(重庆市)2014年高考真题数学(文)试题
- 格式:doc
- 大小:689.50 KB
- 文档页数:9
重庆市2014年初中毕业暨高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义:只有符号不同的两个数是互为相反数,可知17-的相反数是17,故选A . 【考点】相反数的定义 2.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减得64642222x x x x -÷==,故选B . 【考点】同底数幂的除法运算 3.【答案】A【解析】因为二次根式中被开方数是非负数,即0a ≥,故选A 【考点】二次根式中被开方数的取值范围 4.【答案】C【解析】n 边形的内角和是(2)180n -⨯︒,将5n =代人即得五边形的内角和是540,故选C . 【考点】多边形的内角和 5.【答案】D【解析】气温最低即数值最小,8-在这四个数中处在数轴的最左边,故8-最小,故选D 【考点】有理数的大小比较 6.【答案】B【解析】将方程的两边向时乘最简公分母1x -得整式方程21x =-,解得3x =.经检验,3x =是原分式方程的解,故选B .【考点】分式方程的解法 7.【答案】D【解析】根据方差越小越稳定,而0.020.03 0.050.11<<<,故丁的成绩最稳定,故选D 【考点】方差的意义 8.【答案】B【解析】因为//AB CD ,根据“两直线平行,同位角相等”得142EFD ∠=∠=︒,又因为FG FE ⊥,所以2180904248∠=︒-︒-︒=︒,故选B .【考点】平行线的性质及垂直的定义,OA OB =43AB OC =242=3π.所以22ax a ,由①得a 只能等于【考点】一次函数图象与坐标轴的交点、解不等式组、三角形的面积计算等,DC BC =62210BC CE BE ⨯=CF BE ⊥︒,OCF ∴∠+∠又OBM ∠+BM CF =等腰R MF【解析】解:AD BC ⊥tan 4BAD ∠=,12AD =9BD ∴=CD BC ∴=2(1)(x 1)x x -+-1111x +-+补图如下:(2)用1A ,2A 表示餐饮企业,1B ,2B 表示非餐饮企业,画树状图如下:10%)150(19-24.【答案】证明:如图) BAC ∠=12∴∠=∠,AB AC =,∴∠B FCA ∠=∠ABF ∴△BE CF ∴=(2)①过E 45B ∠=AD BC ⊥2BM ED =⊥②AD BC∠=∠15=MC MC78∴∠=∠,∠=BAC∴∠=ACB∴∠=∠57∠=ADE【解析】【考点】全等三角形的判定和性质、等腰直角三角形的性质、角乎分线的性质等1AM ME=⨯12x=-,(3)由(2)知,当矩形PMNQ的周长最大时,2)5AB =,2BD AB =+1122ABD AB AD S BD AE ==△ 解得4AE =2222543BE AB AE ∴=-=-=若点Q 在线段BD 的延长线上时,如图1,34∠=∠'A Q A ∴=在Rt BF ∆若点Q 在线段BD 上,如图2:1=3∠∠,3=5+∠∠35∴∠=∠4A ∴∠=∠'5F Q ∴='1A ∠=∠设QB QA =在Rt BF ∆③当PD PQ =时,如图4,有1=2=3∠∠∠1A ∠=∠253DQ ∴=11 / 11。
2014年重庆市高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.3.(5分)(2014•重庆)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则解:分层抽样的抽取比例为,×5.(5分)(2014•重庆)执行如图所示的程序框图,则输出s的值为()6.(5分)(2014•重庆)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;7.(5分)(2014•重庆)某几何体的三视图如图所示,则该几何体的体积为()V=×﹣×8.(5分)(2014•重庆)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,22B===+2+2>2∴a+b=a+=a+=a+3++7+7a=4+210.(5分)(2014•重庆)已知函数f(x)=,且g(x)(﹣,﹣](﹣](﹣](﹣],x=﹣<,二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)(2014•重庆)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B= {3,5,13}.12.(5分)(2014•重庆)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•=10.解:∵=∴∴13.(5分)(2014•重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()=.ωω(,﹣)图象上每一点的横坐标缩短为个单位长度得到函数﹣ω﹣(x+(()=sin=故答案为:14.(5分)(2014•重庆)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B两点,且AC⊥BC,则实数a的值为0或6.=15.(5分)(2014•重庆)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答).,联立得,联立得×,故答案为:.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)(2014•重庆)已知{a n}是首项为1,公差为2的等差数列,S n表示{a n}的前n 项和.(Ⅰ)求a n及S n;(Ⅱ)设{b n}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{b n}的通项公式及其前n项和T n.∴17.(13分)(2014•重庆)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.P=18.(13分)(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.求出sinC,且,cosC==;22=2sinCabsinC=sinC19.(12分)(2014•重庆)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.y=+﹣﹣,x﹣a=+﹣﹣﹣=20.(12分)(2014•重庆)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.BAD=,BM=,结合菱形的性质,余弦定理,勾股定理,可得BAD=,(BM=OBM=(,,=,=,,即PO==•OM=S PO=21.(12分)(2014•重庆)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.|=,于是可求得椭圆的标准方程;与椭圆﹣=2,得==,得,,因此,所求椭圆的标准方程为与椭圆,所以+﹣,即3﹣﹣得+1|=,==。
2014年重庆高考数学试题〔文〕一.选择题:本大题共10小题,每一小题5分,共50分.在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的.1.实部为-2,虚部为1 的复数所对应的点位于复平面的〔〕.A 第一象限.B 第二象限 .C 第三象限.D 第四象限【答案】B 【解析】..1,2-(B 选)复数对应点2.在等差数列{}n a 中,1352,10a a a =+=,如此7a =〔〕.5A .8B .10C .14D【答案】B 【解析】..861,35.102,217144531B d a a d d a a a a a a 选即=+=∴=+==∴==+=3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,从高中生中抽取70人,如此n 为〔〕.100A .150B .200C .250C【答案】A 【解析】..100,:70)15003500(3500A n n 选解得:按相同比例进行抽样==+∴4.如下函数为偶函数的是〔〕.()1A f x x =-3.()B f x x x =+.()22x x C f x -=-.()22x x D f x -=+【答案】D 【解析】..,D D C B A 选为偶函数为奇函数,是非奇非偶函数,5.执行如题〔5〕图所示的程序框图,如此输出,的值为.10A .17B .19C .36C【答案】C【解析】+++=S选+=0C∴.9192356.命题x≥;:p对任意x R∈,总有||0q x=是方程"20":"1"x+=的根如此如下命题为真命题的是〔〕∧⌝.B p q.A p q⌝∧.D p q∧⌝∧.C p q【答案】A【解析】为真命题,∴为假命题,正确.Ap选A.q7.某几何体的三视图如下列图,如此该几何体的体积为〔〕A.12B.18C.24D.30【答案】C【解析】CS S V 选几何体表的体积的上部三棱锥后余下的;截掉高为,高原三棱柱:底面三角形三棱锥三棱柱∴24324331-5243-354*3=•••••==8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,3|)||(|2221ab b PF PF -=+如此该双曲线的离心率为〔〕A.2B.15C.4D.17 【答案】D 【解析】.,17,174,1∴,4,3-a 4∴3-)-(222222221D acc b a b a c b a ab b ab b PF PF 选则令且解得====+====9.假设b a ab b a +=+则)(,log 43log 24的最小值是〔〕A.326+B.327+C.346+D.347+ 【答案】D 【解析】..3474327437)43)((,14343log 43log 4log )43(log )43(log 22224D a b b a a b b a a b b a b a a b abb a ab b a b a b a 所以,选即+=•+≥++=++=+=+=+∴=+=+=+10.函数]1,1)()(,]1,0(,]0,1(,311)(---=⎪⎩⎪⎨⎧∈-∈-+=在(且m mx x f x g x x x x x f 内有且仅有两个不同的零点,如此实数m 的取值范围是〔〕A.]21,0(]2,49(⋃--B.]21,0(]2,411(⋃--C.]32,0(]2,49(⋃--D.]32,0(]2,411(⋃--【答案】A 【解析】..2]21,0(∪]2-,49-(∈.49-]1,0(∈,)0,1-(2-)0,1-(),2-0(21)0,1-(),1,1(.).1()(∴--)()(Amxxyxmxfmmxxfxg所以,选个交点时,有显然相切的斜率为与,过的斜率为,,点的斜率为点图像如图所示= +===二、填空题11.集合=⋂==BABA则},13,8,5,3,1{},8,5,3,2,1{______.【答案】{3, 5, 13} 【解析】A∩B={3, 5, 13}12.向量=⋅=--=bababa则,且的夹角为与,10||),6,2(60_________.【答案】10 【解析】10.103πcos10364cosθ||||∴3πθ,10||),6-2-(=•=••+=•=•===b abababa所以,,13. 将函数()()⎪⎭⎫ ⎝⎛<≤->+=220sin πϕπωϕω,x x f 图像上每一点的横坐标缩短为原来的 一半,纵坐标不变,再向右平移6π的单位长度得到x y sin =的图像,如此=⎪⎭⎫ ⎝⎛6πf ______.【答案】22【解析】22)6π(224πsin )6π(∴2πφ≤2π-,6πφ,21ω∴)6π21sin()φωsin()(2)6πsin(6πsin .===<==+=+=+==f f x x x f x y x y 所以,倍,则得到,再把横坐标扩大为,得到左移把反向解题 0=+-a y x 14. 直线与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且 BC AC ⊥,如此实数a 的值为_________.【答案】60,或 【解析】60,∴60,232|2--1|.20-)2,1-(∴3),2,1-(Δ或,或解得又的距离到直线圆心半径心为等腰直角三角形,圆===+===+=a a a d r d a y x r ABC15. 某校早上8:00上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时间到校是等可能的,如此小张比小王至少早5分钟到校的概率为_____ 〔用数字作答〕【答案】329【解析】3295329202021515.20≤,20≤,0≥,0≥,≤520-020-0.分钟的概率为至少早到所以,小王比小张到校之比,即是所求概率可行区域面积与总面积分,则据题有轴表示小张到校时间分,轴表示小王到校时间设几何概型=••=+p y x y x x y y x三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16. 〔本小题总分为13分.〔I 〕小问6分,〔II 〕小问5分〕{}n a 是首相为1,公差为2的等差数列,n S 表示{}n a 的前n 项和.〔I 〕求n a 与n S ;〔II 〕设{}n b 是首相为2的等比数列,公比q 满足()01442=++-S q a q ,求{}n b 的通项公式与其前n 项和n T .【答案】 〔I 〕+∈==N n n S n a n n ,.1-22〔II 〕+•=•=N n T b n n n n ∈,32-42,421-【解析】 〔I 〕+∈===+==+=∴==N n n S n a n n a a S n d n a a d a n n nn n ,.1-22.1-2)1-(2,1,22111所以,由题知〔II 〕+•=•=•===•=====++=++N n T b q q b T b q b b b q q q S q a q n n n n n n n n n n n n ∈,32-42,4232-424-1)4-1(2-1)-1(,42∴,24,016)17(-∴0)1(-1-11-1-112442所以,解得17. 〔本小题总分为13分.〔I 〕小问4分,〔II 〕小问4分,〔III 〕小问5分〕20名学生某次数学考试成绩〔单位:分〕的频数分布直方图如下:〔I 〕求频数直方图中a 的值;〔II 〕分别球出成绩落在[)6050,与[)7060,中的学生人数; 〔III 〕从成绩在[)7050,的学生中人选2人,求次2人的成绩都在[)7060,中的概率. 【答案】 〔I 〕0.005 〔II 〕2,3〔III 〕 103【解析】 〔I 〕005.0005.01.0d122a 3a 6a 7a ∴10,====•+++=a a d 所以,,解得组距由题知 〔II 〕人和的学生人数分别为与所以,成绩在的学生人数成绩在的学生人数成绩在32)70,60[)60,50[32010005.03203)70,60[,22010005.02202)60,50[=•••=••==•••=••=d a n d a m 〔III 〕103)70,60[2103)70,60[2.3233)70,60[.10252中的概率为人的成绩均在所以,所取中的概率人的成绩均在所取种人,共有人中任选人,从这共有成绩在种取法人,共有人中任选)知,从由(=∴p18.〔本小题总分为12分〕在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且8=++c b a〔1〕假设25,2==b a ,求C cos 的值;〔2〕假设CAB B A sin 22cos sin 2cos sin 22=+,且ABC ∆的面积C S sin 29=,求a和b 的值.【答案】 〔I 〕51-〔II 〕a=b=3【解析】 〔I 〕51-cos .51-2-cos ,.278,25,2222==+==∴=++==C ab c b a C c c b a b a 所以,由余弦定理知〔II 〕33∴69∴sin 29sin 26,2,84∴83⇒sin 3sin sin ⇒sin 4sin sin sin sin cos sin sin cos sin )1(cos sin )1(cos sin ⇒sin 4)11-2cos 2(sin )11-2cos 2(sin ∴sin 22cos sin 2cos sin ΔABC 2222=====+====+===++=+=+=++=+++=+++=+++=+b a b a b a ab C C ab S b a c c c b a cb a C B A C C B A B A B A B A A B B A C AB B AC A B B A 所以,19.〔本小题总分为12分〕函数23ln 4)(--+=x x a x x f ,其中R a ∈,且曲线)(x f y =在点))1(,1(f 处的切 线垂直于x y 21=〔1〕求a 的值;〔2〕求函数)(x f 的单调区间和极值。
2014年重庆市高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)(2014•重庆)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数的几何意义,即可得到结论.【解答】解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B.2.(5分)(2014•重庆)在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14【分析】由题意可得a4=5,进而可得公差d=1,可得a7=a1+6d,代值计算即可.【解答】解:∵在等差数列{a n}中a1=2,a3+a5=10,∴2a4=a3+a5=10,解得a4=5,∴公差d==1,∴a7=a1+6d=2+6=8故选:B.3.(5分)(2014•重庆)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250【分析】计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n值.【解答】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.4.(5分)(2014•重庆)下列函数为偶函数的是()A.f(x)=x﹣1B.f(x)=x2+xC.f(x)=2x﹣2﹣x D.f(x)=2x+2﹣x【分析】根据偶函数的定义,依次分析选项,先分析函数的定义域,再分析f(﹣x)=f(x)是否成立,即可得答案.【解答】解:根据题意,依次分析选项:A、f(x)=x﹣1,其定义域为R,f(﹣x)=﹣x﹣1,f(﹣x)≠f(x),不是偶函数,不符合题意;B、f(x)=x2+x,其定义域为R,f(﹣x)=x2﹣x,f(﹣x)≠f(x),不是偶函数,不符合题意;C、f(x)=2x﹣2﹣x,其定义域为R,f(﹣x)=2﹣x﹣2x,f(﹣x)=﹣f(x),是奇函数不是偶函数,不符合题意;D、f(x)=2x+2﹣x,其定义域为R,f(﹣x)=2﹣x+2x,f(﹣x)=f(x),是偶函数,符合题意;故选:D.5.(5分)(2014•重庆)执行如图所示的程序框图,则输出s的值为()A.10B.17C.19D.36【分析】根据框图的流程模拟运行程序,直到不满足条件k<10,跳出循环体,计算输出S的值.【解答】解:由程序框图知:第一次循环S=2,k=2×2﹣1=3;第二次循环S=2+3=5,k=2×3﹣1=5;第三次循环S=5+5=10,k=2×5﹣1=9;第四次循环S=10+9=19,k=2×9﹣1=17,不满足条件k<10,跳出循环体,输出S=19.故选:C.6.(5分)(2014•重庆)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;则下列命题为真命题的是()A.p∧¬q B.¬p∧q C.¬p∧¬q D.p∧q【分析】判定命题p,q的真假,利用复合命题的真假关系即可得到结论.【解答】解:根据绝对值的性质可知,对任意x∈R,总有|x|≥0成立,即p为真命题,当x=1时,x+2=3≠0,即x=1不是方程x+2=0的根,即q为假命题,则p∧¬q,为真命题,故选:A.7.(5分)(2014•重庆)某几何体的三视图如图所示,则该几何体的体积为()A.12B.18C.24D.30【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断三棱柱的高及消去的三棱锥的高,判断三棱锥与三棱柱的底面三角形的形状及相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∴几何体的体积V=×3×4×5﹣××3×4×3=30﹣6=24.故选:C.8.(5分)(2014•重庆)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|﹣|PF2|)2=b2﹣3ab,则该双曲线的离心率为()A.B.C.4D.【分析】根据(|PF1|﹣|PF2|)2=b2﹣3ab,由双曲线的定义可得(2a)2=b2﹣3ab,求得a=,c==b,即可求出双曲线的离心率.【解答】解:∵(|PF1|﹣|PF2|)2=b2﹣3ab,∴由双曲线的定义可得(2a)2=b2﹣3ab,∴4a2+3ab﹣b2=0,∴a=,∴c==b,∴e==.故选:D.9.(5分)(2014•重庆)若log4(3a+4b)=log2,则a+b的最小值是()A.6+2B.7+2C.6+4D.7+4【分析】利用对数的运算法则可得>0,a>4,再利用基本不等式即可得出【解答】解:∵3a+4b>0,ab>0,∴a>0.b>0∵log4(3a+4b)=log2,∴log4(3a+4b)=log4(ab)∴3a+4b=ab,a≠4,a>0.b>0∴>0,∴a>4,则a+b=a+=a+=a+3+=(a﹣4)++7 +7=4+7,当且仅当a=4+2取等.故选:D.10.(5分)(2014•重庆)已知函数f(x)=,,,,,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A.(﹣,﹣2]∪(0,]B.(﹣,﹣2]∪(0,]C.(﹣,﹣2]∪(0,]D.(﹣,﹣2]∪(0,]【分析】由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论.【解答】解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:由图象可知f(1)=1,h(x)表示过定点A(﹣1,0)的直线,当h(x)过(1,1)时,m=此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当h(x)与f(x)相切时,两个函数只有一个交点,此时,即m(x+1)2+3(x+1)﹣1=0,当m=0时,x=,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤,故选:A.二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)(2014•重庆)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B={3,5,13} .【分析】根据题意,分析集合A、B的公共元素,由交集的意义即可得答案.【解答】解:根据题意,集合A={3,4,5,12,13},B={2,3,5,8,13},A、B公共元素为3、5、13,则A∩B={3,5,13},故答案为:{3,5,13}.12.(5分)(2014•重庆)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•=10.【分析】利用向量的模、夹角形式的数量积公式,求出即可【解答】解:∵=(﹣2,﹣6),∴,∴<,>=2=10.故答案为:10.13.(5分)(2014•重庆)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()=.【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得sin(2ωx+φ﹣ω)=sinx,可得2ω=1,且φ﹣ω=2kπ,k∈z,由此求得ω、φ的值,可得f(x)的解析式,从而求得f()的值.【解答】解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]=sin(2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω=2kπ,k∈Z,∴ω=,φ=+2kπ,∴f(x)=sin(x+),∴f()=sin(+)=sin=.故答案为:.14.(5分)(2014•重庆)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B两点,且AC⊥BC,则实数a的值为0或6.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.【解答】解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6,故答案为:0或6.15.(5分)(2014•重庆)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答).【分析】设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(x,y)|y﹣x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为x,小王到校的时间为y.(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,对应的面积S=20×20=400,则小张比小王至少早5分钟到校事件A={x|y﹣x≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立得C(45,50),联立得B(30,35),则S△ABC=×15×15,由几何概率模型可知小张比小王至少早5分钟到校的概率为=,故答案为:.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)(2014•重庆)已知{a n}是首项为1,公差为2的等差数列,S n表示{a n}的前n项和.(Ⅰ)求a n及S n;(Ⅱ)设{b n}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0.求{b n}的通项公式及其前n项和T n.【分析】(Ⅰ)直接由等差数列的通项公式及前n项和公式得答案;(Ⅱ)求出a4和S4,代入q2﹣(a4+1)q+S4=0求出等比数列的公比,然后直接由等比数列的通项公式及前n项和公式得答案.【解答】解:(Ⅰ)∵{a n}是首项为1,公差为2的等差数列,∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.;(Ⅱ)由(Ⅰ)得,a4=7,S4=16.∵q2﹣(a4+1)q+S4=0,即q2﹣8q+16=0,∴(q﹣4)2=0,即q=4.又∵{b n}是首项为2的等比数列,∴..17.(13分)(2014•重庆)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.【分析】(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求.(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.【解答】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.18.(13分)(2014•重庆)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值.【分析】(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab 的值,联立即可求出a与b的值.【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.19.(12分)(2014•重庆)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值.【分析】(Ⅰ)由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符,进而可得函数f(x)的单调区间与极值.【解答】解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.∴f′(1)=﹣a﹣1=﹣2,解得:a=.(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5.20.(12分)(2014•重庆)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.【分析】(Ⅰ)连接OB,根据底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=,结合菱形的性质,余弦定理,勾股定理,可得OM⊥BC及PO⊥BC,进而由线面垂直的判定定理得到BC⊥平面POM;(Ⅱ)设PO=a,利用勾股定理和余弦定理解三角形求出PO的值,及四棱锥P﹣ABMO的底面积S,代入棱锥体积公式,可得答案.【解答】证明:(Ⅰ)∵底面是以O为中心的菱形,PO⊥底面ABCD,故O为底面ABCD的中心,连接OB,则AO⊥OB,∵AB=2,∠BAD=,∴OB=AB•sin∠BAO=2sin()=1,又∵BM=,∠OBM=,∴在△OBM中,OM2=OB2+BM2﹣2OB•BM•cos∠OBM=,即OB2=OM2+BM2,即OM⊥BM,∴OM⊥BC,又∵PO⊥底面ABCD,BC⊂底面ABCD,∴PO⊥BC,又∵OM∩PO=O,OM,PO⊂平面POM,∴BC⊥平面POM;(Ⅱ)由(Ⅰ)可得:OA=AB•cos∠BAO=2cos()=,设PO=a,由PO⊥底面ABCD可得:△POA为直角三角形,故PA2=PO2+OA2=a2+3,由△POM也为直角三角形得:PM2=PO2+OM2=a2+,连接AM,在△ABM中,AM2=AB2+BM2﹣2AB•BM•cos∠ABM==,由MP ⊥AP 可知:△APM 为直角三角形,则AM 2=PA 2+PM 2,即a 2+3+a 2+ =,解得a= ,即PO=,此时四棱锥P ﹣ABMO 的底面积S=S △AOB +S △BOM = •AO•OB + •BM•OM=,∴四棱锥P ﹣ABMO 的体积V= S•PO=21.(12分)(2014•重庆)如图,设椭圆 +=1(a >b >0)的左右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,丨 丨丨 丨=2 ,△DF 1F 2的面积为.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.【分析】(Ⅰ)设F 1(﹣c ,0),F 2(c ,0),依题意,可求得c=1,易求得|DF 1|= =,|DF 2|=,从而可得2a=2 ,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y 轴上的圆C 与椭圆+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,依题意,利用圆和椭圆的对称性,易知x 2=﹣x 1,y 1=y 2,|P 1P 2|=2|x 1|,由F 1P 1⊥F 2P 2,得x 1=﹣或x 1=0,分类讨论即可求得圆心及半径,从而可得圆的方程.【解答】解:(Ⅰ)设F 1(﹣c ,0),F 2(c ,0),其中c 2=a 2﹣b 2,由丨 丨丨 丨=2 ,得|DF 1|== c ,从而 = |DF 1||F 1F 2|= c 2=,故c=1.从而|DF 1|=,由DF 1⊥F 1F 2,得 = + = ,因此|DF 2|=,所以2a=|DF 1|+|DF 2|=2 ,故a= ,b 2=a 2﹣c 2=1,因此,所求椭圆的标准方程为+y 2=1;(Ⅱ)设圆心在y 轴上的圆C 与椭圆+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,由圆和椭圆的对称性,易知x 2=﹣x 1,y 1=y 2,|P 1P 2|=2|x 1|, 由(Ⅰ)知F 1(﹣1,0),F 2(1,0),所以 =(x 1+1,y 1),=(﹣x 1﹣1,y 1),再由F 1P 1⊥F 2P 2,得﹣+ =0,由椭圆方程得1﹣=,即3 +4x 1=0,解得x 1=﹣或x 1=0. 当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在;当x 1=﹣时,过P 1,P 2,分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C ,设C(0,y 0)由F1P1,F2P2是圆C的切线,知CP1⊥F1P1,得•=﹣1,而|y1|=|x1+1|=,故y0=,故圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.。
2014年重庆高考数学试题(文)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2014重庆文1)实部为2-,虚部为1的复数所对应的点位于复平面的( ). A. 第一象限 B.第二象限 C. 第三象限 D.第四象限2. 在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).A.5B.8C.10D.143. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ).A.100B.150C.200D.250 4. 下列函数为偶函数的是( ).A.()1f x x =- 2B.()f x x x =+C.()22xxf x -=-D.()22xxf x -=+5.(2014重庆文5) 执行如图所示的程序框图,则输出s 的值为( ). A.10 B.17C.19D.366.(2014重庆文6)已知命题::p 对任意x ∈R ,总有||0x ≥;:1q x =是方程20x +=的根.则下列命题为真命题的是( ).A.p q ∧⌝B.p q ⌝∧C.p q ⌝∧⌝D.p q ∧7.某几何体的三视图如图所示,则该几何体的体积为( ).A.12B.18C.24D.308.(2014重庆文8)设21F F ,分别为双曲线22221(00)x y a b a b-=>>,的左、右焦点,双曲线上存在一点P 使得俯视图左视图正视图32452212(||||)3PF PF b ab -=-,则该双曲线的离心率为( ).A.2B.15C.4D.179.(2014重庆文9)若42log 34log a b a b +=+()的最小值是( ). A.326+ B.327+ C.346+ D.347+10. 已知函数13(10]()()()1(01]x f x g x f x mx m x x x ⎧-∈-⎪==--+⎨⎪∈⎩,,,且,,在(]11-,内有且仅有两个不同的零点,则实数m 的取值范围是( ). A.91(2](0]42--,, B.111(2](0]42--,, C.92(2](0]43--,, D.112(2](0]43--,, 二、填空题11.(2014重庆文11)已知集合{3451213}{235813}A B A B ===,,,,,,,,,,则______.12.(2014重庆文12)已知向量60(26)||=--=⋅=与的夹角为,且,,a b a b a b _________.13.(2014重庆文13)将函数()()sin 022f x x ωφωφππ⎛⎫=+>-< ⎪⎝⎭,≤图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移6π个单位长度得到x y sin =的图像,则6f π⎛⎫= ⎪⎝⎭______. 14. 已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BC AC ⊥,则实数a 的值为_________.15.(2014重庆文15)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_________(用数字作答). 三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16. (2014重庆文16)(本小题满分13分.(I )小问6分,(II )小问5分)已知{}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项和. (I )求n a 及n S ;(II )设{}n b 是首项为2的等比数列,公比q 满足()01442=++-S q a q ,求{}n b 的通项公式及其前n 项和n T .17. (2014重庆文17)(本小题满分13分.(I )小问4分,(II )小问4分,(III )小问5分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示:(I )求频率分布直方图中a 的值;(II )分别求出成绩落在[)6050,与[)7060,中的学生人数; (III )从成绩在[)7050,的学生中任选2人,求此2人的成绩都在[)7060,中的概率. 18.(本小题满分12分)在ABC △中,内角A B C ,,所对的边分别为a b c ,,,且8=++c b a .(1)若522a b ==,,求C cos 的值; (2)若C A B B A sin 22cos sin 2cossin 22=+,且ABC △的面积C S sin 29=,求a 和b 的值. 19.(2014重庆文19)(本小题满分12分)已知函数23ln 4)(--+=x x a x x f ,其中a ∈R ,且曲线)(x f y =在点(1(1))f ,处的切线垂直于直线x y 21=. (1)求a 的值;(2)求函数)(x f 的单调区间和极值.20.(2014重庆文20)(本小题满分12分,(1)问4分,(2)问8分)7632如图所示,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,23AB BAD π=∠=,,M 为BC 上一点,且12BM =. (1)求证:BC ⊥平面POM ;(2)若M P AP ⊥,求四棱锥P ABMO -的体积.21.(2014重庆文21)(本小题满分12分,(1)问4分,(2)问8分)如图所示,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F ,,点D 在椭圆上,112DF F F ⊥,121||||F F DF =12DF F △的面积为2.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程,若不存在,请说明理由.MOP D CB ADF 2F 1Oyx。
数学试卷 第1页(共4页)数学试卷 第2页(共4页)绝密★启用前2014年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共4页.满分150分.考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答,在试题卷上答题无效.5.考试结束后,将试题卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.实部为2-,虚部为1的复数所对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限2.在等差数列{}n a 中,12a =,3510a a +=,则7a =( )A .5B .8C .10D .143.某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250 4.下列函数为偶函数的是( )A .()1f x x =-B .2()f x x x =+C .()22x x f x -=-D .()22x x f x -=+5.执行如图所示的程序框图,则输出s 的值为 ( )A .10B .17C .19D .366.已知命题p :对任意x ∈R ,总有||0x ≥;q :1x =是方程20x +=的根.则下列命题为真命题的是( ) A .p q ∧⌝ B .p q ⌝∧ C .p q ⌝∧⌝D .p q ∧7.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .308.设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P使得2212(||||)3PF PF b ab -=-,则该双曲线的离心率为 ( )A .2B .15C .4D .17 9.若42log 34)log a b ab +=(,则a b +的最小值是( )A .623+B .723+C .643+D .743+10.已知函数13,(1,0],()1,(0,1],x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩且()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点,则实数m 的取值范围是( )A .91(,2](0,]42--UB .111(,2](0,]42--U C .92(,2](0,]43--UD .112(,2](0,]43--U 姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共4页) 数学试卷 第4页(共4页)二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.已知集合{3,4,5,12,13}A =,{2,3,5,8,13}B =,则A B=I . 12.已知向量a 与b 的夹角为60︒,且a (2,6)=--,|b|10=,则a g b = .13.将函数ππ()sin()(0)22f x x ωφωφ=+>-,≤<图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到sin y x =的图象,则π()6f = . 14.已知直线0x y a -+=与圆心为C 的圆222440x y x y ++--=相交于A ,B 两点,且AC BC ⊥,则实数a 的值为 .15.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为 .(用数字作答)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)已知{}n a 是首项为1,公差为2的等差数列,n S 表示{}n a 的前n 项和. (Ⅰ)求n a 及n S ;(Ⅱ)设{}n b 是首项为2的等比数列,公比q 满足244(1)0q a q S -++=.求{}n b 的通项公式及其前n 项和n T .17.(本小题满分13分,(Ⅰ)小问4分,(Ⅱ)小问4分,(Ⅲ)小问5分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)分别求出成绩落在[5060),与[6070),中的学生人数;(Ⅲ)从成绩在[5070),的学生中任选2人,求此2人的成绩都在[60,70)中的概率.18.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,且8a b c ++=.(Ⅰ)若2a =,52b =,求cos C 的值;(Ⅱ)若22sin cos sin cos 2sin 22B A A B C +=,且ABC △的面积9sin 2S C =,求a 和b 的值.19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)已知函数3()ln 42x a f x x x =+--,其中a ∈R ,且曲线()y f x =在点(1,(1))f 处的切线垂直于直线12y x =.(Ⅰ)求a 的值;(Ⅱ)求函数()f x 的单调区间与极值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分)如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2AB =,π3BAD ∠=,M 为BC 上一点,且12BM =.(Ⅰ)证明:BC ⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =,12DF F △的面积为2.(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.。
2014年重庆高考数学试题(文)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实部为-2,虚部为1的复数所对应的点位于复平面的( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限 2.在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) .100A .150B .200C .250C 4.下列函数为偶函数的是( ).()1A f x x =- 3.()B f x x x =+ .()22x x C f x -=- .()22x xD f x -=+s 为( ).19C D .366.已知命题 :p 对任意x R ∈,总有||0x ≥;:1q x =是方程20x +=的根 则下列命题为真命题的是( ) .A p q ∧⌝ .B p q ⌝∧ .C p q ⌝∧ .D p q ∧A .8.设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左.右焦点,双曲线上存在一点P 使得,3|)||(|2221ab b PF PF -=+则该双曲线的离心率为( )A.2 B .15 C .4 D .17 9.若b a ab b a +=+则)(,log 43log 24的最小值是( )A.326+ B .327+ C .346+ D .347+10.已知函数13,(1,0](),1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩且()()g x f x mx m =--在(]1,1-内有且仅有两个不同的零点,则实数m 的取值范围是( )A .]21,0(]2,49(⋃--B .]21,0(]2,411(⋃--C .]32,0(]2,49(⋃--D .]32,0(]2,411(⋃--二.填空题11.已知集合=⋂==B A B A 则},13,8,5,3,1{},8,5,3,2,1{______.12.已知向量a 与b 的夹角为60,且(2,6),||10a b =--=,则a b ⋅=_________. 13.将函数()()⎪⎭⎫⎝⎛<≤->+=220sin πϕπωϕω,x x f 图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移6π的单位长度得到x y sin =的图像,则=⎪⎭⎫⎝⎛6πf ______. 14.已知直线0=+-a y x 与圆心为C 的圆222440x y x y ++--=相交于B A ,两点,且 BC AC ⊥,则实数a 的值为_________.15.某校早上8:00上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时间到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答) 三.解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分13分.(I )小问6分,(II )小问5分)已知{}n a 是首相为1,公差为2的等差数列,n S 表示{}n a 的前n 项和. (I )求n a 及n S ;(II )设{}n b 是首相为2的等比数列,公比q满足()01442=++-S q a q ,求{}n b 的通项公式及其前n 项和n T .17.(本小题满分13分.(I )小问4分,(II )小问4分,(III )小问5分)20名学生某次数学考试成绩(单位:分)的频数分布直方图如下:(I )求频数直方图中a 的值;(II )分别球出成绩落在[)6050,与[)7060,中的学生人数;(III )从成绩在[)7050,的学生中人选2人, 求次2人的成绩都在[)7060,中的概率. 18.(本小题满分12分)在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且8=++c b a (1)若25,2==b a ,求C cos 的值; (2)若C AB B A sin 22cos sin 2cossin 22=+,且ABC ∆的面积C S sin 29=,求a和b 的值. 19.(本小题满分12分) 已知函数23ln 4)(--+=x x a x x f ,其中R a ∈,且曲线)(x f y =在点))1(,1(f 处的切 线垂直于x y 21=(1)求a 的值;(2)求函数)(x f 的单调区间和极值。
2014 年重庆市高考数学试卷(文科)一、选择题:本大题共10 小题,每题 5 分,共 50 分.在每题给出的四个备选项中,只有一项为哪一项切合题目要求的.1.(5 分)(2014?重庆)实部为﹣ 2,虚部为 1 的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限【剖析】依据复数的几何意义,即可获得结论.【解答】解:实部为﹣ 2,虚部为 1 的复数所对应的点的坐标为(﹣2,1),位于第二象限,应选: B.2.(5 分)(2014?重庆)在等差数列A.5B.8{ a n } 中, a1=2, a3+a5=10,则 a7=(C.10D.14)【剖析】由题意可得a4=5,从而可得公差d=1,可得a7=a1+6d,代值计算即可.【解答】解:∵在等差数列 { a n } 中 a1=2, a3+a5=10,∴2a4=a3+a5=10,解得 a4=5,∴公差 d=,=1∴ a7=a1+6d=2+6=8应选: B.3.(5 分)(2014?重庆)某中学有高中生3500 人,初中生 1500 人,为认识学生的学习状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70 人,则 n 为()A.100B.150C.200D.250【剖析】计算分层抽样的抽取比率和整体个数,利用样本容量=整体个数×抽取比率计算 n 值.【解答】解:分层抽样的抽取比率为=,整体个数为 3500+1500=5000,∴样本容量 n=5000×=100.应选: A.4.(5 分)(2014?重庆)以下函数为偶函数的是()A.f( x) =x﹣1B.f (x)=x2+xx﹣2﹣ x.()x+2﹣ xC.f( x) =2 D f x=2【剖析】依据偶函数的定义,挨次剖析选项,先剖析函数的定义域,再剖析 f (﹣x)=f(x)能否建立,即可得答案.【解答】解:依据题意,挨次剖析选项:A、f(x)=x﹣1,其定义域为 R,f(﹣ x)=﹣x﹣1,f(﹣ x)≠f (x),不是偶函数,不切合题意;B、f(x)=x2+x,其定义域为 R,f(﹣ x)=x2﹣x,f(﹣ x)≠ f(x),不是偶函数,不切合题意;C、f (x)=2x﹣2﹣x,其定义域为R,f(﹣ x)=2﹣x﹣ 2x,f(﹣ x) =﹣ f( x),是奇函数不是偶函数,不切合题意;D、f(x)=2x+2﹣x,其定义域为 R,f(﹣ x)=2﹣x+2x,f(﹣ x)=f( x),是偶函数,切合题意;应选: D.5.(5 分)(2014?重庆)履行如下图的程序框图,则输出s 的值为()ArrayA.10B.17C.19D.36【剖析】依据框图的流程模拟运转程序,直到不知足条件k< 10,跳出循环体,计算输出S的值.【解答】解:由程序框图知:第一次循环S=2,k=2× 2﹣ 1=3;第二次循环 S=2+3=5,k=2×3﹣1=5;第三次循环 S=5+5=10, k=2×5﹣1=9;第四次循环 S=10+9=19,k=2× 9﹣ 1=17,不知足条件 k<10,跳出循环体,输出S=19.应选: C.6.(5 分)(2014?重庆)已知命题: p:对随意 x∈R,总有 | x| ≥0,q:x=1 是方程 x+2=0 的根;则以下命题为真命题的是()A.p∧¬ q B.¬ p∧q C.¬ p∧¬ q D.p∧q【剖析】判断命题 p,q 的真假,利用复合命题的真假关系即可获得结论.【解答】解:依据绝对值的性质可知,对随意x∈ R,总有 | x| ≥ 0 建立,即 p 为真命题,当 x=1 时, x+2=3≠0,即 x=1 不是方程 x+2=0 的根,即 q 为假命题,则 p∧¬ q,为真命题,应选: A.7.(5 分)(2014?重庆)某几何体的三视图如下图,则该几何体的体积为()A.12B.18C.24D.30【剖析】几何体是三棱柱消去一个同底的三棱锥,依据三视图判断三棱柱的高及消去的三棱锥的高,判断三棱锥与三棱柱的底面三角形的形状及有关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为 3 和4 的直角三角形,∴几何体的体积V= ×3×4×5﹣× ×3×4×3=30﹣6=24.应选: C .8.( 5 分)(2014?重庆)设 1,F 2 分别为双曲线﹣(>,>)的左、 F=1 a0 b 0右焦点,双曲线上存在一点 P 使得( | PF 1| ﹣| PF 2| )2=b 2﹣ 3ab ,则该双曲线的离心率为( )A .B .C .4D .【剖析】依据(| PF | ﹣| PF | )22﹣ 3ab ,由双曲线的定义可得 ( 2a )2 2﹣3ab , 12=b=b 求得 a= ,c== b ,即可求出双曲线的离心率.【解答】 解:∵( | PF 1| ﹣| PF 2| )2=b 2 ﹣3ab ,∴由双曲线的定义可得( 2a )2 =b 2﹣3ab ,∴ 4a 2+3ab ﹣b 2=0,∴ a= ,∴ c==,b∴ e= = .应选: D ..( 分)( 2014? 重庆)若log 4(3a+4b )=log 2 ,则a+b 的最小值是()9 5A .6+2B .7+2C .6+4D .7+4【剖析】 利用对数的运算法例可得>0,a >4,再利用基本不等式即可得出【解答】 解:∵ 3a+4b >0,ab > 0,∴ a > 0.b > 0∵ log 4(3a+4b ) =log 2 ,∴log4(3a+4b) =log4( ab)∴3a+4b=ab,a≠4,a>0.b>0∴> 0,∴a> 4,则 a+b=a+=a+=a+3+= ( a ﹣ 4) ++7+7=4 +7,当且仅当 a=4+2取等.应选: D.分)(重庆)已知函数(),,10.( 5f,且 g( x)2014?x =,,=f(x)﹣ mx﹣m 在(﹣ 1, 1] 内有且仅有两个不一样的零点,则实数m 的取值范围是()A.(﹣,﹣2] ∪(0, ]B.(﹣,﹣2] ∪(0, ]C.(﹣,﹣2] ∪(0, ]D.(﹣,﹣ 2] ∪(0, ]【剖析】由 g(x)=f(x)﹣ mx﹣m=0,即 f(x)=m(x+1),作出两个函数的图象,利用数形联合即可获得结论.【解答】解:由 g( x) =f(x)﹣ mx﹣m=0,即 f (x)=m(x+1),分别作出函数 f (x)和 y=h(x)=m(x+1)的图象如图:由图象可知 f (1)=1, h(x)表示过定点 A(﹣ 1, 0)的直线,当 h(x)过( 1, 1)时, m= 此时两个函数有两个交点,此时知足条件的m 的取值范围是0<m≤,当 h(x)过( 0,﹣ 2)时, h( 0)=﹣2,解得 m=﹣ 2,此时两个函数有两个交点,当 h(x)与 f(x)相切时,两个函数只有一个交点,此时,即 m(x+1)2+3( x+1)﹣ 1=0,当 m=0 时, x=,只有1解,当 m≠0,由△ =9+4m=0 得 m=﹣,此时直线和 f( x)相切,∴要使函数有两个零点,则﹣<m≤﹣ 2 或 0<m≤,应选: A.二、填空题:本大题共 5 小题,每题 5 分,把答案填写在答题卡相应的地点上.11.(5 分)( 2014?重庆)已知会合 A={ 3,4,5,12,13} ,B={ 2,3,5,8,13} ,则 A∩B= { 3,5,13}.【剖析】依据题意,剖析会合A、 B 的公共元素,由交集的意义即可得答案.【解答】解:依据题意,会合 A={ 3, 4, 5, 12,13} , B={ 2, 3,5,8,13} ,A、B 公共元素为 3、5、13,则 A∩B={ 3,5,13} ,故答案为: { 3, 5,13} ..(分)(重庆)已知向量与的夹角为 60°,且(﹣,﹣), |=,12 52014?= 2 6|则?= 10 .【剖析】利用向量的模、夹角形式的数目积公式,求出即可【解答】解:∵=(﹣ 2,﹣ 6),∴,∴<,>=2=10.故答案为: 10.13.( 5 分)( 2014?重庆)将函数 f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为本来的一半,纵坐标不变,再向右平移个单位长度获得 y=sinx 的图象,则 f()=.【剖析】由条件依据函数 y=Asin(ωx+φ)的图象变换规律,可得 sin( 2ωx+φ﹣ω)=sinx,可得 2ω =1,且φ﹣ω =2kπ,k∈z,由此求得ω、φ的值,可得 f(x)的分析式,从而求得 f ()的值.【解答】解:函数 f(x) =sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为本来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象.再把所得图象再向右平移个单位长度获得函数y=sin[ 2ω(x﹣)+φ)]=sin( 2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω =2kπ, k∈ Z,∴ω=,φ=+2kπ,∴ f( x)=sin( x+ ),∴f()=sin( + )=sin = .故答案为:.14.(5 分)( 2014?重庆)已知直线 x﹣y+a=0 与圆心为 C 的圆 x2+y2+2x﹣4y﹣ 4=0订交于 A、B 两点,且 AC⊥ BC,则实数 a 的值为0 或 6.【剖析】依据圆的标准方程,求出圆心和半径,依据点到直线的距离公式即可得到结论.【解答】解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心 C(﹣ 1,2),半径 r=3,∵AC⊥BC,∴圆心 C 到直线 AB 的距离 d=,即 d==,即 | a﹣3| =3,解得 a=0 或 a=6,故答案为: 0 或 6.15.( 5 分)(2014?重庆)某校清晨8:00 开始上课,假定该校学生小张与小王在清晨 7:30~7:50 之间到校,且每人在该时间段的任何时辰到校是等可能的,则小张比小王起码早 5 分钟到校的概率为(用数字作答).【剖析】设小张到校的时间为x,小王到校的时间为y.( x,y)能够当作平面中的点试验的所有结果所组成的地区为Ω={( x,y| 30≤x≤50,30≤y≤50} 是一个矩形地区,则小张比小王起码早 5 分钟到校事件 A={ (x, y) | y﹣x≥5} 作出切合题意的图象,由图依据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为x,小王到校的时间为y.(x,y)能够当作平面中的点试验的所有结果所组成的地区为Ω={(x,y| 30≤x≤ 50,30≤ y≤ 50}是一个矩形地区,对应的面积S=20×20=400,则小张比小王起码早 5 分钟到校事件 A={ x| y﹣x≥ 5} 作出切合题意的图象,则符合题意的地区为△ ABC,联立得C(45,50),联立得B(30,35),则 S△ABC= ×15×15,由几何概率模型可知小张比小王起码早 5 分钟到校的概率为=,故答案为:.三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.16.( 13 分)( 2014?重庆)已知 { a n} 是首项为 1,公差为 2 的等差数列, S n表示{ a n} 的前 n 项和.(Ⅰ)求 a n及S n;(Ⅱ)设{ b n} 是首项为 2 的等比数列,公比为 q 知足 q2﹣( a4+1)q+S4=0.求{ b n}的通项公式及其前n 项和 T n.【剖析】(Ⅰ)直接由等差数列的通项公式及前n 项和公式得答案;(Ⅱ)求出 a4和 S4,代入 q2﹣( a4+1)q+S4=0 求出等比数列的公比,而后直接由等比数列的通项公式及前n 项和公式得答案.【解答】解:(Ⅰ)∵ { a n } 是首项为 1,公差为 2 的等差数列,∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.;(Ⅱ)由(Ⅰ)得, a4=7,S4=16.∵q2﹣( a4+1)q+S4=0,即 q2﹣8q+16=0,∴( q﹣4)2=0,即 q=4.又∵ { b n} 是首项为 2 的等比数列,∴..17.(13 分)(2014?重庆) 20 名学生某次数学考试成绩(单位:分)的频次散布直方图如图:(Ⅰ)求频次散布直方图中 a 的值;(Ⅱ)分别求出成绩落在[ 50,60)与 [ 60, 70)中的学生人数;(Ⅲ)从成绩在 [ 50,70)的学生任选 2 人,求此 2 人的成绩都在 [ 60,70)中的概率.【剖析】(Ⅰ)依据频次散布直方图求出 a 的值;(Ⅱ)由图可知,成绩在 [ 50,60)和 [ 60,70)的频次分别为0.1 和 0.15,用样本容量 20 乘以对应的频次,即得对应区间内的人数,从而求出所求.(Ⅲ)分别列出知足 [ 50,70)的基本领件,再找到在 [ 60,70)的事件个数,根据古典概率公式计算即可.【解答】解:(Ⅰ)依据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.(Ⅱ)成绩落在 [ 50, 60)中的学生人数为 2×0.005×10×20=2,成绩落在 [ 60,70)中的学生人数为 3×0.005×10×20=3.(Ⅲ)记成绩落在 [ 50,60)中的 2 人为 A, B,成绩落在 [ 60,70)中的 3 人为C,D,E,则成绩在 [ 50, 70)的学生任选 2 人的基本领件有 AB,AC, AD,AE, BC,BD,BE,CD, CE,DE共 10 个,此中 2 人的成绩都在 [ 60,70)中的基本领件有CD,CE,DE共 3 个,故所求概率为 P=.18.(13 分)(2014?重庆)在△ ABC中,内角 A、B、C 所对的边分别是a、b、c,且 a+b+c=8.(Ⅰ)若 a=2,b= ,求 cosC的值;22,且△的面积,求和的值.(Ⅱ)若 sinAcos+sinBcosa b=2sinC ABC S= sinC【剖析】(Ⅰ)由 a+b+c=8,依据 a=2,b= 求出 c 的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左侧利用二倍角的余弦函数公式化简,正弦函数公式及引诱公式变形,再利用正弦定理获得整理后利用两角和与差的a+b=3c,与 a+b+c=8 联立求出 a+b 的值,利用三角形的面积公式列出关系式,代入S= sinC 求出 ab 的值,联立刻可求出 a 与 b 的值.【解答】解:(Ⅰ)∵ a=2,b= ,且 a+b+c=8,∴ c=8﹣( a+b)= ,∴由余弦定理得: cosC==﹣;=22可得:+sinB?,(Ⅱ)由 sinAcos+sinBcossinA?=2sinC=2sinC整理得: sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴ sinA+sinB=3sinC,利用正弦定理化简得: a+b=3c,∵a+b+c=8,∴a+b=6①,∵S= absinC= sinC,∴ab=9②,联立①②解得: a=b=3.19.( 12 分)( 2014?重庆)已知函数f( x)= + ﹣ lnx﹣,此中 a∈ R,且曲线y=f(x)在点( 1, f(1))处的切线垂直于直线y= x.(Ⅰ)求 a 的值;(Ⅱ)求函数 f (x)的单一区间与极值.【剖析】(Ⅰ)由曲线 y=f(x)在点( 1, f(1))处的切线垂直于直线y= x 可得f(′1)=﹣2,可求出 a 的值;(Ⅱ)依据( I)可得函数的分析式和导函数的分析式,剖析导函数的符,从而可得函数 f(x)的单一区间与极值.【解答】解:(Ⅰ)∵ f(x)= + ﹣ lnx﹣,∴ f ′( x)= ﹣﹣,∵曲线 y=f( x)在点( 1,f(1))处的切线垂直于直线y= x.∴f (′ 1) = ﹣a﹣1=﹣2,解得: a= .(Ⅱ)由(Ⅰ)知: f( x) = +﹣lnx﹣,f ′(x)= ﹣﹣=(x>0),令 f ′(x) =0,解得 x=5,或 x=﹣ 1(舍),∵当 x∈( 0,5)时, f ′(x)< 0,当 x∈( 5,+∞)时, f ′(x)> 0,故函数 f(x)的单一递加区间为( 5,+∞);单一递减区间为( 0, 5);当 x=5 时,函数取极小值﹣ ln5.20.( 12 分)( 2014?重庆)如图,四棱锥 P﹣ABCD中,底面是以O 为中心的菱形, PO⊥底面 ABCD, AB=2,∠ BAD= ,M 为 BC上一点,且 BM= .(Ⅰ)证明: BC⊥平面 POM;(Ⅱ)若 MP⊥AP,求四棱锥 P﹣ABMO 的体积.【剖析】(Ⅰ)连结 OB,依据底面是以 O 为中心的菱形, PO⊥底面 ABCD,AB=2,∠BAD= ,M 为 BC上一点,且 BM= ,联合菱形的性质,余弦定理,勾股定理,可得 OM⊥BC及 PO⊥BC,从而由线面垂直的判断定理获得 BC⊥平面 POM;(Ⅱ)设 PO=a,利用勾股定理和余弦定理解三角形求出 PO 的值,及四棱锥 P﹣ABMO 的底面积 S,代入棱锥体积公式,可得答案.【解答】证明:(Ⅰ)∵底面是以O 为中心的菱形, PO⊥底面 ABCD,故 O 为底面 ABCD的中心,连结 OB,则 AO⊥OB,∵ AB=2,∠ BAD= ,∴ OB=AB?sin∠ BAO=2sin()=1,又∵ BM= ,∠ OBM= ,∴在△ OBM 中, OM2=OB2+BM2﹣2OB?BM?cos∠ OBM= ,即OB2=OM2+BM2,即OM⊥BM,∴OM⊥BC,又∵ PO⊥底面 ABCD,BC? 底面 ABCD,∴ PO⊥BC,又∵ OM∩PO=O, OM,PO? 平面 POM,∴ BC⊥平面 POM;(Ⅱ)由(Ⅰ)可得: OA=AB?cos∠BAO=2cos()=,设PO=a,由PO⊥底面ABCD可得:△POA为直角三角形,故 PA2=PO2+OA2=a2+3,由△ POM 也为直角三角形得:PM2=PO2+OM2=a2+ ,连结 AM,在△ ABM 中,AM2=AB2+BM2﹣2AB?BM?cos∠ABM==,由 MP⊥AP 可知:△ APM 为直角三角形,22222则 AM =PA+PM ,即 a +3+a + = ,解得 a=,即 PO=,此时四棱锥 P﹣ABMO 的底面积 S=S△AOB+S△BOM,= ?AO?OB+ ?BM?OM=∴四棱锥 P﹣ABMO 的体积 V= S?PO=21.(12 分)(2014?重庆)如图,设椭圆+(>>)的左右焦点分别为=1 a b01,F2,点D在椭圆上,DF1⊥F1 2,丨丨,△ 1 2的面积为.丨 =2F F丨DF F(Ⅰ)求该椭圆的标准方程;(Ⅱ)能否存在圆心在y 轴上的圆,使圆在 x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不一样的焦点?若存在,求出圆的方程;若不存在,请说明原因.【剖析】(Ⅰ)设 F(1﹣ c,0),F(2c,0),依题意,可求得 c=1,易求得 | DF1| ==,| DF2| =,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在 y 轴上的圆 C 与椭圆+y2=1 订交, P1(x1,y1),P2( x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知 x2=﹣x1,y1 =y2,|P1P2| =2| x1| ,由 F1P1⊥F2P2,得 x1=﹣或 x1=0,分类议论即可求得圆心及半径,从而可得圆的方程.【解答】解:(Ⅰ)设 F1(﹣ c, 0),F2( c,0),此中 c2=a2﹣b2,丨丨| =,由丨 =2,得 | DF1=丨c从而=| DF1|| F1F2| =c2=,故 c=1.从而 | DF1| =,由 DF1⊥F1F2,得=+= ,所以 | DF2| =,所以 2a=| DF1|+| DF2| =2,故 a=,b2=a2﹣c2=1,所以,所求椭圆的标准方程为+y2;=1(Ⅱ)设圆心在 y 轴上的圆 C 与椭圆+y2=1 订交, P1(x1,y1),P2( x2,y2)是两个交点,y1> 0, y2>0,F1P1,F2P2是圆 C 的切线,且F1P1⊥ F2P2,由圆和椭圆的对称性,易知 x2=﹣x1,y1=y2,| P1P2| =2| x1| ,由(Ⅰ)知 F1(﹣ 1,0),F2(1,0),所以=(x1+1,y1),=(﹣ x1﹣ 1,),再由 F1 1⊥F2 2,得﹣+,y1PP=0由椭圆方程得 1﹣=,即 3+4x1,解得 1 ﹣或x1 .=0x ==0当 x1时, 1,P2 重合,此时题设要求的圆不存在;=0P当 x1﹣时,过 P1,P2,分别与 F1 1, F2 2 垂直的直线的交点即为圆心C,设 C =P P(0,y0)由F ,F是圆 C的切线,知 CP ⊥F,得﹣,而| =| x +1| = ,1P1 2P211P1?= 1 | y11故 y0= ,故圆 C的半径 | CP| ==.1综上,存在知足题设条件的圆,其方程为x2+= .。
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1. 实部为-2,虚部为1 的复数所对应的点位于复平面的( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限2. 在等差数列{}n a 中,1352,10a a a =+=,则7a =( ).5A .8B .10C .14D3. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ).100A .150B .200C .250D【答案】A 【解析】试题分析:()70350015*********n =+⨯=.故选A. 考点:分层抽样.4. 下列函数为偶函数的是( ).()1A f x x =- 2.()B f x x x =+ .()22xxC f x -=- .()22xxD f x -=+5. 执行如题(5)图所示的程序框图,则输出s 的值为( ).10A .17B .19C .36D【答案】C 【解析】试题分析:2,0k s ==;10k <成立,运行第一次,2,3s k ==;10k <成立,运行第二次,5,5s k ==10k <成立,运行第三次,10,9s k ==10k <成立,运行第四次,19,17s k ==10k <不成立,输出19s =故选C.考点:循环结构.6. 已知命题:p 对任意x R ∈,总有||0x ≥; :1q x =是方程20x +=的根,则下列命题为真命题的是( ).A p q ∧⌝ .B p q ⌝∧ .C p q ⌝∧⌝ .D p q ∧7.某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.308.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得2212(||||)3,PF PF b ab -=-则该双曲线的离心率为( )A.2B.15C.4D.179.若b a ab b a +=+则)(,log 43log 24的最小值是( )A.326+B.327+C.346+D.347+ 【答案】D 【解析】试题分析:由题意,0,ab >且340a b +>,所以0,0a b >>. 又()42log 34log a b ab +=,所以,34a b ab +=,所以431a b+=.10.11.已知函数13,(1,0](),()()1,1]1,(0,1]x f x g x f x mx m x x x ⎧-∈-⎪==---+⎨⎪∈⎩且在(内有且仅有两个不同的零点,则实数m 的取值范围是( )A.91(,2](0,]42--B.111(,2](0,]42-- C.92(,2](0,]43-- D.112(,2](0,]43--【答案】A 【解析】 试题分析:二、填空题:本在题共5小题,第小题5分,共25分.把答案填写在答题卡相应位置上.11. 已知集合{3,4,5,12,13},{2,3,5,8,13}A B ==,则A B =_______.12. 已知向量=⋅=--=b a b a b a则,且的夹角为与,10||),6,2(60_________.13. 将函数()()⎪⎭⎫⎝⎛<≤->+=220sin πϕπωϕω,x x f 图像上每一点的横坐标缩短为原来的 一半,纵坐标不变,再向右平移6π个单位长度得到x y sin =的图像,则=⎪⎭⎫⎝⎛6πf ______.14. 已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BCAC ,则实数a的值为_________.15.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)所以()1151592202032DEFABCDSP AS∆⨯⨯===⨯正方形所以答案应填:932.考点:几何概型.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分13分.(I)小问6分,(II)小问7分)已知{}n a是首项为1,公差为2的等差数列,n S表示{}n a的前n项和.(I)求na及nS;(II)设{}n b是首项为2的等比数列,公比q满足()01442=++-Sqaq,求{}n b的通项公式及其前n项和nT.又因12b =,是{}n b 公比4q =的等比数列,所以11211242n n n n b b q ---==⋅=从而{}n b 的前n 项和()()1124113n nn b q T q-==-- 考点:1、等差数列的通项公式与前n 项和公式;2、等比数列的通项公式与前n 项和公式17. (本小题满分13分.(I )小问4分,(II )小问4分,(III )小问5分)20名学生某次数学考试成绩(单位:分)的频数分布直方图如下:(I )求频率分布直方图中a 的值;(II )分别球出成绩落在[)6050,与[)7060,中的学生人数; (III )从成绩在[)7050,的学生中人选2人,求此2人的成绩都在[)7060,中的概率. 【答案】(I )0.005a =;(II )2,3;(III )310. 【解析】试题分析:(I )由频率分布直方图的意义可知,图中五个小长方形的面积之和为1,由此列方程即可求得.(II )根据(I )的结果,分别求出成绩落在[)6050,与[)7060,的频率值,分别乘以学生总数即得相应的频18.(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且8=++c b a(Ⅰ)若25,2==b a ,求C cos 的值; (Ⅱ)若C A B B A sin 22cos sin 2cos sin 22=+,且ABC ∆的面积C S sin 29=,求a 和b 的值.【答案】(Ⅰ)15-;(Ⅱ)3,3a b ==.【解析】试题分析:(Ⅰ)由8=++c b a 及25,2==b a 可得72c =,而后由余弦定理可求C cos 的值; (Ⅱ)由降幂公式C A B B A sin 22cos sin 2cossin 22=+1cos 1cos sin sin 2sin 22B A A BC ++⇒⋅+⋅= sin sin 3sin 3A B C a b c ⇒+=⇒+=19.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知函数23ln 4)(--+=x x a x x f ,其中R a ∈,且曲线)(x f y =在点))1(,1(f 处的切线垂直于x y 21=. (Ⅰ)求a 的值;(Ⅱ)求函数)(x f 的单调区间与极值.20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分) 如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM=. (Ⅰ)证明:BC ⊥平面POM ;(Ⅱ)若MP AP ⊥,求四棱锥P ABMO -的体积.【答案】(Ⅰ)详见解析;(Ⅱ)516. 【解析】试题分析:(Ⅰ)因为PO ⊥底面ABCD ,所以有PO BC ⊥,因此欲证BC ⊥平面POM ,只要证BC OM ⊥,而这一点可通过连结OB ,利用菱形学科网的性质及勾股定理解决.(Ⅱ)欲求四棱锥P ABMO -的体积.,必须先求出PO ,连结AM ,设PO x =,在ABM ∆利用余弦定理求出||AM ,由三个直角三角形,,PAO PMO PAM ,依据勾股定理建立关于x 的方程即可. 试题解析: 解:由POM ∆也是直角三角形,故222234PM PO OM a =+=+21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如题(21)图,设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =12DF F ∆的面积为22. (Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.从而122112122222DF F S DF F F c ∆=⋅==故1c =.从而122DF =,由112DF F F ⊥得222211292DF DF F F =+=,因此2322DF =.所以12222a DF DF =+=,故2222,1a b a c ==-=因此,所求椭圆的标准方程为:2212x y +=。
高考文科数学真题(重庆卷)2014年(总分150, 做题时间120分钟)[*]一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实部为-2,虚部为1 的复数所对应的点位于复平面的()SSS_SINGLE_SELA 第一象限B 第二象限C 第三象限D 第四象限2.SSS_SINGLE_SELA 5B 8C 10D 143.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()SSS_SINGLE_SELA 100B 150C 200D 2504.下列函数为偶函数的是()SSS_SINGLE_SELABCD5.执行右图所示的程序框图,则输出的s为()SSS_SINGLE_SELA 10B 17C 19D 366.SSS_SINGLE_SELABCD7.某几何体的三视图如下图,则几何体的体积为()SSS_SINGLE_SELA 12B 18C 24D 308.SSS_SINGLE_SELABCD9.SSS_SINGLE_SELABCD10.SSS_SINGLE_SELABCD二、填空题:本大题共5小题,每小题5分,共25分.11.SSS_FILL12.SSS_FILL13.SSS_FILL14.SSS_FILL15.某校早上8:00上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时间到校是等可能的,则小张比小王至少早5分钟到校的概率为__________ (用数字作答)SSS_FILL三、解答题:本大题共6小题,共75分.解答应写出文字说明,学科网证明过程或演算步骤.SSS_TEXT_QUSTI1.SSS_TEXT_QUSTI2.SSS_TEXT_QUSTI1.SSS_TEXT_QUSTI2.SSS_TEXT_QUSTI3.SSS_TEXT_QUSTI 1.SSS_TEXT_QUSTI 2.SSS_TEXT_QUSTI 1.SSS_TEXT_QUSTI 2.SSS_TEXT_QUSTI 1.SSS_TEXT_QUSTI 2.SSS_TEXT_QUSTI1.求该椭圆的标准方程;SSS_TEXT_QUSTI 2.1。
2014年普通高等学校招生全国统一考试(重庆卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(2014重庆,文1)实部为-2,虚部为1的复数所对应的点位于复平面的().A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:由题意知,该复数在复平面内对应的点为(-2,1),所以该点位于复平面的第二象限.故选B.2.(2014重庆,文2)在等差数列{a n}中,a1=2,a3+a5=10,则a7=().A.5B.8C.10D.14答案:B解析:由等差数列的性质,可知a1+a7=a3+a5.因为a1=2,a3+a5=10,所以a7=8.故选B.3.(2014重庆,文3)某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为().A.100B.150C.200D.250答案:A解析:由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.4.(2014重庆,文4)下列函数为偶函数的是().A.f(x)=x-1B.f(x)=x2+xC.f(x)=2x-2-xD.f(x)=2x+2-x答案:D解析:由题意知,所给四个函数其定义域均为R,关于原点对称.由偶函数的定义知,选项A,B,C中函数均不满足f(-x)=f(x).而D选项中,f(-x)=2-x+2x=f(x),显然为偶函数,故选D.5.(2014重庆,文5)执行如图所示的程序框图,则输出s的值为().A.10B.17C.19D.36答案:C解析:执行过程如下:k=2,s=0;经判断执行“是”,此时s=0+2=2,k=3;经判断执行“是”,此时s=2+3=5,k=5;经判断执行“是”,此时s=5+5=10,k=9;经判断执行“是”,此时s=10+9=19,k=17;经判断执行“否”,此时输出s=19.故选C.6.(2014重庆,文6)已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是().A.p∧ qB. p∧qC. p∧ qD.p∧q答案:A解析:由题意知,命题p为真命题,命题q为假命题,所以 p为假, q为真.所以p∧ q为真, p∧q为假, p∧ q为假,p∧q为假.故选A.7.(2014重庆,文7)某几何体的三视图如图所示,则该几何体的体积为().A.12B.18C.24D.30答案:C解析:由三视图可知,该几何体的直观图如图所示,为直三棱柱ABC-A1B1C1截掉了三棱锥D-A1B1C1,所以其体积V=V ABC-A1B1C1−V D-A1B1C1=12×3×4×5-13×12×3×4×3=24.8.(2014重庆,文8)设F1,F2分别为双曲线x 2a2−y2b2=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心率为().A.√2B.√15C.4D.√17答案:D解析:由双曲线的定义知,(|PF1|-|PF2|)2=4a2,所以4a2=b2-3ab,即b 2a2-3·ba=4,解得ba=4(-1舍去).因为双曲线的离心率e=ca =√1+b2a2,所以e=√17.故选D.9.(2014重庆,文9)若log4(3a+4b)=log2√ab,则a+b的最小值是().A.6+2√3B.7+2√3C.6+4√3D.7+4√3答案:D解析:由log4(3a+4b)=log2√ab,得12log2(3a+4b)=12log2(ab),所以3a+4b=ab,即3b+4a=1.所以a+b=(a+b)(3b +4a)=3ab+4ba+7≥4√3+7,当且仅当3ab=4ba,即a=2√3+4,b=3+2√3时取等号.故选D.10.(2014重庆,文10)已知函数f(x)={1x+1-3,x∈(-1,0],x,x∈(0,1],且g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围是().A.(-94,-2]∪(0,12]B.(-114,-2]∪(0,12]C.(-94,-2]∪(0,23]D.(-114,-2]∪(0,23]答案:A解析:由题意画出f(x)的图象,如图所示.令g(x)=f(x)-mx-m=0,得f(x)=m(x+1),所以g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,可转化为y=f(x)与y=m(x+1)的图象在(-1,1]上有且仅有两个不同的交点.y=m(x+1)是过定点(-1,0)的一条直线,m是其斜率.由数形结合知,符合题意的直线位于l1(x轴)与l2之间和l3与l4(切线)之间.因为l4与y=f(x)相切,所以1x+1-3=m(x+1)有两个相等的实根,即m(x+1)2+3(x+1)-1=0有两个相等的实根,即Δ=9+4m=0,解得m=-94.设直线l1,l2,l3的斜率分别为k1,k2,k3,易求k1=0,k2=12,k3=-2,所以m∈(-94,-2]∪(0,12].二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(2014重庆,文11)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=.答案:{3,5,13}解析:由已知条件,结合交集运算,可得A∩B={3,5,13}.12.(2014重庆,文12)已知向量a与b的夹角为60°,且a=(-2,-6),|b|=√10,则a·b=. 答案:10解析:由题意得|a|=2√10,所以ab=|a||b|cos<a,b>=2√10×√10×12=10.13.(2014重庆,文13)将函数f(x)=sin(ωx+φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y=sin x的图象,则f(π6)=.答案:√22解析:本题可逆推,由y=sin x的图象推f(x)=sin(ωx+φ)的图象.将y=sin x的图象向左平移π6个单位长度得到y=sin(x+π6)的图象,再保持纵坐标不变,横坐标伸长为原来的两倍,得到f(x)=sin(12x+π6)的图象.所以f(π6)=sin(π12+π6)=sinπ4=√22.14.(2014重庆,文14)已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a 的值为.答案:0或6解析:由题意,得圆心C 的坐标为(-1,2),半径r=3.因为AC ⊥BC ,所以圆心C 到直线x-y+a=0的距离d=√2=√22r=3√22,即|-3+a|=3,所以a=0或a=6.15.(2014重庆,文15)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为 .(用数字作答) 答案:932解析:用x 轴表示小张到校时刻,用y 轴表示小王到校时刻,建立如图直角坐标系.设小张到校的时刻为x ,小王到校的时刻为y ,则x-y ≥5.由题意,知0≤x ≤20,0≤y ≤20,可得可行域如图所示,其中,阴影部分表示小张比小王至少早5分钟到校.由{x -y =5,x =20得A (20,15).易知B (20,20),C (5,0),D (20,0). 由几何概型概率公式,得所求概率P=S △ACDS 正方形ODBE=12×15×1520×20=932. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分,(1)小问6分,(2)小问7分)(2014重庆,文16)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q+S 4=0.求{b n }的通项公式及其前n 项和T n .分析:通过已知条件,借助等差数列的通项公式以及前n 项和公式,即可求出a n 和S n ;在第(2)问充分利用第(1)问的结论,求出a 4,S 4并代入方程,求出q ,然后利用等比数列通项公式及前n 项和公式可求出结果. 解:(1)因为{a n }是首项a 1=1,公差d=2的等差数列,所以a n =a 1+(n-1)d=2n-1. 故S n =1+3+…+(2n-1)=n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16. 因为q 2-(a 4+1)q+S 4=0, 即q 2-8q+16=0, 所以(q-4)2=0,从而q=4.又因b 1=2,{b n }是公比q=4的等比数列, 所以b n =b 1q n-1=2·4n-1=22n-1. 从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1).17.(本小题满分13分,(1)小问4分,(2)小问4分,(3)小问5分)(2014重庆,文17)20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a 的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.分析:由频率分布直方图各小矩形面积和为1,可列出关于a 的方程,然后解方程求出a 的值;在第(2)问中,利用第(1)问的结果,分别计算得出[50,60)与[60,70)的频率,然后根据频率公式求出频数;在第(3)问中,利用第(2)问的结果得出成绩在[50,70)的人数,然后分别用字母来表示来自[50,60),[60,70)的人,并列出所有基本事件,再利用古典概型的概率公式求出概率.解:(1)据直方图知组距=10,由(2a+3a+6a+7a+2a )×10=1,解得a=1200=0.005. (2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2. 成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A 1,A 2,成绩落在[60,70)中的3人为B 1,B 2,B 3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3).其中2人的成绩都在[60,70)中的基本事件有3个:(B 1,B 2),(B 1,B 3),(B 2,B 3),故所求概率为p=310.18.(本小题满分13分,(1)小问5分,(2)小问8分)(2014重庆,文18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a+b+c=8,(1)若a=2,b=52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A 2=2sin C ,且△ABC 的面积S=92sin C ,求a 和b 的值.分析:先通过已知条件,求出c ,然后借助余弦定理求出cos C 的值;在第(2)问中,利用已知条件中的关系式,根据二倍角公式,得到sin A ,sin B ,sin C 之间的关系,然后借助正弦定理转化为边的关系,再结合已知条件列出关于a ,b 的方程组,求出a ,b 的值. 解:(1)由题意可知:c=8-(a+b )=72.由余弦定理得,cos C=a 2+b 2-c 22ab=22+(52)2-(72)22×2×52=-15.(2)由sin A cos 2B2+sin B cos 2A 2=2sin C 可得: sin A ·1+cosB 2+sin B ·1+cosA2=2sin C , 化简得sin A+sin A cos B+sin B+sin B cos A=4sin C. 因为sin A cos B+cos A sin B=sin(A+B )=sin C , 所以sin A+sin B=3sin C. 由正弦定理可知:a+b=3c. 又因a+b+c=8,故a+b=6.由于S=12ab sin C=92sin C ,所以ab=9, 从而a 2-6a+9=0,解得a=3,b=3.19.(本小题满分12分,(1)小问5分,(2)小问7分)(2014重庆,文19)已知函数f (x )=x 4+a x-ln x-32,其中a ∈R ,且曲线y=f (x )在点(1,f (1))处的切线垂直于直线y=12x. (1)求a 的值;(2)求函数f (x )的单调区间与极值.分析:利用已知条件得切线的斜率为-2,然后求出f (x )在x=1处的导数,列出关于a 的方程,求出a 的值;在第(2)问中,充分利用导数判断函数单调性与极值的方法,求导后转化为求方程f'(x )=0,然后判断f'(x )在每个区间的符号,在求解过程中要注意函数的定义域. 解:(1)对f (x )求导得f'(x )=14−a x 2−1x ,由f (x )在点(1,f (1))处的切线垂直于直线y=12x ,知f'(1)=-34-a=-2,解得a=54.(2)由(1)知f (x )=x 4+54x -ln x-32, 则f'(x )=x 2-4x -54x 2, 令f'(x )=0,解得x=-1或x=5.因x=-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f'(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f'(x )>0,故f (x )在(5,+∞)内为增函数. 由此知函数f (x )在x=5时取得极小值f (5)=-ln 5.20.(本小题满分12分,(1)小问4分,(2)小问8分)(2014重庆,文20)如图,四棱锥P-ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD=π3,M 为BC 上一点,且BM=12.(1)证明:BC⊥平面POM;(2)若MP⊥AP,求四棱锥P-ABMO的体积.分析:先利用平面几何的方法,求出OB,然后在△OBM中,借助余弦定理求出OM的值,运用勾股定理的逆定理,得出线线垂直,再结合已知条件,利用线面垂直的判定定理,得出BC⊥平面POM;在第(2)问中,充分利用第(1)问的结论,得到OA的长度,然后分别在△POM,△ABM,△POA中借助余弦定理得到关于PO的方程,求出PO的长度,再分别计算△AOB与△OMB的面积得出四边形ABMO的面积,最后根据棱锥的体积公式求出四棱锥P-ABMO 的体积.(1)证明:如图,因ABCD为菱形,O为菱形中心,连结OB,则AO⊥OB.因∠BAD=π3,故OB=AB·sin∠OAB=2sinπ6=1,又因BM=12,且∠OBM=π3,在△OBM中,OM2=OB2+BM2-2OB·BM·cos∠OBM=12+(12)2-2·1·12·cosπ3=34.所以OB2=OM2+BM2,故OM⊥BM.又PO⊥底面ABCD,所以PO⊥BC.从而BC与平面POM内两条相交直线OM,PO都垂直,所以BC⊥平面POM.(2)解:由(1)可得,OA=AB·cos∠OAB=2·cosπ6=√3.设PO=a,由PO⊥底面ABCD知,△POA为直角三角形,故PA2=PO2+OA2=a2+3.由△POM也是直角三角形,故PM2=PO2+OM2= a2+34.连结AM,在△ABM中,AM2=AB2+BM2-2AB·BM·cos∠ABM=22+(12)2-2·2·12·cos2π3=214.由已知MP⊥AP,故△APM为直角三角形, 则PA2+PM2=AM2,即a2+3+a2+34=214,得a=√32,a=-√32(舍去),即PO=√32.此时S ABMO=S△AOB+S△OMB=12·AO ·OB+12·BM ·OM =12×√3×1+12×12×√32=5√38. 所以四棱锥P-ABMO 的体积V P-ABMO =13·S ABMO ·PO=13×5√38×√32=516. 21.(本小题满分12分,(1)小问5分,(2)小问7分)(2014重庆,文21)如图,设椭圆x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=2√2,△DF 1F 2的面积为√22.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.分析:先通过已知条件,借助a ,b ,c 之间的关系,转化为关于a ,b ,c 的方程,然后利用a ,b ,c 的几何意义,求出a ,b ,c 的值,从而得到椭圆的标准方程;在第(2)问中,充分利用数形结合的思想方法,首先设出交点P 1,P 2的坐标,然后写出向量F 1P 1⃗⃗⃗⃗⃗⃗⃗⃗ ,F 2P 2⃗⃗⃗⃗⃗⃗⃗⃗ ,再由F 1P 1⊥F 2P 2列出关于x 1的方程求出x 1,得到圆心坐标,最后利用两点间的距离公式求出半径得到圆的方程.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2.由|F 1F 2||DF 1|=2√2得|DF 1|=122√2=√22c.从而S △DF 1F 2=12|DF 1||F 1F 2|=√22c 2=√22,故c=1.从而|DF 1|=√22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3√22. 所以2a=|DF 1|+|DF 2|=2√2,故a=√2,b 2=a 2-c 2=1. 因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x 1+1,y 1),F 2P 2⃗⃗⃗⃗⃗⃗⃗⃗ =(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 12=0.由椭圆方程得1-x 122=(x 1+1)2,即3x 12+4x 1=0.解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C. 设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y1x 1+1=-1. 而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=√(-43)2+(13-53)2=4√23. 综上,存在满足题设条件的圆,其方程为x 2+(y -53)2=329.。
2014年高考文科数学重庆卷解析版2014年普通高等学校招生考试(重庆卷)数学文科试题答案及解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.实部为-2,虚部为1的复数所对应的点位于复平面的()A.第一象限B.第二象限C.第三象限D.第四象限 【答案】B【解析】实部为横坐标,虚部为纵坐标。
2.在等差数列{}na 中,1352,10aa a =+=,则7______a=A.5B.8C.10D.14 【答案】B【解析】将条件全部化成1a d 和:112410a d a d +++=,解得1d =,于是7168aa d =+=.考察关于等差数列的基本运算,属于简单题.3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本。
已知从高中生中抽取70人,则n 为()A.100B.150C.200D.250【答案】A【解析】高中生在总体中所占的比例,与样本中所占的比例相等,也就是有:3500701005000n n=⇒=。
考察分层抽样的简单计算.4.下列函数为偶函数的是() A.()1f x x =-B.()2f x x x=+ C.()22xxf x -=-D.()22xxf x -=+【答案】D【解析】利用奇偶性的判断法则:()()()()()()f x f x f x f x f x f x -=-⇒-=⇒为奇函数为偶函数。
即可得到答案为D 。
考察最简单的奇偶性判断.5.执行如图所示的程序框图,则输出s 的值为()A.10B.17C.19D.36 【答案】C【解析】按照程序框图问题的计算方法,按照程序所给步骤进行计算:0,22,35,510,919,17s k s k s k s k s k ==→==→==→==→==→结束【点评】:本题考查了对程序框图循环结构的理解。
2014年普通高等学校招生全国统一考试(重庆卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(2014重庆,文1)实部为-2,虚部为1的复数所对应的点位于复平面的().A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:由题意知,该复数在复平面内对应的点为(-2,1),所以该点位于复平面的第二象限.故选B.2.(2014重庆,文2)在等差数列{a n}中,a1=2,a3+a5=10,则a7=().A.5B.8C.10D.14答案:B解析:由等差数列的性质,可知a1+a7=a3+a5.因为a1=2,a3+a5=10,所以a7=8.故选B.3.(2014重庆,文3)某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为().A.100B.150C.200D.250答案:A解析:由题意知,抽样比为703500=150,所以n3500+1500=150,即n=100.故选A.4.(2014重庆,文4)下列函数为偶函数的是().A.f(x)=x-1B.f(x)=x2+xC.f(x)=2x-2-xD.f(x)=2x+2-x答案:D解析:由题意知,所给四个函数其定义域均为R,关于原点对称.由偶函数的定义知,选项A,B,C中函数均不满足f(-x)=f(x).而D选项中,f(-x)=2-x+2x=f(x),显然为偶函数,故选D.5.(2014重庆,文5)执行如图所示的程序框图,则输出s的值为().A.10B.17C.19D.36答案:C解析:执行过程如下:k=2,s=0;经判断执行“是”,此时s=0+2=2,k=3;经判断执行“是”,此时s=2+3=5,k=5;经判断执行“是”,此时s=5+5=10,k=9;经判断执行“是”,此时s=10+9=19,k=17;经判断执行“否”,此时输出s=19.故选C.6.(2014重庆,文6)已知命题p:对任意x∈R,总有|x|≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是().A.p∧ qB. p∧qC. p∧ qD.p∧q答案:A解析:由题意知,命题p为真命题,命题q为假命题,所以 p为假, q为真.所以p∧ q为真, p∧q为假, p∧ q为假,p∧q为假.故选A.7.(2014重庆,文7)某几何体的三视图如图所示,则该几何体的体积为().A.12B.18C.24D.30答案:C解析:由三视图可知,该几何体的直观图如图所示,为直三棱柱ABC-A1B1C1截掉了三棱锥D-A1B1C1,所以其体积V=V ABC-A1B1C1−V D-A1B1C1=12×3×4×5-13×12×3×4×3=24.8.(2014重庆,文8)设F1,F2分别为双曲线x 2a2−y2b2=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|-|PF2|)2=b2-3ab,则该双曲线的离心率为().A.√2B.√15C.4D.√17答案:D解析:由双曲线的定义知,(|PF1|-|PF2|)2=4a2,所以4a2=b2-3ab,即b 2a2-3·ba=4,解得ba=4(-1舍去).因为双曲线的离心率e=ca =√1+b2a2,所以e=√17.故选D.9.(2014重庆,文9)若log4(3a+4b)=log2√ab,则a+b的最小值是().A.6+2√3B.7+2√3C.6+4√3D.7+4√3答案:D解析:由log4(3a+4b)=log2√ab,得12log2(3a+4b)=12log2(ab),所以3a+4b=ab,即3b+4a=1.所以a+b=(a+b)(3b +4a)=3ab+4ba+7≥4√3+7,当且仅当3ab=4ba,即a=2√3+4,b=3+2√3时取等号.故选D.10.(2014重庆,文10)已知函数f(x)={1x+1-3,x∈(-1,0],x,x∈(0,1],且g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,则实数m的取值范围是().A.(-94,-2]∪(0,12]B.(-114,-2]∪(0,12]C.(-94,-2]∪(0,23]D.(-114,-2]∪(0,23]答案:A解析:由题意画出f(x)的图象,如图所示.令g(x)=f(x)-mx-m=0,得f(x)=m(x+1),所以g(x)=f(x)-mx-m在(-1,1]内有且仅有两个不同的零点,可转化为y=f(x)与y=m(x+1)的图象在(-1,1]上有且仅有两个不同的交点.y=m(x+1)是过定点(-1,0)的一条直线,m是其斜率.由数形结合知,符合题意的直线位于l1(x轴)与l2之间和l3与l4(切线)之间.因为l4与y=f(x)相切,所以1x+1-3=m(x+1)有两个相等的实根,即m(x+1)2+3(x+1)-1=0有两个相等的实根,即Δ=9+4m=0,解得m=-94.设直线l1,l2,l3的斜率分别为k1,k2,k3,易求k1=0,k2=12,k3=-2,所以m∈(-94,-2]∪(0,12].二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上.11.(2014重庆,文11)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=.答案:{3,5,13}解析:由已知条件,结合交集运算,可得A∩B={3,5,13}.12.(2014重庆,文12)已知向量a与b的夹角为60°,且a=(-2,-6),|b|=√10,则a·b=. 答案:10解析:由题意得|a|=2√10,所以ab=|a||b|cos<a,b>=2√10×√10×12=10.13.(2014重庆,文13)将函数f(x)=sin(ωx+φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y=sin x的图象,则f(π6)=.答案:√22解析:本题可逆推,由y=sin x的图象推f(x)=sin(ωx+φ)的图象.将y=sin x的图象向左平移π6个单位长度得到y=sin(x+π6)的图象,再保持纵坐标不变,横坐标伸长为原来的两倍,得到f(x)=sin(12x+π6)的图象.所以f(π6)=sin(π12+π6)=sinπ4=√22.14.(2014重庆,文14)已知直线x-y+a=0与圆心为C的圆x2+y2+2x-4y-4=0相交于A,B两点,且AC⊥BC,则实数a 的值为.答案:0或6解析:由题意,得圆心C的坐标为(-1,2),半径r=3.因为AC⊥BC,所以圆心C到直线x-y+a=0的距离d=√2=√2 2r=3√22,即|-3+a|=3,所以a=0或a=6.15.(2014重庆,文15)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为.(用数字作答)答案:932解析:用x轴表示小张到校时刻,用y轴表示小王到校时刻,建立如图直角坐标系.设小张到校的时刻为x,小王到校的时刻为y,则x-y≥5.由题意,知0≤x≤20,0≤y≤20,可得可行域如图所示,其中,阴影部分表示小张比小王至少早5分钟到校.由{x -y =5,x =20得A (20,15).易知B (20,20),C (5,0),D (20,0). 由几何概型概率公式,得所求概率P=S △ACD S 正方形ODBE=12×15×1520×20=932. 三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分13分,(1)小问6分,(2)小问7分)(2014重庆,文16)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q+S 4=0.求{b n }的通项公式及其前n 项和T n .分析:通过已知条件,借助等差数列的通项公式以及前n 项和公式,即可求出a n 和S n ;在第(2)问充分利用第(1)问的结论,求出a 4,S 4并代入方程,求出q ,然后利用等比数列通项公式及前n 项和公式可求出结果. 解:(1)因为{a n }是首项a 1=1,公差d=2的等差数列,所以a n =a 1+(n-1)d=2n-1. 故S n =1+3+…+(2n-1)=n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16. 因为q 2-(a 4+1)q+S 4=0, 即q 2-8q+16=0, 所以(q-4)2=0,从而q=4.又因b 1=2,{b n }是公比q=4的等比数列, 所以b n =b 1q n-1=2·4n-1=22n-1. 从而{b n }的前n 项和T n =b 1(1-q n )1-q =23(4n -1).17.(本小题满分13分,(1)小问4分,(2)小问4分,(3)小问5分)(2014重庆,文17)20名学生某次数学考试成绩(单位:分)的频率分布直方图如下:(1)求频率分布直方图中a 的值;(2)分别求出成绩落在[50,60)与[60,70)中的学生人数;(3)从成绩在[50,70)的学生中任选2人,求此2人的成绩都在[60,70)中的概率.分析:由频率分布直方图各小矩形面积和为1,可列出关于a 的方程,然后解方程求出a 的值;在第(2)问中,利用第(1)问的结果,分别计算得出[50,60)与[60,70)的频率,然后根据频率公式求出频数;在第(3)问中,利用第(2)问的结果得出成绩在[50,70)的人数,然后分别用字母来表示来自[50,60),[60,70)的人,并列出所有基本事件,再利用古典概型的概率公式求出概率.解:(1)据直方图知组距=10,由(2a+3a+6a+7a+2a )×10=1,解得a=1200=0.005. (2)成绩落在[50,60)中的学生人数为2×0.005×10×20=2.成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(3)记成绩落在[50,60)中的2人为A 1,A 2,成绩落在[60,70)中的3人为B 1,B 2,B 3,则从成绩在[50,70)的学生中任选2人的基本事件共有10个:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3).其中2人的成绩都在[60,70)中的基本事件有3个:(B 1,B 2),(B 1,B 3),(B 2,B 3),故所求概率为p=310.18.(本小题满分13分,(1)小问5分,(2)小问8分)(2014重庆,文18)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a+b+c=8,(1)若a=2,b=52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A 2=2sin C ,且△ABC 的面积S=92sin C ,求a 和b 的值.分析:先通过已知条件,求出c ,然后借助余弦定理求出cos C 的值;在第(2)问中,利用已知条件中的关系式,根据二倍角公式,得到sin A ,sin B ,sin C 之间的关系,然后借助正弦定理转化为边的关系,再结合已知条件列出关于a ,b 的方程组,求出a ,b 的值. 解:(1)由题意可知:c=8-(a+b )=72.由余弦定理得,cos C=a 2+b 2-c 22ab=22+(52)2-(72)22×2×52=-15. (2)由sin A cos 2B 2+sin B cos 2A2=2sin C 可得:sin A ·1+cosB 2+sin B ·1+cosA2=2sin C ,化简得sin A+sin A cos B+sin B+sin B cos A=4sin C. 因为sin A cos B+cos A sin B=sin(A+B )=sin C , 所以sin A+sin B=3sin C. 由正弦定理可知:a+b=3c. 又因a+b+c=8,故a+b=6.由于S=12ab sin C=92sin C ,所以ab=9, 从而a 2-6a+9=0,解得a=3,b=3.19.(本小题满分12分,(1)小问5分,(2)小问7分)(2014重庆,文19)已知函数f (x )=x 4+a x-ln x-32,其中a ∈R ,且曲线y=f (x )在点(1,f (1))处的切线垂直于直线y=12x. (1)求a 的值;(2)求函数f (x )的单调区间与极值.分析:利用已知条件得切线的斜率为-2,然后求出f (x )在x=1处的导数,列出关于a 的方程,求出a 的值;在第(2)问中,充分利用导数判断函数单调性与极值的方法,求导后转化为求方程f'(x )=0,然后判断f'(x )在每个区间的符号,在求解过程中要注意函数的定义域. 解:(1)对f (x )求导得f'(x )=14−a x 2−1x ,由f (x )在点(1,f (1))处的切线垂直于直线y=12x ,知f'(1)=-34-a=-2,解得a=54.(2)由(1)知f (x )=x 4+54x -ln x-32,则f'(x )=x 2-4x -54x 2,令f'(x )=0,解得x=-1或x=5.因x=-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f'(x )<0,故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f'(x )>0,故f (x )在(5,+∞)内为增函数. 由此知函数f (x )在x=5时取得极小值f (5)=-ln 5.20.(本小题满分12分,(1)小问4分,(2)小问8分)(2014重庆,文20)如图,四棱锥P-ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD=π3,M 为BC 上一点,且BM=12.(1)证明:BC ⊥平面POM ;(2)若MP ⊥AP ,求四棱锥P-ABMO 的体积.分析:先利用平面几何的方法,求出OB ,然后在△OBM 中,借助余弦定理求出OM 的值,运用勾股定理的逆定理,得出线线垂直,再结合已知条件,利用线面垂直的判定定理,得出BC ⊥平面POM ;在第(2)问中,充分利用第(1)问的结论,得到OA 的长度,然后分别在△POM ,△ABM ,△POA 中借助余弦定理得到关于PO 的方程,求出PO 的长度,再分别计算△AOB 与△OMB 的面积得出四边形ABMO 的面积,最后根据棱锥的体积公式求出四棱锥P-ABMO 的体积.(1)证明:如图,因ABCD 为菱形,O 为菱形中心,连结OB ,则AO ⊥OB.因∠BAD=π3,故OB=AB ·sin ∠OAB=2sin π6=1,又因BM=12,且∠OBM=π3,在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos ∠OBM=12+(12)2-2·1·12·cos π3=34. 所以OB 2=OM 2+BM 2,故OM ⊥BM. 又PO ⊥底面ABCD ,所以PO ⊥BC.从而BC 与平面POM 内两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM.(2)解:由(1)可得,OA=AB ·cos ∠OAB=2·cos π6=√3.设PO=a ,由PO ⊥底面ABCD 知,△POA 为直角三角形, 故PA 2=PO 2+OA 2=a 2+3.由△POM 也是直角三角形,故PM 2=PO 2+OM 2= a 2+34.连结AM ,在△ABM 中,AM 2=AB 2+BM 2-2AB ·BM ·cos ∠ABM=22+(12)2-2·2·12·cos 2π3=214. 由已知MP ⊥AP ,故△APM 为直角三角形, 则PA 2+PM 2=AM 2, 即a 2+3+a 2+34=214,得a=√32,a=-√32(舍去),即PO=√32.此时S ABMO =S △AOB +S △OMB=12·AO ·OB+12·BM ·OM=12×√3×1+12×12×√32=5√38. 所以四棱锥P-ABMO 的体积V P-ABMO =13·S ABMO ·PO=13×5√38×√32=516. 21.(本小题满分12分,(1)小问5分,(2)小问7分)(2014重庆,文21)如图,设椭圆x 2a 2+y 2b2=1(a>b>0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=2√2,△DF 1F 2的面积为√22.(1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.分析:先通过已知条件,借助a ,b ,c 之间的关系,转化为关于a ,b ,c 的方程,然后利用a ,b ,c 的几何意义,求出a ,b ,c 的值,从而得到椭圆的标准方程;在第(2)问中,充分利用数形结合的思想方法,首先设出交点P 1,P 2的坐标,然后写出向量F 1P 1⃗⃗⃗⃗⃗⃗⃗⃗ ,F 2P 2⃗⃗⃗⃗⃗⃗⃗⃗ ,再由F 1P 1⊥F 2P 2列出关于x 1的方程求出x 1,得到圆心坐标,最后利用两点间的距离公式求出半径得到圆的方程.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2.由|F 1F 2||DF 1|=2√2得|DF 1|=1F 222=√22c. 从而S △DF 1F 2=12|DF 1||F 1F 2|=√22c 2=√22,故c=1.从而|DF 1|=√22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=3√22. 所以2a=|DF 1|+|DF 2|=2√2,故a=√2,b 2=a 2-c 2=1. 因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2. 由(1)知F 1(-1,0),F 2(1,0), 所以F 1P 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x 1+1,y 1),F 2P 2⃗⃗⃗⃗⃗⃗⃗⃗ =(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 12=0.由椭圆方程得1-x 122=(x 1+1)2,即3x 12+4x 1=0.解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C. 设C (0,y 0),由CP 1⊥F 1P 1,得y 1-y 0x 1·y1x 1+1=-1. 而y 1=|x 1+1|=13,故y 0=53.圆C 的半径|CP 1|=√(-43)2+(13-53)2=4√23. 综上,存在满足题设条件的圆,其方程为x 2+(y -53)2=329.。
2014年重庆市高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分、在每小题给出的四个备选项中,只有一项是符合题目要求的、1、(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A、第一象限B、第二象限C、第三象限D、第四象限2、(5分)在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A、5B、8C、10D、143、(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A、100B、150C、200D、2504、(5分)下列函数为偶函数的是()A、f(x)=x﹣1B、f(x)=x2+xC、f(x)=2x﹣2﹣xD、f(x)=2x+2﹣x5、(5分)执行如图所示的程序框图,则输出s的值为()A、10B、17C、19D、366、(5分)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;则下列命题为真命题的是()A、p∧¬qB、¬p∧qC、¬p∧¬qD、p∧q7、(5分)某几何体的三视图如图所示,则该几何体的体积为()A、12B、18C、24D、308、(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|﹣|PF2|)2=b2﹣3ab,则该双曲线的离心率为()A、B、 C、4 D、9、(5分)若log4(3a+4b)=log2,则a+b的最小值是()A、6+2B、7+2C、6+4D、7+410、(5分)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A、(﹣,﹣2]∪(0,]B、(﹣,﹣2]∪(0,]C、(﹣,﹣2]∪(0,]D、(﹣,﹣2]∪(0,]二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上、11、(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B=、12、(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•=、13、(5分)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx的图象,则f()=、14、(5分)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B 两点,且AC⊥BC,则实数a的值为、15、(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答)、三、解答题:本大题共6小题,共75分、解答应写出文字说明,证明过程或演算步骤、16、(13分)已知{a n}是首项为1,公差为2的等差数列,S n表示{a n}的前n项和、(Ⅰ)求a n及S n;(Ⅱ)设{b n}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0、求{b n}的通项公式及其前n项和T n、17、(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率、18、(13分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8、(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值、19、(12分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x、(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值、20、(12分)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=、(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积、21、(12分)如图,设椭圆+=1(a>b>0)的左右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为、(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由、参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分、在每小题给出的四个备选项中,只有一项是符合题目要求的、1、(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A、第一象限B、第二象限C、第三象限D、第四象限题目分析:根据复数的几何意义,即可得到结论、试题解答解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B、点评:本题主要考查复数的几何意义,比较基础、2、(5分)在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A、5B、8C、10D、14题目分析:由题意可得a4=5,进而可得公差d=1,可得a7=a1+6d,代值计算即可、试题解答解:∵在等差数列{a n}中a1=2,a3+a5=10,∴2a4=a3+a5=10,解得a4=5,∴公差d==1,∴a7=a1+6d=2+6=8故选:B、点评:本题考查等差数列的通项公式,属基础题、3、(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A、100B、150C、200D、250题目分析:计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n值、试题解答解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100、故选:A、点评:本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键、4、(5分)下列函数为偶函数的是()A、f(x)=x﹣1B、f(x)=x2+xC、f(x)=2x﹣2﹣xD、f(x)=2x+2﹣x题目分析:根据偶函数的定义,依次分析选项,先分析函数的定义域,再分析f (﹣x)=f(x)是否成立,即可得答案、试题解答解:根据题意,依次分析选项:A、f(x)=x﹣1,其定义域为R,f(﹣x)=﹣x﹣1,f(﹣x)≠f(x),不是偶函数,不符合题意;B、f(x)=x2+x,其定义域为R,f(﹣x)=x2﹣x,f(﹣x)≠f(x),不是偶函数,不符合题意;C、f(x)=2x﹣2﹣x,其定义域为R,f(﹣x)=2﹣x﹣2x,f(﹣x)=﹣f(x),是奇函数不是偶函数,不符合题意;D、f(x)=2x+2﹣x,其定义域为R,f(﹣x)=2﹣x+2x,f(﹣x)=f(x),是偶函数,符合题意;故选:D、点评:本题考查函数奇偶性的判断,注意要先分析函数的定义域、5、(5分)执行如图所示的程序框图,则输出s的值为()A、10B、17C、19D、36题目分析:根据框图的流程模拟运行程序,直到不满足条件k<10,跳出循环体,计算输出S的值、试题解答解:由程序框图知:第一次循环S=2,k=2×2﹣1=3;第二次循环S=2+3=5,k=2×3﹣1=5;第三次循环S=5+5=10,k=2×5﹣1=9;第四次循环S=10+9=19,k=2×9﹣1=17,不满足条件k<10,跳出循环体,输出S=19、故选:C、点评:本题考查了当型循环结构程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法、6、(5分)已知命题:p:对任意x∈R,总有|x|≥0,q:x=1是方程x+2=0的根;则下列命题为真命题的是()A、p∧¬qB、¬p∧qC、¬p∧¬qD、p∧q题目分析:判定命题p,q的真假,利用复合命题的真假关系即可得到结论、试题解答解:根据绝对值的性质可知,对任意x∈R,总有|x|≥0成立,即p为真命题,当x=1时,x+2=3≠0,即x=1不是方程x+2=0的根,即q为假命题,则p∧¬q,为真命题,故选:A、点评:本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础、7、(5分)某几何体的三视图如图所示,则该几何体的体积为()A、12B、18C、24D、30题目分析:几何体是三棱柱消去一个同底的三棱锥,根据三视图判断三棱柱的高及消去的三棱锥的高,判断三棱锥与三棱柱的底面三角形的形状及相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算、试题解答解:由三视图知:几何体是三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∴几何体的体积V=×3×4×5﹣××3×4×3=30﹣6=24、故选:C、点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键、8、(5分)设F1,F2分别为双曲线﹣=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得(|PF1|﹣|PF2|)2=b2﹣3ab,则该双曲线的离心率为()A、B、 C、4 D、题目分析:根据(|PF1|﹣|PF2|)2=b2﹣3ab,由双曲线的定义可得(2a)2=b2﹣3ab,求得a=,c==b,即可求出双曲线的离心率、试题解答解:∵(|PF1|﹣|PF2|)2=b2﹣3ab,∴由双曲线的定义可得(2a)2=b2﹣3ab,∴4a2+3ab﹣b2=0,∴a=,∴c==b,∴e==、故选:D、点评:本题主要考查了双曲线的简单性质,考查学生的计算能力,属于基础题、9、(5分)若log4(3a+4b)=log2,则a+b的最小值是()A、6+2B、7+2C、6+4D、7+4题目分析:利用对数的运算法则可得>0,a>4,再利用基本不等式即可得出试题解答解:∵3a+4b>0,ab>0,∴a>0、b>0∵log4(3a+4b)=log2,∴log4(3a+4b)=log4(ab)∴3a+4b=ab,a≠4,a>0、b>0∴>0,∴a>4,则a+b=a+=a+=a+3+=(a﹣4)++7+7=4+7,当且仅当a=4+2取等号、故选:D、点评:本题考查了对数的运算法则、基本不等式的性质,属于中档题、10、(5分)已知函数f(x)=,且g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是()A、(﹣,﹣2]∪(0,]B、(﹣,﹣2]∪(0,]C、(﹣,﹣2]∪(0,]D、(﹣,﹣2]∪(0,]题目分析:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),作出两个函数的图象,利用数形结合即可得到结论、试题解答解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)和y=h(x)=m(x+1)的图象如图:由图象可知f(1)=1,h(x)表示过定点A(﹣1,0)的直线,当h(x)过(1,1)时,m=此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤,当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当h(x)与f(x)相切时,两个函数只有一个交点,此时,即m(x+1)2+3(x+1)﹣1=0,当m=0时,x=,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f(x)相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤,故选:A、点评:本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法、二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上、11、(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B= {3,5,13} 、题目分析:根据题意,分析集合A、B的公共元素,由交集的意义即可得答案、试题解答解:根据题意,集合A={3,4,5,12,13},B={2,3,5,8,13},A、B公共元素为3、5、13,则A∩B={3,5,13},故答案为:{3,5,13}、点评:本题考查集合交集的运算,注意写出集合的形式、12、(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•= 10、题目分析:利用向量的模、夹角形式的数量积公式,求出即可试题解答解:∵=(﹣2,﹣6),∴,∴=2=10、故答案为:10、点评:本题考查了向量的数量积公式,属于基础题、13、(5分)将函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移个单位长度得到y=sinx 的图象,则f()=、题目分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得sin(2ωx+φ﹣ω)=sinx,可得2ω=1,且φ﹣ω=2kπ,k∈z,由此求得ω、φ的值,可得f(x)的解析式,从而求得f()的值、试题解答解:函数f(x)=sin(ωx+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,可得函数y=sin(2ωx+φ)的图象、再把所得图象再向右平移个单位长度得到函数y=sin[2ω(x﹣)+φ)]=sin(2ωx+φ﹣ω)=sinx的图象,∴2ω=1,且φ﹣ω=2kπ,k∈Z,∴ω=,φ=+2kπ,∴f(x)=sin(x+),∴f()=sin(+)=sin=、故答案为:、点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于中档题、14、(5分)已知直线x﹣y+a=0与圆心为C的圆x2+y2+2x﹣4y﹣4=0相交于A、B 两点,且AC⊥BC,则实数a的值为0或6、题目分析:根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论、试题解答解:圆的标准方程为(x+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6,故答案为:0或6、点评:本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键、15、(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答)、题目分析:设小张到校的时间为x,小王到校的时间为y、(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(x,y)|y﹣x≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可、试题解答解:设小张到校的时间为x,小王到校的时间为y、(x,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(x,y|30≤x≤50,30≤y≤50}是一个矩形区域,对应的面积S=20×20=400,则小张比小王至少早5分钟到校事件A={x|y﹣x≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立得C(45,50),联立得B(30,35),则S=×15×15,由几何概率模型可知小张比小王至少早5分钟到校的概率△ABC为=,故答案为:、点评:本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键、三、解答题:本大题共6小题,共75分、解答应写出文字说明,证明过程或演算步骤、16、(13分)已知{a n}是首项为1,公差为2的等差数列,S n表示{a n}的前n项和、(Ⅰ)求a n及S n;(Ⅱ)设{b n}是首项为2的等比数列,公比为q满足q2﹣(a4+1)q+S4=0、求{b n}的通项公式及其前n项和T n、题目分析:(Ⅰ)直接由等差数列的通项公式及前n项和公式得答案;(Ⅱ)求出a4和S4,代入q2﹣(a4+1)q+S4=0求出等比数列的公比,然后直接由等比数列的通项公式及前n项和公式得答案、试题解答解:(Ⅰ)∵{a n}是首项为1,公差为2的等差数列,∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1、;(Ⅱ)由(Ⅰ)得,a4=7,S4=16、∵q2﹣(a4+1)q+S4=0,即q2﹣8q+16=0,∴(q﹣4)2=0,即q=4、又∵{b n}是首项为2的等比数列,∴、、点评:本题考查等差数列的性质,考查了等差数列和等比数列的通项公式、前n 项和公式的求法,是基础题、17、(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率、题目分析:(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求、(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可、试题解答解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005、(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3、(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=、点评:本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题、18、(13分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8、(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b的值、题目分析:(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值、试题解答解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3、点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键、19、(12分)已知函数f(x)=+﹣lnx﹣,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x、(Ⅰ)求a的值;(Ⅱ)求函数f(x)的单调区间与极值、题目分析:(Ⅰ)由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x 可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符号,进而可得函数f(x)的单调区间与极值、试题解答解:(Ⅰ)∵f(x)=+﹣lnx﹣,∴f′(x)=﹣﹣,∵曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x、∴f′(1)=﹣a﹣1=﹣2,解得:a=、(Ⅱ)由(Ⅰ)知:f(x)=+﹣lnx﹣,f′(x)=﹣﹣=(x>0),令f′(x)=0,解得x=5,或x=﹣1(舍),∵当x∈(0,5)时,f′(x)<0,当x∈(5,+∞)时,f′(x)>0,故函数f(x)的单调递增区间为(5,+∞);单调递减区间为(0,5);当x=5时,函数取极小值﹣ln5、点评:本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数研究函数的极值,是导数的综合应用,难度中档、20、(12分)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=、(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积、题目分析:(Ⅰ)连接OB,根据底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=,结合菱形的性质,余弦定理,勾股定理,可得OM⊥BC及PO⊥BC,进而由线面垂直的判定定理得到BC⊥平面POM;(Ⅱ)设PO=a,利用勾股定理和余弦定理解三角形求出PO的值,及四棱锥P﹣ABMO的底面积S,代入棱锥体积公式,可得答案、试题解答证明:(Ⅰ)∵底面是以O为中心的菱形,PO⊥底面ABCD,故O为底面ABCD的中心,连接OB,则AO⊥OB,∵AB=2,∠BAD=,∴OB=AB•sin∠BAO=2sin()=1,又∵BM=,∠OBM=,∴在△OBM中,OM2=OB2+BM2﹣2OB•BM•cos∠OBM=,即OB2=OM2+BM2,即OM⊥BM,∴OM ⊥BC ,又∵PO ⊥底面ABCD ,BC ⊂底面ABCD , ∴PO ⊥BC ,又∵OM ∩PO=O ,OM ,PO ⊂平面POM , ∴BC ⊥平面POM ;(Ⅱ)由(Ⅰ)可得:OA=AB•cos ∠BAO=2cos ()=,设PO=a ,由PO ⊥底面ABCD 可得:△POA 为直角三角形, 故PA 2=PO 2+OA 2=a 2+3, 由△POM 也为直角三角形得: PM 2=PO 2+OM 2=a 2+, 连接AM ,在△ABM 中,AM 2=AB 2+BM 2﹣2AB•BM•cos ∠ABM==,由MP ⊥AP 可知:△APM 为直角三角形, 则AM 2=PA 2+PM 2,即a 2+3+a 2+=,解得a=,即PO=,此时四棱锥P ﹣ABMO 的底面积S=S △AOB +S △BOM =•AO•OB +•BM•OM=,∴四棱锥P ﹣ABMO 的体积V=S•PO=点评:本题考查的知识点是棱锥的体积,直线与平面垂直的判定,难度中档、21、(12分)如图,设椭圆+=1(a >b >0)的左右焦点分别为F 1,F 2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为、(Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由、题目分析:(Ⅰ)设F1(﹣c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=﹣或x1=0,分类讨论即可求得圆心及半径,从而可得圆的方程、试题解答解:(Ⅰ)设F1(﹣c,0),F2(c,0),其中c2=a2﹣b2,由=2,得|DF1|==c,从而=|DF 1||F1F2|=c2=,故c=1、从而|DF1|=,由DF1⊥F1F2,得=+=,因此|DF2|=,所以2a=|DF1|+|DF2|=2,故a=,b2=a2﹣c2=1,因此,所求椭圆的标准方程为+y2=1;(Ⅱ)设圆心在y轴上的圆C 与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2,由圆和椭圆的对称性,易知x2=﹣x1,y1=y2,|P1P2|=2|x1|,由(Ⅰ)知F1(﹣1,0),F2(1,0),所以=(x1+1,y1),=(﹣x1﹣1,y1),再由F1P1⊥F2P2,得﹣+=0,由椭圆方程得1﹣=,即3+4x1=0,解得x1=﹣或x1=0、当x1=0时,P1,P2重合,此时题设要求的圆不存在;当x1=﹣时,过P1,P2,分别与F1P1,F2P2垂直的直线的交点即为圆心C,设C (0,y0)由F1P1,F2P2是圆C的切线,知CP1⊥F1P1,得•=﹣1,而|y1|=|x1+1|=,故y0=,故圆C的半径|CP1|==综上,存在满足题设条件的圆,其方程为x2+=21/ 21。
2014年重庆市高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)在等差数列{an }中,a1=2,a3+a5=10,则a7=()A.5 B.8 C.10 D.143.(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.2504.(5分)下列函数为偶函数的是()A.f()=﹣1 B.f()=2+ C.f()=2﹣2﹣D.f()=2+2﹣5.(5分)执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.366.(5分)已知命题:p:对任意∈R,总有||≥0,q:=1是方程+2=0的根;则下列命题为真命题的是()A.p∧¬q B.¬p∧q C.¬p∧¬q D.p∧q7.(5分)某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .308.(5分)设F 1,F 2分别为双曲线﹣=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|﹣|PF 2|)2=b 2﹣3ab ,则该双曲线的离心率为( )A .B .C .4D .9.(5分)若log 4(3a+4b )=log 2,则a+b 的最小值是( ) A .6+2 B .7+2 C .6+4 D .7+410.(5分)已知函数f ()=,且g ()=f ()﹣m ﹣m 在(﹣1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A .(﹣,﹣2]∪(0,]B .(﹣,﹣2]∪(0,] C .(﹣,﹣2]∪(0,] D .(﹣,﹣2]∪(0,]二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A ∩B= .12.(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•= .13.(5分)将函数f ()=sin (ω+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原的一半,纵坐标不变,再向右平移个单位长度得到y=sin 的图象,则f ()= . 14.(5分)已知直线﹣y+a=0与圆心为C 的圆2+y 2+2﹣4y ﹣4=0相交于A 、B 两点,且AC ⊥BC ,则实数a 的值为 .15.(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为 (用数字作答).三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(Ⅰ)求a n 及S n ;(Ⅱ)设{b n }是首项为2的等比数列,公比为q 满足q 2﹣(a 4+1)q+S 4=0.求{b n }的通项公式及其前n 项和T n .17.(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图: (Ⅰ)求频率分布直方图中a 的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.18.(13分)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,且a+b+c=8. (Ⅰ)若a=2,b=,求cosC 的值;(Ⅱ)若sinAcos 2+sinBcos 2=2sinC ,且△ABC 的面积S=sinC ,求a 和b 的值.19.(12分)已知函数f ()=+﹣ln ﹣,其中a ∈R ,且曲线y=f ()在点(1,f (1))处的切线垂直于直线y=.(Ⅰ)求a 的值;(Ⅱ)求函数f ()的单调区间与极值.20.(12分)如图,四棱锥P ﹣ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB=2,∠BAD=,M 为BC 上一点,且BM=.(Ⅰ)证明:BC ⊥平面POM ;(Ⅱ)若MP ⊥AP ,求四棱锥P ﹣ABMO 的体积.21.(12分)如图,设椭圆+=1(a >b >0)的左右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,=2,△DF 1F 2的面积为. (Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.2014年重庆市高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)实部为﹣2,虚部为1的复数所对应的点位于复平面内的( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据复数的几何意义,即可得到结论.【解答】解:实部为﹣2,虚部为1的复数所对应的点的坐标为(﹣2,1),位于第二象限,故选:B .【点评】本题主要考查复数的几何意义,比较基础.2.(5分)在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7=( )A .5B .8C .10D .14【分析】由题意可得a 4=5,进而可得公差d=1,可得a 7=a 1+6d ,代值计算即可.【解答】解:∵在等差数列{a n }中a 1=2,a 3+a 5=10,∴2a 4=a 3+a 5=10,解得a 4=5,∴公差d==1,∴a 7=a 1+6d=2+6=8故选:B .【点评】本题考查等差数列的通项公式,属基础题.3.(5分)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n为()A.100 B.150 C.200 D.250【分析】计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计算n值.【解答】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A.【点评】本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键.4.(5分)下列函数为偶函数的是()A.f()=﹣1 B.f()=2+ C.f()=2﹣2﹣D.f()=2+2﹣【分析】根据偶函数的定义,依次分析选项,先分析函数的定义域,再分析f (﹣)=f()是否成立,即可得答案.【解答】解:根据题意,依次分析选项:A、f()=﹣1,其定义域为R,f(﹣)=﹣﹣1,f(﹣)≠f(),不是偶函数,不符合题意;B、f()=2+,其定义域为R,f(﹣)=2﹣,f(﹣)≠f(),不是偶函数,不符合题意;C、f()=2﹣2﹣,其定义域为R,f(﹣)=2﹣﹣2,f(﹣)=﹣f(),是奇函数不是偶函数,不符合题意;D、f()=2+2﹣,其定义域为R,f(﹣)=2﹣+2,f(﹣)=f(),是偶函数,符合题意;故选:D.【点评】本题考查函数奇偶性的判断,注意要先分析函数的定义域.5.(5分)执行如图所示的程序框图,则输出s的值为()A.10 B.17 C.19 D.36【分析】根据框图的流程模拟运行程序,直到不满足条件<10,跳出循环体,计算输出S的值.【解答】解:由程序框图知:第一次循环S=2,=2×2﹣1=3;第二次循环S=2+3=5,=2×3﹣1=5;第三次循环S=5+5=10,=2×5﹣1=9;第四次循环S=10+9=19,=2×9﹣1=17,不满足条件<10,跳出循环体,输出S=19.故选:C.【点评】本题考查了当型循环结构程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.6.(5分)已知命题:p:对任意∈R,总有||≥0,q:=1是方程+2=0的根;则下列命题为真命题的是()A.p∧¬q B.¬p∧q C.¬p∧¬q D.p∧q【分析】判定命题p,q的真假,利用复合命题的真假关系即可得到结论.【解答】解:根据绝对值的性质可知,对任意∈R,总有||≥0成立,即p为真命题,当=1时,+2=3≠0,即=1不是方程+2=0的根,即q为假命题,则p∧¬q,为真命题,故选:A.【点评】本题主要考查复合命题的真假关系的应用,先判定p,q的真假是解决本题的关键,比较基础.7.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.12 B.18 C.24 D.30【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断三棱柱的高及消去的三棱锥的高,判断三棱锥与三棱柱的底面三角形的形状及相关几何量的数据,把数据代入棱柱与棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∴几何体的体积V=×3×4×5﹣××3×4×3=30﹣6=24.故选:C.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F 1,F 2分别为双曲线﹣=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|﹣|PF 2|)2=b 2﹣3ab ,则该双曲线的离心率为( )A .B .C .4D .【分析】根据(|PF 1|﹣|PF 2|)2=b 2﹣3ab ,由双曲线的定义可得(2a )2=b 2﹣3ab ,求得a=,c==b ,即可求出双曲线的离心率.【解答】解:∵(|PF 1|﹣|PF 2|)2=b 2﹣3ab ,∴由双曲线的定义可得(2a )2=b 2﹣3ab ,∴4a 2+3ab ﹣b 2=0,∴a=,∴c==b ,∴e==. 故选:D .【点评】本题主要考查了双曲线的简单性质,考查学生的计算能力,属于基础题.9.(5分)若log 4(3a+4b )=log 2,则a+b 的最小值是( ) A .6+2 B .7+2 C .6+4 D .7+4【分析】利用对数的运算法则可得>0,a >4,再利用基本不等式即可得出【解答】解:∵3a+4b >0,ab >0,∴a >0.b >0 ∵log 4(3a+4b )=log 2,∴log 4(3a+4b )=log 4(ab ) ∴3a+4b=ab ,a ≠4,a >0.b >0 ∴>0,∴a >4,则a+b=a+=a+=a+3+=(a ﹣4)++7+7=4+7,当且仅当a=4+2取等号.故选:D .【点评】本题考查了对数的运算法则、基本不等式的性质,属于中档题.10.(5分)已知函数f ()=,且g ()=f ()﹣m ﹣m 在(﹣1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( ) A .(﹣,﹣2]∪(0,] B .(﹣,﹣2]∪(0,] C .(﹣,﹣2]∪(0,] D .(﹣,﹣2]∪(0,]【分析】由g ()=f ()﹣m ﹣m=0,即f ()=m (+1),作出两个函数的图象,利用数形结合即可得到结论.【解答】解:由g ()=f ()﹣m ﹣m=0,即f ()=m (+1), 分别作出函数f ()和y=h ()=m (+1)的图象如图:由图象可知f (1)=1,h ()表示过定点A (﹣1,0)的直线,当h ()过(1,1)时,m=此时两个函数有两个交点,此时满足条件的m 的取值范围是0<m ≤,当h ()过(0,﹣2)时,h (0)=﹣2,解得m=﹣2,此时两个函数有两个交点,当h()与f()相切时,两个函数只有一个交点,此时,即m(+1)2+3(+1)﹣1=0,当m=0时,=,只有1解,当m≠0,由△=9+4m=0得m=﹣,此时直线和f()相切,∴要使函数有两个零点,则﹣<m≤﹣2或0<m≤,故选:A.【点评】本题主要考查函数零点的应用,利用数形结合是解决此类问题的基本方法.二、填空题:本大题共5小题,每小题5分,把答案填写在答题卡相应的位置上.11.(5分)已知集合A={3,4,5,12,13},B={2,3,5,8,13},则A∩B= {3,5,13} .【分析】根据题意,分析集合A、B的公共元素,由交集的意义即可得答案.【解答】解:根据题意,集合A={3,4,5,12,13},B={2,3,5,8,13},A、B公共元素为3、5、13,则A∩B={3,5,13},故答案为:{3,5,13}.【点评】本题考查集合交集的运算,注意写出集合的形式.12.(5分)已知向量与的夹角为60°,且=(﹣2,﹣6),||=,则•= 10 .【分析】利用向量的模、夹角形式的数量积公式,求出即可【解答】解:∵=(﹣2,﹣6),∴,∴=2=10.故答案为:10.【点评】本题考查了向量的数量积公式,属于基础题.13.(5分)将函数f()=sin(ω+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原的一半,纵坐标不变,再向右平移个单位长度得到y=sin的图象,则f()= .【分析】由条件根据函数y=Asin(ω+φ)的图象变换规律,可得sin(2ω+φ﹣ω)=sin,可得2ω=1,且φ﹣ω=2π,∈,由此求得ω、φ的值,可得f()的解析式,从而求得f()的值.【解答】解:函数f()=sin(ω+φ)(ω>0,﹣≤φ<)图象上每一点的横坐标缩短为原的一半,纵坐标不变,可得函数y=sin(2ω+φ)的图象.再把所得图象再向右平移个单位长度得到函数y=sin[2ω(﹣)+φ)]=sin(2ω+φ﹣ω)=sin的图象,∴2ω=1,且φ﹣ω=2π,∈,∴ω=,φ=+2π,∴f()=sin(+),∴f()=sin(+)=sin=.故答案为:.【点评】本题主要考查函数y=Asin(ω+φ)的图象变换规律,属于中档题.14.(5分)已知直线﹣y+a=0与圆心为C的圆2+y2+2﹣4y﹣4=0相交于A、B 两点,且AC⊥BC,则实数a的值为0或6 .【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论.【解答】解:圆的标准方程为(+1)2+(y﹣2)2=9,圆心C(﹣1,2),半径r=3,∵AC⊥BC,∴圆心C到直线AB的距离d=,即d==,即|a﹣3|=3,解得a=0或a=6,故答案为:0或6.【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.15.(5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为(用数字作答).【分析】设小张到校的时间为,小王到校的时间为y.(,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(,y|30≤≤50,30≤y≤50}是一个矩形区域,则小张比小王至少早5分钟到校事件A={(,y)|y﹣≥5}作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为,小王到校的时间为y.(,y)可以看成平面中的点试验的全部结果所构成的区域为Ω={(,y|30≤≤50,30≤y≤50}是一个矩形区域,对应的面积S=20×20=400,则小张比小王至少早5分钟到校事件A={|y﹣≥5}作出符合题意的图象,则符合题意的区域为△ABC,联立得C(45,50),联立得B(30,35),则S=×15×15,由几何概率模型可知小张比小王至少早5分钟到△ABC校的概率为=,故答案为:.【点评】本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(13分)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(Ⅰ)求a n 及S n ;(Ⅱ)设{b n }是首项为2的等比数列,公比为q 满足q 2﹣(a 4+1)q+S 4=0.求{b n }的通项公式及其前n 项和T n .【分析】(Ⅰ)直接由等差数列的通项公式及前n 项和公式得答案;(Ⅱ)求出a 4和S 4,代入q 2﹣(a 4+1)q+S 4=0求出等比数列的公比,然后直接由等比数列的通项公式及前n 项和公式得答案.【解答】解:(Ⅰ)∵{a n }是首项为1,公差为2的等差数列, ∴a n =a 1+(n ﹣1)d=1+2(n ﹣1)=2n ﹣1.;(Ⅱ)由(Ⅰ)得,a 4=7,S 4=16. ∵q 2﹣(a 4+1)q+S 4=0,即q 2﹣8q+16=0, ∴(q ﹣4)2=0,即q=4. 又∵{b n }是首项为2的等比数列, ∴..【点评】本题考查等差数列的性质,考查了等差数列和等比数列的通项公式、前n 项和公式的求法,是基础题.17.(13分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图: (Ⅰ)求频率分布直方图中a 的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.【分析】(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求.(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.【解答】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005.(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3.(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.【点评】本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.18.(13分)在△ABC中,内角A、B、C所对的边分别是a、b、c,且a+b+c=8.(Ⅰ)若a=2,b=,求cosC的值;(Ⅱ)若sinAcos2+sinBcos2=2sinC,且△ABC的面积S=sinC,求a和b 的值.【分析】(Ⅰ)由a+b+c=8,根据a=2,b=求出c的长,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可;(Ⅱ)已知等式左边利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式及诱导公式变形,再利用正弦定理得到a+b=3c,与a+b+c=8联立求出a+b的值,利用三角形的面积公式列出关系式,代入S=sinC求出ab的值,联立即可求出a与b的值.【解答】解:(Ⅰ)∵a=2,b=,且a+b+c=8,∴c=8﹣(a+b)=,∴由余弦定理得:cosC===﹣;(Ⅱ)由sinAcos2+sinBcos2=2sinC可得:sinA•+sinB•=2sinC,整理得:sinA+sinAcosB+sinB+sinBcosA=4sinC,∵sinAcosB+cosAsinB=sin(A+B)=sinC,∴sinA+sinB=3sinC,利用正弦定理化简得:a+b=3c,∵a+b+c=8,∴a+b=6①,∵S=absinC=sinC,∴ab=9②,联立①②解得:a=b=3.【点评】此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.19.(12分)已知函数f()=+﹣ln﹣,其中a∈R,且曲线y=f()在点(1,f(1))处的切线垂直于直线y=.(Ⅰ)求a的值;(Ⅱ)求函数f()的单调区间与极值.【分析】(Ⅰ)由曲线y=f()在点(1,f(1))处的切线垂直于直线y=可得f′(1)=﹣2,可求出a的值;(Ⅱ)根据(I)可得函数的解析式和导函数的解析式,分析导函数的符号,进而可得函数f()的单调区间与极值.【解答】解:(Ⅰ)∵f()=+﹣ln﹣,∴f′()=﹣﹣,∵曲线y=f()在点(1,f(1))处的切线垂直于直线y=.∴f′(1)=﹣a﹣1=﹣2,解得:a=.(Ⅱ)由(Ⅰ)知:f()=+﹣ln﹣,f′()=﹣﹣=(>0),令f′()=0,解得=5,或=﹣1(舍),∵当∈(0,5)时,f′()<0,当∈(5,+∞)时,f′()>0,故函数f()的单调递增区间为(5,+∞);单调递减区间为(0,5);当=5时,函数取极小值﹣ln5.【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数研究函数的极值,是导数的综合应用,难度中档.20.(12分)如图,四棱锥P﹣ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=.(Ⅰ)证明:BC⊥平面POM;(Ⅱ)若MP⊥AP,求四棱锥P﹣ABMO的体积.【分析】(Ⅰ)连接OB,根据底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上一点,且BM=,结合菱形的性质,余弦定理,勾股定理,可得OM⊥BC及PO⊥BC,进而由线面垂直的判定定理得到BC⊥平面POM;(Ⅱ)设PO=a,利用勾股定理和余弦定理解三角形求出PO的值,及四棱锥P﹣ABMO的底面积S,代入棱锥体积公式,可得答案.【解答】证明:(Ⅰ)∵底面是以O为中心的菱形,PO⊥底面ABCD,故O为底面ABCD的中心,连接OB,则AO⊥OB,∵AB=2,∠BAD=,∴OB=AB•sin∠BAO=2sin()=1,又∵BM=,∠OBM=,∴在△OBM 中,OM 2=OB 2+BM 2﹣2OB •BM •cos ∠OBM=,即OB 2=OM 2+BM 2,即OM ⊥BM ,∴OM ⊥BC ,又∵PO ⊥底面ABCD ,BC ⊂底面ABCD ,∴PO ⊥BC ,又∵OM ∩PO=O ,OM ,PO ⊂平面POM ,∴BC ⊥平面POM ;(Ⅱ)由(Ⅰ)可得:OA=AB •cos ∠BAO=2cos ()=,设PO=a ,由PO ⊥底面ABCD 可得:△POA 为直角三角形,故PA 2=PO 2+OA 2=a 2+3,由△POM 也为直角三角形得:PM 2=PO 2+OM 2=a 2+,连接AM ,在△ABM 中,AM 2=AB 2+BM 2﹣2AB •BM •cos ∠ABM==, 由MP ⊥AP 可知:△APM 为直角三角形,则AM 2=PA 2+PM 2,即a 2+3+a 2+=,解得a=,即PO=,此时四棱锥P ﹣ABMO 的底面积S=S △AOB +S △BOM =•AO •OB+•BM •OM=,∴四棱锥P ﹣ABMO 的体积V=S •PO=【点评】本题考查的知识点是棱锥的体积,直线与平面垂直的判定,难度中档.21.(12分)如图,设椭圆+=1(a >b >0)的左右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,=2,△DF 1F 2的面积为. (Ⅰ)求该椭圆的标准方程;(Ⅱ)是否存在圆心在y 轴上的圆,使圆在轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线互相垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.【分析】(Ⅰ)设F 1(﹣c ,0),F 2(c ,0),依题意,可求得c=1,易求得|DF 1|==,|DF 2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y 轴上的圆C 与椭圆+y 2=1相交,P 1(1,y 1),P 2(2,y 2)是两个交点,依题意,利用圆和椭圆的对称性,易知2=﹣1,y 1=y 2,|P 1P 2|=2|1|,由F 1P 1⊥F 2P 2,得1=﹣或1=0,分类讨论即可求得圆心及半径,从而可得圆的方程.【解答】解:(Ⅰ)设F 1(﹣c ,0),F 2(c ,0),其中c 2=a 2﹣b 2,由=2,得|DF 1|==c ,从而=|DF 1||F 1F 2|=c 2=,故c=1. 从而|DF1|=,由DF 1⊥F 1F 2,得=+=,因此|DF 2|=,所以2a=|DF1|+|DF 2|=2,故a=,b 2=a 2﹣c 2=1, 因此,所求椭圆的标准方程为+y 2=1;(Ⅱ)设圆心在y 轴上的圆C 与椭圆+y 2=1相交,P 1(1,y 1),P 2(2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,由圆和椭圆的对称性,易知2=﹣1,y 1=y 2,|P 1P 2|=2|1|,由(Ⅰ)知F1(﹣1,0),F 2(1,0),所以=(1+1,y 1),=(﹣1﹣1,y 1),再由F 1P 1⊥F 2P 2,得﹣+=0, 由椭圆方程得1﹣=,即3+41=0,解得1=﹣或1=0. 当1=0时,P 1,P 2重合,此时题设要求的圆不存在;当1=﹣时,过P 1,P 2,分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C ,设C (0,y 0)由F 1P 1,F 2P 2是圆C 的切线,知CP 1⊥F 1P 1,得•=﹣1,而|y 1|=|1+1|=,故y 0=,故圆C 的半径|CP 1|==.综上,存在满足题设条件的圆,其方程为2+=. 【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.。
2014年重庆高考数学试题(文)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实部为-2,虚部为1 的复数所对应的点位于复平面的( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限2.在等差数列{}n a 中,1352,10a a a =+=,则7a =( ) .5A .8B .10C .14D3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) .100A .150B .200C .250C4.下列函数为偶函数的是( ).()1A f x x =- 3.()B f x x x =+ .()22x x C f x -=-.()22x xD f x -=+5.执行如题(5)图所示的程序框图,则输出,的值为.10A .17B .19C .36C6.已知命题:p 对任意x R ∈,总有||0x ≥;:"1"q x =是方程"20"x +=的根 则下列命题为真命题的是( ).A p q ∧⌝ .B p q ⌝∧ .C p q ⌝∧ .D p q ∧7.某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.308.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点, 双曲线上存在一点P 使得,3|)||(|2221ab b PF PF -=+则该双曲线的离心率为( )A.2B.15C.4D.179.若b a ab b a +=+则)(,log 43log 24的最小值是( )A.326+B.327+C.346+D.347+10.已知函数]1,1)()(,]1,0(,]0,1(,311)(---=⎪⎩⎪⎨⎧∈-∈-+=在(且m mx x f x g x x x x x f 内有且仅有两个不同的零点,则实数m 的取值范围是( )A.]21,0(]2,49(⋃-- B.]21,0(]2,411(⋃-- C.]32,0(]2,49(⋃-- D.]32,0(]2,411(⋃-- 二、填空题11.已 知集合=⋂==B A B A 则},13,8,5,3,1{},8,5,3,2,1{______. 12.已知向量=⋅=--=b a b a b a则,且的夹角为与,10||),6,2(60_________.13. 将函数()()⎪⎭⎫ ⎝⎛<≤->+=220sin πϕπωϕω,x x f 图像上每一点的横坐标缩短为原来的 一半,纵坐标不变,再向右平移6π的单位长度得到x y sin =的图像,则=⎪⎭⎫ ⎝⎛6πf ______.14. 已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且 BC AC ⊥,则实数a 的值为_________.15. 某校早上8:00上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时间到校是等可能的, 则小张比小王至少早5分钟到校的概率为_____ (用数字作答)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16. (本小题满分13分.(I )小问6分,(II )小问5分)已知{}n a 是首相为1,公差为2的等差数列,n S 表示{}n a 的前n 项和. (I )求n a 及n S ;(II )设{}n b 是首相为2的等比数列,公比q 满足()01442=++-S q a q ,求{}n b 的通项公式及其前n 项和n T .17. (本小题满分13分.(I )小问4分,(II )小问4分,(III )小问5分)20名学生某次数学考试成绩(单位:分)的频数分布直方图如下:(I )求频数直方图中a 的值;(II )分别球出成绩落在[)6050,与[)7060,中的学生人数; (III )从成绩在[)7050,的学生中人选2人,求次2人的成绩都在[)7060,中的概率.18.(本小题满分12分)在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且8=++c b a(1)若25,2==b a ,求C cos 的值;(2)若CAB B A sin 22cos sin 2cos sin 22=+,且ABC ∆的面积C S sin 29=,求a和b 的值.19.(本小题满分12分)已知函数23ln 4)(--+=x x a x x f ,其中R a ∈,且曲线)(x f y =在点))1(,1(f 处的切线垂直于x y 21=(1)求a 的值;(2)求函数)(x f 的单调区间和极值。
20.(本小题满分12分,(1)问4分,(2)问8分) 如题(20)图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且12BM =.(1)证明:BC⊥平面POM ;(2)若MP AP ⊥,求四棱锥P ABMO -的体积.21.如题(21)图,设椭圆22221(0)x y a b a b +=>>的左右焦点分别为12,FF ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =,12DFF ∆的面积为22. (1)求该椭圆的标准方程;(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求圆的方程,若不存在,请说明理由.数学(文)(重庆卷)参考答案一、 选择题(1)B (2)B (3)A (4)D (5)C (6)A (7)C (8)D (9)D (10)A二、 填空题(11){}3,5,13 (12)10 (13)22(14)0或6 (15)932二、 简答题 (16)解:(I )因为{}n a 是首项11a =,公差2d =的等差数列,所以()1121n a a n d n =+-=-故()()12121,13(21)22n n n a a n n S n n ++-=+++-=== (II )由(I )得,447,16.a S ==因为()01442=++-S q a q ,即28160q q -+= 所以()240q -=,从而4q =.又因12b =,是{}n b 公比4q =的等比数列,所以11211242n n n n b b q ---==⋅= 从而{}n b 的前n 项和()()1124113n nn b q T q-==-- (17)解:(I )据直方图知组距=10,由()23672101a a a a a ++++⨯=,解得10.005200a ==(II )成绩落在[)50,60中的学生人数为20.00510202⨯⨯⨯=成绩落在[)60,70中的学生人数为30.00510203⨯⨯⨯=(III )记成绩落在[)5060,中的2人为12,A A ,成绩落在[)60,70中的3人为1B 、2B 、3B ,则从成绩在[)7050,的学生中人选2人的基本事件共有10个: ()()()()()()()()()()12111213212223121323,,,,,,,,,,,,,,,,,,,A A A B A B A B A B A B A B B B B B B B其中2人的成绩都在中的基本事伯有3个:()()()121323,,,,,B B B B B B 故所求概率为310P =(18)解:(Ⅰ)由题意可知:()782c a b =-+=由余弦定理得:222222572122cos 525222a b c C ab ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⋅⋅ (Ⅱ)由22sin cossin cos 2sin 22B A A B C +=可得:1cos 1cos sin sin 2sin 22B A A BC ++⋅+⋅= 化简得sin sin cos sin sin cos 4sin A A B B B A C +++=因为sin cos sin cos sin()sin A B B A A B C +=+=,所以sin sin 3sin A B C += 由正弦定理可知:3a b c +=,又因8=++c b a ,故6a b += 由于19sin sin 22S ab C C ==,所以9ab =,从而2690a a -+=,解得3, 3.a b == (19)解:(Ⅰ)对()f x 求导得()2114a f x x x'=--,由()f x 在点()()1,1f 处切线垂直于直线12y x =知()32,4f x a '=--=-解得54a =;(Ⅱ)由(Ⅰ)知53()ln 442x f x x x =+--,则()22215145,444x x f x x x x --'=--= 令()0f x '=,解得1x =-或5x =.因1x =-不在()f x 的定义域()0,+∞内,故舍去. 当()0,5x ∈时,()0,f x '<故()f x 在()0,5内为减函数; 当()5,x ∈+∞时,()0,f x '>故()f x 在()5,+∞内为增函数; 由此知函数()f x 在5x =时取得极小值()5ln5f =-. (20)解:(Ⅰ)如答(20)图,因ABCD 为菱形,O 为菱形中心,连结OB ,则AO O B ⊥,因3BAD π∠=,故sin 2sin 16OB AB OAB π=⋅∠==又因为12BM=,且3OBM π∠=,在OBM ∆中2222cos OM OB BM OB BM OBM =+-⋅⋅∠22113121cos 2234π⎛⎫=+-⨯⨯⨯= ⎪⎝⎭所以222OB OM BM =+,故OM BM ⊥又PO ⊥底面ABCD ,所以PO BC ⊥,从而BC 与平面POM 内两条相交直线,OM PO 都垂直,所以BC ⊥平面.POM(Ⅱ)解:由(Ⅰ)可知,cos 2cos36OA AB OAB π=⋅∠=⋅=设PO a =,由PO ⊥底面ABCD 知,POA ∆为直角三角形,故22223PA PO OA a =+=+由POM ∆也是直角三角形,故222234PM PO OM a =+=+连结AM ,在ABM ∆中,2222cos AM AB BM AB BM ABM =+-⋅⋅∠2211221222cos 2234π⎛⎫=+-⋅⋅⋅=⎪⎝⎭由已知MP AP ⊥,故APM ∆为直角三角形,则222PA PM AM +=即22321344a a +++=,得32a =,32a =-(舍去),即32PO = 此时1122ABMO AOB OMB S S S AO OB BM OM ∆∆=+=⋅⋅+⋅⋅1113533122228=⋅⋅+⋅⋅= 所以四棱锥P ABMO -的体积115335338216P ABMO ABMO V S PO -=⋅⋅=⋅⋅=(21)解:(Ⅰ)设()()12,0,,0F c F c -,其中222c a b =-,由12122F F DF =得1212222F F DF c ==从而122112122,222DF F S DF F F c ∆=⋅==故1c =. 从而122DF =,由112DF F F ⊥得222211292DF DF F F =+=,因此2322DF =. 所以12222a DF DF =+=,故2222,1a b a c ==-=因此,所求椭圆的标准方程为:2212x y +=(Ⅱ)如答(21)图,设圆心在y 轴上的圆C 与椭圆2212x y +=相交,()()111222,,,P x y P x y 是两个交点,120,0y y >>,11F P ,22F P 是圆C 的切线,且11F P ⊥22F P 由圆和椭圆的对称性,易知2112,x x y y =-=由(Ⅰ)知()()121,0,1,0F F -,所以()()111122111,,1,F P x y F P x y =+=--,再由11FP ⊥22F P 得()221110x y -++=,由椭圆方程得()2211112x x -=+,即211340x x +=,解得143x =-或10x =.当10x =时,12,P P 重合,此时题设要求的圆不存在. 当143x =-时,过12,P P 分别与11F P ,22F P 垂直的直线的交点即为圆心C ,设()00,C y 由111,CP F P ⊥得101111,1y y y x x -⋅=-+而1111,3y x =+=故053y =圆C 的半径221415423333CP ⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭综上,存在满足条件的圆,其方程为:2253239x y ⎛⎫+-= ⎪⎝⎭。