一般方程。
直线的一般方程通常表示为Ax + By + C = 0,其中A、B、C为常数,且A和B不全为零。
这种形式的方程可以表示任意一条直线,但并不直观,不利于直线的直观理解和运用。
2. 直线的点斜式方程。
直线的点斜式方程通常表示为y y1 = k(x x1),其中(x1, y1)为直线上的一点,k 为直线的斜率。
点斜式方程直观地表示了直线的斜率和一点坐标,更容易理解和使用。
二、直线参数方程标准形式。
直线的参数方程标准形式是另一种描述直线的方式,它的形式为:x = x1 + at。
y = y1 + bt。
其中(x1, y1)为直线上的一点,a和b为参数。
直线的参数方程标准形式比点斜式方程更加灵活,可以更直观地描述直线的方向和位置。
三、直线参数方程标准形式的应用。
1. 直线的平行和垂直关系。
通过直线的参数方程标准形式,我们可以很容易地判断两条直线是否平行或垂直。
如果两条直线的参数a和b分别成比例,那么它们平行;如果两条直线的参数a和b的乘积为-1,那么它们垂直。
2. 直线的交点。
两条直线的交点可以通过它们的参数方程标准形式求解。
将两条直线的参数方程联立,解出交点的坐标,即可得到它们的交点。
3. 直线的平移和旋转。
直线的参数方程标准形式可以很方便地描述直线的平移和旋转。
对参数a和b进行变换,即可得到平移或旋转后的直线方程。
四、总结。
直线的参数方程标准形式是描述直线的一种重要方式,它比一般方程和点斜式方程更加灵活和直观。
通过参数方程标准形式,我们可以更方便地判断直线的性质、求解直线的交点,以及描述直线的平移和旋转。
因此,掌握直线参数方程标准形式对于理解和运用直线的性质具有重要意义。
直线的标准参数方程直线是我们在几何学中经常遇到的一种基本图形,它具有许多重要的性质和特点。
而直线的标准参数方程则是描述直线的一种重要方式,通过参数方程我们可以更加直观地理解直线在平面上的运动和性质。
在本文中,我们将深入探讨直线的标准参数方程,希望能够帮助读者更好地理解和运用这一概念。
首先,让我们来看一下直线的标准参数方程是如何定义的。
对于平面上的一条直线,如果我们取直线上的一个固定点作为起点,并沿着直线的方向引入一个参数 t,那么直线上任意一点的坐标可以表示为参数 t 的函数形式。
这种参数形式的表示就是直线的参数方程,通常用两个参数方程式 x=f(t) 和 y=g(t) 来表示。
在这里,x 和 y 分别表示直线上任意一点的坐标,而 f(t) 和 g(t) 则分别表示 x 和 y 与参数 t 的函数关系。
接下来,让我们来看一下如何通过直线的参数方程来描述直线的运动和性质。
首先,我们可以通过参数方程方便地表示直线上的任意一点,从而可以轻松地求解直线上的点的坐标。
其次,通过参数方程我们可以直观地描述直线的方向和倾斜程度,只需要观察参数方程中 t 的变化规律即可。
此外,参数方程还可以方便地描述直线的长度、斜率等重要性质,这对于直线的分析和运用都具有重要意义。
在实际问题中,直线的参数方程也具有重要的应用价值。
例如,在物理学中,往往需要描述物体在直线上的运动状态,这时直线的参数方程就可以方便地描述物体的位置和速度。
在工程学中,直线的参数方程也可以用来描述机械零件的运动轨迹和位置关系。
因此,直线的参数方程不仅在数学理论中有重要意义,也在实际问题中具有广泛的应用。
最后,让我们来总结一下直线的标准参数方程的重要性和应用价值。
直线的参数方程是描述直线的一种重要方式,通过参数方程我们可以更加直观地理解直线的运动和性质。
直线的参数方程还具有广泛的应用价值,在物理学、工程学等领域都有重要的应用。
因此,深入理解和掌握直线的参数方程对于我们更好地理解和应用直线具有重要意义。
直线的参数方程知识讲解直线的一般方程可以写成Ax + By + C = 0的形式,其中A、B、C为常数。
为了将直线的一般方程转化为参数方程,我们需要引入一个参数t。
直线上每一个点的坐标可以用两个方向系数(m和n)与一个参考点P0的坐标表示,即(x, y) = (mx + P0_x, ny + P0_y)。
我们可以将x和y都表示为关于参数t的函数。
具体而言,设直线上一点的坐标为(x,y),则可以写成下面的形式:x = mt + P0_xy = nt + P0_y其中m和n分别为方向系数,它们是直线在x和y方向的单位长度的增量。
P0_x和P0_y为直线上的参考点P0的坐标,t为参数。
参数t可以取任意值,当t取不同的值时,对应的(x,y)为直线上的不同的点。
通过不同的t值,我们可以遍历整条直线。
下面给出一个示例进行详细讲解。
设直线L过点A(1,2)和B(5,6),我们利用参数方程表示L。
首先,我们需要计算出直线的方向系数m和n。
由于直线L与x轴和y轴的交点分别为A(1,2)和B(5,6),可以得到:m=(5-1)/1=4n=(6-2)/1=4然后,我们选择P0作为参考点。
由于点A(1,2)在直线上,我们可以选择A作为参考点,即P0=A(1,2)。
接下来,我们将x和y表示为关于参数t的函数:x=4t+1y=4t+2这就是直线L的参数方程。
通过不同的t值,我们可以得到直线上的不同点的坐标。
例如,当t=0时,可以得到直线上的一个点A(1,2);当t=1时,可以得到直线上的另一个点B(5,6)。
当t取其他值时,可以得到直线上的其他点。
需要注意的是,参数方程表示的是一条直线,而不是一条曲线。
对于平面上的曲线,我们通常需要引入更多的参数来描述。
例如,对于圆的参数方程,我们需要引入两个参数来描述圆上各个点的坐标与参数之间的关系。
直线的参数方程在几何学中具有重要的作用。
它不仅可以方便地描述直线上的各个点,还可以方便地进行直线之间的计算和推理。
直线方程的参数形式介绍直线是平面上最基本的几何图形之一,通过直线方程我们可以描述直线在平面上的位置。
在解析几何中,直线的参数形式是描述直线的一种常用方法。
通过参数形式,我们可以更加直观地理解直线的性质和特点。
1. 参数形式的定义直线的参数形式是指通过一个点和一个方向向量来描述直线的方法。
假设直线上有一点P(x, y)和一个方向向量所组成的表示直线的方程,即可得到直线的参数形式。
2. 参数形式的具体表达设直线上有一点P(x, y)和一个方向向量a=(m, n),其中m和n分别是向量a在x轴和y轴上的分量,则直线的参数方程可以表示为:x = x0 + mty = y0 + nt其中(x0, y0)为直线上任意一点的坐标,t为参数。
参数t的取值范围可以是整个实数集。
3. 理解参数形式参数形式可以帮助我们更好地理解直线在平面上的位置和方向。
通过参数t的取值不同,我们可以沿着方向向量a在直线上遍历得到直线上的所有点。
同时,参数形式还可以方便地进行直线的求交点、垂直平分线等相关计算。
4. 参数形式的应用参数形式在解析几何中有广泛的应用。
在计算向量方程、直线之间的夹角、直线的位置关系等问题时,参数形式往往可以简化计算,提高问题的解决效率。
此外,在三维空间中,参数形式也可以用来描述空间中的直线和平面。
5. 参数形式与其他形式的关系参数形式和点斜式、一般式等直线方程之间是可以相互转换的。
通过变换不同的形式,我们可以更灵活地处理不同的问题,提高解析几何的应用水平。
总之,直线的参数形式是解析几何中的一种重要描述方法,通过参数形式,我们可以更好地理解直线的性质和特点,方便进行相关计算和推导。
在学习和研究解析几何问题时,熟练掌握直线的参数形式是非常重要的。
希望以上介绍能够帮助你更好地理解和运用直线的参数形式。
直线的标准参数方程直线是平面几何中最基本的图形之一,它具有许多重要的性质和特点。
在直角坐标系中,直线可以通过不同的方程来描述,其中标准参数方程是一种常用的描述方法。
本文将详细介绍直线的标准参数方程,包括其定义、性质和应用。
一、标准参数方程的定义。
直线的标准参数方程是指通过直线上任意一点到直线上某一固定点的距离与该点到另一固定点的距离之比为常数的方程。
设直线上某一点为P(x,y),直线上固定点为A(x₁,y₁)和B(x₂,y₂),则直线的标准参数方程可以表示为:(x x₁)/(x₂ x₁) = (y y₁)/(y₂ y₁)。
其中(x,y)为直线上任意一点的坐标。
二、标准参数方程的性质。
1. 直线的标准参数方程是直线的一般方程的一种特殊形式,通过标准参数方程可以方便地求出直线的斜率和截距。
2. 标准参数方程中的参数是直线上任意一点的坐标,通过参数的取值范围可以确定直线的位置和方向。
3. 直线的标准参数方程可以方便地表示直线的交点、垂直平分线、角平分线等相关性质。
三、标准参数方程的应用。
1. 在平面几何中,直线的标准参数方程可以用于求解直线的方程和性质,进而解决与直线相关的几何问题。
2. 在工程和物理学中,标准参数方程可以用于描述直线运动的轨迹和方向,为实际问题的分析和求解提供便利。
3. 在计算机图形学和计算机辅助设计领域,标准参数方程可以用于描述和绘制直线,实现图形的生成和变换。
四、总结。
直线的标准参数方程是描述直线的一种重要方法,它具有简洁、直观的特点,适用于多个领域的问题求解。
通过标准参数方程,我们可以方便地求解直线的性质、应用于实际问题的分析和计算,是平面几何和相关学科中不可或缺的重要工具。
以上就是关于直线的标准参数方程的介绍,希望对您有所帮助。
如果您对此有任何疑问或者补充,欢迎留言讨论。
关于直线的参数方程直线是平面几何中最基础的几何图形之一,其具有简洁的参数方程表示方法,可以方便地描述直线的性质和特征。
本文将详细介绍直线的参数方程及其应用。
一、直线的定义直线是由无数个点组成的一条无宽度的线段,它没有起点和终点,只有一个方向。
直线有着重要的几何性质,例如平行、垂直等。
二、直线的一般方程一般来说,直线的方程可以用直线上的两个点表示。
假设直线上有两个点A(x1,y1)和B(x2,y2),直线AB的斜率为k,那么直线AB的一般方程为:y = mx + b其中m为斜率,b为截距,可以通过两点的坐标计算得到。
三、直线的点斜式方程点斜式方程是直线的另一种表示方式,它由直线上的一个点的坐标和直线的斜率决定。
假设直线上有一个点A(x1,y1)和斜率k,那么直线的点斜式方程为:y-y1=k(x-x1)四、直线的截距式方程截距式方程是直线的第三种表示方式,它由直线在x轴和y轴上的截距决定。
假设直线在x轴上的截距为a,在y轴上的截距为b,那么直线的截距式方程为:x/a+y/b=1参数方程是直线的一种特殊表示方式,它由直线上的一个点的坐标和直线的方向向量决定。
假设直线上有一个点A(x1,y1)和方向向量v=(a,b),那么直线的参数方程为:x = x1 + aty = y1 + bt其中t为参数,可以取任意实数。
六、参数方程的特点与应用1.参数方程表示直线的形式简洁,可以直观地描述直线的位置和方向。
2.通过调节参数t的值,可以在直线上获取任意一点的坐标。
3.参数方程可以方便地描述直线的运动轨迹,例如在平面内做匀速直线运动的物体。
七、例题分析1.用参数方程表示过点A(2,3)且以向量v=(1,2)为方向的直线。
解:直线的参数方程为:x=2+t(1)y=3+t(2)或者简化为:x=2+ty=3+2t2.已知直线的点斜式方程为y-4=-2(x-1),求直线的参数方程。
解:将点斜式方程转化为参数方程,得到:x-1=ty-4=-2t即:x=1+ty=4-2t八、总结直线的参数方程是一种便于描述直线性质和应用的表示方法。
直线的参数方程直线是平面上的一种线形图形,由无数个点组成。
在平面直角坐标系下,直线通常可以用线段的两个端点来确定,或者可以用点斜式和斜截式来表示。
另外,还有一种常见的表示直线的方法是使用参数方程。
参数方程是一种通过引入一个参数作为自变量来表示一个二维曲线的方法。
x=x₀+a·t,y=y₀+b·t,其中(x₀,y₀)是直线上的一个点,t是参数,a和b是与直线的方向相关的参数。
参数方程的优点之一是可以直接通过给定的参数值来求解直线上的任意一点的坐标。
另外,参数方程还可以方便地描述直线的方向和倾斜角度。
下面将分别介绍直线的参数方程以及如何根据已知信息确定参数值的方法。
1.斜率-截距形式的直线方程假设直线方程为y = mx + c,我们可以将x表示为t的函数:x=t,y = mt + c.这样,我们就得到了直线的参数方程。
其中,t是参数,(x,y)是直线上的任意一点。
参数方程的参数a和b分别为1和m。
2.两点间的直线方程首先,我们可以求出直线的方向向量,即从点A到点B的向量。
该向量的分量为:a=x₂-x₁,b=y₂-y₁.然后,我们可以选择一个点作为原点,例如A点,将该点的坐标作为参数方程中的参数值:x₀=x₁,y₀=y₁.最后x=x₀+a·t=x₁+(x₂-x₁)·t,y=y₀+b·t=y₁+(y₂-y₁)·t.3.一般直线方程的参数方程假设直线方程为Ax+By+C=0,我们可以将x表示为t的函数:x=x₀+a·t,y=y₀+b·t.在这种情况下,参数方程的参数a和b可以表示为:a=-B,b=A.其中,(x₀,y₀)是直线上的一个点,t是参数。
总结起来,直线的参数方程可以用以上三种常见形式表示。
在给定直线的已知信息之后,我们可以根据特定的情况选择合适的参数方程形式,并确定参数值。
通过确定参数值,我们可以方便地求解直线上的任意一点的坐标,也可以直观地描述直线的方向和倾斜角度。
直线的参数方程及应用基础知识:1、 直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t P 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、 直线参数方程的一般式: 过点P 0(00,y x ),斜率为abk =的直线的参数方程是 ⎩⎨⎧+=+=bt y y at x x 00 (t 为参数)直线参数方程: 一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l 的参数方程.设点P(y x ,)是直线l 上任意一点,(规定向上的方向为直线L 的正方向)过点P 作y 轴的平行线,过P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos αy ,)Q P =P 0Psin α2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数,又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y - =t sin α即⎩⎨⎧+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ① 当t>0时,点P 在点P 0的上方; ② 当t =0时,点P 与点P 0重合; ③ 当t<0时,点P 在点P 0的下方;特别地,若直线l 的倾斜角α=0时,直线l 的参数方程为⎩⎨=00y y④ 当t>0时,点P 在点P 0的右侧; ⑤ 当t =0时,点P 与点P 0重合; ⑥ 当t<0时,点P 在点P 0的左侧;问题2:P 1、P 2为直线l 上两点所对应的参数分别为t 1、t 2 , 则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣问题3:若P 0为直线l 上两点P 1、P 2的中点,P 1、P 2 参数分别为t 1、t 2 ,则t 1、t 2之间有何关系? 根据直线l 参数方程t 的几何意义,xxxy ,)P 1P =t 1,P 2P =t 2,∵P 0为直线l 上两点P 1、P 2的中点,∴|P 1P|=|P 2P| P 1P =-P 2P ,即t 1=-t 2, t 1t 2<0 一般地,若P 1、P 2、P 3是直线l 上的点,所对应的参数分别为t 1、t 2、t 3,P 3为P 1、P 2的中点则t 3=221t t + (∵P 1P 3=-P 2P 3, 根据直线l 参数方程t 的几何意义,∴P 1P 3= t 3-t 1, P 2P 3= t 3-t 2, ∴t 3-t 1=-(t 3-t 2,) ) 基础知识点应用: 1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意 义,说明∣t ∣的几何意义.例2:化直线2l 的参数方程⎩⎨⎧+=+-= t 313y tx (t 为参数)为普通方程,并求倾斜角,说明∣t ∣的几何意义.例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程⎪⎪⎩⎪⎪⎨⎧+=+=ty t x 233211(t 为参数)和方程⎩⎨⎧+=+= t331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.问题4:直线的参数方程⎩⎨⎧+=+= t 331y tx 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)⎩⎨⎧+=+= t 331yt x ⇔⎪⎪⎩⎪⎪⎨⎧+++=+++=))3(1()3(13 3))3(1()3(11122222222t y t x 令t '=t 22)3(1+ 得到直线l 参数方程的标准形式⎪⎪⎩⎪⎪⎨⎧'+='+=t 233211y t x t '的几何意义是有向线段M M 0的数量.2、直线非标准参数方程的标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,. ⎩⎨⎧+=+=bt y y atx x 00 (t为参数), 斜率为abtg k ==α (1) 当22b a +=1时,则t 的几何意义是有向线段M M 0的数量. (2)当22b a +≠1时,则t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a by y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量.例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且 求出直线l 上与点M 0相距为2的点的坐标.例5:直线⎩⎨⎧-=+=οο20cos 420sin 3t y t x (t 为参数)的倾斜角 .基础知识测试1:1、 求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、 直线l 的方程:⎩⎨⎧+=-=οο25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65° B 25° C 155° D 115° 3、 直线⎩⎨⎧+-=-=t y tx 311(t 为参数)的斜率和倾斜角分别是( )A)3和060 B) 3-和0120 C)33和030 D) 33-和01504、 已知直线⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1, t 2,点P 满足PBAP λ=(λ≠-1),则P 所对应的参数是 . 5、直线l 的方程: ⎩⎨⎧+=+=bt y y atx x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( ) A ∣t 1-t 2∣ B22b a +∣t 1-t 2∣ C2221ba t t +- D ∣t 1∣+∣t 2∣6、 已知直线l :⎩⎨⎧+-=+= t351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P的距离.二、直线参数方程的应用例6:已知直线l 过点P (2,0),斜率为34和抛物线x y 22=相交于A 、B 两点, 设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|解:(1)∵直线l 过点P (2,0),斜率为34,设直线的倾斜角为α,tg α=34cos α =53, sin α=54∴直线l 的标准参数方程为⎪⎩⎪⎨⎧=+=ty t x 54532(t 为参数)* ∵直线l 和抛物线相交,将直线的参数方程代入抛物线方程x y 22=中,整理得 8t 2-15t -50=0 Δ=152+4×8×50>0,设这个二次方程的两个根为t 1、t 2,由韦达定理得 t 1+t 2=815, t 1t 2=425- ,由M 为线段AB 的中点,根据t 的几何意义,得| PM|=221t t + =1615∵中点M 所对应的参数为t M =1615,将此值代入直线的标准参数方程*,M点的坐标为⎪⎩⎪⎨⎧=•==•+=4316155416411615532y x 即 M (1641,43)(3)|AB|=∣t 2-t 1∣= 222114)(t t t t -+=7385点拨:利用直线l 的标准参数方程中参数t 的几何意义,在解决诸如直线l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷.例7:已知直线l 经过点P (1,-33),倾斜角为3π,(1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ|; (2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积. 解:(1)∵直线l 经过点P (1,-33),倾斜角为3π,∴直线l 的标准参数方程为⎪⎩⎪⎨⎧+-=+=3sin 333cos 1ππt y t x ,即⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 2333211(t 为参数)代入直线l ':32-=x y 得032)2333()211(=-+--+t t 整理,解得t=4+23 t=4+23即为直线l 与直线l '的交点Q 所对应的参数值,根据参数t 的几 何意义可知:|t|=| PQ|,∴| PQ|=4+23. (2) 把直线l 的标准参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=t y tx 2333211(t 为参数)代入圆的方程22y x +=16,得16)2333()211(22=+-++t t ,整理得:t 2-8t+12=0,Δ=82-4×12>0,设此二次方程的两个根为t 1、t 2 则t 1t 2=12根据参数t 的几何意义,t 1、t 2 分别为直线和圆22y x +=16的两个交点A, B 所对应的参数值,则|t 1|=| PA|,|t 2|=| PB|, 所以| PA|·| PB|=|t 1 t 2|=12点拨:用直线标准参数方程中参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右, 直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.解:由题意,得抛物线的对称轴方程为y=2.设抛物线顶点坐标为(a ,2) 方程为(y ―2)2=2P(x -a ) (P>0) ①∵点B(-1,-2)在抛物线上,∴(―2―2)2=2P(-1-a ) a P=-8-P 代入① 得(y ―2)2=2P x +2P+16 ②将直线方程y=2x +7化为标准的参数方程tg α=2, α为锐角,cos α =51, sin α=52 得⎪⎪⎩⎪⎪⎨⎧+=+-=t y tx 525511(t 为参数) ③ ∵直线与抛物线相交于A ,B, ∴将③代入②并化简得:75212542--+t Pt =0 ,由Δ=355)6(42+-P >0,可设方程的两根为t 1、t 2, 又∵|AB|=∣t 2-t 1∣= 222114)(t t t t -+=4104354]4)212(5[2⨯+-P =(410)2 化简,得(6-P)2=100 ∴ P=16 或P=-4(舍去) 所求的抛物线方程为(y ―2)2=32x +48点拨:(1)(对称性) 由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。
直线的参数方程及弦长公式一、直线的参数方程:设直线上有两个点A(x1,y1)和B(x2,y2),通过引入一个参数t,可以将直线上的所有点的坐标表示为参数的函数。
直线的参数方程可以表示为:x=x1+(x2-x1)ty=y1+(y2-y1)t其中,参数t可以取任意实数,当t取0时,得到点A的坐标;当t取1时,得到点B的坐标。
二、推导直线的弦长公式:1.弦长的概念:弦是指在圆上连接两个点的线段。
在直线中,我们将两点之间的线段称为弦。
2.求解直线的弦长:设直线上有两个点A(x1,y1)和B(x2,y2),我们需要求解这两点之间的弦长。
首先,我们可以利用两点间的距离公式求解两点间的距离d:d=√((x2-x1)^2+(y2-y1)^2)然后,我们引入参数方程,假设x=x(t)和y=y(t)为直线的参数方程,则有:x(t)=x1+(x2-x1)ty(t)=y1+(y2-y1)t接下来,我们需要通过参数消元来求解参数t与直线上的点(x,y)之间的关系。
由x(t)=x1+(x2-x1)t,可以得到:t=(x-x1)/(x2-x1)由y(t)=y1+(y2-y1)t,可以得到:t=(y-y1)/(y2-y1)将这两个结果相等起来,可以得到:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)进一步化简,可以得到:(x-x1)(y2-y1)-(y-y1)(x2-x1)=0化简后的这个等式实际上是直线的一般方程,即Ax+By+C=0。
其中A=y2-y1,B=x1-x2,C=x2y1-x1y2然后,我们将两点间的距离公式d中的x和y分别代入直线的一般方程Ax+By+C=0中,可以得到:d=√((x2-x1)^2+(y2-y1)^2)=√((x2-x1)^2+(-(A/B)(x2-x1))^2)进一步化简,可以得到:d=√(1+(A/B)^2)*,x2-x1由于A=y2-y1,B=x1-x2,所以A/B=(y2-y1)/(x1-x2)。
直线的参数方程
【学习目标】
1.能选择适当的参数写出直线的参数方程.
2. 会运用直线的参数方程解决有关问题。
【要点梳理】
要点一、直线的参数方程的标准形式
1. 直线参数方程的标准形式:
经过定点000(,)M x y ,倾斜角为α的直线l 的参数方程为:
00cos sin x x t y y t αα=+⎧⎨=+⎩
(t 为参数); 我们把这一形式称为直线参数方程的标准形式。
2. 参数t 的几何意义:
参数t 表示直线l 上以定点0M 为起点,任意一点M(x,y)为终点的有向线段的长度再加上表示方向的正负号,也即0||||M M t =,||t 表示直线上任一点M 到定点0M 的距离。
当点M 在0M 上方时,0t >;
当点M 在0M 下方时,0t <;
当点M 与0M 重合时,0t =;
要点注释:若直线l 的倾角0α=时,直线l 的参数方程为⎩⎨⎧=+=0
0y y t x x .
要点二、直线的参数方程的一般形式
过定点P 0(x 0,y 0)斜率k=tg α=a b 的直线的参数方程是 ⎩⎨⎧+=+=bt
y y at x x 00(t 为参数) 在一般式中,参数t 不具备标准式中t 的几何意义。
若a 2+b 2=1,则为标准式,此时,|t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.
要点三、化直线参数方程的一般式为标准式
一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.
⎩
⎨⎧+=+=bt y y at x x 00 (t 为参数), 斜率为a b tg k ==α (1) 当2
2b a +=1时,则t 的几何意义是有向线段M M 0的数量.
(2) 当22b a +≠1时,则t 不具有上述的几何意义.
⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩
⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩
⎪⎪⎨⎧'++='++=t b a b y y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量. 要点四、直线参数方程的应用
1. 直线参数方程中参数的几何意义几种常见用法:
设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是
⎩⎨⎧+=+=a
t y y a t x x sin cos 00 (t 为参数)
若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则
(1)P 1、P 2两点的坐标分别是:(x 0+t 1cos α,y 0+t 1sin α),(x 0+t 2cos α,y 0+t 2sin α);
(2)|P 1P 2|=|t 1-t 2|;
(3) 线段P 1P 2的中点P 所对应的参数为t ,则t=2
21t t + 中点P 到定点P 0的距离|PP 0|=|t |=|
2
21t t +| (4) 若P 0为线段P 1P 2的中点,则t 1+t 2=0. 2. 用直线参数方程解直线与圆锥曲线相交的几种题型:
(1)有关弦长最值题型
过定点的直线标准参数方程,当直线与曲线交于A 、B 两点。
则A 、B 两点分别用参变量t1、t2表示。
一般情况A 、B 都在定点两侧,t1,t2符号相反,故|AB|=| t1- t2|,即可作分公式。
且因正、余弦函数式最大(小)值较容易得出,因此类型题用直线标准参数方程来解,思路固定、解法步骤定型,计算量不大而受大家的青睐。
(2)有关相交弦中点、中点轨迹的题型
直线标准参数方程和曲线两交点A(t1)、B(t2)的中点坐标相应的参数12=2
t t t +中;若定点恰为AB 为中点,则t1+t2=0 . 这些参数值都很容易由韦达定理求出。
因此有关直线与曲线相交,且与中点坐标有关的问题,用直线标准参数方程解决较为容易得出结果。
(3)有关两线段长的乘积(或比值)的题型
若F 为定点,P 、Q 为直线与曲线两交点,且对应的参数分别为t1、t2. 则|FP|·|FQ|=| t1·t2|, 由韦达定理极为容易得出其值。
因此有关直线与曲线相交线段积(或商)的问题,用直线的标准参数方程
解决为好
【典型例题】
类型一、直线的参数方程
例1. (2016春 福州校级期中)直线-cos 203sin 20x t y t =︒⎧⎨=+︒⎩
(t 为参数)的倾斜角是( ) A . 20° B. 70° C. 110° D. 160°
举一反三:
【变式1】 已知直线l
的参数方程为22x y t
⎧=-+⎪⎨=-⎪⎩(t 为参数),求直线l 的倾斜角. 【变式2】求直线34()45x t t y t =+⎧⎨=-⎩
为参数的斜率。
【变式3】α为锐角,直线31cos()232sin()2
x t y t απαπ⎧=++⎪⎪⎨⎪=++⎪⎩的倾斜角( )。
A 、α
B 、2π-α
C 、2π+α
D 、π+α2
3 【变式4】 已知直线1l 的参数方程为1214x t y t =-+⎧⎨=-+⎩,2l 的参数方程为1252
x t y t =+⎧⎪⎨=--⎪⎩.试判断1l 与2l 的位置关系.
例2.设直线的参数方程为53104x t y t =+⎧⎨=-⎩
. (1)求直线的直角坐标方程;
(2)化参数方程为标准形式.
【变式1】写出经过点M 0(-2,3),倾斜角为
43π的直线l 的标准参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.
【变式2】直线的参数方程⎩
⎨
⎧+=+= t 331y t x 能否化为标准形式?
【变式3】化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意义,说明∣t ∣的 几何意义.
类型二、直线的标准参数方程的初步应用
例3. 设直线1l 过点A (2,-4),倾斜角为56π.
(1)求1l 的参数方程;
(2)设直线2:10l x y -+=,2l 与1l 的交点为B ,求点B 与点A 的距离.
举一反三:
【变式1】已知直线113:()24x t l t y t
=+⎧⎨=-⎩为参数与直线2:245l x y -=相交于点B ,又点(1,2)A , 则AB =_______________。
【变式2】已知直线l 1过点P (2,0),斜率为
3
4. (1)求直线l 1的参数方程;
(2)若直线l 2的方程为x +y +5=0,且满足l 1∩l 2=Q ,求|PQ |的值.
【变式3】求点A (−1,−2)关于直线l :2x −3y +1 =0的对称点A ' 的坐标。
【变式4】 已知直线l 过点P (3,2),且与x 轴和y 轴的正半轴分别交于A 、B 两点,求|PA|·|PB|的值为最小时的直线l 的方程.
类型三、直线参数方程在圆锥曲线中的应用
例4. 经过点33,2A ⎛
⎫-- ⎪⎝⎭
,倾斜角为α的直线l 与圆x 2+y 2=25相交于B 、C 两点. (1)求弦BC 的长;
(2)当A 恰为BC 的中点时,求直线BC 的方程;
(3)当|BC|=8时,求直线BC 的方程;
(4)当α变化时,求动弦BC 的中点M 的轨迹方程.
举一反三:
【变式1
】直线112()x t t y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为
( ) A .(3,3)- B
.( C
.3)- D
.(3,
【变式2
】求直线2x t y =+⎧⎪⎨=⎪⎩(t 为参数)被双曲线221x y -=截得的弦长。
【变式3】过点P (-3,0)且倾斜角为30°的直线和曲线1,()1x t t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩
为参数相交于A 、B 两点,求线段AB 的长.
例5(2016 鞍山一模)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的方程为ρ=4cosθ,直线l 的方程为(t 为参数),直线l 与曲线C 的公共点为T .
(1)求点T 的极坐标;
(2)过点T 作直线l 1,若l 1被曲线C 截得的线段长为2,求直线l 1的极坐标方程.
举一反三:
【变式1】已知直线l 经过点(1,1)P ,倾斜角6πα=
,
(1)写出直线l 的参数方程。
(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积。
【变式2】(2016 杭锦后旗校级二模)在直角坐标系xOy 中,直线l 的参数方程为(t 为参数).在极坐标系 (与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=4cosθ.
(Ⅰ)求圆C 的直角坐标方程;
(Ⅱ)设圆C 与直线l 交于点A 、B ,若点P 的坐标为(2,1),求|PA|+|PB|.。