51单片机设计的红外线遥控器电路图及工作原理
- 格式:doc
- 大小:349.00 KB
- 文档页数:6
/*************************基于51单片机的红外遥控计算器程序****************/ /****本程序用基于TC9012遥控器可直接操作,电路图,遥控器编码图在最后****/ #include<reg52.h>#include<stdio.h>#include<intrins.h>#define uint unsigned int#define uchar unsigned char#define lint unsigned long intsbit IR=P3^2; //红外接口标志bit irpro_ok,irok;uchar irtime,X,mir,fir; //红外用全局变量uchar IRcord[4], irdata[33];uchar DA TA1[8]={0,0,0,0,0,0,0,0}; //第一个数uchar DA TA2[8]={0,0,0,0,0,0,0,0}; //第二个数uchar RESUIT[8]={0,0,0,0,0,0,0,0}; //结果uchar px1=0,px2=0,px3=0,flag=0,flag1=0,flag2=0,flag3=0,f1=0,f2=0,f3=0,f4=0; //各全局变量uchar temp,key,fang1,fang2;lint x1=0,x2=0,y=0; //输入的数及其结果void delay(msx); //ms延时函数void Init(); //系统初始化void INTInit(); //中断初始化void Ircordpro(); //红外码值处理函数void keyscan(); //键值检测void delay(uint); //延时void DataOper(); //数据运算void DataHandle(); //数据接收void DisplayHandle(); //显示处理void display(uchar,uchar); //数码管显示函数void main(){INTInit();P0=0x00;while(1){keyscan();DataHandle();DisplayHandle();}}void INTInit(){TMOD=0x02; //定时器0工作方式2,TH0是重装值,TL0是初值TH0=0x00; //reload valueTL0=0x00; //initial valueET0=1; //开中断TR0=1;IT0 = 1; // Configure interrupt 0 for falling edge on /INT0 (P3.2)EX0 = 1; // Enable EX0 InterruptEA = 1;}void Init() //初始化,所有数据归零{uchar i;px1=0;px2=0;px3=0;flag=0;flag1=0;flag2=0;flag3=0;f1=0;f2=0;f3=0;f4=0;x1=0;x2=0;y=0;for(i=0;i<8;i++){DA TA1[i]=0;DATA2[i]=0;RESUIT[i]=0;}}void delay(msx) //msx为延时毫秒数{uint i,j;for(i=0;i<=msx;i++)for(j=0;j<=110;j++);}void display(uchar n,uchar m) //n是第几只数码管,m是显示的数字是多少{P0=P0&0x80;P0=P0|(n<<4);P0=P0|m;}void tim0_isr (void) interrupt 1 using 1//定时器0中断服务函数{irtime++;}void ex0_isr (void) interrupt 0 using 0//外部中断0服务函数{if(fir){if(irtime<49&&irtime>=31)mir=0; //4.5ms+4.5msirdata[mir]=irtime;irtime=0;mir++;if(mir==33){irok=1;mir=0;fir=0;}}else{irtime=0;fir=1;}}void Ircordpro(void) //红外码值处理函数{unsigned char i, j, k;unsigned char cord,value;k=1;for(i=0;i<4;i++) //处理4个字节{for(j=1;j<=8;j++) //处理1个字节8位{cord=irdata[k];if(cord>7) value=value|0x80;else value=value;if(j<8)value=value>>1;k++;}IRcord[i]=value;value=0;}if((IRcord[0]=~IRcord[1])&&(IRcord[2]=~IRcord[3])) {X=IRcord[2];fang2=1;}}void keyscan() //矩阵键值扫描子函数{if(irok){Ircordpro();irok=0;fang1=1;}if((fang1==1)&&(fang2==1)){fang1=0;fang2=0;switch(X){case 0x08: key=0;flag=1;break;case 0x01: key=1;flag=1;break;case 0x02: key=2;flag=1;break;case 0x03: key=3;flag=1;break;case 0x05: key=4;flag=1;break;case 0x06: key=5;flag=1;break;case 0x07: key=6;flag=1;break;case 0x09: key=7;flag=1;break;case 0x0A: key=8; flag=1;break;case 0x0B: key=9; flag=1;break;case 0x10: key=10;flag1=1;display(7,0);break;case 0x1A: key=11;flag1=1;display(7,0);break;case 0x16: key=12;flag2=1;Init();break;case 0x11: key=13;flag2=1;DataOper();break;case 0x15: key=14;flag1=1;display(7,0);break;case 0x19: key=15;flag1=1;display(7,0);break;}}}void DataOper(){uchar i,j,m=0;lint k=0;for(i=0;i<(px1-1);i++) //把第一个数组中的数处理成十进制数{k=DATA1[i];for(j=0;j<(px1-i-1);j++){k=k*10;}x1=x1+k;}x1=x1+DATA1[px1-1];for(i=0;i<(px2-1);i++) //把第二个数组中的数处理成十进制数{k=DATA2[i];for(j=0;j<(px2-i-1);j++){k=k*10;}x2=x2+k;}x2=x2+DATA2[px2-1];if(f1==1) y=x1+x2; //根据标志位进行运算else if(f2==1) y=x1-x2;else if(f3==1) y=x1*x2;else if(f4==1) y=x1/x2;RESUIT[0]=y/10000000; //把各位分离出来存入结果数组中RESUIT[1]=(y%10000000)/1000000;RESUIT[2]=(y%1000000)/100000;RESUIT[3]=(y%100000)/10000;RESUIT[4]=(y%10000)/1000;RESUIT[5]=(y%1000)/100;RESUIT[6]=(y%100)/10;RESUIT[7]=y%10;while(!RESUIT[m]) m++;px3=m;}void DataHandle() //把每次按键的结果记录下来,并存到适当的位置{if((key<10)&&(flag==1)&&(flag1==0)){DATA1[px1]=key;px1++;flag=0;}else if((key<10)&&(flag==1)&&(flag1==1)){DATA2[px2]=key;px2++;flag=0;}else if(flag1==1){switch(key){case 10 : f1=1;f2=0;f3=0;f4=0;break; // "+"case 11 : f1=0;f2=1;f3=0;f4=0;break; // "-"case 14 : f1=0;f2=0;f3=1;f4=0;break; // "*"case 15 : f1=0;f2=0;f3=0;f4=1;break; // "/"}}}void DisplayHandle() //将数据显示在数码管上{uchar i,x;if((flag1==0)&&(flag2==0)){x=px1;if(px1==0) display(7,0);else{for(i=0;i<px1;i++){display(8-x,DA TA1[i]);x--;delay(5);}}}else if((flag1==1)&&(flag2==0)){x=px2;if(px2==0) display(7,0);else{for(i=0;i<px2;i++){display(8-x,DA TA2[i]);x--;delay(3);}}}else if ((flag1==1)&&(flag2==1)){for(i=7;i>=px3;i--){display(i,RESUIT[i]);delay(3);}}}。
51单片机设计的红外线遥控器电路图及工作原理你家里是否有一个电视机遥控器或者空调机遥控器呢?你是否也想让它遥控其他的电器甚至让它遥控您的电脑呢?那好,跟我一起做这个“红外遥控解码器”。
该小制作所需要的元件很少:单片机TA89C2051一只,RS232接口电平与TTL电平转换心片MAX232CPE 一只,红外接收管一只,晶振11.0592MHz,电解电容10uF4只,10uF 一只,电阻1K1个,300欧姆左右1个,瓷片电容30P2个。
发光二极管8个。
价钱不足20元。
电路图及原理:主控制单元是单片机AT89C2051,中断口INT0跟红外接受管U1相连,接收红外信号的脉冲,8个发光二极管作为显示解码输出(也可以用来扩展接其他控制电路),U3是跟电脑串行口RS232相连时的电平转换心片,9、10脚分别与单片机的1、2脚相连,(1脚为串行接收,2脚为串行发送),MAX232CPE的7、8脚分别接电脑串行口的2(接收)脚、3(发送脚)。
晶振采用11.0592MHz,这样才能使得通讯的波特率达到9600b/s,电脑一般默认值是9600b/s、8位数据位、1位停止位、无校验位。
电路就这么简单了,现在分析具体的编程过程吧。
如图所示,panasonic遥控器的波形是这样的(经过反复测试的结果)。
开始位是以3.6ms低电平然后是3.6ms高电平,然后数据表示形式是0.9ms低电平0.9ms 高电平周期为1.8ms表示“0”,0.9ms低电平2.4ms高电平周期为3.3ms表示“1”,编写程序时,以大于3.4ms小于3.8ms高电平为起始位,以大于2.2ms小于2.7ms高电平表示“1”,大于0.84ms小于1.11ms高电平表示“0”。
因此,我们主要用单片机测量高电平的长短来确定是“1”还是“0”即可。
定时器0的工作方式设置为方式1:mov tmod,#09h,这样设置定时器0即是把GATE置1,16位计数器,最大计数值为2的16次方个机器周期,此方式由外中断INT0控制,即INT0为高时才允许计数器计数。
单片机红外控制发射器设计【详细】摘要随着社会的发展、科技的进步以及人们生活水平的逐步提高,各种方便于生活的遥控系统开始进入了人们的生活。
传统的遥控器采用专用的遥控编码及解码集成电路,这种方法虽然制作简单、容易,但由于功能键数及功能受到特定的限制,只实用于某一专用电器产品的应用,应用范围受到限制。
而采用单片机进行遥控系统的应用设计,具有编程灵活多样、操作码个数可随便设定等优点。
本设计主要应用了A T89C2051单片机作为核心,综合应用了单片机中断系统、定时器、计数器等知识,应用红外光的优点。
遥控操作的不同,遥控发射器通过对红外光发射频率的控制来区别不同的操作。
遥控接收器通过对红外光接收频率的识别,判断出控制操作,来完成整个红外遥控发射、接收过程。
其优点硬件电路简单,软件功能完善,性价比较高等特点,具有一定的使用和参考价值。
关键词:单片机,红外遥控,中断,定时,计数,频率AbstractWith the development of our society and the gradual improvement of science and technology, various kinds of help remote control systems have began to enter people’s life. The traditional remote controllers adopt special remote control code and decode integrated circuits, though this kind of method is simply and easily, it is only the practical application of some certain special electric equipments because of the counted functional keys is counted and the restricted function, so the range of application is limited. But the remote controllers which adopt the microprocessors have many advantages such as flexible operating and unceremonious manipulative keys.The design has used A T89C2051 microprocessor as core, integratively apply the interruptive system, timer , counter ,etc. mainly to design originally and also take the advantage of the infrared light. The remote control launcher distinguishes different operation through the control on frequency of infrared emission of light. The remote control receiver judges control operation by adopting the discerned frequency of the received infrared light to finish the whole launching and receiving course.Its advantage is that the hardware circuit is simple, the software is with perfect function, have certain use and reference valueKeywords:Microprocessor, Infrared remote control,Interrupt,Timing,Counting,Frequency目录摘要 (I)Abstract (I)1 绪论 (5)1.1 单片机的产生与发展 (5)1.2红外通信技术概述 (3)1.2.1红外概述 (3)1.2.2 选择红外遥控的原因 (3)1.2.3红外的简单发射接收原理 (4)2.1 设计目的与原理 (4)2.2单片机红外遥控发射器设计原理 (4)2.3 单片机红外遥控接收器设计原理 (5)3系统硬件电路设计 (6)3.1有关A T89C2051单片机的介绍 (6)3.1.1简介 (6)3.1.2引脚介绍 (6)3.1.3 A T89C2051单片机的主要组成部分 (8)3.2定时器/计数器 (9)3.2.1主要特性 (9)3.2.2定时/计数器0和1的控制和状态寄存器 (10)3.2.3 T0和T1的4种工作方式 (12)3.3独立式按键结构 (12)3.4低功耗控制电路 (13)3.4.1低功耗的实现方法 (13)3.4.2 掉电保护和低功耗的设计 (13)3.5 CPU时钟电路 (16)3.6 复位电路 (17)3.6.1复位状态 (17)3.6.2 复位电路 (17)3.7 红外发射电路的设计 (18)3.8 红外接收电路的设计 (19)3.9 完整的系统电路设计图 (20)4 系统软件设计 (20)4.1遥控发射器程序设计 (20)4.1.1程序总体结构 (20)4.1.2 伪指令和初始化程序 (22)4.1.3键盘扫描程序 (24)4.1.4 中断服务程序 (25)4.2 遥控接收器程序设计 (27)4.2.1 程序总体结构 (27)4.2.2 初始化程序 (29)4.2.3 计数值比较程序 (30)4.2.4 定时器1中断服务程序 (30)5 总结与展望 (31)致谢 (32)参考文献 (33)附录1 (35)附录2 (37)1 绪论1.1单片机的产生与发展为适应社会发展的需要,微型计算机不断的更新换代,新产品层出不穷。
51单片机红外数据收发器设计+设计框图+电路图+流程图+源程序-论文51单片机红外数据收发器设计+设计框图+电路图+流程图+源程序研究目的本设计主要研究并设计一个基于单片机的红外接收系统,并实现对八路开关的控制。
控制系统主要是由MCS-51和52系列单片机、电源电路、红外发射电路、红外接收电路、LCD显示电路等部分组成,单片机编码发射遥控信号经红外接收处理传送给单片机,单片机根据不同的信息码控制八路LED发光二极管各个状态,并完成相应的状态指示。
研究意义红外遥控的特点是不影响周边环境、不干扰其它电器设备。
由于其无法穿透墙壁,故不同房间的家用电器可使用通用的遥控器而不会产生相互干扰;电路调试简单,只要按给定电路连接无误,一般不需任何调试即可投入工作;编解码容易,可进行多路遥控。
信息可以直接通过红外光进行调制传输,例如,信息直接调制红外光的强弱进行传输,也可以用红外线产生一定频率的载波,再用信息对载波进行调制,接收端去掉载波,取到信息。
从信息的可靠传输来说,这就是我们今天看到的大多数红外遥控器所采用的方法。
近年来随着计算机在社会领域的渗透,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。
传统的遥控器大多数采用了无线电遥控技术,但是随着科技的进步,红外线遥控技术的成熟,红外也成为了一种被广泛应用的通信和遥控手段。
继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。
工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。
由于红外线抗干扰能力强,且不会对周围的无线电设备产生干扰电波,同时红外发射接收范围窄,安全性较高。
红外遥控虽然被广泛应用,但各产商的遥控器不能相互兼容。
当今市场上的红外线遥控装置一般采用专用的遥控编码及解码集成电路,由于其灵活性较低,应用范围有限。
所以采用单片机进行遥控系统的应用设计,遥控装置将同时具有编程灵活、控制范围广、体积小、功耗低、功能强、成本低、可靠性高等特点,因此采用单片机的红外遥控技术具有广阔的发展前景。
51单片机解码红外遥控器原理电视遥控器使用的是专用集成发射芯片来实现遥控码的发射,如东芝TC9012,飞利浦SAA3010T等,通常彩电遥控信号的发射,就是将某个按键所对应的控制指令和系统码(由0和1组成的序列),调制在38KHz的载波上,然后经放大、驱动红外发射管将信号发射出去。
不同公司的遥控芯片,采用的遥控码格式也不一样。
较普遍的有两种,一种是NEC标准,一种是PHILIPS 标准。
NEC标准:遥控载波的频率为38KHz(占空比为1:3);当某个按键按下时,系统首先发射一个完整的全码,如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。
一个完整的全码=引导码+用户码+用户码+数据码+数据反码。
其中,引导码高电平4.5ms,低电平4.5ms;系统码8位,数据码8位,共32位;其中前16 位为用户识别码,能区别不同的红外遥控设备,防止不同机种遥控码互相干扰。
后16 位为8 位的操作码和8位的操作反码,用于核对数据是否接收准确。
收端根据数据码做出应该执行什么动作的判断。
连发代码是在持续按键时发送的码。
它告知接收端,某键是在被连续地按着。
NEC标准下的发射码表示发射数据时0用“0.56ms高电平+0.565ms低电平=1.125ms”表示,数据1用“高电平0.56ms +低电平1.69ms=2.25ms”表示即发射码“0”表示发射38khz的红外线0.56ms,停止发射0.565ms,发射码“1”表示发射38khz 的红外线0.56ms,停止发射1.69ms需要注意的是:当一体化接收头收到38kHz 红外信号时,输出端输出低电平,否则为高电平。
所以一体化接收头输了的波形是与发射波形是反向的,如图PHILIPS标准:载波频率为38KHz;没有简码,点按键时,控制码在1和0之间切换,若持续按键,则控制码不变。
一个全码=起始码‘11’+控制码+用户码+用户码,如图所示。
基于51单片机的红外遥控本讲内容:介绍红外遥控的知识,通过例程展示红外遥控程序的编写方法。
红外线简介:在光谱中波长自760nm至400um的电磁波称为红外线,它是一种不可见光。
目前几乎所有的视频和音频设备都可以通过红外遥控的方式进行遥控,比如电视机、空调、影碟机等,都可以见到红外遥控的影子。
这种技术应用广泛,相应的应用器件都十分廉价,因此红外遥控是我们日常设备控制的理想方式。
接收头输出的波形正好和遥控芯片输出的相反。
在这里红外通信采用NEC协议,它的特征如下:信号调制红外遥控信号接收管接口电路:红外信号发射电路 红外信号接收电路例程:红外遥控信号发射:/*****************红外通信——发射*******************单片机型号:STC89C52RC*开发环境:KEIL*名称:红外通信发射*功能:按下按键S4,S5,S6,S8,S9,S10,S11,S13,S14发射对应键值,可以与红外通信——接收程序配套使用***************************************************/#include <REG51.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned int#define SBM 0x80 //识别码#define m9 (65536-8294) //约9mS#define m4_5 (65536-4147) //约4.5mS#define m1_6 (65536-1521) //约1.65mS#define m_65 (65536-599) //约0.65mS#define m_56 (65536-516) //约0.56mS#define m40 (65536-36864) //约40mS#define m56 (65536-51610) //56mS#define m2_25 (65536-2074) //约2.25mSconst uchar TabHL1[9]={0x0c,0x18,0x5e,0x08,0x1c,0x5a,0x42,0x52,0x4a};sbit IR=P1^5; //定义发射引脚sbit BEEP=P2^3;void keyscan();void ZZ(uchar x);void Z0(uchar temp);void TT0(bit BT,uint x);void delay(int In,int Out);/*┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈函数功能:主函数┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈/ void main(void){TMOD=0x01; //T0 16位工作方式IR=1; //发射端口常态为高电平while(1){keyscan();}}/*┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈函数功能:发送主程序┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈/ void ZZ(uchar x){TT0(1,m9); //高电平9mSTT0(0,m4_5); //低电平4.5mS/*┈发送4帧数据┈*/Z0(SBM);Z0(~SBM);Z0(x);Z0(~x);/*┈┈结束码┈┈*/TT0(1,m_65);TT0(0,m40);}/*┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈函数功能:单帧发送程序入口参数:1帧数据┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈/ void Z0(uchar temp){uchar v;for (v=0;v<8;v++) //循环8次移位{TT0(1,m_65); //高电平0.65mSif(temp&0x01) TT0(0,m1_6); //发送最低位else TT0(0,m_56);temp >>= 1; //右移一位}}/*┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈函数功能:38KHz脉冲发射 + 延时程序入口参数:(是否发射脉冲,延时约 x (uS))┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈/void TT0(bit BT,uint x){TH0=x>>8; //输入T0初始值TL0=x;TF0=0; //清0TR0=1; //启动定时器0if(BT==0)while(!TF0);//BT=0时不发射38KHz脉冲只延时;BT=1发射38KHz脉冲且延时;else while(1) //38KHz脉冲,占空比5:26{IR = 0;if(TF0)break;if(TF0)break;IR=1;if(TF0)break;if(TF0)break;if(TF0)break;if(TF0)break;if(TF0)break;if(TF0)break;if(TF0)break;if(TF0)break;if(TF0)break;if(TF0)break;}TR0=0; //关闭定时器0TF0=0; //标志位溢出则清0IR =1; //脉冲停止后,发射端口常态为高电平}void keyscan() //按键扫描函数{uchar buffer;/***************************************************/P3=0xfe; //扫描S3,S4,S5,S6;buffer=P3;buffer=buffer & 0xf0;if(buffer!=0xf0){delay(5,10);if(buffer!=0xf0){buffer=P3;switch(buffer){case 0xee:{;}break;case 0xde:{ZZ(TabHL1[0]);}break;case 0xbe:{ZZ(TabHL1[1]);}break;case 0x7e:{ZZ(TabHL1[2]);}break;}while(buffer != 0xf0){buffer=P3;buffer=buffer&0xf0;BEEP=0;}BEEP=1;}}/****************************************************/ P3=0xfd; //扫描S8,S9,S10,S11buffer=P3;buffer=buffer & 0xf0;if(buffer!=0xf0){delay(5,10);if(buffer!=0xf0){buffer=P3;switch(buffer){case 0xed:{ZZ(TabHL1[3]);}break;case 0xdd:{ZZ(TabHL1[4]);}break;case 0xbd:{ZZ(TabHL1[5]);}break;case 0x7d:{ZZ(TabHL1[6]);}break;}while(buffer!=0xf0){buffer=P3;buffer=buffer&0xf0;BEEP=0;}BEEP=1;}}/****************************************************/ P3=0xfb; //扫描S13,S14,S15,S16buffer=P3;buffer=buffer&0xf0;if(buffer!=0xf0){delay(5,10);if(buffer!=0xf0){buffer=P3;switch(buffer){case 0xeb:{ZZ(TabHL1[7]);}break;case 0xdb:{ZZ(TabHL1[8]);}break;}while(buffer!=0xf0){buffer=P3;buffer=buffer&0xf0;BEEP=0;}BEEP=1;}}}void delay(int In,int Out) //定义延时函数{int i,j;for(i=0;i<In;i++){for(j=0;j<Out;j++){;}}}红外遥控信号接收:/*****************红外通信--接收*******************单片机型号:STC89C52RC*开发环境:KEIL*功能:在液晶LCD1602上显示接收到的数值*************************************************/#include<reg52.h>#define LCD_Data P0#define Busy 0x80sbit IR=P3^2;sbit LCD_RS=P1^0;sbit LCD_RW=P1^1;sbit LCD_E=P2^5;void TIM0init(void);void EX0init(void);void SYSinit(void);void delay(int In,int Out);void Delay5Ms(void);void Ir_work(void);void Ircordpro(void);void WriteDataLCD(unsigned char WDLCD);void WriteCommandLCD(unsigned char WCLCD,BuysC);unsigned char ReadDataLCD(void);unsigned char ReadStatusLCD(void);void LCDInit(void);void DisplayOneChar(unsigned char X,unsigned char Y,unsigned char DData);void DisplayListChar(unsigned char X,unsigned char Y,unsigned char code *DData); void Info_display(void);bit IRpro_ok;bit IR_ok;unsigned char IRcord[4];unsigned char IRdata[33];unsigned char codedofly_DuanMa[10]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};unsigned char irtime;unsigned char speed_num=0;unsigned char codemb_table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};unsigned char code welcome[]={"YOU ARE WELCOME"};unsigned char code ir_reve[]={"IR_RECEIVE: "};/*******************5ms延时函数*********************/void Delay5Ms(void){unsigned int TempCyc=3552;while(TempCyc--);}void delay(int In,int Out){int i,j;for(i=0;i<In;i++){for(j=0;j<Out;j++){;}}}/***********************写数据函数***********************/ void WriteDataLCD(unsigned char WDLCD){ReadStatusLCD();LCD_Data=WDLCD;LCD_RS=1;LCD_RW=0;LCD_E=0;LCD_E=0;LCD_E=1;}/**********************写指令函数************************/ void WriteCommandLCD(unsigned char WCLCD,BuysC){if(BuysC)ReadStatusLCD();LCD_Data=WCLCD;LCD_RS=0;LCD_RW=0;LCD_E=0;LCD_E=0;LCD_E=1;}/***********************读状态函数************************/ unsigned char ReadStatusLCD(void){LCD_Data=0xFF;LCD_RS=0;LCD_RW=1;LCD_E=0;LCD_E=0;LCD_E=1;while(LCD_Data & Busy);return(LCD_Data);}/************************LCD初始化************************/ void LCDInit(void){LCD_Data=0;WriteCommandLCD(0x38,0);Delay5Ms();WriteCommandLCD(0x38,0);Delay5Ms();WriteCommandLCD(0x38,0);Delay5Ms();WriteCommandLCD(0x38,1);WriteCommandLCD(0x08,1);WriteCommandLCD(0x01,1);WriteCommandLCD(0x06,1);WriteCommandLCD(0x0C,1);}/*******************按指定位置显示一个字符******************/void DisplayOneChar(unsigned char X,unsigned char Y,unsigned char DData){Y&=0x1;X&=0xF;if(Y)X|=0x40;X|=0x80;WriteCommandLCD(X,0);WriteDataLCD(DData);}/*******************按指定位置显示一串字符******************/void DisplayListChar(unsigned char X,unsigned char Y,unsigned char code *DData) {unsigned char ListLength;ListLength=0;Y&=0x1;X&=0xF;while(DData[ListLength]>=0x20){if(X<=0xF){DisplayOneChar(X,Y,DData[ListLength]);ListLength++;X++;}}}/***********************定时器0初始化***********************/void TIM0init(void){TMOD=0x02;TH0=0x00;TL0=0x00;ET0=1;TR0=1;}/**********************外部中断0初始化**********************/void EX0init(void){IT0=1;EX0=1;EA=1;}/*************************系统初始化*************************/void SYSinit(void){TIM0init();EX0init();LCDInit();}/********************红外信号接收相关函数********************/void Ir_work(void){switch(IRcord[2]){case 0x0C:{DisplayOneChar(12,1,0x31);}break;case 0x18:{DisplayOneChar(12,1,0x32);}break;case 0x5e:{DisplayOneChar(12,1,0x33);}break;case 0x08:{DisplayOneChar(12,1,0x34);}break;case 0x1c:{DisplayOneChar(12,1,0x35);}break;case 0x5a:{DisplayOneChar(12,1,0x36);}break;case 0x42:{DisplayOneChar(12,1,0x37);}break;case 0x52:{DisplayOneChar(12,1,0x38);}break;case 0x4a:{DisplayOneChar(12,1,0x39);}break;default:break;}}void Ircordpro(void){unsigned char i,j,k;unsigned char cord,value;k=1;for(i=0;i<4;i++){for(j=1;j<=8;j++){cord=IRdata[k];if(cord>7)value|=0x80;if(j<8){value>>=1;}k++;}IRcord[i]=value;value=0;}IRpro_ok=1;}/********************红外信号接收相关函数********************/ void main(void){SYSinit();delay(5,100);DisplayListChar(0,0,welcome);DisplayListChar(0,1,ir_reve);while(1){if(IR_ok){Ircordpro();IR_ok=0;}if(IRpro_ok){Ir_work();}}}/********************定时器0中断处理函数********************/ void tim0_isr (void) interrupt 1 using 1{irtime++;}/*******************外部中断0中断处理函数*******************/ void EX0_ISR (void) interrupt 0{static unsigned char i;static bit startflag;if(startflag){if(irtime<63&&irtime>=33)i=0;IRdata[i]=irtime;irtime=0;i++;if(i==33){IR_ok=1;i=0;}}else{irtime=0;startflag=1;}}。
c51单片机控制红外通信接口电路图的设计原理图的求证:注:黑色字体为我的个人阐述,其他颜色字体为单片机手册节选文章。
如图(原图)电路图中电阻R6-R13为多余的,其作用如下文:(这几个电阻是需要的!!起限流和保护单片机,LED的作用,不能少,一般选择220-510欧姆,流过LED电流在10-20毫安为好)2.4 发光二极管显示部分设计有8个发光二极管与单片机的P1口相连,二极管的正极与电源正极相连,负极串联一个电阻与Pl口相连,给Pl口送低电平就得到不同的显示状态。
因为,电阻R6-R13没有参与光的发射和接收所以我认为它是多余的。
去掉后节省出来P1.0-P1.7的引脚,用作他用。
(这不对的,如果你LED接到了P1口,P1就不能做其它用了,如果作其它用的话,LED指示就让你感觉莫名其妙了)2.3 数码显示部分在系统中,选用一个双七段数码管来显示发送和接收的数据。
数码管采用DPY双位七段共阳数码管。
高位的共阳极是lO脚,低位的共阳极是5脚。
由单片机的P O口控制数码管的阴极,P2.6,P2.7口分别控制数码管的高位和低位,当P2口输出数位“0”时,相应的三极管导通。
根据PO口输出不同数位,数码管显示不同的数字,当P2口输出数位“l”时,三极管截止,数码管不显示。
我不需要数码显示部分,而跟他相关的电子元件没有参与红外线的发射和接受,所以我认为直接去掉就行。
(这个有会更好些,因为可以显示的东西会比LED显示效果更好。
前提是你得写单片机程序,要是我在LED 与它之间做取舍的话,我将保留它,舍掉LED,不过编写程序会复杂些)这样一来图中保留了,主要的红外线发射部分的电路图,没有因为删减部分而影响它的正常功能,却剩出了16个引脚。
红外线发射部分的运作原理如下:2.1 发射部分设计红外发送电路包括脉冲振荡器、三极管和红外发射管等部分。
其中脉冲振荡器有NE555定时器、电阻和电容组成,用于产生38 kHz的脉冲序列作为载波信号,红外发射管HG选用Vishay公司生产的TSAL6238,用来向外发射950 nm的红外光束。
摘要很多电器都采用红外遥控,那么红外遥控的工作原理是什么呢?本文将介绍其原理和设计方法。
红外线遥控就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。
常用的红外遥控系统一般分发射和接收两个部分。
红外遥控常用的载波频率为38kHz,这是由发射端所使用的455kHz晶振来决定的,在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。
也有一些遥控系统采用36kHz、40kHz、56kHz等,一般由发射端晶振的振荡频率来决定。
接收端的输出状态大致可分为脉冲、电平、自锁、互锁、数据五种形式。
“脉冲”输出是当按发射端按键时,接收端对应输出端输出一个“有效脉冲”,宽度一般在100ms左右。
一般情况下,接收端除了几位数据输出外,还应有一位“数据有效”输出端,以便后级适时地来取数据。
这种输出形式一般用于与单片机或微机接口。
除以上输出形式外,还有“锁存”和“暂存”两种形式。
所谓“锁存”输出是指对发射端每次发的信号,接收端对应输出予以“储存”,直至收到新的信号为止;“暂存”输出与上述介绍的“电平”输出类似。
关键词:80c51单片机、红外发光二极管、晶振目录第一章1、引言 (3)2、设计要求与指标 (3)3、红外遥感发射系统设计 (4)4、红外发射电路设计 (4)5、调试结果及分析 (9)6、结论 (10)第二章1、引言 (10)2、设计要求与指标 (11)3、红外遥控系统设计 (11)4、系统功能实现方法 (15)5、红外接收电路 (16)6、软件设计 (17)7、调试结果及分析 (18)8、结论 (19)参考文献附录绪论人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。
其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。
比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。
红外线遥控就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。
51单片机设计的红外线遥控器电路图及工作原理你家里是否有一个电视机遥控器或者空调机遥控器呢?你是否也想让它遥控其他的电器甚至让它遥控您的电脑呢?那好,跟我一起做这个“红外遥控*器”。
该小制作所需要的元件很少:单片机TA89C2051一只,RS232接口电平与TTL电平转换心片MAX232CPE 一只,红外接收管一只,晶振11.0592MHz,电解电容10uF4只,10uF 一只,电阻1K1个,300欧姆左右1个,瓷片电容30P2个。
发光二极管8个。
价钱不足20元。
电路图及原理:主控制单元是单片机AT89C2051,中断口INT0跟红外接受管U1相连,接收红外信号的脉冲,8个发光二极管作为显示*输出(也可以用来扩展接其他控制电路),U3是跟电脑串行口RS232相连时的电平转换心片,9、10脚分别与单片机的1、2脚相连,(1脚为串行接收,2脚为串行发送),MAX232CPE的7、8脚分别接电脑串行口的2(接收)脚、3(发送脚)。
晶振采用11.0592MHz,这样才能使得通讯的波特率达到9600b/s,电脑一般默认值是9600b/s、8位数据位、1位停止位、无校验位。
电路就这么简单了,现在分析具体的编程过程吧。
如图所示,panasonic遥控器的波形是这样的(经过反复测试的结果)。
/sch/rc/0080743.html开始位是以3.6ms低电平然后是3.6ms高电平,然后数据表示形式是0.9ms低电平0.9ms高电平周期为1.8ms表示“0”,0.9ms低电平 2.4ms高电平周期为3.3ms表示“1”,编写程序时,以大于3.4ms小于3.8ms高电平为起始位,以大于2.2ms小于2.7ms高电平表示“1”,大于0.84ms小于1.11ms高电平表示“0”。
因此,我们主要用单片机测量高电平的长短来确定是“1”还是“0”即可。
定时器0的工作方式设置为方式1:mov tmod,#09h,这样设置定时器0即是把GATE置1,16位计数器,最大计数值为2的16次方个机器周期,此方式由外中断INT0控制,即INT0为高时才允许计数器计数。
比如:jnb p3.2,$jb p3.2,$clr tr0这3条指令就可以测量一个高电平,接下来读取计数值TH0,TL0就可以分辨是起始位还是“1”或“0”。
在确定码表之前,您可以使用P0口的8个发光二极管来显示编码,16位编码分两次显示:mov p0,keydataacall delay_1s ;//1ms延时子程序mov p0,keydata+1ljmp main根据P0相继的两次显示的编码,记录每个按键的编码,形成编码表,即遥控器编码的*完毕。
码表确定之后,以后接收到遥控器的编码之后,就与码表比较,找到匹配的码项,并把该码项对应的顺序号输出到P0口,同时也把顺序号向串行口输出到电脑,电脑接收该数据后由串口软件决定如何处理。
程序不长,下面是完整的程序和注释:(先看流程图)、keydata equ 30h ;//该地址和31H地址用来存放遥控器按键编码。
org 00hmain:mov keydata,#0 ;// 清零mov tmod ,#09h ;//设置定时0方式1,GATE=1mov r7,#0 ;//计数器,用来计数是否满8位mov r6,#0 ;//计数器,用来计数是否满2字节(解16位编码)jb p3.2,$ ;//是否为低电平again: ;//如果为低,继续往下面执行mov tl0,#0 ;//清零TL0mov th0,#0 ;//清零TH0setb tr0 ;//开启定时器0jnb p3.2,$ ;//等待高电平到来jb p3.2,$ ;//高电平到来,此时开始计数clr tr0 ;//高电平结束,停止计数mov a,th0 ;//读取th0 值,TL0忽略不计subb a,#12 ;//jc again ;//th0<12则转,即小于3.4ms,你可以算一下这个时间mov a,#14 ;//clr c ;//subb a,th0 ;//和14比较,如果TH0>14则大于3.8msjc again ;//大于3.8ms,从新再检测nextbit: ;//起始位找到了,然后下一位mov tl0,#0 ;//mov th0,#0 ;//setb tr0 ;//启动定时器jnb p3.2,$ ;//等待高电平jb p3.2,$ ;//高电平到来,此时开始计数clr tr0 ;//高电平结束,停止计数mov a,th0 ;//读取计数值,TL0忽略不计clr c ;//subb a,#8 ;//th0和8比较jc next ;;;;//若<2.2ms则转,再判断是否大于0.84msmov a,#10 ;//再跟10比较clr c ;//subb a,th0 ;//jc again ;;;;;;;//若>2.7ms,则放弃,从新检测mov a,keydata ;// 符合大于2.2ms 小于2.7ms,即为“1”setb c ;//C = 1rrc a ;//把1移位进Amov keydata,a ;//保存inc r7 ;//计数器加1cjne r7,#8,nextbit ;//是否满8位inc r6 ;//计数加1cjne r6,#2,last8 ;//是否满两字节sjmp seach ;//不满两字节,再新采集last8: ;//满1字节,再接下来第二字节mov keydata+1,a ;//把第一字节编码数据保存到31h里mov r7,#0 ;//计数器R7清零sjmp nextbit ;//继续采集数据next: ;//小于2.2ms时转到这里mov a,th0 ;//读取计数值TH0swap a ;//高4位与低4位对换mov r1,a ;//保存到R1anl tl0,#0f0h ;//取TL0高4位,低4位忽略不计mov a,tl0 ;//clr c ;//rrc a ;//rrc a ;//rrc a ;//add a,r1 ;//mov r1,a ;//subb a,#30 ;//以上几行是把TH0的低4位和TL0的高4位合并为1字节作为计数值jc nextbit ; //判断是否<0.84ms,是则放弃,继续采集mov a,r1 ;//否clr c ;//cjne a,#64,continue ;//跟64比较continue: ;//jnc nextbit ; //a>64表示采样值>1.11ms 放弃mov a,keydata ;//否则,符合位“0”clr c ;//C = 0rrc a ;//把零右移进Amov keydata,a ;//保存inc r7 ;//计数器加1cjne r7,#8,nextbit ;//是否满8位inc r6 ;//计数器加1cjne r6,#2,last_8 ;//是第一字节已经满sjmp seach ;//last_8: ;//如果为第二字节mov keydata+1,a ;//则保存第一字节到31hmov r7,#0 ;//清零R7sjmp nextbit ;//seach: ;//匹配按键编码mov r0,#-2 ;//按键编码字节个数计数器mov r1,#-1 ;//按键顺序计数器seach1: ;//inc r0 ;//seach2: ;//inc r0 ;//inc r1 ;//cjne r1,#29,compare ;//是否R1=29sjmp exit0 ;//compare: ;//开始匹配mov a,r0 ;//mov dptr,#keycode ;//地址指针指向码表首址movc a,@a+dptr ;//取码cjne a,keydata,seach1 ;//比较inc r0 ;//R0+1,再比较下一字节(每个按键编码为2字节)mov a,r0 ;//;mov dptr,#keycode ;//movc a,@a+dptr ;//比较cjne a,keydata+1,seach2 ;//是否匹配,不匹配则继续跟下一字节比较mov p1,r1 ;//如果匹配,把按键顺序号输出到p1send: ;//mov tmod,#20h ; //设置timer 1,mode 2mov tl1,#0fdh ;//设置定时器初值mov th1,#0fdh ;//mov scon,#01010000b;//以上设置,即设置串口波特率系数为:9600,8,1,0setb tr1 ;//启动定时器1loop_s: ;//mov sbuf,r1 ;//把R1(按键顺序号)输出到串口jnb ti,$ ;//等待是否发送完毕clr ti ;//发送完毕,清零TIexit0: ;//ljmp main ;//循环keycode: ;//每两字节代表一个按键的编码db 11111000b,00000000b, 11111100b,00000000b, 11111001b,11000000bdb 11111100b,11000000b, 11111010b,00000000b, 11111010b,00100000bdb 11111010b,01000000b, 11111010b,01100000b, 11111010b,10000000bdb 11111010b,10100000b, 11111010b,11000000b, 11111010b,11100000bdb 11111011b,00000000b, 11111011b,00100000b, 11111011b,01000000bdb 11111011b,01100000b, 11111111b,01100000b, 11111111b,10100000bdb 10001100b,10001110b, 10001101b,11101110b, 10001100b,10101110bdb 10001101b,11001110b, 11111000b,11100000b, 11111100b,10000000bdb 11111100b,01000000b, 11111001b,10100000b, 11111100b,10100000bdb 11111100b,01100000bend---------------------------------------------------------------------------------各种遥控器编码不同,如果你采用的是其他遥控器,修改几个参数即可(当然按键的编码表肯定不同了),即计数器的值不同,不过有的遥控器有机器码(机器码每个按键都是一样的),此时可以跳过机器码的采集。