Superdeformed Band in ^{36}Ar Described by Projected Shell Model
- 格式:pdf
- 大小:110.78 KB
- 文档页数:6
材料本构模型是实现计算机数值模拟的前提条件之一,【关于计算机数值模拟技术的发展介绍】本论文所采用的有限元模拟软件DEFORM-3D进行材料的微观组织模拟介绍,DEFORM-3D 有限元软件是集成了原材料、成形、热处理和机加工为一体的软件,可用于分析各种塑性体积成形过程中金属流动以及材料的应力、应变和温度等物理场量的分布变化情况,同时提供了材料的流动、模具间的填充、成型过程的载荷量、模具所受应力、材料的纤维流向、成型过程的坯料形成、材料的韧性断裂以及金属微观组织结构等信息。
为了实现在金属成形工艺模拟过程中进行微观组织演化的定量预测,所使用的模拟软件必须有包含微观组织变化的本构模型和专门的微观组织演化分析模块。
当前国际上虽然有多个知名商业有限元软件流行,但是它们都不具备微观组织演化的预测功能;或者软件具有微观组织变化的本构模型,但仍需使用者输入材料的参数方可进行,而软件不提供材料的参数;故很多软件都淡化此微观组织演化分析模块。
庆幸的是多数商业软件都为二次开发设置了用户子程序功能,通过编制用户子程序就能实现对微观组织演化的预测功能。
用户自定义本构模型的输入方法在当今的科学研究方向中,新材料的开发占据了一个重要的角色。
不同的材料工作者开发了不同的新材料,得到了不同的本构模型,需要对这种新材料进行模拟,为了满足这种需求,DEFORM提供了两种用户自定义本构模型的输入方法:(1)以函数形式输入本构模型。
DEFORM提供了若干常用本构模型,如图4.6所示。
若用户的本构模型与系统提供的本构模型一致,则可直接输入其相关系数即可;若用户的本构模型在系统中不存在,则可通过二次开发编程的方式将用户的本构模型加入到DEFORM中,然后在图4.6中选择“User routine”并输入所调用的本构模型子程序的编号。
(2)以数据形式输入本构模型。
DEFORM还允许通过输入数据的方式来定义材料的塑性流动行为。
具体方法是根据材料的真应力一真应变曲线,取若干个数据点,逐个输入该材料在某个温度、某个变形速率和某个真应变下的真应力。
1.DEFORM4.02帮助文档System setup是根据各种设好的网格划分条件进行网格划分userdefine用于指定特定区域可以有更高的单元密度.absolute是在毛坯或模具表面单位长度上的网格数relative是指定所划分网格最大边长与最小边长的比率而在deform5.03中好像有点改进.在system define中也可以进行局部区域的高密度网格,且好像多了圆柱和环形的局部区域方式。
2.machining_template_3dDeform网格划分应该说还是相当不错的,尤其是2维的deform的网格划分技术,曾被ABAQUS的技术人员誉为行业的骄傲。
deform3d的网格划分也还不错,它的优点是可以指meshwindow。
一个取1,另一个取10,(不管是相对密度,还是绝对尺寸)多了就不保险了。
需用手工划分,deform的缺省网格划分方式还是不错的,它已考虑了变形,温度分布及边界的影响。
先把划分好的网格(你不满意的)生成数据库,退出再打开,然后重新生成一下网格就ok 了。
也就是说生成完整的database文件,退出程序,再启动打开这个文件,重新mesh——detailedsetting——surfacemesh——solidmesh。
3.DEFORM-3D則用boolean作切削4.改变底色要从deform拷贝出底色为白色的图形?默认的是黑色的!————在显示屏幕点击右键,好像有一项theme的选项,点击它后就有菜单弹出,就可以改变底色了5.deform可以的!在stat evariable中得type中选择linecontour就可以了!后处理中选择color\linecouter将所有颜色改为黑色另外,再将底色改为白色就可以了。
6.deform3d怎样分析锻造缺陷折叠可以看网格,断裂就是看损伤,如果设置断裂和删除准则,可以直接看到断裂元7.有没有人用过deform工件材料-AISI1045(45#钢),设置Cockroft&Latham破坏准则的临界值=0.38.再点右边按钮9.华氏度F=32+(9/5)乘以摄氏度C10.Elastic-viscoplasticity——弹-黏塑性热力耦合——thermal force coupling11.Material data:Regular:phrasematerial(有物相转化)Mixture:混合材料Elasticdata:是用来分析弹性材料和弹塑性材料的。
1、后处理中“Date Extraction”按钮里面可以提取每个步数的数据。
2、如果是模拟的运动是复杂的多阶段运动,则可以分别设置第一个阶段的运动,模拟完成之后再进入前处理,设置第二阶段的运动。
以此类推。
3、要在DEFORM上实现需在凹模上加一频率为10HZ,振幅为1MM的振动可以通过在speed 中的functions of time来设置。
4、deform3d用的.pat文件的格式:关键点个数关键点编号 x y z坐标..流线条数 3(这里的3尚未明白是代表什么,哪位达人弄清楚后告诉一下)流线编号流线穿过的关键点个数流线中穿过的关键点编号表(在同一行中,不要换行,点号之间空格数不限).5、deform做冲压很不合适,用dynaform或LS-DYNA(都是dyna求解,一样的)做好些,我有切身的体会~其一是做冲压,坯料得用弹塑性,这在deform中会导致收敛不成功或是很慢,用dyna求解的话,不用担心收敛的问题,做一次模拟的速度要快N多。
其二是材料问题,坯料用弹塑性,得到的应力应变曲线不能简化成刚塑性曲线,所以不知道以那个点为切入点输入。
有点不好就是dyna计算冲压和回弹是分开计算的,所以会麻烦点。
冲压用dyna或dynaform 分析较好,deform不适合分析冲压(薄板)。
6、Deform的磨损使用的是Archard模型,这个帮助文件里有具体的操作过程。
7、冲头完成先向下运动,当达到一定距离后,再做旋转运动:如何设置问题如下可以分两步走第一步先模拟冲头向下走,设计冲头运动为向下走,运行,后处理查看第一步是否已经达到目的第二步将从之前已经运算好的文件再进行前处理,选择你要的那一步,在进行设计,将冲头设为旋转运动,再进行运算)再查看,应该就是你想要的结果8、冲头完成先向下运动,当达到一定力,再做旋转运动要实现它,有两种办法:在deform中最简单的一种是:分两步进行:第一步,movement速度控制,向下运动,simulation controls中stop中设置主模的最大载荷,即到该载荷后模具停止运动;第二步,将第一步算完的db文件重新设置旋转运动,计算比较复杂一点办法,编写movement用户子程序,子程序可以满足你希望的运动方式!9、在材料参数设定中的Advanced中,有Body Force设定比重。
The information in this document is subject to change without notice and does not represent a commitment on the part of Native Instruments GmbH. The software described by this docu-ment is subject to a License Agreement and may not be copied to other media. No part of this publication may be copied, reproduced or otherwise transmitted or recorded, for any purpose, without prior written permission by Native Instruments GmbH, hereinafter referred to as Native Instruments.“Native Instruments”, “NI” and associated logos are (registered) trademarks of Native Instru-ments GmbH.ASIO, VST, HALion and Cubase are registered trademarks of Steinberg Media Technologies GmbH.All other product and company names are trademarks™ or registered® trademarks of their re-spective holders. Use of them does not imply any affiliation with or endorsement by them.Document authored by: David Gover and Nico Sidi.Software version: 2.8 (02/2019)Hardware version: MASCHINE MK3Special thanks to the Beta Test Team, who were invaluable not just in tracking down bugs, but in making this a better product.NATIVE INSTRUMENTS GmbH Schlesische Str. 29-30D-10997 Berlin Germanywww.native-instruments.de NATIVE INSTRUMENTS North America, Inc. 6725 Sunset Boulevard5th FloorLos Angeles, CA 90028USANATIVE INSTRUMENTS K.K.YO Building 3FJingumae 6-7-15, Shibuya-ku, Tokyo 150-0001Japanwww.native-instruments.co.jp NATIVE INSTRUMENTS UK Limited 18 Phipp StreetLondon EC2A 4NUUKNATIVE INSTRUMENTS FRANCE SARL 113 Rue Saint-Maur75011 ParisFrance SHENZHEN NATIVE INSTRUMENTS COMPANY Limited 5F, Shenzhen Zimao Center111 Taizi Road, Nanshan District, Shenzhen, GuangdongChina© NATIVE INSTRUMENTS GmbH, 2019. All rights reserved.Table of Contents1Welcome to MASCHINE (25)1.1MASCHINE Documentation (26)1.2Document Conventions (27)1.3New Features in MASCHINE 2.8 (29)1.4New Features in MASCHINE 2.7.10 (31)1.5New Features in MASCHINE 2.7.8 (31)1.6New Features in MASCHINE 2.7.7 (32)1.7New Features in MASCHINE 2.7.4 (33)1.8New Features in MASCHINE 2.7.3 (36)2Quick Reference (38)2.1Using Your Controller (38)2.1.1Controller Modes and Mode Pinning (38)2.1.2Controlling the Software Views from Your Controller (40)2.2MASCHINE Project Overview (43)2.2.1Sound Content (44)2.2.2Arrangement (45)2.3MASCHINE Hardware Overview (48)2.3.1MASCHINE Hardware Overview (48)2.3.1.1Control Section (50)2.3.1.2Edit Section (53)2.3.1.3Performance Section (54)2.3.1.4Group Section (56)2.3.1.5Transport Section (56)2.3.1.6Pad Section (58)2.3.1.7Rear Panel (63)2.4MASCHINE Software Overview (65)2.4.1Header (66)2.4.2Browser (68)2.4.3Arranger (70)2.4.4Control Area (73)2.4.5Pattern Editor (74)3Basic Concepts (76)3.1Important Names and Concepts (76)3.2Adjusting the MASCHINE User Interface (79)3.2.1Adjusting the Size of the Interface (79)3.2.2Switching between Ideas View and Song View (80)3.2.3Showing/Hiding the Browser (81)3.2.4Showing/Hiding the Control Lane (81)3.3Common Operations (82)3.3.1Using the 4-Directional Push Encoder (82)3.3.2Pinning a Mode on the Controller (83)3.3.3Adjusting Volume, Swing, and Tempo (84)3.3.4Undo/Redo (87)3.3.5List Overlay for Selectors (89)3.3.6Zoom and Scroll Overlays (90)3.3.7Focusing on a Group or a Sound (91)3.3.8Switching Between the Master, Group, and Sound Level (96)3.3.9Navigating Channel Properties, Plug-ins, and Parameter Pages in the Control Area.973.3.9.1Extended Navigate Mode on Your Controller (102)3.3.10Navigating the Software Using the Controller (105)3.3.11Using Two or More Hardware Controllers (106)3.3.12Touch Auto-Write Option (108)3.4Native Kontrol Standard (110)3.5Stand-Alone and Plug-in Mode (111)3.5.1Differences between Stand-Alone and Plug-in Mode (112)3.5.2Switching Instances (113)3.5.3Controlling Various Instances with Different Controllers (114)3.6Host Integration (114)3.6.1Setting up Host Integration (115)3.6.1.1Setting up Ableton Live (macOS) (115)3.6.1.2Setting up Ableton Live (Windows) (116)3.6.1.3Setting up Apple Logic Pro X (116)3.6.2Integration with Ableton Live (117)3.6.3Integration with Apple Logic Pro X (119)3.7Preferences (120)3.7.1Preferences – General Page (121)3.7.2Preferences – Audio Page (126)3.7.3Preferences – MIDI Page (130)3.7.4Preferences – Default Page (133)3.7.5Preferences – Library Page (137)3.7.6Preferences – Plug-ins Page (145)3.7.7Preferences – Hardware Page (150)3.7.8Preferences – Colors Page (154)3.8Integrating MASCHINE into a MIDI Setup (156)3.8.1Connecting External MIDI Equipment (156)3.8.2Sync to External MIDI Clock (157)3.8.3Send MIDI Clock (158)3.9Syncing MASCHINE using Ableton Link (159)3.9.1Connecting to a Network (159)3.9.2Joining and Leaving a Link Session (159)3.10Using a Pedal with the MASCHINE Controller (160)3.11File Management on the MASCHINE Controller (161)4Browser (163)4.1Browser Basics (163)4.1.1The MASCHINE Library (163)4.1.2Browsing the Library vs. Browsing Your Hard Disks (164)4.2Searching and Loading Files from the Library (165)4.2.1Overview of the Library Pane (165)4.2.2Selecting or Loading a Product and Selecting a Bank from the Browser (170)4.2.2.1[MK3] Browsing by Product Category Using the Controller (174)4.2.2.2[MK3] Browsing by Product Vendor Using the Controller (174)4.2.3Selecting a Product Category, a Product, a Bank, and a Sub-Bank (175)4.2.3.1Selecting a Product Category, a Product, a Bank, and a Sub-Bank on theController (179)4.2.4Selecting a File Type (180)4.2.5Choosing Between Factory and User Content (181)4.2.6Selecting Type and Character Tags (182)4.2.7List and Tag Overlays in the Browser (186)4.2.8Performing a Text Search (188)4.2.9Loading a File from the Result List (188)4.3Additional Browsing Tools (193)4.3.1Loading the Selected Files Automatically (193)4.3.2Auditioning Instrument Presets (195)4.3.3Auditioning Samples (196)4.3.4Loading Groups with Patterns (197)4.3.5Loading Groups with Routing (198)4.3.6Displaying File Information (198)4.4Using Favorites in the Browser (199)4.5Editing the Files’ Tags and Properties (203)4.5.1Attribute Editor Basics (203)4.5.2The Bank Page (205)4.5.3The Types and Characters Pages (205)4.5.4The Properties Page (208)4.6Loading and Importing Files from Your File System (209)4.6.1Overview of the FILES Pane (209)4.6.2Using Favorites (211)4.6.3Using the Location Bar (212)4.6.4Navigating to Recent Locations (213)4.6.5Using the Result List (214)4.6.6Importing Files to the MASCHINE Library (217)4.7Locating Missing Samples (219)4.8Using Quick Browse (221)5Managing Sounds, Groups, and Your Project (225)5.1Overview of the Sounds, Groups, and Master (225)5.1.1The Sound, Group, and Master Channels (226)5.1.2Similarities and Differences in Handling Sounds and Groups (227)5.1.3Selecting Multiple Sounds or Groups (228)5.2Managing Sounds (233)5.2.1Loading Sounds (235)5.2.2Pre-listening to Sounds (236)5.2.3Renaming Sound Slots (237)5.2.4Changing the Sound’s Color (237)5.2.5Saving Sounds (239)5.2.6Copying and Pasting Sounds (241)5.2.7Moving Sounds (244)5.2.8Resetting Sound Slots (245)5.3Managing Groups (247)5.3.1Creating Groups (248)5.3.2Loading Groups (249)5.3.3Renaming Groups (251)5.3.4Changing the Group’s Color (251)5.3.5Saving Groups (253)5.3.6Copying and Pasting Groups (255)5.3.7Reordering Groups (258)5.3.8Deleting Groups (259)5.4Exporting MASCHINE Objects and Audio (260)5.4.1Saving a Group with its Samples (261)5.4.2Saving a Project with its Samples (262)5.4.3Exporting Audio (264)5.5Importing Third-Party File Formats (270)5.5.1Loading REX Files into Sound Slots (270)5.5.2Importing MPC Programs to Groups (271)6Playing on the Controller (275)6.1Adjusting the Pads (275)6.1.1The Pad View in the Software (275)6.1.2Choosing a Pad Input Mode (277)6.1.3Adjusting the Base Key (280)6.1.4Using Choke Groups (282)6.1.5Using Link Groups (284)6.2Adjusting the Key, Choke, and Link Parameters for Multiple Sounds (286)6.3Playing Tools (287)6.3.1Mute and Solo (288)6.3.2Choke All Notes (292)6.3.3Groove (293)6.3.4Level, Tempo, Tune, and Groove Shortcuts on Your Controller (295)6.3.5Tap Tempo (299)6.4Performance Features (300)6.4.1Overview of the Perform Features (300)6.4.2Selecting a Scale and Creating Chords (303)6.4.3Scale and Chord Parameters (303)6.4.4Creating Arpeggios and Repeated Notes (316)6.4.5Swing on Note Repeat / Arp Output (321)6.5Using Lock Snapshots (322)6.5.1Creating a Lock Snapshot (322)6.5.2Using Extended Lock (323)6.5.3Updating a Lock Snapshot (323)6.5.4Recalling a Lock Snapshot (324)6.5.5Morphing Between Lock Snapshots (324)6.5.6Deleting a Lock Snapshot (325)6.5.7Triggering Lock Snapshots via MIDI (326)6.6Using the Smart Strip (327)6.6.1Pitch Mode (328)6.6.2Modulation Mode (328)6.6.3Perform Mode (328)6.6.4Notes Mode (329)7Working with Plug-ins (330)7.1Plug-in Overview (330)7.1.1Plug-in Basics (330)7.1.2First Plug-in Slot of Sounds: Choosing the Sound’s Role (334)7.1.3Loading, Removing, and Replacing a Plug-in (335)7.1.3.1Browser Plug-in Slot Selection (341)7.1.4Adjusting the Plug-in Parameters (344)7.1.5Bypassing Plug-in Slots (344)7.1.6Using Side-Chain (346)7.1.7Moving Plug-ins (346)7.1.8Alternative: the Plug-in Strip (348)7.1.9Saving and Recalling Plug-in Presets (348)7.1.9.1Saving Plug-in Presets (349)7.1.9.2Recalling Plug-in Presets (350)7.1.9.3Removing a Default Plug-in Preset (351)7.2The Sampler Plug-in (352)7.2.1Page 1: Voice Settings / Engine (354)7.2.2Page 2: Pitch / Envelope (356)7.2.3Page 3: FX / Filter (359)7.2.4Page 4: Modulation (361)7.2.5Page 5: LFO (363)7.2.6Page 6: Velocity / Modwheel (365)7.3Using Native Instruments and External Plug-ins (367)7.3.1Opening/Closing Plug-in Windows (367)7.3.2Using the VST/AU Plug-in Parameters (370)7.3.3Setting Up Your Own Parameter Pages (371)7.3.4Using VST/AU Plug-in Presets (376)7.3.5Multiple-Output Plug-ins and Multitimbral Plug-ins (378)8Using the Audio Plug-in (380)8.1Loading a Loop into the Audio Plug-in (384)8.2Editing Audio in the Audio Plug-in (385)8.3Using Loop Mode (386)8.4Using Gate Mode (388)9Using the Drumsynths (390)9.1Drumsynths – General Handling (391)9.1.1Engines: Many Different Drums per Drumsynth (391)9.1.2Common Parameter Organization (391)9.1.3Shared Parameters (394)9.1.4Various Velocity Responses (394)9.1.5Pitch Range, Tuning, and MIDI Notes (394)9.2The Kicks (395)9.2.1Kick – Sub (397)9.2.2Kick – Tronic (399)9.2.3Kick – Dusty (402)9.2.4Kick – Grit (403)9.2.5Kick – Rasper (406)9.2.6Kick – Snappy (407)9.2.7Kick – Bold (409)9.2.8Kick – Maple (411)9.2.9Kick – Push (412)9.3The Snares (414)9.3.1Snare – Volt (416)9.3.2Snare – Bit (418)9.3.3Snare – Pow (420)9.3.4Snare – Sharp (421)9.3.5Snare – Airy (423)9.3.6Snare – Vintage (425)9.3.7Snare – Chrome (427)9.3.8Snare – Iron (429)9.3.9Snare – Clap (431)9.3.10Snare – Breaker (433)9.4The Hi-hats (435)9.4.1Hi-hat – Silver (436)9.4.2Hi-hat – Circuit (438)9.4.3Hi-hat – Memory (440)9.4.4Hi-hat – Hybrid (442)9.4.5Creating a Pattern with Closed and Open Hi-hats (444)9.5The Toms (445)9.5.1Tom – Tronic (447)9.5.2Tom – Fractal (449)9.5.3Tom – Floor (453)9.5.4Tom – High (455)9.6The Percussions (456)9.6.1Percussion – Fractal (458)9.6.2Percussion – Kettle (461)9.6.3Percussion – Shaker (463)9.7The Cymbals (467)9.7.1Cymbal – Crash (469)9.7.2Cymbal – Ride (471)10Using the Bass Synth (474)10.1Bass Synth – General Handling (475)10.1.1Parameter Organization (475)10.1.2Bass Synth Parameters (477)11Working with Patterns (479)11.1Pattern Basics (479)11.1.1Pattern Editor Overview (480)11.1.2Navigating the Event Area (486)11.1.3Following the Playback Position in the Pattern (488)11.1.4Jumping to Another Playback Position in the Pattern (489)11.1.5Group View and Keyboard View (491)11.1.6Adjusting the Arrange Grid and the Pattern Length (493)11.1.7Adjusting the Step Grid and the Nudge Grid (497)11.2Recording Patterns in Real Time (501)11.2.1Recording Your Patterns Live (501)11.2.2The Record Prepare Mode (504)11.2.3Using the Metronome (505)11.2.4Recording with Count-in (506)11.2.5Quantizing while Recording (508)11.3Recording Patterns with the Step Sequencer (508)11.3.1Step Mode Basics (508)11.3.2Editing Events in Step Mode (511)11.3.3Recording Modulation in Step Mode (513)11.4Editing Events (514)11.4.1Editing Events with the Mouse: an Overview (514)11.4.2Creating Events/Notes (517)11.4.3Selecting Events/Notes (518)11.4.4Editing Selected Events/Notes (526)11.4.5Deleting Events/Notes (532)11.4.6Cut, Copy, and Paste Events/Notes (535)11.4.7Quantizing Events/Notes (538)11.4.8Quantization While Playing (540)11.4.9Doubling a Pattern (541)11.4.10Adding Variation to Patterns (541)11.5Recording and Editing Modulation (546)11.5.1Which Parameters Are Modulatable? (547)11.5.2Recording Modulation (548)11.5.3Creating and Editing Modulation in the Control Lane (550)11.6Creating MIDI Tracks from Scratch in MASCHINE (555)11.7Managing Patterns (557)11.7.1The Pattern Manager and Pattern Mode (558)11.7.2Selecting Patterns and Pattern Banks (560)11.7.3Creating Patterns (563)11.7.4Deleting Patterns (565)11.7.5Creating and Deleting Pattern Banks (566)11.7.6Naming Patterns (568)11.7.7Changing the Pattern’s Color (570)11.7.8Duplicating, Copying, and Pasting Patterns (571)11.7.9Moving Patterns (574)11.7.10Adjusting Pattern Length in Fine Increments (575)11.8Importing/Exporting Audio and MIDI to/from Patterns (576)11.8.1Exporting Audio from Patterns (576)11.8.2Exporting MIDI from Patterns (577)11.8.3Importing MIDI to Patterns (580)12Audio Routing, Remote Control, and Macro Controls (589)12.1Audio Routing in MASCHINE (590)12.1.1Sending External Audio to Sounds (591)12.1.2Configuring the Main Output of Sounds and Groups (596)12.1.3Setting Up Auxiliary Outputs for Sounds and Groups (601)12.1.4Configuring the Master and Cue Outputs of MASCHINE (605)12.1.5Mono Audio Inputs (610)12.1.5.1Configuring External Inputs for Sounds in Mix View (611)12.2Using MIDI Control and Host Automation (614)12.2.1Triggering Sounds via MIDI Notes (615)12.2.2Triggering Scenes via MIDI (622)12.2.3Controlling Parameters via MIDI and Host Automation (623)12.2.4Selecting VST/AU Plug-in Presets via MIDI Program Change (631)12.2.5Sending MIDI from Sounds (632)12.3Creating Custom Sets of Parameters with the Macro Controls (636)12.3.1Macro Control Overview (637)12.3.2Assigning Macro Controls Using the Software (638)12.3.3Assigning Macro Controls Using the Controller (644)13Controlling Your Mix (646)13.1Mix View Basics (646)13.1.1Switching between Arrange View and Mix View (646)13.1.2Mix View Elements (647)13.2The Mixer (649)13.2.1Displaying Groups vs. Displaying Sounds (650)13.2.2Adjusting the Mixer Layout (652)13.2.3Selecting Channel Strips (653)13.2.4Managing Your Channels in the Mixer (654)13.2.5Adjusting Settings in the Channel Strips (656)13.2.6Using the Cue Bus (660)13.3The Plug-in Chain (662)13.4The Plug-in Strip (663)13.4.1The Plug-in Header (665)13.4.2Panels for Drumsynths and Internal Effects (667)13.4.3Panel for the Sampler (668)13.4.4Custom Panels for Native Instruments Plug-ins (671)13.4.5Undocking a Plug-in Panel (Native Instruments and External Plug-ins Only) (675)13.5Controlling Your Mix from the Controller (677)13.5.1Navigating Your Channels in Mix Mode (678)13.5.2Adjusting the Level and Pan in Mix Mode (679)13.5.3Mute and Solo in Mix Mode (680)13.5.4Plug-in Icons in Mix Mode (680)14Using Effects (681)14.1Applying Effects to a Sound, a Group or the Master (681)14.1.1Adding an Effect (681)14.1.2Other Operations on Effects (690)14.1.3Using the Side-Chain Input (692)14.2Applying Effects to External Audio (695)14.2.1Step 1: Configure MASCHINE Audio Inputs (695)14.2.2Step 2: Set up a Sound to Receive the External Input (698)14.2.3Step 3: Load an Effect to Process an Input (700)14.3Creating a Send Effect (701)14.3.1Step 1: Set Up a Sound or Group as Send Effect (702)14.3.2Step 2: Route Audio to the Send Effect (706)14.3.3 A Few Notes on Send Effects (708)14.4Creating Multi-Effects (709)15Effect Reference (712)15.1Dynamics (713)15.1.1Compressor (713)15.1.2Gate (717)15.1.3Transient Master (721)15.1.4Limiter (723)15.1.5Maximizer (727)15.2Filtering Effects (730)15.2.1EQ (730)15.2.2Filter (733)15.2.3Cabinet (737)15.3Modulation Effects (738)15.3.1Chorus (738)15.3.2Flanger (740)15.3.3FM (742)15.3.4Freq Shifter (743)15.3.5Phaser (745)15.4Spatial and Reverb Effects (747)15.4.1Ice (747)15.4.2Metaverb (749)15.4.3Reflex (750)15.4.4Reverb (Legacy) (752)15.4.5Reverb (754)15.4.5.1Reverb Room (754)15.4.5.2Reverb Hall (757)15.4.5.3Plate Reverb (760)15.5Delays (762)15.5.1Beat Delay (762)15.5.2Grain Delay (765)15.5.3Grain Stretch (767)15.5.4Resochord (769)15.6Distortion Effects (771)15.6.1Distortion (771)15.6.2Lofi (774)15.6.3Saturator (775)15.7Perform FX (779)15.7.1Filter (780)15.7.2Flanger (782)15.7.3Burst Echo (785)15.7.4Reso Echo (787)15.7.5Ring (790)15.7.6Stutter (792)15.7.7Tremolo (795)15.7.8Scratcher (798)16Working with the Arranger (801)16.1Arranger Basics (801)16.1.1Navigating Song View (804)16.1.2Following the Playback Position in Your Project (806)16.1.3Performing with Scenes and Sections using the Pads (807)16.2Using Ideas View (811)16.2.1Scene Overview (811)16.2.2Creating Scenes (813)16.2.3Assigning and Removing Patterns (813)16.2.4Selecting Scenes (817)16.2.5Deleting Scenes (818)16.2.6Creating and Deleting Scene Banks (820)16.2.7Clearing Scenes (820)16.2.8Duplicating Scenes (821)16.2.9Reordering Scenes (822)16.2.10Making Scenes Unique (824)16.2.11Appending Scenes to Arrangement (825)16.2.12Naming Scenes (826)16.2.13Changing the Color of a Scene (827)16.3Using Song View (828)16.3.1Section Management Overview (828)16.3.2Creating Sections (833)16.3.3Assigning a Scene to a Section (834)16.3.4Selecting Sections and Section Banks (835)16.3.5Reorganizing Sections (839)16.3.6Adjusting the Length of a Section (840)16.3.6.1Adjusting the Length of a Section Using the Software (841)16.3.6.2Adjusting the Length of a Section Using the Controller (843)16.3.7Clearing a Pattern in Song View (843)16.3.8Duplicating Sections (844)16.3.8.1Making Sections Unique (845)16.3.9Removing Sections (846)16.3.10Renaming Scenes (848)16.3.11Clearing Sections (849)16.3.12Creating and Deleting Section Banks (850)16.3.13Working with Patterns in Song view (850)16.3.13.1Creating a Pattern in Song View (850)16.3.13.2Selecting a Pattern in Song View (850)16.3.13.3Clearing a Pattern in Song View (851)16.3.13.4Renaming a Pattern in Song View (851)16.3.13.5Coloring a Pattern in Song View (851)16.3.13.6Removing a Pattern in Song View (852)16.3.13.7Duplicating a Pattern in Song View (852)16.3.14Enabling Auto Length (852)16.3.15Looping (853)16.3.15.1Setting the Loop Range in the Software (854)16.4Playing with Sections (855)16.4.1Jumping to another Playback Position in Your Project (855)16.5Triggering Sections or Scenes via MIDI (856)16.6The Arrange Grid (858)16.7Quick Grid (860)17Sampling and Sample Mapping (862)17.1Opening the Sample Editor (862)17.2Recording Audio (863)17.2.1Opening the Record Page (863)17.2.2Selecting the Source and the Recording Mode (865)17.2.3Arming, Starting, and Stopping the Recording (868)17.2.5Using the Footswitch for Recording Audio (871)17.2.6Checking Your Recordings (872)17.2.7Location and Name of Your Recorded Samples (876)17.3Editing a Sample (876)17.3.1Using the Edit Page (877)17.3.2Audio Editing Functions (882)17.4Slicing a Sample (890)17.4.1Opening the Slice Page (891)17.4.2Adjusting the Slicing Settings (893)17.4.3Live Slicing (898)17.4.3.1Live Slicing Using the Controller (898)17.4.3.2Delete All Slices (899)17.4.4Manually Adjusting Your Slices (899)17.4.5Applying the Slicing (906)17.5Mapping Samples to Zones (912)17.5.1Opening the Zone Page (912)17.5.2Zone Page Overview (913)17.5.3Selecting and Managing Zones in the Zone List (915)17.5.4Selecting and Editing Zones in the Map View (920)17.5.5Editing Zones in the Sample View (924)17.5.6Adjusting the Zone Settings (927)17.5.7Adding Samples to the Sample Map (934)18Appendix: Tips for Playing Live (937)18.1Preparations (937)18.1.1Focus on the Hardware (937)18.1.2Customize the Pads of the Hardware (937)18.1.3Check Your CPU Power Before Playing (937)18.1.4Name and Color Your Groups, Patterns, Sounds and Scenes (938)18.1.5Consider Using a Limiter on Your Master (938)18.1.6Hook Up Your Other Gear and Sync It with MIDI Clock (938)18.1.7Improvise (938)18.2Basic Techniques (938)18.2.1Use Mute and Solo (938)18.2.2Use Scene Mode and Tweak the Loop Range (939)18.2.3Create Variations of Your Drum Patterns in the Step Sequencer (939)18.2.4Use Note Repeat (939)18.2.5Set Up Your Own Multi-effect Groups and Automate Them (939)18.3Special Tricks (940)18.3.1Changing Pattern Length for Variation (940)18.3.2Using Loops to Cycle Through Samples (940)18.3.3Using Loops to Cycle Through Samples (940)18.3.4Load Long Audio Files and Play with the Start Point (940)19Troubleshooting (941)19.1Knowledge Base (941)19.2Technical Support (941)19.3Registration Support (942)19.4User Forum (942)20Glossary (943)Index (951)1Welcome to MASCHINEThank you for buying MASCHINE!MASCHINE is a groove production studio that implements the familiar working style of classi-cal groove boxes along with the advantages of a computer based system. MASCHINE is ideal for making music live, as well as in the studio. It’s the hands-on aspect of a dedicated instru-ment, the MASCHINE hardware controller, united with the advanced editing features of the MASCHINE software.Creating beats is often not very intuitive with a computer, but using the MASCHINE hardware controller to do it makes it easy and fun. You can tap in freely with the pads or use Note Re-peat to jam along. Alternatively, build your beats using the step sequencer just as in classic drum machines.Patterns can be intuitively combined and rearranged on the fly to form larger ideas. You can try out several different versions of a song without ever having to stop the music.Since you can integrate it into any sequencer that supports VST, AU, or AAX plug-ins, you can reap the benefits in almost any software setup, or use it as a stand-alone application. You can sample your own material, slice loops and rearrange them easily.However, MASCHINE is a lot more than an ordinary groovebox or sampler: it comes with an inspiring 7-gigabyte library, and a sophisticated, yet easy to use tag-based Browser to give you instant access to the sounds you are looking for.What’s more, MASCHINE provides lots of options for manipulating your sounds via internal ef-fects and other sound-shaping possibilities. You can also control external MIDI hardware and 3rd-party software with the MASCHINE hardware controller, while customizing the functions of the pads, knobs and buttons according to your needs utilizing the included Controller Editor application. We hope you enjoy this fantastic instrument as much as we do. Now let’s get go-ing!—The MASCHINE team at Native Instruments.MASCHINE Documentation1.1MASCHINE DocumentationNative Instruments provide many information sources regarding MASCHINE. The main docu-ments should be read in the following sequence:1.MASCHINE Getting Started: This document provides a practical approach to MASCHINE viaa set of tutorials covering easy and more advanced tasks in order to help you familiarizeyourself with MASCHINE.2.MASCHINE Manual (this document): The MASCHINE Manual provides you with a compre-hensive description of all MASCHINE software and hardware features.Additional documentation sources provide you with details on more specific topics:▪Controller Editor Manual: Besides using your MASCHINE hardware controller together withits dedicated MASCHINE software, you can also use it as a powerful and highly versatileMIDI controller to pilot any other MIDI-capable application or device. This is made possibleby the Controller Editor software, an application that allows you to precisely define all MIDIassignments for your MASCHINE controller. The Controller Editor was installed during theMASCHINE installation procedure. For more information on this, please refer to the Con-troller Editor Manual available as a PDF file via the Help menu of Controller Editor.▪Online Support Videos: You can find a number of support videos on The Official Native In-struments Support Channel under the following URL: https:///NIsupport-EN. We recommend that you follow along with these instructions while the respective ap-plication is running on your computer.Other Online Resources:If you are experiencing problems related to your Native Instruments product that the supplied documentation does not cover, there are several ways of getting help:▪Knowledge Base▪User Forum▪Technical Support▪Registration SupportYou will find more information on these subjects in the chapter Troubleshooting.1.2Document ConventionsThis section introduces you to the signage and text highlighting used in this manual. This man-ual uses particular formatting to point out special facts and to warn you of potential issues. The icons introducing these notes let you see what kind of information is to be expected:This document uses particular formatting to point out special facts and to warn you of poten-tial issues. The icons introducing the following notes let you see what kind of information can be expected:Furthermore, the following formatting is used:▪Text appearing in (drop-down) menus (such as Open…, Save as… etc.) in the software and paths to locations on your hard disk or other storage devices is printed in italics.▪Text appearing elsewhere (labels of buttons, controls, text next to checkboxes etc.) in the software is printed in blue. Whenever you see this formatting applied, you will find the same text appearing somewhere on the screen.▪Text appearing on the displays of the controller is printed in light grey. Whenever you see this formatting applied, you will find the same text on a controller display.▪Text appearing on labels of the hardware controller is printed in orange. Whenever you see this formatting applied, you will find the same text on the controller.▪Important names and concepts are printed in bold.▪References to keys on your computer’s keyboard you’ll find put in square brackets (e.g.,“Press [Shift] + [Enter]”).►Single instructions are introduced by this play button type arrow.→Results of actions are introduced by this smaller arrow.Naming ConventionThroughout the documentation we will refer to MASCHINE controller (or just controller) as the hardware controller and MASCHINE software as the software installed on your computer.The term “effect” will sometimes be abbreviated as “FX” when referring to elements in the MA-SCHINE software and hardware. These terms have the same meaning.Button Combinations and Shortcuts on Your ControllerMost instructions will use the “+” sign to indicate buttons (or buttons and pads) that must be pressed simultaneously, starting with the button indicated first. E.g., an instruction such as:“Press SHIFT + PLAY”means:1.Press and hold SHIFT.2.While holding SHIFT, press PLAY and release it.3.Release SHIFT.Unlabeled Buttons on the ControllerThe buttons and knobs above and below the displays on your MASCHINE controller do not have labels.。
1.我用 deform 模拟轧制过程时,推进块(pusher)和轧件( slab)再整个运动过程中一直粘在一同,我设置多个轧辊速度都不可以使其分别,为何?请能手指点?(1)你给推进块设置一个速度时间曲线就能够了吧,让它在某一时间停下来,不就分别了的一些参数跟我们传统理工科的习惯很不一致,致使建模、模拟的时候常常会莫名的犯错,并且很难找出问题出在哪里!比方: (1)界限条件设置( BDRY)中的压强( pressure)——依据我们的习惯,施加在面上的应为压应力(由于是压强嘛),假如想设置为拉应力的话,要取负值;可在 DEFORM中倒是相反的。
不信你建个简单的立方体模型,上下边加压(正的值),模拟结果很显然是物体被拉长了! (2)旋转方向设置——假如从旋转轴的箭头方去看,我们往常以顺时针为正;但是在 DEFORM中是反过来的!并且有的时候你选了轴,可在用系统选定旋转中心点后(俗称小绿帽),刚才选好的轴会改正,原来你选的 -X,它有时会变为 +X(很奇异!),出现这类状况只好经过正负值的设定来改变旋转方向了。
特别是在轧制、旋压加工的时候,千万要看准工作辊旋转方向! (3)界限条件设置( BDRY)中的力( force)——这地方的正负值只是是决定方向的,更值得注意的地方是:有时你设置的拉力或张力在生成 DB 文件的时候不写入的(可能是 DEFORM有个允许范围,你设置的值溢出了),也就是说你的界限力是没有加上去的,模拟的时候为零。
还要注意,你输入的力值是加在每个所选的节点上的,举例:你想在面上加载100kN 的力,面上节点数为100,这时你在力值的输入窗口所写的值应为1kN。
近似的细节问题还有好多,一不当心或稍有不熟习便可能出问题,并且很难排查出,最伤人了!(1)正应力—拉、负应力—压是知识呀;旋转方向的鉴别采纳右旋定章,即右手握住旋转轴,大拇指挺直与旋转轴正向一致。
3.我用 Dform 3D 进行轧制模拟,开初用稳态ALE模型,但是轧件歪曲很严重,计算很快就停止了。
adams仿真报错解读
Adams仿真报错可能有多种原因,需要具体情况具体分析。
一
般来说,Adams仿真报错可能是由于模型设置问题、初始条件问题、边界条件问题、数值稳定性问题等引起的。
下面我将从几个可能的
原因进行解读。
首先,模型设置问题可能导致Adams仿真报错。
在建立模型时,可能存在参数设置错误、约束条件错误、初始条件设定不合理等问题,这些都可能导致仿真报错。
解决这类问题需要仔细检查模型的
各项设置,确保其符合实际物理情况。
其次,初始条件问题也可能导致Adams仿真报错。
如果初始条
件设置不合理,例如初始速度过大、初始位移设定错误等,都可能
导致仿真报错。
解决这类问题需要对初始条件进行仔细检查和调整。
另外,边界条件问题也是常见的导致Adams仿真报错的原因之一。
如果边界条件设置不合理,例如边界约束条件错误、边界载荷
设定错误等,都可能导致仿真报错。
解决这类问题需要对边界条件
进行仔细检查和调整。
此外,数值稳定性问题也可能导致Adams仿真报错。
在仿真过程中,数值稳定性是一个非常重要的问题,如果数值积分步长选择不合理、数值积分算法选择不当等,都可能导致仿真报错。
解决这类问题需要对数值积分参数进行仔细调整。
综上所述,Adams仿真报错可能由多种原因引起,需要具体情况具体分析。
在解决报错问题时,需要对模型设置、初始条件、边界条件和数值稳定性等方面进行全面的检查和调整,以确保仿真能够顺利进行。
希望以上解读能帮助你更好地理解Adams仿真报错问题。
DEFORM相关模块介绍DEFORM相关模块介绍1、DEFORM-2D在同⼀集成环境内综合建模、成形、热传导和成形设备特性等,主要⽤来分析成形过程中平⾯应变和轴对称等⼆维材料流动,适⽤于热、冷、温成形,⼴泛⽤于分析锻造、挤压、拉拔、开坯、镦锻和许多其他⾦属成形过程,提供极有价值的⼯艺分析数据,如:材料流动、模具填充、锻造负荷、模具应⼒和缺陷产⽣发展情况等。
包含了DEFORM的核⼼功能。
⽀持PC平台的Windows XP/Vista系列操作系统,⽀持UNIX/LINUX系统。
2、DEFORM-3D在同⼀集成环境内综合建模、成形、热传导和成形设备特性等,主要⽤于分析各种复杂⾦属成形过程中三维材料流动情况,适⽤于热、冷、温成形,提供极有价值的⼯艺分析数据,如:材料流动、模具填充、锻造负荷、模具应⼒和缺陷产⽣发展情况等,DEFORM-3D功能与2D类似,但它处理的对象为复杂的三维零件、模具等。
⽀持PC平台的Windows XP/Vista 系列操作系统,⽀持UNIX/LINUX系统。
3、DEFORM-F2集成前处理、求解器和后处理于⼀体的独⽴分析系统,具有向导式的操作界⾯,使得⽤户可以⽅便地建⽴模型并完成分析过程。
主要⽤于典型的平⾯应变和轴对称等⼆维材料流动的冷、温、热成形以及传热过程分析。
相对于DEFORM-2D,DEFORM-F2更容易使⽤,⽤户能够很轻松完成前处理设置。
但是软件功能上有⼀些限制,⽐如:⽀持材料本构类型相对于DEFORM-2D较少,不⽀持⽤户⼦程序,不能设置复杂的边界条件,不能配置ADD-ON的模块,只能⼿动设置多步成形等等。
在PC平台的Windows XP/Vista系列操作系统下使⽤。
4、DEFORM-F3与DEFORM-F2类似,DEFORM-F3为3D的简化版本。
相对于DEFORM-3D,DEFORM-F3更容易使⽤,主要⽤于分析各种复杂⾦属成形过程中三维材料流动情况,对于典型成形过程,具有向导化的操作界⾯,⽤户能够很轻松完成前处理设置。
Defining object boundary conditionsBoundary conditions are specified and enforced at nodes in the finite element mesh. The basic procedure for setting any boundary condition except Contact is the same:1.Select the appropriate condition type.2.Select the direction (where applicable).3.Select the nodes to which boundary conditions will be applied usingone of the selection tools in the lower left button bar.4.Apply the boundary conditions.The selected nodes will be highlighted. To apply the boundary conditions click the Generate BCC's button. Colored markers will highlight the nodes to which boundary conditions have been applied. To delete specific boundary conditions, select the start and end nodes, and click the Delete BCC's button. To delete all boundary conditions of the specified type and direction, click the Initialize BCC's button.Note : You can either select faces of the surface by using the surface patches feature or use the node button to select individual nodes.Deformation boundary conditionsVelocityVelocity of each node can be specified independently in the x and y directions (or x, y, and z directions in 3d). Velocity boundary conditions are normally set to zero for symmetry conditions (see section on symmetry in this manual), but may also be set to a specified non-zero value for processes such as drawing in which a workpiece is pulled through a die.ForceForce boundary conditions specify the force applied to the node by an external object. The force is specified in default units. For die stress analysis, the force that the die exerted on the workpiece can be reversed and interpolated onto the dies by using the interpolation function. Refer to the tutorial labs on die stress analysis for a detailed procedure for using force interpolation to perform die stress analysis.PressureThe pressure boundary conditions specifies a uniform, or linearly varying, force per unit area on the element faces connecting the specified nodes. Displacement and shrink fitA specified displacement can be specified in any direction for each node. This is frequently used for specifying shrink fit conditions between a die insert and a shrink ring. More information on this is available in the section on die stress analysis in this manual.MovementThe movement of nodes on an object can be specified. If the movement boundary condition is specified, object movement controls must also be specified.ContactThe Contact boundary condition displays interobject boundary contact conditions on a given object. The user should gain some experience with DEFORM before using this option. The contact conditions are stored in three components to represent the fact that there are three degrees of freedom for any given node.ThermalHeat exchange with the environmentThis boundary condition specifies that heat exchange between element faces bounded by these nodes and their environment should occur. The contact boundary condition determines whether exchange will occur to the ambient atmosphere or to a contacting object.Heat fluxSpecifies an energy flux per unit area over the face of the element bounded by the nodes. Units are energy/time/area.Nodal heatSpecifies a heat source at the given nodes. Units are energy/time. TemperatureSpecifies a fixed temperature at the given nodes.Heat Exchange windowsThis function allows the user to define heat exchange conditions for local areas on a body by use of three dimensional window. To use heat exchange windows, perform the following actions:1.Go to the Boundary Conditions window.2.Select the Thermal tab.3.Select the Heat exchange windows button.4.Note the tools in the lower left corner of the display windowchanges and the new heat exchange window that comes up.5.At this point, heat exchange windows can be defined using the toolsin the lower left corner of the display window. Each window has its ownlocal environmental temperature, convection coefficient and emissivity.See Figure for an example heat exchange window.6.You can define up to 20 independent windows by the method. If tworegions share the same space, the lower number window wins. Diffusion [DIF]Diffusion with the environmentSpecifies diffusion of the dominant atom through the boundary elements bordered by the indicated nodes. Environment dominant atom content and surface reaction rate are specified under the Simulation Controls, Processing Conditions menu. Environment content and reaction rate for various regions of the part may be modified by using diffusion windows.Fixed atom contentSpecifies a fixed dominant atom content at the given nodes.Atom fluxSpecifies a fixed dominant atom flux rate over the elements bordered by the indicated nodes.2.4.11. Contact boundary conditionsContact boundary conditions are applied to nodes of a slave object, and specify contact between those nodes and the surface of a master object (see master-slave relationships under the Interobject data section). If a node is specified to be in contact with a particular object, it will placed on the surface of that object. If this requires changing the position of that node, it will be changed as necessary. Contact boundary conditions are generated under the InterObject , Contact Boundary Conditions.It is for this reason that the user should be VERY careful with how contact is specified. If it is improperly used, the mesh may be damaged and very often remeshing cannot aid this situation since the AMG cannot interpret the users intentions.Contact boundary conditions can be displayed for a given object using the Objects, Boundary Conditions, Advanced Deformation BCC's icon.。
Helios 5 FX DualBeamEnabling breakthrough failure analysis for advanced technology nodesThe Helios 5 Dual Beam platform continues to serve the imaging, analysis, and S/TEM sample preparation applications in the most advanced semiconductor failure analysis, process development and process control laboratories.The Thermo Scientific ™ Helios 5 FX ™ DualBeam continues the Helios legacy to the fifth generation combining the innovative Elstar ™ with UC+ technology electron column for high-resolution and high materials contrast imaging, in-lens S/TEM 4 for 3Å in-situ low kV S/TEM imaging and the superior low kV performing Phoenix ™ ion column for fast, precise and sub-nm damagesample preparation. In addition to the industry leading SEM and FIB columns, the Helios 5 FX incorporates a suite of state-of-the-art technologies which enable simple and consistent sample preparation (for high resolution S/TEM imaging and/or Atom Probe microscopy) on even the most challenging samples.High quality imaging at all landing energiesThe ultra-high brightness electron source on the Helios 5 FX System is equipped with 2nd generation UC technology (UC+) to reduce the beam energy spread below 0.2 eV for beam currents up to 100 pA. This enables sub-nanometer resolution and high surface sensitivity at low landing energies. The highly efficient Mirror Detector and In-Column Detector in the Helios 5 FX System come with the ability to simultaneously acquire and mix TLD-SE, MD-BSE and ICD-BSE signals to produce the best overall ultra-high resolution images. Low-loss MD-BSE provides excellent materials contrast with an improvement of up to 1.5x in Contrast-to-Noise ratio, while No-loss ICD-BSE provides materials contrast with maximum surface sensitivity.Shorten time to useable dataThe Helios 5 FX System is the world’s first DualBeam toincorporate a TEM-like CompuStage for TEM lamella sample preparation and combine it with an all new In-lens STEM 4 detector to drastically reduce the time to high quality useable data. The integrated CompuStage is independent of the bulk stage and comes with separate X, Y, Z, eucentric 180° alpha tilt and 200° beta tilt axes enabling SEM endpointing on both sides of S/TEM lamella. The accompanying S/TEM rod is compatible with standard 3 mm TEM grids and enables fast grid exchange without breaking vacuum. In addition, the system is equippedDATASHEETHigh-performance Elstar electron column with UC+monochromator technology for sub-nanometer SEM and S/TEM image resolutionExceptional low kV Phoenix ion beam performance enables sub-nm TEM sample preparation damageSharp, refined, and charge-free contrast obtained from up to 5 integrated in-column and below-the-lens detectors MultiChem Gas Delivery System provides the most advanced capabilities for electron and ion beam induced deposition and etching on DualBeamsEasyLift EX Nanomanipulator enables precise, site-specific preparation of ultra-thin TEM lamellae all while promoting high user confidence and yieldSTEM 4 detector provides outstanding resolution and contrast on thin TEM samplesBacked by the Thermo Fisher Scientfic world class knowledge and expertise in advanced failure analysis forDualBeam applicationsFigure 1. TEM sample preparation using the Thermo Scientific iFAST automation software package and extracted using the EasyLift Nanomanipulator.Figure 2. HRSTEM Bright Field image of a 14 nm SRAM Inverter thinned to 15 nm showing both nFET and pFET structures connected with a metal gate.For current certifications, visit /certifications. © 2020 FEI Company. All rights reserved.All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. DS0283-EN-07-2020Find out more at /EM-Saleswith a retractable, annular STEM 4 detector which can be used either in standard mode for real-time STEM endpointing (6Å resolution) or in the new In-lens mode for ultimate imaging performance (3Å resolution). Both modes support improved materials contrast through the use of Bright Field, Dark Field annular and HAADF segments collecting transmitted electrons simultaneously. A new STEM detector enables diffraction imaging and zone axis alignment (automated or manual), enabling highest resolution and contrast on STEM samples. Extreme high resolution, high contrast imaging of ultra-thin lamella is now possible using 30 kV electrons. Having the ability to complete failure analysis work in the DualBeam without exposing the finished sample to ambient air shortens the time to data and reduces the need for standalone S/TEM systems.High quality ultra-thin TEM sample preparationPreparing high quality, ultra-thin TEM samples requires polishing the sample with very low kV ions to minimize damage to the sample. The Thermo Scientific most advanced Phoenix Focused Ion Beam (FIB) column not only delivers high resolution imaging and milling at 30 kV but now expands unmatched FIB performance down to accelerating voltages as low as 500 V enabling the creation of 7 nm TEM lamella with sub-nm damage layers.Enabling flexibilitySmart Alignments actively maintain the system for optimum performance, ready to deliver the highest performance for all users. Patterning improvements ensure the highest quality depositions at any condition, and an extensive automation suite make the Helios 5 the most advanced DualBeam ever assembled—all backed by the Thermo Fisher expert application and service support. Specifications • Electron source–Schottky thermal field emitter, over 1 year lifetime • Ion source–Gallium liquid metal, 1000 hours • Landing Voltage –20 V – 30 kV SEM –500 V – 30 kV FIB • STEM resolution –6Å Standard mode –3Å In-len mode • SEM resolution–Optimal WD0.6 nm @ 2–15 kV 0.7 nm @ 1 kV1.0 nm @ 500 V with beam deceleration –Coincident WD 0.8 nm @ 15 kV 1.2 nm @ 1 kV• Ion beam resolution at coincident point –4.0 nm @ 30 kV using preferred statistical method –2.5 nm @ 30 kV using selective edge method–500 nm @ 500 V using preferred statistical method • EDS resolution–< 30 nm on thinned samples • Gas Delivery–Integrated MultiChem Gas Delivery System –Up to 6 chemistries can be installed –Up to 2 external gasses can be installed • In situ TEM sample liftout –EasyLift EX Nanomanipulator • Stage–5 axis CompuStage with S/TEM holder, equipped with automated insert/retract mechanism and air lock for fast TEM grid exchange without breaking system vacuum –5 axis all piezo motorized bulk stage with automated Loadlock • Sample types–Wafer pieces, packaged parts, grids • Maximum sample size–70 mm diameter with full travel• Application software–iFAST Developers Kit Professional automation software • User interface–Windows ® 10 GUI with integrated SEM, FIB, GIS, simultaneous patterning and imaging mode –Local language support: Check with your local Thermo Fisher sales representatives for available language packs –Two 24-inch widescreen LCD monitors Key options• MultiChem gas chemistries –Range of deposition and etch chemistries • Software–Auto Slice & View ™ software, Magma CAD Navigation • Hardware –EDS and WDS。
DEFORM 3D模拟控制(五):网格重画分标准网格重划分标准(自动划分)是在坯料产生大塑性变形时能很方便处理网格重划分的一种方式。
网格重画分网格标准可以通过改变参数来控制物体网格中划分的时机和频率。
网格重划分的设置除了可以在模拟控制窗口进行之外,还能在网格划分命令窗口设置。
2D网格设置和3D网格设置略有不同,下面进行分类讨论。
1 2D网格设置对于2D网格设置来说,总共有4个参数可以控制重划分网格的触发。
即Interference Depth、Maximum Stroke Increment、Maximum Time Increment和Maximum Step Increment,以上任意条件满足或者原来的网格不可用(负的Jacobian值),网格即会重新划分。
而原来的求解信息会插入到新的网格中。
1.1 最大穿透深度(Maximum interference depth)当主对象(master object,一般是指上下模)穿透从对象(slave object, 一般指坯料)的深度超过最大穿透深度的时候,网格重划分开启。
穿透深度指的是从对象的单元边界穿过主对象表面的深度,而网格重划分的对象必须是从对象,也就是坯料。
穿透深度参数在坯料有非常尖锐的拐角的情况下使用,意即拐角半径与相邻元素边缘长度几乎相同的情况。
重划分网格的穿透深度值应设置为单元边长的一半。
穿透深度值太大可能会导致坯料体积损失过多,值太小可能会导致重划分网格次数太多,从而导致运行时间变慢和求解信息插入误差过大。
在人为网格划分时,首先应该手动把容易发生网格穿透的区域画密一点,如果网格穿透问题仍然存在,再设置穿透深度值。
1.2 最大行程增量(Maximum stroke increment)任何时候主模的行程增量超过了所设值,新的网格重划分就会发生。
1.3 最大时间增量(Maximum step increment)从上次网格重划分步骤开始算起,只要模拟计算进行的时间达到了此设的最大时间增量,就会启动新的重新网格化步骤。
模型收敛英语Convergence of ModelsThe concept of model convergence is a fundamental aspect of various fields, ranging from machine learning and data analysis to scientific research and engineering. In this essay, we will explore the significance of model convergence, its underlying principles, and its practical applications across different domains.At the core of model convergence is the idea that a mathematical or computational model should converge to a stable and consistent solution as the input data or parameters are refined or the algorithm is iterated. This convergence is essential for ensuring the reliability and accuracy of the model's predictions or outputs. Without convergence, the model may produce inconsistent or unpredictable results, rendering it unreliable for decision-making or further analysis.One of the primary reasons for the importance of model convergence is the inherent uncertainty and complexity present in real-world systems. These systems often involve a multitude of variables, interactions, and interdependencies that can be challenging to capture accurately in a model. By achievingconvergence, researchers and practitioners can have confidence that their models are accurately representing the underlying phenomena and can be used to make informed decisions or draw meaningful conclusions.In the field of machine learning, model convergence is crucial for the development of effective and reliable algorithms. During the training process, machine learning models iteratively adjust their parameters to minimize the difference between the predicted outputs and the true outputs (known as the loss function). Convergence in this context means that the model has reached a point where the loss function is minimized, and the model's performance on unseen data is optimized. This convergence is essential for ensuring the generalization of the model to new data, which is a fundamental requirement for real-world applications.Similarly, in scientific research, the convergence of computational models is vital for validating the accuracy and reliability of simulations and experiments. Researchers often use mathematical models to represent complex physical, chemical, or biological phenomena, and the convergence of these models is necessary to ensure that the simulations accurately capture the underlying processes. This convergence can be achieved through techniques such as grid refinement, adaptive mesh generation, and iterative solution methods.In engineering, model convergence is crucial for the design and optimization of complex systems. Engineers often use computational models to simulate the behavior of structures, fluid flows, or energy systems, and the convergence of these models is essential for ensuring the reliability and safety of the final product. For example,in the design of aircraft or automobiles, engineers rely on computational fluid dynamics (CFD) models to predict the aerodynamic performance of the vehicle. The convergence of these models is crucial for accurately predicting the drag, lift, and other important parameters that affect the vehicle's performance and efficiency.Beyond these specific applications, model convergence is also relevant in fields such as finance, economics, and social sciences, where mathematical and statistical models are used to analyze and predict complex phenomena. In these domains, the convergence of the models is essential for making informed decisions, assessing risks, and developing effective policies.In conclusion, the concept of model convergence is a fundamental aspect of various fields, from machine learning to scientific research and engineering. By achieving convergence, researchers and practitioners can ensure the reliability and accuracy of their models, leading to more informed decision-making and a betterunderstanding of the underlying systems. As the complexity of real-world problems continues to increase, the importance of model convergence will only grow, making it a crucial area of study and application across a wide range of disciplines.。
定义几何模型Geometry物体类型Type网格划分Mesh节点数据Node Data单元数据Element Data边界条件Boundary Conditions运动控制Movement物体属性Object Properties物体输入与输出Importing and exporting objects节点和单元数据节点Node数据z Node positionz Temperaturez Displacementz Velocityz Boundary conditions单元Element 数据z Element Connectivity (ordered list of nodes which define the element) z Materialz Strainz Damagez Relative Densityz StressRZ 1 241 .0000000E+00 .0000000E+002 .9173353E+00 .0000000E+003 .0000000E+00 .7429205E+004 .8461339E+00 .6728489E+005 .1776922E+01 .0000000E+006 .1572415E+01 .6189034E+007 .1380158E+01 .1062347E+018 .0000000E+00 .1502225E+019 .9552422E+00 .1259964E+0110 .1718824E+01 .1190339E+0111 .2576866E+01 .0000000E+0012 .2157787E+01 .7158520E+0013 .0000000E+00 .2259359E+0114 .1484812E+01 .1777501E+0115 .1001005E+01 .3000000E+0116 .0000000E+00 .3000000E+0117 .2476170E+01 .1903746E+0118 .2000000E+01 .3000000E+0119 .3312744E+01 .0000000E+0020 .2850679E+01 .9547812E+0021 .3224113E+01 .1526323E+0122 .4000000E+01 .0000000E+0023 .4000000E+01 .7522539E+0024 .4000000E+01 .1500000E+01ELMCON 1 151 3 12 42 834 93 13 8 9 144 15 16 13 145 467 96 2 5 6 47 7 10 14 98 6 12 10 79 17 18 15 1410 5 11 12 611 10 12 20 1412 21 17 14 2013 11 19 20 1214 23 24 21 2015 19 22 23 20离散:节点与单元离散:节点与单元DEFORM™-3D WindowXP5.03版本-任何节点node或单元element 数据都可以修改Node DataElement DataPlot VariableInitialize variable on all nodes节点坐标Node Coordinates 可以查阅和修改离散:节点与单元XZYBoundary Condition Code BCCDEF 1:定义相应的速度值velocity (x、y 或者z)-n : 节点Node 是从动节点slave node 和主动物masterobject number n 接触。
成绩:1.如何用测量工具测量其底部过渡圆角的半径?之杨若古兰创作2.如何确定总模拟步长、存储步长、计算步长和计算时间?还有模具活动速度?3.接触容差tolerance含义?其大小对结果有什么影响,普通设定为多少合适?主界面的【summary】按钮显示当前步调的模拟信息,包含模具及工件的各种信息;【preview】显示用户在后处理中处理的最初图形;【message】显示模拟进程,用户可以观察目前模拟进行到多少步,每步及每子步模拟所需的时间,和每子步的模拟误差;【log】显示模拟日志,可以看到模拟过程中每一步的起始和终止时间,及模拟出错的各种信息前处理窗口:点击【DEFORM-3D Pre】进入DEFORM-3D 的通用前处理界面.点击【Machining [Cutting]】进入DEFORM-3D的机加工导游界面,它包含车削,钻削,铣削等机加工工艺.点击【Forming】进入DEFORM-3D的成形导游界面,它包含冷成形,温成形,热成形等工艺.点击【Die Stress Analysis】进入DEFORM-3D的模具分析导游界面.点击【Cogging】进入DEFORM-3D的粗轧导游界面.模拟控制:点击【Run (options)】进入模拟选择对话框,有多个处理器时,选择multiple processor对话框,并进行个处理器任务设置,若是单机则不要选此项,否则模拟没法进行;点击【Batch Queue 】进入模拟任务队列设置对话框,用户有多任务时,可安插模拟的前后顺序;点击【Process Monitor】进入模拟控制菜单,点击按钮abort来结束当前模拟任务,但模拟会完成当前步.若请求立即停止模拟,可点击abort immediately按钮;点击【Add to Queue】可随时添加模拟任务.后处理窗口:用户可在模拟任务正在进行时点击【DEFORM-3D Post】进入后处理界面,STL文件的生成:我没有效过pro/E,但是我用solidworks外型时,拔出合适的坐标系,并在保管为stl文件时,需设定选项,如许才干包管导入DEFORM前处理的几何坐标系和你在外型软件中的分歧,也就不必再花费过多时间调整各objects间的地位了. 我是用Solidworks外型的,比方一个简单的圆柱体镦粗过程,在拆卸图中你应当添加坐标系,将坐标系的原点设在冲头的圆心,而且在保管为stl文件时,设定"保管为"对话框中的选项,如果不知是否准确,可以选择简单的模型试一下,(将几何调入DEFORM前处理并划分网格,然后看结点坐标),如许就能包管DEFORM中的几何坐标系和你在外型软件中的分歧.6.2 文件视图功能操纵正负代表视图法线方向,法向由荧屏向外为正6 环境菜单设置点击【options】出现下拉菜单——点击【environment】6.2 前处理功能操纵设置好工作目录后进入前处理窗口.退出前处理窗口时,如果设置的用户类型是初级或者中级,会弹出“扣问退出对话框”,扣问用户是否存储当前工作.若设置为高级,次对话框不会显示,而且任何未保管的数据都会丢失.6.2.1 模拟控制窗口该窗口中有很多变量须要用户设置Main菜单——【units】选择单位制-国际单位制和英制,答应用户调入模型后在设置单位制.【Type】模拟方式选择栏,【incremental】是增量模拟方式,【steady state】稳态模拟方式,普通模拟成绩应选择增量模拟方式.若果用户模拟的是车削或拉伸过程,而且使用的是欧拉计算方法,则选择稳态模拟方式.【Mode】模拟类型选择栏,【Heat Transfer】是传热模拟,【Deformation】变形模拟,【Transformation】相变模拟,【Diffusion】扩散模拟,【Grain】晶粒度模拟,【Heating】热处理模拟.Step菜单——模拟控制步菜单,用户可以设置模拟的起始步序号,模拟步数,存储数据的间隔步数.其余两个用户不须要点窜Stop菜单——如果两个模具之间的距离是停止模拟的尺度,则点击Die Distance按钮,按如下步调操纵:选定参考物1——点击模具地面一点,响应坐标值会出此刻Coord栏中——选定参考物2——点击顶面一点,响应坐标值会出此刻Coord栏中——打开测距方式【Method】一栏选择Z Distance——在【Distance】一栏中填入测出的距离——点击OK.Remesh Criteria菜单——网格重划分尺度菜单.重划分网格后原节点信息不丢失.设定变形物体重划分网格尺度,有两种选择,一个是Absolute(绝对值),一个是Relative(绝对值),用户普通按绝对值设定.Iteration菜单——求解,迭代方法设定菜单.对于典型的成形模拟,零碎默认的方法就能计算很好,零碎默认的迭代方法是直接迭代法.零碎默认的收敛误差值对惯例模拟也是合适的,不需点窜.以下三种情况可以使用松弛求解法,利用直接迭代法来模拟:(1)弹性或弹塑性物体(2)多个变形物体(3)模具是由载荷步控制的.Process Condition菜单——工艺条件设定菜单.Advanced菜单——高级设定菜单.当前模拟时间在【current global time】栏中显示,用户通过此栏可知目前模拟经过的时间.点击【user Defined】用户可设定用户变量,可以添加自定义变量不超出10个6.2.2 材料窗口Plastic(塑性特性)、Elastic(弹性特性)、Thermal(热传递特性)、Grain(晶粒度).与温度有关特性可通过点击其右侧编辑按钮进行编辑.【Flowstress】栏是流变应力方程,由图表方式描述.答应用户点窜,步调如下:(1)将试验测得应变值写入应变对话框,温度写入温度对话框;(2)应变率写入应变率对话框中,【X Axis】栏选择【Strain】.(3)在上面的应力、应变、应变率数组栏中填入对应的应力(4)点击【Apply】出现流动应力曲线,若准确点击【OK】(5)菜单回到材料菜单栏,点击【Save in Lib】存储数据.若用户想以.k文件的方式存储此材料文件,可点击【Export】,存储到用户指定目录,下次用时可直接从目录中调入.6.2.3 定位窗口五种定位物体的方法——【Offset】平移、【Interference】接触、【Rotational】扭转、【Drop】着落、【Drag】迁延.平移——一种是按坐标平移:选摘要定位的物体,点击距离矢量栏,输入绝对坐标值;一种是两点定位:鼠标点击要定位物体上的一点,接着点击挪动的起点,也可直接输入绝对坐标值.点击【Apply】——点击【OK】.接触——选择定位物体和参考物-在【Approach Direction】前进方向一栏定义挪动方向-在【Interference】定义接触值-点击【Apply】——点击【OK】.扭转——在【Center】指定扭转中间,【Axis】指定扭转轴和【Angle】绝对扭转角度(可用鼠标指定中间和轴也可直接输入值)着落——此法对将物体定位于模具中非常无效.指定着落方向和接触深度值,若答应扭转着落,请点击扭转轴设定. 6.2.4 对象间关系定义窗口点击+按钮添加定义对象间关系对-定义主仆关系-对象间关系信息定义:摩擦系数【Friction】、剪摩擦【Shear】、库伦摩擦【Coulomb】、摩擦值【value】.答应用户改动对象间关系容差,用户可以在【Tolerance】栏改动零碎给定的值.6.2.5 数据库发生窗口指定目录-点击【Check】检查模拟设定的信息是否满足生成数据库的条件-点击【Generate】生成数据库With Constant Die Displacement(根据模具位移来确定计算步长方式)、Solution Steps(计算步长)、Primary Die(主模具)6.3 后处理功能操纵在主窗口点击数据库文件,进入后处理窗口6.3.1 物体树显示操纵按钮功能介绍Show item(物体树中的形态变量显示)、【Show backface】后概况显示6.3.2 模拟分析功能介绍【Summary】功能是提取模拟过程的概要信息;【Graph(Load stroke)】功能是提取模拟过程受力物体的载荷,以图形方式表达.Stroke(模拟步)、torque(扭矩).点击【Apply】出现图形,判断准确后点击【OK】.Point tracking(对变形体的点追踪):点击此按钮在点追踪对话框中输入追踪点坐标,也可用鼠标直接点击变形体上的点,最多同时跟踪10个点-NEXT-拔取存储文件方式,文件时二进制文件,可用记事本等打开-【Finish】.等待一段时间,零碎会提取此点的所有信息,配合形态变量按钮就可读取此点形态变量信息.Flow Net-设定流动网格.点击按钮-选择起始步和起点步-下一步-选择流动网格外形-下一步-区域选择对话框-下一步-定义网格尺寸-下一步-选择始末存储方式-完成State Variable Between Two Points-绘制两点间形态变量分布曲线:输入始起点坐标,也可在窗口中点击变形体上两点作为始末点,接着点击【Calculate】,在变形体上出现分布点,接着点击【State Variable】按钮,选摘要分析的形态变量,则可绘制出两点间形态变量的分布曲线Slicing-对物体进行剖切.两种剖切方式:一种是一点和一方向矢量;一种是三点法,然后输入数值,确定剖切准确后,点击【OK】Mirror/Rot Symmetry-镜像物体镜像功能分为两种,一种是对称面镜像,一种是周向镜像.打开【Add】按钮,接着点击对称面,则对称图形显示在窗口中.【Delete】删除对称图形,用鼠标点击要删除的物体即可.Data Extraction-提取选定步的变量信息.首先在模拟步当选定要分析的模拟步-选定要分析的物体-在【Variable】栏当选定要分析的变量-点击【Extract】,选定存储路径保管,可用记事本等打开.State Variable-拔取要分析的变量.选定要分析的变量-【Type】栏中拔取变量显示方式(等高线、云图等显示方式)-拔取显示比例-【OK】Animation set up-模拟过程的动画设置及录制.点击此按钮-【File】栏中设定动画文件存储的地位-填写动画文件的名称-设定动画文件的第一个图片的名称.把动画文件一图片的格式的存储,用Defplay软件播放.Animation control-播放录制的动画.6.3.3 其他后处理操纵按钮功能介绍Chapter 7 锻压模拟任务:模拟计算步长的确定DEFORM-3D主窗口更改工作目录创建新项目:点击新建——【Deform-3D preprocessor】——next——【Under current selected directory】——next——输入项目名称——finish——进入前处理窗口——进入模拟设定窗口——【Simulation Title】一栏填入模拟名称Block——激活【Deformation】项——【OK】7.1.3 输入对象数据1.软件会在物体树中主动创建默认名为Workpiece的#1对象,可以本人加或减其他对象进入物体树.更改对象名(点击#1对象-物体信息栏中点击【General】-在【Object name】填入名称).普通输入模拟的#1对象为变形体应在【General】中设定对象类型为Plastic(塑性体).【Elastic弹性体;】2.输入物体几何外形.点击Geometry(几何外形)-Import设定好单元数量-preview-generate7.1.4 输入模具添加对象,#2对象已被激活,零碎默认名为Top Die,类型为刚体(rigid),激活【Primary Die】主模具开关.检核对象的几个成绩:点击check GEO.对以封闭的几何体,必有一个面,零个自在边,零个无效的实体.检核对象外法线方向:点击show/hide normal.准确方向是指向对象外的,若反了点击Reverse GEO进行批改.添加3号对象,也是刚体,对于刚体,不必划分网格,不需定义材料特性,由于刚体被认为不变形.7.1.5 设置温度工件、模具都设定.默认为室温(68℉或20℃)7.1.7 模拟控制设定打开【Step】设置开始模拟数(-1)负号暗示它是从头划分网格的起始步,由前处理读入;设置模拟步数(20),这意味着若模拟计算未被中断,全部过程将分20步完成;设定Step Increment to Save为2,这暗示每模拟2步,会将两头模拟阶段结果写入数据库;设定Primary Die为2.确定模拟计算步长:点击测量工具,并点击两相邻节点,最短单元尺寸为0.5in,对于简单模拟而言,我们可用该值1/3,即设置With Constant Die Displacement类型,值为0.15in/step.另外,单击Advanced 1,设置Maximum Contact time=1,如许可以防止任意两步之间出现次步计算,同时也能够加快模拟过程-OK如何确定模拟计算步长?软件规定了两种:分别有时间和模具行程决定.对于通常的变形成绩,采取行程决定方式较好.对于几何外形简单,边角无流变或其他局部严重变形的成绩,步长可选模型中较小单元边长的1/3为参考尺度;对于复杂几何外形诸如有飞机或平面模外挤,步长则应选1/10,步长太长可能会惹起网格的敏捷蜕变,儿太小会惹起不须要的计算时间耗费.零碎默认了主仆关系,模具与工具间是接触关系,不涉及传热,但涉及摩擦成绩,是以要定义他们之间的摩擦系数在软件中对于具有不异接触信息特征的关系对,定义一个后,可点击Apply to other relations,可以将第一个定义的关系信息复制到所有的关系对中.然后设定接触容差:值要合理,太大反映在模具上的接触点过多,这可导致工件网格的变形,相反,太小则意味着模具与工件没接触.设定好后单击generate all 生成接触7.1.9 生成数据库文件以.k文件方式存储模拟项目的数据信息,用记事本打开,也可直接点窜先check看有没错在generate,顺便存储下吧7.2 进行锻压模拟计算把数据提交给FEM运算器7.3 锻压模拟后处理点击Block_forging.DB文件-点击【DEFORM-3D post】进入后处理7.3.1 步列的选择每一步包含了当前的数据信息,可以检查任意对象在模拟过程中有关变量的信息.本例拔取第十六步7.3.3 工件上点追踪点击追踪按钮,弹出对话框,选择步列,是步列到工件未变形时,用鼠标单击工件上3个点,他们坐标显示在对话框中,下一步-默认-完成.选择16步,并打开点追踪,可以看到3个点的坐标,他们经过变形后的坐标值.图中竖线代表当前步列.在物体栏中鼠标右键单击点追踪图标-选择第二栏即可删除追踪图7.3.4 对象上剖切面的选择选定工件-单击剖切面按钮-打开Slicing窗口.本例采取一点和一法矢量的方法确定剖切面.操纵步调如下:(1)在工件中部概况上选一点(2)设定法矢量方向为X方向(1,0,0)(3)显示方式分别为Curve(曲线方式)、Plane(平面)、Curve+Plane.剖切面选定后就可以选择形态变量分析了。
I P C-7351B N a m i n g C o n v e n t i o n f o r S t a n d a r d S M T L a n d P a t t e r n sSurface Mount Land PatternsComponent, Category Land Pattern Name Ball Grid Array’s...............................BGA + Pin Qty + C or N + Pitch P + Ball Columns X Ball Rows _ Body Length X Body Width X Height BGA w/Dual Pitch.BGA + Pin Qty + C or N + Col Pitch X Row Pitch P + Ball Columns X Ball Rows _ Body Length X Body Width X Height BGA w/Staggered Pins..................BGAS + Pin Qty + C or N + Pitch P + Ball Columns X Ball Rows _ Body Length X Body Width X Height BGA Note: The C or N = Collapsing or Non-collapsing BallsCapacitors, Chip, Array, Concave..........................................................CAPCAV + Pitch P + Body Length X Body Width X Height - Pin Qty Capacitors, Chip, Array, Flat..................................................................CAPCAF + Pitch P + Body Length X Body Width X Height - Pin Qty Capacitors, Chip, Non-polarized.................................................................................................CAPC + Body Length + Body Width X Height Capacitors, Chip, Polarized.....................................................................................................CAPCP + Body Length + Body Width X Height Capacitors, Chip, Wire Rectangle........................................................................................CAPCWR + Body Length + Body Width X Height Capacitors, Molded, Non-polarized...........................................................................................CAPM + Body Length + Body Width X Height Capacitors, Molded, Polarized.................................................................................................CAPMP + Body Length + Body Width X Height Capacitors, Aluminum Electrolytic ............................................................................................................CAPAE + Base Body Size X Height Ceramic Flat Packages.....................................................................................................CFP127P + Lead Span Nominal X Height - Pin Qty Column Grid Array’s.....................................................CGA + Pitch P + Number of Pin Columns X Number of Pin Rows X Height - Pin Qty Crystals (2 leads)........................................................................................................................XTAL + Body Length X Body Width X Height Dual Flat No-lead..........................................................................................................DFN + Body Length X Body Width X Height – Pin Qty Diodes, Chip................................................................................................................................DIOC + Body Length + Body Width X Height Diodes, Molded...........................................................................................................................DIOM + Body Length + Body Width X Height Diodes, MELF................................................................................................................................DIOMELF + Body Length + Body Diameter Fuses, Molded............................................................................................................................FUSM + Body Length + Body Width X Height Inductors, Chip.............................................................................................................................INDC + Body Length + Body Width X Height Inductors, Molded........................................................................................................................INDM + Body Length + Body Width X Height Inductors, Precision Wire Wound................................................................................................INDP + Body Length + Body Width X Height Inductors, Chip, Array, Concave..............................................................INDCAV + Pitch P + Body Length X Body Width X Height - Pin Qty Inductors, Chip, Array, Flat......................................................................INDCAF + Pitch P + Body Length X Body Width X Height - Pin Qty Land Grid Array, Round Lead............................LGA + Pin Qty - Pitch P + Pin Columns X Pin Rows _ Body Length X Body Width X Height Land Grid Array, Square Lead........................LGAS + Pin Qty - Pitch P + Pin Columns X Pin Rows _ Body Length X Body Width X Height LED’s, Molded............................................................................................................................LEDM + Body Length + Body Width X Height Oscillators, Side Concave........................................................................OSCSC + Pitch P + Body Length X Body Width X Height - Pin Qty Oscillators, J-Lead.......................................................................................OSCJ + Pitch P + Body Length X Body Width X Height - Pin Qty Oscillators, L-Bend Lead.............................................................................OSCL + Pitch P + Body Length X Body Width X Height - Pin Qty Oscillators, Corner Concave....................................................................................................OSCCC + Body Length X Body Width X Height Plastic Leaded Chip Carriers..................................................PLCC + Pitch P + Lead Span L1 X Lead Span L2 Nominal X Height - Pin Qty Plastic Leaded Chip Carrier Sockets Square.......................PLCCS + Pitch P + Lead Span L1 X Lead Span L2 Nominal X Height - Pin Qty Quad Flat Packages..................................................................QFP + Pitch P + Lead Span L1 X Lead Span L2 Nominal X Height - Pin Qty Ceramic Quad Flat Packages.................................................CQFP + Pitch P + Lead Span L1 X Lead Span L2 Nominal X Height - Pin Qty Quad Flat No-lead................................................................QFN + Pitch P + Body Width X Body Length X Height - Pin Qty + Thermal Pad Pull-back Quad Flat No-lead..............................................PQFN + Pitch P + Body Width X Body Length X Height - Pin Qty + Thermal Pad Quad Leadless Ceramic Chip Carriers..........................................................LCC + Pitch P + Body Width X Body Length X Height - Pin Qty Quad Leadless Ceramic Chip Carriers (Pin 1 on Side)...............................LCCS + Pitch P + Body Width X Body Length X Height - Pin Qty Resistors, Chip...........................................................................................................................RESC + Body Length + Body Width X Height Resistors, Molded......................................................................................................................RESM + Body Length + Body Width X Height Resistors, MELF...........................................................................................................................RESMELF + Body Length + Body Diameter Resistors, Chip, Array, Concave............................................................RESCAV + Pitch P + Body Length X Body Width X Height - Pin Qty Resistors, Chip, Array, Convex, E-Version (Even Pin Size)...............RESCAXE + Pitch P + Body Length X Body Width X Height - Pin Qty Resistors, Chip, Array, Convex, S-Version (Side Pins Diff)................RESCAXS + Pitch P + Body Length X Body Width X Height - Pin Qty Resistors, Chip, Array, Flat.....................................................................RESCAF + Pitch P + Body Length X Body Width X Height - Pin Qty Small Outline Diodes, Flat Lead...................................................................................SODFL + Lead Span Nominal + Body Width X Height Small Outline IC, J-Leaded........................................................................................SOJ + Pitch P +Lead Span Nominal X Height - Pin Qty Small Outline Integrated Circuit, (50 mil Pitch SOIC)......................................................SOIC127P +Lead Span Nominal X Height - Pin Qty Small Outline Packages............................................................................................SOP + Pitch P +Lead Span Nominal X Height - Pin Qty Small Outline No-lead...........................................................SON + Pitch P + Body Width X Body Length X Height - Pin Qty + Thermal Pad Pull-back Small Outline No-lead.........................................PSON + Pitch P + Body Width X Body Length X Height - Pin Qty + Thermal Pad Small Outline Transistors, Flat Lead....................................................................SOTFL + Pitch P + Lead Span Nominal X Height - Pin Qty SOD (Example: SOD3717X135 = JEDEC SOD123)........................................................SOD + Lead Span Nominal + Body Width X Height SOT89 (JEDEC Standard Package).......................................................................................................................................................SOT89 SOT143 & SOT343 (JEDEC Standard Package)..............................................................................................................SOT143 & SOT343 SOT143 & SOT343 Reverse (JEDEC Standard Package)...........................................................................................SOT143R & SOT343R SOT23 & SOT223 Packages (Example: SOT230P700X180-4)...............................SOT + Pitch P + Lead Span Nominal X Height - Pin Qty TO (Generic DPAK - Example: TO228P970X238-3).................................................................TO + Pitch P + Lead Span X Height - Pin QtyI P C-7351B L a n d P a t t e r n N a m i n g C o n v e n t i o n N o t e s•All dimensions are in Metric Units•All Lead Span and Height numbers go two places past the decimal point and “include” trailing Zeros•All Lead Span and Body Sizes go two place before the decimal point and “remove” leading Zeros•All Chip Component Body Sizes are one place to each side of the decimal point•Pitch Values are two places to the right & left of decimal point with no leading Zeros but include trailing zeros N a m i n g C o n v e n t i o n S p e c i a l C h a r a c t e r U s e f o r L a n d P a t t e r n sThe _ (underscore) is the separator between pin Qty in Hidden & Deleted pin componentsThe – (dash) is used to separate the pin qty.The X (capital letter X) is used instead of the word “by” to separate two numbers such as height X width like “Quad Packages”.P C B L i b r a r i e s S u f f i x N a m i n g C o n v e n t i o n f o r L a n d P a t t e r n sCommon SMT Land Pattern to Describe Environment Use (This is the last character in every name)Note: This excludes the BGA component family as they only come in the Nominal Environment Condition •M.................Most Material Condition (Level A)•N..................Nominal Material Condition (Level B)•L.................Least Material Condition (Level C)Alternate Components that do not follow the JEDEC, EIA or IEC Standard•A..................Alternate Component (used primarily for SOP & QFP when Component Tolerance or Height is different) •B..................Second Alternate ComponentReverse Pin Order•-20RN..........20 pin part, Reverse Pin Order, Nominal EnvironmentHidden Pins•-20_24N......20 pin part in a 24 pin package. The pins are numbered 1 – 24 the hidden pins are skipped. The schematic symbol displays up to 24 pins.Deleted Pins•-24_20N......20 pin part in a 24 pin package. The pins are numbered 1 – 20. The schematic symbol displays 20 pins. JEDEC and EIA Standard parts that have several alternate packages•AA, AB, AC.JEDEC or EIA Component IdentifierGENERAL SUFFIXES_HS.........................HS = Land Pattern with Heat Sink attachment requiring additional holes or padsExample: TO254P1055X160_HS-6N_BEC......................BEC = Base, Emitter and Collector (Pin assignments used for three pin Transistors)Example: SOT95P280X160_BEC-3N_SGD......................SGD = Source, Gate and Drain (Pin assignments used for three pin Transistors)Example: SOT95P280X160_SGD-3N_213........................213 = Alternate pin assignments used for three pin TransistorsExample: SOT95P280X160_213-3NP C B L i b r a r i e s N a m i n g C o n v e n t i o n f o r N o n-S t a n d a r d S M T L a n d P a t t e r n s Surface Mount Land PatternsComponent, Category Land Pattern Name Amplifiers....................................................................................................................................................AMP_ Mfr.’s Part Number Batteries......................................................................................................................................................BAT_ Mfr.’s Part Number Capacitors, Variable..................................................................................................................................CAPV_Mfr.’s Part Number Capacitors, Chip, Array, Concave (Pins on 2 or 4 sides)..............................................................CAPCAV_Mfr Series No. - Pin Qty Capacitors, Chip, Array, Flat (Pins on 2 sides)..............................................................................CAPCAF_Mfr Series No. - Pin Qty Capacitors, Miscellaneous............................................................................................................................CAP_Mfr.’s Part Number Crystals......................................................................................................................................................XTAL_Mfr.’s Part Number Diodes, Miscellaneous...................................................................................................................................DIO_Mfr.’s Part Number Diodes, Bridge Rectifiers............................................................................................................................DIOB_Mfr.’s Part Number Ferrite Beads..................................................................................................................................................FB_Mfr.’s Part Number Fiducials......................................................................................................................................FID + Pad Size X Solder Mask Size Filters..............................................................................................................................................................FIL_Mfr.’s Part Number Fuses..........................................................................................................................................................FUSE_Mfr.’s Part Number Fuse, Resettable.....................................................................................................................................FUSER_Mfr.’s Part Number Inductors, Miscellaneous...............................................................................................................................IND_Mfr.’s Part Number Inductors, Chip, Array, Concave (Pins on 2 or 4 sides)..................................................................INDCAV_Mfr Series No. - Pin Qty Inductors, Chip, Array, Flat (Pins on 2 sides).................................................................................INDCAF_Mfr Series No. - Pin Qty Keypad.................................................................................................................................................KEYPAD_Mfr.’s Part Number LEDS............................................................................................................................................................LED_Mfr.’s Part Number LEDS, Chip...................................................................................................................................................LED_Mfr.’s Part Number Liquid Crystal Display...................................................................................................................................LCD_Mfr.’s Part Number Microphones..................................................................................................................................................MIC_Mfr.’s Part Number Opto Isolators............................................................................................................................................OPTO_Mfr.’s Part Number Oscillators......................................................................................................................................OSC_Mfr.’s Part Number - Pin Qty Quad Flat Packages w/Bumper Corners, Pin 1 Side.............BQFP + Pitch P + Lead Span L1 X Lead Span L2 Nominal X Height - Pin Qty Quad Flat Packages w/Bumper Corners, 1 Center..............BQFPC + Pitch P + Lead Span L1 X Lead Span L2 Nominal X Height - Pin Qty Resistors, Chip, Array, Concave (Pins on 2 or 4 sides).................................................................RESCAV_Mfr Series No. - Pin Qty Resistors, Chip, Array, Convex Type E (Pins on 2 sides)...........................................................RESCAXE_Mfr Series No. - Pin Qty Resistors, Chip, Array, Convex Type S (Pins on 2 sides)...........................................................RESCAXS_Mfr Series No. - Pin Qty Resistors, Chip, Array, Flat (Pins on 2 sides)................................................................................RESCAF_Mfr Series No. - Pin Qty Relays.....................................................................................................................................................RELAY_Mfr.’s Part Number Speakers....................................................................................................................................................SPKR_Mfr’s Part Number Switches........................................................................................................................................................SW_Mfr.’s Part Number Test Points, Round......................TP + Pad Size (1 place left of decimal and 2 places right of decimal, Example TP100 = 1.00mm) Test Points, Square...............................................................TPS + Pad Size (1 place left of decimal and 2 places right of decimal) Test Points, Rectangle....................................TP + Pad Length X Pad Width (1 place left of decimal and 2 places right of decimal) Thermistors.............................................................................................................................................THERM_Mfr.’s Part Number Transceivers.............................................................................................................................................XCVR_ Mfr.’s Part Number Transducers (IRDA’s)................................................................................................................................XDCR_Mfr.’s Part Number Transient Voltage S_Mfr.’s Part Number Transient Voltage Suppressors, SP_Mfr.’s Part Number Transistor Outlines, Custom....................................................................................................................TRANS_Mfr.’s Part Number Transformers.............................................................................................................................................XFMR_Mfr.’s Part Number Trimmers & Potentiometers........................................................................................................................TRIM_Mfr.’s Part Number Tuners.....................................................................................................................................................TUNER_Mfr.’s Part Number Varistors.......................................................................................................................................................VAR_Mfr.’s Part Number Voltage Controlled Oscillators.....................................................................................................................VCO_Mfr.’s Part Number Voltage Regulators, Custom......................................................................................................................VREG_Mfr.’s Part NumberI P C-7251N a m i n g C o n v e n t i o n f o r T h r o u g h-H o l e L a n d P a t t e r n sThe land pattern naming convention uses component dimensions to derive the land pattern name.The first 3 – 6 characters in the land pattern name describe the component family.The first number in the land pattern name refers to the Lead Spacing or hole to hole location to insert the component lead.All numbers that follow the Lead Spacing are component dimensions.These characters are used as component body identifiers that precede the value and this is the priority order of the component body identifiers –P = Pitch for components with more than two leadsW = Maximum Lead Width (or Component Lead Diameter)L = Body Length for horizontal mountingD = Body Diameter for round component bodyT = Body Thickness for rectangular component bodyH = Height for vertically mounted componentsQ = Pin Quantity for components with more than two leadsR = Number of Rows for connectorsA, B & C = the fabrication complexity level as defined in the IPC-2221 and IPC-2222Notes:All component body values are in millimeters and go two places to the right of the decimal point and no leading zeros.All Complexity Levels used in the examples are “B”.Component, Category Land Pattern Name Capacitors, Non Polarized Axial Diameter Horizontal Mounting.........CAPAD + Lead Spacing + W Lead Width + L Body Length + D Body Diameter Example: CAPAD800W52L600D150BCapacitors, Non Polarized Axial Diameter; Lead Spacing 8.00; Lead Width 0.52; Body Length 6.00; Body Diameter 1.50Capacitors, Non Polarized Axial Rectangular.........CAPAR + Lead Spacing + W Lead Width + L Body Length + T Body thickness + H Body Height Example: CAPAR800W52L600T50H70BCapacitors, Non Polarized Axial; Lead Spacing 8.00; Lead Width 0.52; Body Length 6.00; Body Thickness 0.50; Body Height 0.70Capacitors, Non Polarized Axial Diameter Vertical Mounting .........CAPADV + Lead Spacing + W Lead Width + L Body Length + D Body Diameter Example: CAPADV300W52L600D150BCapacitors, Non Polarized Axial; Lead Spacing 3.00; Lead Width 0.52; Body Length 6.00; Body Diameter 1.50mmCapacitors, Non Polarized Axial Rect. Vert. Mtg.CAPARV + Lead Spacing + W Lead Width + L Body Length + T Body Thickness + H Body Height Example: CAPARV300W52L600T50H70BCapacitors, Non Polarized Axial Rect. Vertical; Lead Spacing 8.00; Lead Width 0.52; Body Length 6.00; Body Thickness 0.50; Body Height 0.70 Capacitors, Non Polarized Radial Diameter.......................................CAPRD + Lead Spacing + W Lead Width + D Body Diameter + H Body Height Example: CAPRD200W52D300H550BCapacitors, Non Polarized Radial Diameter; lead spacing 2.00; lead width 0.52; Body Diameter 3.00; Height 5.50Capacitors, Non Polarized Radial Rectangular.......CAPRR + Lead Spacing + W Lead Width + L Body Length + T Body thickness + H Body Height Example: CAPRR200W52L50T70H550BCapacitors, Non Polarized Radial Rectangular; lead spacing 2.00; lead width 0.52; Body Length 0.50; Body thickness 0.70; Height 5.50 Capacitors, Non Polarized Radial Disk Button........CAPRB + Lead Spacing + W Lead Width + L Body Length + T Body thickness + H Body Height Example: CAPRB200W52L50T70H550BCapacitors, Non Polarized Radial Rectangular; lead spacing 2.00; lead width 0.52; Body Length 0.50; Body thickness 0.70; Height 5.50 Capacitors, Polarized Axial Diameter Horizontal Mounting................CAPPA + Lead Spacing + W Lead Width + L Body Length + D Body Diameter Example: CAPPAD800W52L600D150BCapacitors, Polarized Axial Diameter; Lead Spacing 8.00; Lead Width 0.52; Body Length 6.00; Body Diameter 1.50Capacitor, Polarized Radial Diameter.................................................CAPPR + Lead Spacing + W Lead Width + D Body Diameter + H Body Height Example: CAPPRD200W52D300H550BCapacitors, Polarized Radial Diameter; lead spacing 2.00; lead width 0.52; Body Diameter 3.00; Height 5.50Diodes, Axial Diameter Horizontal Mounting.......................................DIOAD + Lead Spacing + W Lead Width + L Body Length + D Body Diameter Example: DIOAD800W52L600D150BCapacitors, Non Polarized Axial Diameter; Lead Spacing 8.00; Lead Width 0.52; Body Length 6.00; Body Diameter 1.50Diodes, Axial Diameter Vertical Mounting .........................................DIOADV + Lead Spacing + W Lead Width + L Body Length + D Body Diameter Example: DIOADV300W52L600D150BCapacitors, Non Polarized Axial; Lead Spacing 8.00; Lead Width 0.52; Body Length 6.00; Body Diameter 1.50Dual-In-Line Packages...................................DIP + Lead Span + W Lead Width + P Pin Pitch + L Body Length + H Component Height + Q Pin Qty Example: DIP762W52P254L1905H508Q14BDual-In-Line Package: Lead Span 7.62; Lead Width 0.52; Pin Pitch 2.54; Body Length 19.05; Body Height 5.08; Pin Qty 14Component, Category Land Pattern Name Dual-In-Line Sockets....................................DIPS + Lead Span + W Lead Width + P Pin Pitch + L Body Length + H Component Height + Q Pin Qty Example: DIPS762W52P254L1905H508Q14BDual-In-Line Package Socket: Lead Span 7.62; Lead Width 0.52; Pin Pitch 2.54; Body Length 19.05; Body Height 5.08; Pin Qty 14Headers, Vertical....... HDRV + Lead Span + W Lead Width + P Pin Pitch + R Pins per Row + L Body Length + T Body Thickness + H Component HeightExample: HDRV200W52P200R2L4400T400H900BHeader, Vertical: Lead Span 2.00; Lead Width 0.52; Pin Pitch 2.00; 2 Rows; Body Length 44.00; Body Thickness 4.00; Body Height 9.00 Headers, Right Angle...............HDRRA + Lead Span + W Lead Width + P Pin Pitch + R Pins per Row + L Body Length + T Body Thickness + H Component HeightExample: HDRRA200W52P200R2L4400T400H900BHeader, Vertical: Lead Span 2.00; Lead Width 0.52; Pin Pitch 2.00; 2 Rows; Body Length 44.00; Body Thickness 4.00; Body Height 9.00 Inductors, Axial Diameter Horizontal Mounting....................................INDAD + Lead Spacing + W Lead Width + L Body Length + D Body Diameter Example: INDAD800W52L600D150BInductors, Axial Diameter; Lead Spacing 8.00; Lead Width 0.52; Body Length 6.00; Body Diameter 1.50Inductors, Axial Diameter Vertical Mounting .....................................INDADV + Lead Spacing + W Lead Width + L Body Length + D Body Diameter Example: INDADV300W52L600D150BInductors, Axial Diameter Vertical Mounting; Lead Spacing 3.00; Lead Width 0.52; Body Length 6.00; Body Diameter 1.50Jumpers, Wire...................................................................................................................................................JUMP + Lead Spacing + W Lead Width Example: JUMP500W52BJumper; Lead Spacing 5.00; Lead Width 0.52Mounting Holes Plated With Support Pad..........................................................................MTGP + Pad Size + H Hole Size + Z Inner Layer Pad Size Example: MTGP700H400Z520This is a Mounting hole for a #6-32 screw using a circular 7.00 land on the primary and secondary side of the board, a 4.00 diameter hole with the internal lands are smaller that the external and are also circular 5.20 in diameter.Mounting Holes Non-Plated With Support Pad................................................................MTGNP + Pad Size + H Hole Size + Z Inner Layer Pad Size Example: MTGNP700H400Z520This is a Mounting hole for a #6-32 screw using a circular 7.00 land on the primary and secondary side of the board, a 4.00 diameter hole with the internal lands are smaller that the external and are also circular 5.20 in diameter.Mounting Holes Non-Plated Without Support Pad.....................MTGNP + Pad Size + H Hole Size + Z Inner Layer Pad Size + K Keep-out Diameter Example: MTGNP100H400Z520K700This is a Mounting hole for a #6-32 screw using a circular 1mm land on the primary and secondary side of the board, a 4.00 diameter hole with the internal lands are smaller that the external and are also circular 5.20 in diameter and a 7.00 diameter keep-out.Mounting Holes Plated with 8 Vias .....................................................................MTGP + Pad Size + H Hole Size + Z Inner Layer Pad Size + 8 Vias Example: MTGP700H400Z520V8This is a Mounting hole for a #6-32 screw using a circular 7mm land on the primary and secondary side of the board, a 4mm diameter hole with the internal lands are smaller that the external and are also circular 5.2mm in diameter, with 8 vias.Pin Grid Array’s.............................PGA + Pin Qty + P Pitch + C Pin Columns + R Pin Rows + L Body Length X Body Width + H Component Height Example: PGA84P254C10R10L2500X2500H300BPin Grid Array: Pin Qty 84; Pin Pitch 2.54; Columns 10; Rows 10; Body Length 25.00 X 25.00; Component Height 3.00Resistors, Axial Diameter Horizontal Mounting...................................RESAD + Lead Spacing + W Lead Width + L Body Length + D Body Diameter Example: RESAD800W52L600D150BResistors, Axial Diameter; Lead Spacing 8.00; Lead Width 0.52; Body Length 6.00; Body Diameter 1.50Resistors, Axial Diameter Vertical Mounting ....................................RESADV + Lead Spacing + W Lead Width + L Body Length + D Body Diameter Example: RESADV300W52L600D150BResistors, Axial Diameter Vertical Mounting; Lead Spacing 3.00; Lead Width 0.52; Body Length 6.00; Body Diameter 1.50Resistors, Axial Rectangular Horizontal Mounting...RESAR + Lead Spacing + W Lead Width + L Body Length + T Body thickness + H Body Height Example: RESAR800W52L600T50H70BResistors, Axial Rectangular; Lead Spacing 8.00; Lead Width 0.52; Body Length 6.00; Body Thickness 0.50; Body Height 0.70Test Points, Round Land......................................................................................................................................................................TP + Lead Width Example: TP52Test Points, Square Land..................................................................................................................................................................TPS + Lead Width Example: TPS52Test Points, Top Land Round & Bottom Land Square.....................................................................................................................TPRS + Lead Width Example: TPRS52 Wire....................................................................................................................................................................................................PAD + Wire Width Example: PAD52。
a r X i v :n u c l -t h /0009070v 2 14 D e c 2000Superdeformed Band in36Ar Described by Projected Shell ModelGui-Lu Long 1,2and Yang Sun 1,3,41Department of Physics,Tsinghua University,Beijing 100084,P.R.China2Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100080,P.R.China 3Department of Physics and Astronomy,University of Tennessee,Knoxville,Tennessee 379964Department of Physics,Xuzhou Normal University,Xuzhou,Jiangsu 221009,P.R.ChinaThe projected shell model implements shell model configuration mixing in the projected deformed basis.Our analysis on the recently observed superdeformed band in 36Ar suggests that the neutron and proton 2-quasiparticle and the 4-quasiparticle bands cross the superdeformed ground band at the same angular momentum.This constitutes a picture of band disturbance in which the first and the second band-crossing,commonly seen at separate rotation frequencies in heavy nuclei,occur simultaneously.We also attempt to understand the assumptions of two previous theoretical calculations which interpreted this band.Electromagnetic properties of the band are predicted.PACS:21.10.Re,21.60.Cs,23.20.Lv,27.30.+tThe topic of superdeformation has been at the fore-front of nuclear structure physics since the observation of the first superdeformed (SD)band in 152Dy [1].To-day,superdeformation at high spin is not an isolated phe-nomenon,but instead is observed across the nuclear pe-riodic table [2],and its microscopic foundation has been firmly established.However,with the recent observation of the SD band in 36Ar [3],it is astonishing that the quan-tum shell effects can stabilize the system at superdefor-mation in a nuclear system with such few particles (here N =Z =18).These new data have a large impact on theories,as they provide an ideal test case for nuclear structure mod-els.The 36Ar SD data presented in Ref.[3]were discussed by two theoretical calculations,the Cranked Nilsson-Strutinsky (CNS)model [4]and the spherical shell model (SM)[5].The fact that these models can give a comple-mentary description for the SD band in 36Ar indicates that they both are appropriate approaches.Neverthe-less,certain assumptions were made in both calculations.On the one hand,for a feasible SM calculation,the 1d 5/2orbital had to be excluded from the shell model space.It is known that in the deformed single-particle picture for the present SD minimum,the orbital K =5qp-vacuum|0 corresponds to the SD g-band,whereas the projected2-and4-qp states to2-and4-qp bands, respectively.The2-and4-qp states are selected so that the low-lying states for each kind of configuration should be included.If all multi-qp states were considered in Eq.(1),one would obtain the full shell model space generated by particles of the three major shells.As in the usual PSM calculations,we employ the Hamiltonian[6]ˆH=ˆH0−12of1d5/2and K=12and32and32of1d5/2and K=12and5between the g-band and the2-qp bands,and the second crossing between the2-qp and the4-qp bands.They cause thefirst and the second back-bending in moment of inertia,typically seen in the rare earth nuclei at spin I∼12and∼24,respectively[6].The band-crossing picture in N=Z nuclei in which a4-qp band crosses directly with the g-band was suggested earlier by Sheikh et al.[12]and further elaborated in Ref.[13].Thus,we can interpret the band disturbance in36Ar as a consequence of the simultaneous breaking of the1f7/2 neutron and proton pairs.After the band-crossing,the main component of the yrast band is from the4-qp band. We observe that all the(0-,2-,and4-qp)bands shown in Fig.1behave similarly at higher spins:above spin I=10,all bands displayed are approximately parallel, indicating that they rotate with the same frequency.In Fig.2a,the PSM energy levels are compared with data,and with the SM calculations[3]in the E(I)−E(I−2)plot.We observe that the PSM can reasonably reproduce the data and the results are com-parable with those of the SM.Following the SD band, one sees that the discontinuity around spin I=10, which corresponds to the band-crossing discussed earlier, has been reproduced.Nevertheless,in contrast to near-perfect agreement at the low spins,the PSM calculation has small deviations from the data at the band-crossing region,and for the higher spin states.For the N∼Z nuclei,there has been an open question of whether the proton-neutron pair correlation plays a role in the struc-ture discussions.It has been shown that with the renor-malized pairing interactions of the like-nucleons in an ef-fective Hamiltoinan,one can account for the T=1part of the proton-neutron pairing[13].However,whether the renormalization is sufficient for the complex region that exhibits the phenomenon of band-crossings,in par-ticular when both neutron and proton pair alignments occur at the same time,is an interesting question to be investigated.We note also that the amount of angular momentum gained by the alignment is below what one expects from decoupled f7/2pairs.Experiment on the neighboring odd-mass nuclei may help us to understand this issue.Fig.2b and2c present the calculated B(E2)and g-factor values for the36Ar SD band.We found that the band-crossing does not cause sudden changes around the crossing spin in either quantity.In the B(E2)calcula-tions,the effective charges are0.5e for neutrons and1.5e for protons,which are the same as those used in previous work and in other shell models[14].We emphasize that employment of different effective charges can modify the absolute B(E2)values,but the essential spin dependence is determined by the wave functions.In Fig.2b,the B(E2)values begin to decrease after spin I=8,and a smooth decrease is seen for higher spin states.At the band termination spin I=16,an approximate40%drop in B(E2)(compared to the maximum value at I=8)ispredicted.Our results thus suggest that a considerable collectivity remains even at the band termination.In the g-factor calculations,we use for g l the free values and forg s the free values damped by the usual0.75factor.Theresults are presented in Fig.2c.We observe a smooth increase in the g-factor from0.4at the bandhead to Z/A =0.5at I=8,and this rotor value remains thereafter.The nearly constant g-factor at higher spins indicates a cancellation between the proton and the neutron contri-bution.To see this clearly,we plot two additional curves in Fig.2c where the neutron and proton contributions are separated.This is done by eliminating the proton (neutron)qp states in Eq.(1)in the calculation for neu-tron(proton)contribution.It is now seen that the pro-ton alignment increases the g-factor,leading a peak at I=8,whereas the neutron alignment decreases it,caus-ing a valley at the same spin.The average of the two curves gives the total g-factor that shows aflat behav-ior as a function of spin.This reinforces our previous conclusion about the simultaneous breaking of the1f7/2 neutron and proton pairs and their combined alignment.To test these predictions,lifetime measurements for the states in the36Ar SD band are required,and we hope that recently developed techniques[15]can permit the g-factor measurement.Wefinally show the calculated pairing gaps in Fig.2d, in which expectation values of the pair operator are cal-culated by using the PSM wave functions.It is found that for this lightest SD nucleus,both neutron and pro-ton pairing gaps are larger than1MeV at I=0,which is a non-negligible value that is of comparable size to pairing gaps in a heavy,deformed system.However,the pairing gaps fall quickly as the nucleus rotates.After I=8,the falling continues,and saturates eventually at0.3–0.4MeV.This suggests that in order to describethe low-spin spectrum properly,pairing and its dynamic evolution are important.For the high spin states,the remaining weak pairing correlation may play a role in sustaining collectivity.In summary,the new experimental data of the SD band in36Ar,the lightest SD nucleus reported so far,has been described by the PSM.The calculated energy levels agreed well with the data,as well as with the SM results.We may thus conclude that the PSM is an efficient shell model truncation scheme for the well-deformed light nu-clei also,in which the quadrupole collectivity and pairing correlations dominate the properties.Similar conclusions have been drawn in the study of48Cr[14].It has been found that in the present case,the0-,2-,and4-qp bands cross each other at about spin I=10.Therefore,the 2-qp configurations do not have a chance to play a major role in the structure of the SD yrast band because imme-diately after the band-crossing,the4-qp band dominates the band structure.Analysis of the rotational behav-ior for various bands in the band diagram and calcula-tion of the pairing gaps could help us understand the 3assumptions in the CNS and the SM calculations that were previously used to interpret the data.Electromag-netic properties in this SD band have been studied with predictions made for the B(E2)and g-factor values. Communication with Dr.C.Baktash is acknowledged. The authors sincerely thank Dr.D.J.Hartley for careful reading the manuscript.Y.S.thanks the Department of Physics of Tsinghua University for warm hospitality, and for support from its senior visiting scholar program. This work is supported also by the Major State Basic Research Developed Program Grant No.G2000077400, the China National Natural Science Foundation Grant No.19775026,the Fok Ying Tung Education Foundation, and the Excellent Young University Teachers’Fund of Education Ministry of China.Spin I48121620E n e r g y (M e V )Fig.1, Long and Sun。