【3套试卷】最新人教版八年级数学下册期中考试试题及答案
- 格式:doc
- 大小:1.95 MB
- 文档页数:69
人教版数学八年级下册期中考试试题(含答案)人教版八年级下学期期中数学试卷数学试卷一.选择题(本大题共12小题,每小题 3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在直角三角形中,若勾为3,股为4,则弦为 (A)5 (B)5 (C) 7 (D) 82.若3-x 在实数范围内有意义,则x 的取值范围是 (A)X ≤3 (B)X<3 (C)X ≥3 (D)X>33.下列计算正确的是(A)2+3=5 (B)532=⋅ (C)2223-=1 (D)212÷=2 4.下列二次根式中,是最简二次根式的是 (A)24 (B)73(C) 3-x (D)b a 25.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB=100°,则∠OAB 的度数是 (A)100° (B)80°(C) 50°(D) 40°6.如图,在Rt △ABC 中,∠C=90°,∠A=30°,AC=1,则BC 的长等于 (A)21(B)33 (C)3 (D)27.以下各组线段为边,能组成直角三角形的是 (A)6cm,12cm,13cm (B)45cm,1cm,32cm (C)8cm,6cm,9cm (D)1.5cm,2cm,2.5cm 8.下列条件不能判断四边形为正方形的是(A)对角线互相垂直且相等的平行四边形 (B)对角线互相垂直的矩形 (C)对角线互相垂直且相等的四边形 (D)对角线相等的菱形9.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,任意平行四边形的中点四边形是(A)平行四边形 (B)矩形 (C)菱形 (D)正方形10.如图,四边形ABCD ,∠D=∠C=90°,CD=2,点E 在边AB ,且AD=AE,BE=BC,则AE •BE 的值为(A)2 (B)1 (C)22 (D)2111. 如图,正方形ABCD 的边长为4,点E 对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为点F ,则EF 的长为(A)1 (B)4-22 (C)22 (D)23-412. 如图,在菱形ABCD 中,∠BAD=120°,点E ,F 分别在边AB ,BC上,将菱形沿EF 折叠,点B 恰好落在AD 边上的点G 处,且EG ⊥AC ,若CD=8,则FG 的长为(A)6 (B)34 (C) 8 (D) 26二.填空题(本大题共6小题,每小题3分,共18分) 13. 计算:(25)(=__________;252)(=_______________; 494⨯=___________;14. 计算:224c ba =________;a28=___________;xy x 313⋅=_________; 15. 如图,在平行四边形ABCD 中,添加一个条件________使平行四边形ABCD 是菱形.16. 观察下列各式:311+=231,412+=413,513+=514,…请你将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是____________.17. 如图,四边形AOBC 是正方形,OA=4,动点P 从点O 出发,沿折线OACB 方向以 1个单位/秒的速度匀速运动, 另一个点Q 从O 出发,沿折线OBCA 方向以 2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时停止运动,当以A 、P 、B 、Q 四点为顶点的四边形为平行四边形时, t 的值为__________。
最新人教版八年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列二次根式中,属于最简二次根式的是()A.B.C.D.2、一次函数y=﹣x+2的图象是()A.B.C.D.3、下列图形中的图象不表示y是x的函数的是()A.B.C.D.4、若函数y=(m﹣1)x|m|是正比例函数,则m的值为()A.1B.﹣1C.±1D.25、已知点M(﹣3,a),N(2,b)是一次函数y=2x﹣1的图象上的两个点,则a,b的大小关系是()A.a=b B.a>b C.a<b D.不能确定6、下列命题中正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的平行四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形7、如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=32:42:52B.∠A:∠B:∠C=1:2:3C.a=,b=,c=D.∠A=15°,∠B=75°8、如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE,若BC=5cm,AB=3cm,则EC的长()A.B.C.1.3cm D.1.5cm9、一次函数y=2x+b的图象与坐标轴围成的三角形面积为1,则b的值为()A.2B.﹣2或C.D.2或﹣210、如图,已知正方形ABCD的边长为2,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为4;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为.其中正确结论的序号为()A.①②③④B.①②④⑤C.②④⑤D.①②④二、填空题(每小题3分,满分18分)11、一个三角形的三边长分别为,则它的周长是cm.12、若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为13、把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为14、若直线y=3x+4和直线y=﹣2x﹣6交于点A,则点A的坐标.15、如图,菱形ABCD对角线AO=4cm,BO=3cm,则菱形高DE长为.16、如图1所示,在边长为4的正方形ABCD中,点E,F分别为CD、BC的中点,AE和DF相交于点G;如图2所示,将图1中边长为4的正方形ABCD 折叠,使得点D落在边BC的中点D'处,点A落在点A'处,折痕为MN.现有四个结论:图1中:①AE=DF;②AE⊥DF;③DG=;图2中:④MN=2.其中正确的结论有:.(填序号)最新人教版八年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、18、如图,在△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.求:(1)AB的长;(2)CD的长.19、如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.20、直线AB与x轴交于点A(2,0),与y轴交于点B(0,﹣4).(1)求直线AB的解析式;(2)若x轴负半轴上存在点C,使△ABC的面积等于10,求点C的坐标.21、如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.22、某书店计划在“世界读书日”前夕,同时购进A,B两类图书,已知购进1本A类图书和2本B类图书共需135元;购进3本A类图书和4本B类图书共需305元.(1)A,B两类图书每本的进价各是多少元?(2)该书店计划购进A,B两类图书共90本,且A类图书的购进数量不少于B类图书的购进数量的.已知A类图书每本的售价为40元,B类图书每本的售价为58元,求如何进货才能使书店所获利润最大,最大利润为多少元?23、如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC于点F,以DE、EF为邻边作矩形DEF G,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.(3)若F点恰为BC中点,求CG的长度.24、已知一次函数y1=(a﹣1)x﹣2a+1,其中a≠1.(1)若点(1,﹣)在y1的图象上,求a的值;(2)当﹣2≤x≤3时,若函数有最大值2,求y1的函数表达式;(3)对于一次函数y2=(m+1)(x﹣1)+2,其中m≠﹣1,若对一切实数x,y1<y2都成立,求a,m需满足的数量关系及a的取值范围.25、如图,已知直线与x轴交于点A,与y轴交于点B,点M是线段AB的中点,点P为x轴负半轴上一动点,点P的横坐标记作m,过点A作A Q∥BP交PM的延长线于Q,PM交y轴于点C,连接OM.(1)线段OM的长;(2)①证明:四边形AQBP是平行四边形;②当m取何值时,四边形AQBP是菱形;(3)若点M坐标为(3,4),当﹣3≤m≤﹣2时,记(其中OC表示线段OC的长度),求s的最大值.。
人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。
新人教版八年级数学下册期中考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:3x4x2xx1x1--⎛⎫-÷⎪--⎝⎭,其中1x2=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B5、C6、C7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、2x (x ﹣1)(x ﹣2).4、()()2a b a b ++.5、1(21,2)n n -- 6、8三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、x 2-,32-. 3、8k ≥-且0k ≠.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)略(2)等腰三角形,理由略6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
人教版数学八年级下册期中测试卷一、选择题1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠2.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.203.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列计算错误的是()A.B.C.D.5.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3B.C.D.6.下列根式中,是最简二次根式的是()A.B.C.D.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16C.8D.89.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4B.8C.16D.无法计算10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.11.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.7612.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3二、填空题13.已知,则x+y=.14.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.15.写出同时具备下列两个条件的一次函数表达式:(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(0,﹣3).16.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.三、解答题19.计算:2×3++|﹣1|﹣π0+()﹣1.20.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.21.先化简,后计算:,其中a=,b=.22.已知一次函数的图象a过点M(﹣1,﹣4.5),N(1,﹣1.5)(1)求此函数解析式,并画出图象;(2)求出此函数图象与x轴、y轴的交点A、B的坐标;(3)若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标.23.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.求△ABE的面积.24.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.25.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案1.若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥﹣C.x>D.x≠【考点】二次根式有意义的条件;分式有意义的条件.【专题】选择题.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x﹣1>0,解得x>.故选C.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.一直角三角形的两直角边长为12和16,则斜边长为()A.12B.16C.18D.20【考点】勾股定理.【专题】选择题.【分析】因为知道两个直角边长,根据勾股定理可求出斜边长.【解答】解:∵三角形的两直角边长为12和16,∴斜边长为:=20.故选D.【点评】本题考查勾股定理的应用,根据两直角边长可求出斜边长.3.一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【专题】选择题.【分析】根据一次函数y=﹣x+1中k=﹣<0,b=1>0,判断出函数图象经过的象限,即可判断出一次函数y=﹣x+1的图象不经过的象限是哪个.【解答】解:∵一次函数y=﹣x+1中k=﹣<0,b=1>0,∴此函数的图象经过第一、二、四象限,∴一次函数y=﹣x+1的图象不经过的象限是第三象限.故选C.【点评】此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①k>0,b>0⇔y=kx+b的图象在一、二、三象限;②k>0,b <0⇔y=kx+b的图象在一、三、四象限;③k<0,b>0⇔y=kx+b的图象在一、二、四象限;④k<0,b<0⇔y=kx+b的图象在二、三、四象限.4.下列计算错误的是()A.B.C.D.【考点】二次根式的加减法.【专题】选择题.【分析】根据二次根式的运算法则分别计算,再作判断.【解答】解:A、==7,正确;B、==2,正确;C、+=3+5=8,正确;D、,故错误.故选D.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.5.如图,点P是平面坐标系中一点,则点P到原点的距离是()A.3B.C.D.【考点】勾股定理;坐标与图形性质.【专题】选择题.【分析】连接PO,在直角坐标系中,根据点P的坐标是(,),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【解答】解:连接PO,∵点P的坐标是(,),∴点P到原点的距离==3.故选A.【点评】此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.6.下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【专题】选择题.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.7.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【考点】正方形的判定;平行四边形的性质;菱形的判定;矩形的判定.【专题】选择题.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.8.已知菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是()A.16B.16C.8D.8【考点】菱形的性质.【专题】选择题.【分析】首先由四边形ABCD是菱形,求得AC⊥BD,OA=AC,∠BAC=∠BAD,然后在直角三角形AOB中,利用30°角所对的直角边等于斜边的一半与勾股定理即可求得OB的长,然后由菱形的面积等于其对角线积的一半,即可求得该菱形的面积.【解答】解:如图∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=×4=2,∠BAC=∠BAD=×120°=60°,∴AC=4,∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,OB=2,∴BD=2OB=4,∴该菱形的面积是:AC•BD=×4×4=8.故选C.【点评】此题考查了菱形的性质,直角三角形的性质.解题的关键是注意数形结合与方程思想的应用,注意菱形的面积等于其对角线积的一半.9.如图,E是正方形ABCD的边DC上一点,过点A作FA=AE交CB的延长线于点F,若AB=4,则四边形AFCE的面积是()A.4B.8C.16D.无法计算【考点】正方形的性质;全等三角形的判定与性质.【专题】选择题.【分析】由正方形ABCD中,FA=AE,易证得Rt△ABF≌Rt△ADE(HL),即可得S四边形AFCE =S正方形ABCD,求得答案.【解答】解:∵四边形ABCD是正方形,∴∠ABC=∠D=90°,AB=AD,即∠ABF=∠D=90°,在Rt△ABF和Rt△ADE中,,∴Rt△ABF≌Rt△ADE(HL),∴S Rt△ABF=S Rt△ADE,∴S Rt△ABF+S四边形ABCE=S Rt△ADE+S四边形ABCE,∴S四边形AFCE =S正方形ABCD=16.故选C.【点评】此题考查了正方形的性质以及全等三角形的判定与性质.注意证得Rt △ABF≌Rt△ADE是关键.10.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=()A.2B.3C.D.【考点】正方形的判定.【专题】选择题.【分析】运用割补法把原四边形转化为正方形,求出BE的长.【解答】解:过B点作BF⊥CD,与DC的延长线交于F点,则有△BCF≌△BAE(ASA),则BE=BF,S四边形ABCD =S正方形BEDF=8,∴BE==.故选C.【点评】本题运用割补法把原四边形转化为正方形,其面积保持不变,所求BE 就是正方形的边长了;也可以看作将三角形ABE绕B点逆时针旋转90°后的图形.11.如图,用火柴棒摆出一列正方形图案,第①个图案用了4根,第②个图案用了12根,第③个图案用了24根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.76【考点】函数解析式.【专题】选择题.【分析】图形从上到下可以分成几行,第n个图形中,竖放的火柴有n(n+1)根,横放的有n(n+1)根,因而第n个图案中火柴的根数是:n(n+1)+n(n+1)=2n(n+1).把n=6代入就可以求出.【解答】解:设摆出第n个图案用火柴棍为S n.①图,S1=1×(1+1)+1×(1+1);②图,S2=2×(2+1)+2×(2+1);③图,S3=3×(3+1)+3×(3+1);…;第n个图案,S n=n(n+1)+n(n+1)=2n(n+1).则第⑥个图案为:2×6×(6+1)=84.故选A.【点评】本题考查了规律型:图形的变化,此题注意第n个图案用火柴棍为2n (n+1).12.一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a<0,b<0;③当x=3时,y1=y2;④不等式kx+b>x+a的解集是x<3,其中正确的结论个数是()A.0B.1C.2D.3【考点】一次函数与一元一次不等式;一次函数的性质.【专题】选择题.【分析】仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b 看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【解答】解:①∵y1=kx+b的图象从左向右呈下降趋势,∴k<0正确;②∵y2=x+a,与y轴的交点在负半轴上,∴a<0,故②错误;③两函数图象的交点横坐标为3,∴当x=3时,y1=y2正确;④当x>3时,y1<y2正确;故正确的判断是①,③,④.故选D.【点评】此题主要考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.13.已知,则x+y=.【考点】二次根式的性质.【专题】填空题.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵,∴,解得,则x+y=﹣1+2=1,故答案为1.【点评】本题考查了非负数的性质,利用该性质建立关于x、y的方程组是解题的关键.14.如图,已知△ABC中,AB=5cm,BC=12cm,AC=13cm,那么AC边上的中线BD的长为cm.【考点】勾股定理的逆定理;直角三角形斜边上的中线.【专题】填空题.【分析】由勾股定理的逆定理,判断三角形为直角三角形,再根据直角三角形的性质直接求解.【解答】解:∵AB=5cm,BC=12cm,AC=13cm,由勾股定理的逆定理得,△ABC 是直角三角形,∴BD=AC=cm.【点评】解决此题的关键是熟练运用勾股定理的逆定理判定直角三角形,明确了直角三角形斜边上的中线等于斜边上的一半之后此题就不难了.15.写出同时具备下列两个条件的一次函数表达式:(写出一个即可).(1)y随着x的增大而减小;(2)图象经过点(0,﹣3).【考点】一次函数的性质.【专题】填空题.【分析】设一次函数的解析式为y=kx+b(k≠0),再根据y随着x的增大而减小得出k的取值范围,把点(0,﹣3)代入函数解析式得出k+b的值,写出符合条件的解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵y随着x的增大而减小,∴k<0,∵图象过点(0,﹣3),∴b=﹣3,∴符合条件的解析式可以为:y=﹣x﹣3.故答案为:y=﹣x﹣3(答案不唯一).【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k <0时,y随x的增大而减小是解答此题的关键.16.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为.【考点】勾股定理.【专题】填空题.【分析】利用勾股定理列式求出AB,再根据阴影部分的面积等于阴影部分所在的两个半圆的面积加上△ABC的面积减去大半圆的面积,列式计算即可得解.【解答】解:∵AC=12,BC=5,∴AB===13,∴阴影部分的面积=π()2+π()2+×12×5﹣π()2=π+π+30﹣π=30.故答案为:30.【点评】本题考查了勾股定理,半圆的面积,熟记定理并观察图象表示出阴影部分的面积是解题的关键.17.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.【考点】正方形的性质;全等三角形的判定与性质.【专题】填空题.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.18.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后缷完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.【考点】函数图象的实际应用.【专题】填空题.【分析】根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.【解答】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=3,纵坐标为120﹣60×=75,(故③正确);④设快递车从乙地返回时的速度为y千米/时,则(y+60)(4﹣3)=75,y=90,(故④正确).故答案为;①③④.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.19.计算:2×3++|﹣1|﹣π0+()﹣1.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【专题】解答题.【分析】根据二次根式分混合运算的法则,零指数的性质,负整数指数幂的性质计算即可.【解答】解:2×3++|﹣1|﹣π0+()﹣1=×3+2+﹣1﹣1+2=6+3.【点评】本题考查了二次根式分混合运算的法则,零指数的性质,负整数指数幂的性质,熟记运算法则是解题的关键,20.如图所示,已知在平行四边形ABCD中,BE=DF.求证:∠DAE=∠BCF.【考点】平行四边形的性质;平行线的性质;全等三角形的判定与性质.【专题】解答题.【分析】根据平行四边形性质求出AD∥BC,且AD=BC,推出∠ADE=∠CBF,求出DE=BF,证△ADE≌△CBF,推出∠DAE=∠BCF即可.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF又∵BE=DF,∴BF=DE,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS),∴∠DAE=∠BCF.【点评】本题考查了平行四边形性质,平行线性质,全等三角形的性质和判定的应用,关键是求出证出△ADE和△CBF全等的三个条件,主要考查学生的推理能力.21.先化简,后计算:,其中a=,b=.【考点】二次根式的混合运算.【专题】解答题.【分析】先通分、化简,然后代入求值.【解答】解:,=,=,=.∵a=,b=,∴ab=•==1,a+b==,∴==.即:=.【点评】本题考查了分式的化简求值.解答此题的关键是把分式化到最简,然后代值计算.22.已知一次函数的图象a过点M(﹣1,﹣4.5),N(1,﹣1.5)(1)求此函数解析式,并画出图象;(2)求出此函数图象与x轴、y轴的交点A、B的坐标;(3)若直线a与b相交于点P(4,m),a、b与x轴围成的△PAC的面积为6,求出点C的坐标.【考点】用待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【专题】解答题.【分析】(1)利用待定系数法即可求得函数的解析式;(2)在解析式中令x=0求得y,即可求得与y轴的交点坐标,在解析式中令y=0,求得x的值,即可求得与x轴的交点坐标;(3)C的坐标是m,利用三角形的面积公式即可得到关于m的方程,即可求解.【解答】解:(1)设函数的解析式是y=kx+b,根据题意得:,解得:,则函数的解析式是:y=1.5x﹣3;(2)在y=1.5x﹣3中,令x=0,解得y=﹣3;当y=0时,x=2,则A(2,0)B(0,﹣3);(3)在y=1.5x﹣3中,令x=4,解得:y=3,则P的坐标是:(4,3),设C的坐标是m,则|m﹣2|×3=6,解得:m=﹣2或6.则C的坐标是:(﹣2,0)或(6,0).【点评】本题主要考查了用待定系数法求函数的解析式.先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.当已知函数解析式时,求函数中字母的值就是求关于字母系数的方程的解.23.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.求△ABE的面积.【考点】翻折变换(折叠问题);勾股定理.【专题】解答题.【分析】首先设BE=xcm,由折叠的性质可得:DE=BE=xcm,即可得AE=9﹣x(cm),然后在Rt△ABE中,由勾股定理BE2=AE2+AB2,可得方程x2=(9﹣x)2+32,解此方程即可求得DE的长,继而可得AE的长,则可求得△ABE的面积.【解答】解:∵四边形ABCD是长方形,∴∠A=90°,设BE=xcm,由折叠的性质可得:DE=BE=xcm,∴AE=AD﹣DE=9﹣x(cm),在Rt△ABE中,BE2=AE2+AB2,∴x2=(9﹣x)2+32,解得:x=5,∴DE=BE=5cm,AE=9﹣x=4(cm),∴S=AB•AE=×3×4=6(cm2).△ABE【点评】此题考查了折叠的性质、长方形的性质以及勾股定理.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.24.在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理;矩形的判定.【专题】解答题.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点评】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.25.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.【考点】正方形的性质;正方形的判定.【专题】解答题.【分析】(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q 分别为AE,EF,FD,AD的中点,即可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.【解答】解:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠CDE=∠DAF,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.【点评】此题属于四边形的综合题,考查了正方形的判定与性质、全等三角形的判定与性质以及三角形中位线的性质.注意证得△ADF≌△DCE(SAS),掌握三角形中位线的性质是关键.人教版数学八年级下册期中测试卷一、选择题1.要使二次根式有意义,字母x的取值必须满足()A.x≥0B.C.D.2.下列运算错误的是()A.+=B.•=C.÷=D.(﹣)2=23.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,34.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm25.若x=﹣3,则等于()A.﹣1B.1C.3D.﹣36.如图,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5,又△DAB的面积为10,那么DC的长是()A.4B.3C.5D.4.57.若直角三角形两边分别是3和4,则第三边是()A.5B.C.5或D.无法确定8.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD=12,则HE等于()A.24B.12C.6D.89.若,则x的值等于()A.4B.±2C.2D.±410.若的整数部分为x,小数部分为y,则的值是()A.B.C.1D.3二、填空题11.已知一直角三角形,两边长为3和4,则斜边上的中线长为.12.如图,在△ABC中,∠ACB=90°,CD是AB边上的中线,若CD=3,则AB=.13.四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)14.若x,y为实数,且满足|x﹣3|+=0,则()2018的值是.15.已知a、b、c是△ABC的三边长且c=5,a、b满足关系式+(b﹣3)2=0,则△ABC的形状为三角形.三、解答题16.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.17.若x,y为实数,且|x+2|+=0,求()2011.18.如图,四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.19.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8,求AC的长.20.已知如图在平行四边形ABCD中,E、F是对角线AC上的两点,且AE=CF,求证:∠AED=∠CFB.21.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD是菱形.22.如图,四边形ABCD、DEFG都是正方形,连接AE,CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.23.已知Rt△ABD中,边AB=OB=1,∠ABO=90°问题探究:(1)以AB为边,在Rt△ABO的右边作正方形ABC,如图(1),则点O与点D的距离为.(2)以AB为边,在Rt△ABO的右边作等边三角形ABC,如图(2),求点O与点C 的距离.问题解决:(3)若线段DE=1,线段DE的两个端点D,E分别在射线OA、OB上滑动,以DE 为边向外作等边三角形DEF,如图(3),则点O与点F的距离有没有最大值,如果有,求出最大值,如果没有,说明理由.答案1.要使二次根式有意义,字母x的取值必须满足()A.x≥0B.C.D.【考点】二次根式有意义的条件.【专题】选择题.【分析】根据二次根式有意义的条件可得2x+3≥0,再解不等式即可.【解答】解:由题意得:2x+3≥0,解得:x≥﹣,故选D.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.下列运算错误的是()A.+=B.•=C.÷=D.(﹣)2=2【考点】二次根式的加减法;二次根式的乘除法.【专题】选择题.【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【解答】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(﹣)2=2,计算正确,故本选项错误;故选A.【点评】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.3.下列四组线段中,可以构成直角三角形的是()A.1.5,2,2.5B.4,5,6C.2,3,4D.1,,3【考点】勾股定理的逆定理.【专题】选择题.【分析】根据勾股定理的逆定理求出两小边的平方和和大边的平方,看看是否相等即可.【解答】解:A、1.52+22=2.52,即三角形是直角三角形,故本选项正确;B、42+52≠62,即三角形不是直角三角形,故本选项错误;C、22+32≠42,即三角形不是直角三角形,故本选项错误;D、12+()2≠32,即三角形不是直角三角形,故本选项错误;故选A.【点评】本题考查了勾股定理的逆定理的应用,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,难度适中.4.若等边△ABC的边长为2cm,那么△ABC的面积为()A.cm2B.2cm2C.3cm2D.4cm2【考点】勾股定理;等边三角形的性质.【专题】选择题.【分析】注意三角形的面积的计算方法,首先要作出三角形的高,根据勾股定理就可求出高的长,三角形的面积就很容易求出.【解答】解:作出三角形的高,则高是=,所以三角形的面积是×2×=cm2;故选A.【点评】求高是关键,把三角形转化为解直角三角形问题就很易求出.5.若x=﹣3,则等于()A.﹣1B.1C.3D.﹣3【考点】二次根式的性质.【专题】选择题.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|。
新人教版八年级数学下册期中考试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.已知a b 3132==,,则a b 3+的值为( ) A .1 B .2 C .3 D .275.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,OP 平分∠MON ,PE ⊥OM 于点E ,PF ⊥ON 于点F ,OA =OB ,则图中有__________对全等三角形.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y =kx +b 经过点A (-5,0),B (-1,4)(1)求直线AB 的表达式;(2)求直线CE :y =-2x -4与直线AB 及y 轴围成图形的面积;(3)根据图象,直接写出关于x 的不等式kx +b >-2x -4的解集.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、C4、B5、D6、C7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、1002、22()1y x =-+3、如果两个角互为对顶角,那么这两个角相等4、(-4,2)或(-4,3)5、36、15.三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、(1)y=x+5;(2)272;(3)x>-3.5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。
人教版八年级数学下册期中考试试题(含答案)人教版八年级下学期期中数学试卷命题范围:第16—18章一、 选择题(本题共10小题,每小题4分,共10分) 1.计算的结果中( )A.9 B.-9 C.3 D.-32. 式子在实数范围内有意义,则x 的取值是( )A.B.C.D.3. 在以线段a ,b ,c 的长三边的三角形中,不能构成直角三角形的是( ) A.a=4,b=5,c=6 B.a:b:c=5:12:13 C.,,D.a=4,b=5,c=34.下列各式中,属于最简二次根式的是( ) A.B.C.D.5. 如图,在矩形ABCD 中,AB 与BC 的长度比为3:4,若该矩形的周长为28,则BD 的长为( )A.5 B.6 C.8 D.10第10题图第5题图ABBD6.整数部分是( ) A.1 B.2 C.3 D.47. 如图,在菱形ABCD 中,AB=3,∠ABC=60,则对角线BD 的长是( ) A.B.C.6D.38.已知一个直角三角形斜边为20,一条直角边长为16,那么它的面积是( ) A.160 B.48 C.60 D.969. 在四边形ABCD 中,有①AB ∥CD ;②AD ∥BC ;③AB=CD ;④AD=BC ,从以上条件选两个,使四边形ABCD 为平行四边形的选法共有( ) A.3种 B.4种 C.5种 D.6种 10.如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC:∠EDA=1:3 ,且AC=12,则DE 的长度是( )A.3 B.6 C. D.二、填空题(本题共4小题,第小题5分,共20分)11.计算:_________。
12.如图,请你添加一个适当的条件____________成为矩形。
(答出一个即可) 13.如图,OA=OB ,点C 在数轴上表示的数为2,且有BC 垂直于数轴,若BC=1,则数轴上点A 表示的数是_________。
第12题图14.在ABC 中,AB=,AC=5,若BC 边上的高等于4,则BC 的长为_________三、(本大题共2小题,每小题8分,共16分) 15.计算:.16.已知,,分别求下列代数式的值;(1); (2)四、(本大题共2小题,每小题8分,共16分) 17.如图,在四边形ABCD 中,AB=BC=3,CD=,DA=5,∠B=90,求∠BCD 的度数。
八年级第二学期期中考试数学试卷本试卷分卷和卷两部分:卷为选择题,卷为非选择题。
本试卷满分120分,考试时间为120分钟。
卷(选择题,共41分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
答在试卷上无效。
3.卷学生自己保存。
一、选择题.(本大题共个16小题,1-7题每小题2分,8-16题每小题3分,共41分,在每小题给出的四个选项中,只有一个选项符合题意)1、下图中是中心对称图形的是()2、已知a<b,则下列不等式一定成立的是()A.a+3>b+3B.2a>2bC.-a<-bD.a-b<03、等腰三角形的一边为3,另一边为8,则这个三角形的周长为()A.11B.14C.19D.14或194、如图,用不等式表示数轴上所示的解集,正确的是()-10123A.x<-1或x≥3B.x≤-1或x>3C.-1≤x<3D.-1<x≤35、下列四组线段中,可以构成直角三角形的是()A.6,7,8B.1,2,5C.6,8,10D.5,23,156、已知三角形三边长分别为3,1-2a,8,则a的取值范围是()A.5<a<11B.4<a<10C.-5<a<-2D.-2<a<-57、在联欢会上,有A、B、C三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的()A.三边中线的交点B.三边垂直平分线的交点C.三条角平分线的交点D.三边上高的交点a a -1 0 1 3 x2.58、如果不等式(1+a )x >1+a 的解集为 x <1,那么 a 的取值范围是( )A. a >0B. <0C. >-1D. a <-19、不等式组x4x m的解集是 x 4 ,那么 m 的取值范围是 ( )A.m ≥4B.m ≤4C. 3≤x <4D. 3< x ≤410、已知,如图,在△ABC 中,OB 和 OC 分别平分∠ABC 和∠ACB ,过 O 作 DE ∥BC ,分别交 AB 、AC 于点 D 、E ,若 BD+CE =5,则线段 DE 的长为()A . 5B . 6C .7D .810 题图y-3 2 411、如图,已知一次函数 y =kx+b ,观察图象回答问题: 当 kx+b>0,x 的取值范围是()A. x >2.5B .x <2.5C. x >-5D. x <-51-1 -2 -3 -4 -511 题图12、小明家新建了一栋楼房,装修时准备在一段楼梯上铺设地毯,楼梯宽2 米,其侧面如图所示 (单位: 米),则小明至少要买( )平方米的地毯。
人教版八年级下册数学期中考试试卷一、单选题1.下列二次根式中,属于最简二次根式的是()AB C D 2.下列计算正确的是()A .29=B 2÷=C 6=D 2=-3.下列各组数中,能构成直角三角形的是()A .4,5,6B .1,1C .6,8,11D .5,12,234.等边三角形的边长为6,则它的面积为()A .B .18C .36D .5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A .AB =BC ,CD =DA B .AB //CD ,AD =BC C .AB //CD ,∠A =∠CD .∠A =∠B ,∠C =∠D6.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是()A .1∶2∶3∶4B .1∶2∶2∶1C .1∶1∶2∶2D .2∶1∶2∶17.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为()A .10mB .15mC .18mD .20m8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于()A .1cmB .2cmC .3cmD .4cm9x ,小数部分为y y -的值是()A .3B C .1D .310.给出下列命题:①在直角三角形ABC 中,已知两边长为3和4,则第三边长为5;②三角形的三边a 、b 、c 满足a 2+c 2=b 2,则∠C=90°;③△ABC 中,若∠A :∠B :∠C=1:5:6,则△ABC 是直角三角形;④△ABC 中,若a :b :c=1:2形.其中,正确命题的个数为()A .1个B .2个C .3个D .4个二、填空题11.在实数范围内分解因式:25x -=______.12在实数范围内有意义,则实数x 的取值范围是______________13.在数轴上表示实数a 的点如图所示,化简|a -2|的结果为____________.14.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积和是___cm 2.15.已知ABCD 中一条对角线分A ∠为35°和45°,则B ∠=________度.16.命题“对顶角相等”的逆命题的题设是___________.17.已知a 、b 、c 是△ABC a b 0-=,则△ABC 的形状为_______18.对于任意不相等的两个数a ,b ,定义一种运算※如下:=12※4=______________________.三、解答题19.计算或化简:(1-(2)2+---(3)22⎛+- ⎝(420.先化简,再求值:211x x --÷22x x x+,其中21.如图,已知□ABCD 中,AE 平分∠BAD ,CF 平分∠BCD ,分别交BC 、AD 于E 、F .求证:AF =EC .22.如图在△ABC 中,∠ACB=90°,点D ,E 分别是AC 、AB 的中点,点F 在BC 的延长线上,且∠CDF=∠A .求证:四边形DECF 是平行四边形.23.在△ABC 中,AB=15,AC=13,BC 边上高AD=12,试求△ABC 周长.24.如图,有一只小鸟从小树顶飞到大树顶上,请问它飞行的最短路程是多少米?(先画出示意图,然后再求解).25.如图是一块地,已知AD=4,CD=3,AB=13,BC=12,且CD⊥AD,求这块地的面积.26.观察下列等式:1==;==;==;…回答下列问题:(1)仿照上列等式,写出第n个等式:;(2;(3参考答案1.D 【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A 、被开方数含分母,故A 错误;B 、被开方数含分母,故B 错误;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D 正确;故选:D .【点睛】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.B 【解析】分析:根据二次根式的计算法则即可得出正确答案.详解:A 、原式=3,故计算错误;B 、原式2=,故计算正确;C 、原式,故计算错误;D 、原式=22-=,故计算错误;则本题选B .点睛:本题主要考查的就是二次根式的计算法则,属于基础题a a ====,的计算法则.3.B 【解析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、因为42+52≠62,所以不能构成直角三角形;B 、因为12+12=2,所以能构成直角三角形;C 、因为62+82≠112,所以不能构成直角三角形;D 、因为52+122≠232,所以不能构成直角三角形.故选:B .【点睛】此题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.A 【解析】【详解】试题解析:如图所示:等边三角形高线即中线,故D 为BC 中点,∵AB =6,∴BD =3,∴AD ==∴等边△ABC 的面积11622BC AD =⋅=⨯⨯=故选A.点睛:等腰三角形顶角的平分线,底边的中线,底边上的高三线合一.5.C 【解析】【分析】根据平行四边形的判定定理,分别进行判断,即可得到答案.【详解】解:如图:A 、根据AB=BC ,AD=DC ,不能推出四边形ABCD 是平行四边形,故本选项错误;B 、根据AB ∥CD ,AD=BC 不能推出四边形ABCD 是平行四边形,故本选项错误;C 、由AB ∥CD ,则∠A+∠D=180°,由∠A=∠C ,则∠D+∠C=180°,则AD ∥BC ,可以推出四边形ABCD 是平行四边形,故本选项正确;D 、∵∠A=∠B ,∠C=∠D ,∠A+∠B+∠C+∠D=360°,∴2∠B+2∠C=360°,∴∠B+∠C=180°,∴AB ∥CD ,但不能推出其它条件,即不能推出四边形ABCD 是平行四边形,故本选项错误;故选:C .【点睛】本题考查了对平行四边形的判定定理和等腰梯形的判定的应用,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形,等腰梯形的定义是两腰相等的梯形.6.D 【解析】【分析】根据平行四边形的性质得到∠A=∠C ,∠B=∠D ,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,∴:::A B C D ∠∠∠∠的值可以是2:1:2:1.故选D .【点睛】本题主要考查对平行四边形的性质的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.7.C【解析】【详解】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5m,AB=12m,∴=13m,∴这棵树原来的高度=BC+AC=5+13=18m.故选C.8.B【解析】【详解】解:如图,∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC-BE=5-3=2.故选B.9.C 【解析】【详解】因为12<11-,即x =1,1y =-,所以1)1y -==.10.B 【解析】【详解】试题分析:①错误,因为没有说明3、4是直角边,还是斜边;②错误,三角形的三边a 、b 、c 满足a 2+c 2=b 2,则∠B=90°;③正确,∵∠A :∠B :∠C=1:5:6,∴∠C=90°,所以是直角三角形;④正确,∵12+2=22,∴是直角三角形.故选B .考点:命题与定理.11.(x x【解析】【分析】根据平方差公式()()22a b a b a b -=+-,得(x x +-.【详解】解:根据平方差公式,得(2225x x x x -=-=+-故答案为:(x x -.【点睛】此题考核知识点:平方差公式()()22a b a b a b -=+-,解题的关键在于将式子化为22a b -形式.12.x≥-2且x≠1,【解析】【详解】由题意得:x+2⩾0且x≠1,解得:x ⩾−2且x≠1,故答案为x ⩾−2且x≠1.13.3.【解析】【详解】试题分析:由数轴得知,a>2,且a<5,所以a-5<0,a-2>0,原式化简=5-a+a-2=3.故答案为3.考点:绝对值意义与化简.14.49【解析】【分析】如图,正方形A ,B 的面积和等于1S ,正方形C ,D 的面积和等于3s ,13249S S S +==,【详解】如图,设正方形A ,B ,C ,D 的边长分别为a b c d ,,,,设标有13,S S 的两个正方形的边长为,x y ,根据勾股定理可得22222213,a b S x c d S y+==+==则2222749x y S +===222249a b c d ∴+++=故答案为:49【点睛】此题考查勾股定理,解题关键在于勾股定理结合正方形面积的运用.15.100【解析】【详解】分析:首先求出∠A的度数,然后根据平行四边形的性质得出答案.详解:∵∠A=35°+45°=80°,∠A+∠B=180°,∴∠B=100°.点睛:本题主要考查的就是平行四边形的性质,属于基础题型.平行四边形的对角相等,邻角互补,本题只要明确这个就非常好解答了.16.两个角相等【解析】【分析】交换原命题的题设与结论即可得到逆命题,然后根据命题的定义求解.【详解】解:命题“对顶角相等”的逆命题是:“如果两个角相等,那么这两个角是对顶角”,题设是:两个角相等故答案为:两个角相等.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.17.等腰直角三角形.【解析】【详解】a b0+-=,∴c2-a2-b2=0,且a-b=0.由c2-a2-b2=0得c2=a2+b2,∴根据勾股定理的逆定理,得△ABC为直角三角形.又由a-b=0得a=b,∴△ABC为等腰直角三角形.18.1. 2【解析】【分析】依据新定义进行计算即可得到答案.【详解】解: a※b=-a b∴12※4=41,12482==-故答案为:1.2【点睛】本题考查的是新定义下的实数的运算,弄懂定义的含义,掌握求解算术平方根是解题的关键.19.(1(2)1+(3)4,(4)【解析】【分析】(1)分别先计算二次根式的乘法与除法,再合并同类二次根式即可,(2)利用乘法公式先计算二次根式的乘法运算,再合并同类二次根式即可,(3)利用乘法公式先计算二次根式的乘法运算,再合并同类二次根式即可,(4)利用乘法公式把分子分解,约分后再合并同类二次根式即可.【详解】解:(1-=-=(2)2+---1812(32)=---65=-+1=+(3)22⎛+- ⎝112(2a a a a =++--+1122a a a a=++-+-4,=(42==【点睛】本题考查的是二次根式的加减乘除的混合运算,掌握运算顺序,运算法则,以及利用乘法公式进行简便运算是解题的关键.20.1x ;3.【解析】【分析】各分式的分子分母分别分解因式,约分后再利用分式的除法运算法则进行化简,然后将数值代入进行计算即可.【详解】原式=()()x 1x 1x 1-+-÷()2x x x 1+=1x 1+•x 1x +=1x,当【点睛】本题考查了分式的化简求值,熟练掌握分式除法运算的运算法则是解本题的关键.21.证明见解析.【解析】【分析】由四边形ABCD 是平行四边形,AE 平分∠BAD ,CF 平分∠BCD ,易证得△ABE ≌△CDF (ASA ),即可得BE=DF ,又由AD=BC ,即可得AF=CE .【详解】证明:∵四边形ABCD 是平行四边形,∴∠B=∠D ,AD=BC ,AB=CD ,∠BAD=∠BCD ,∵AE 平分∠BAD ,CF 平分∠BCD ,∴∠EAB=12∠BAD ,∠FCD=12∠BCD ,∴∠EAB=∠FCD ,在△ABE 和△CDF 中,B D AB CD EAB FCD ===∠∠⎧⎪⎨⎪∠∠⎩,∴△ABE ≌△CDF (ASA ),∴BE=DF .∵AD=BC ,∴AF=EC .【点睛】本题主要考查平行四边形的性质与判定;证明四边形AECF 为平行四边形是解决问题的关键.22.证明见解析.【解析】【详解】∵D ,E 分别为AC ,AB 的中点,∴DE 为△ACB 的中位线.∴DE ∥BC .∵CE 为Rt △ACB 的斜边上的中线,∴CE=12AB=AE .∴∠A=∠ACE .又∵∠CDF=∠A ,∴∠CDF=∠ACE .∴DF ∥CE .又∵DE ∥BC ,∴四边形DECF 为平行四边形.23.周长为42或32【解析】【详解】试题分析:由题可得△ABC为锐角三角形和钝角三角形两种情况.锐角三角形时,AB=15,AC=13,∠ADC=∠ADB=90°,在△ABD中,∠ADB=90°,由勾股定理得BD2=AB2–AD2=152-122=81.∴BD=在△ACD中,∠ADC=90°,由勾股定理得CD2=AC2–AD2=132-122=25.∴CD=∴△ABC的周长=AC+AB+CB=AC+AB+BD+CD=13+15+9+5=42.钝角三角形时,AB=15,AD=12,∠ADB=90°,在△ABD中,∠ADB=90°,由勾股定理得BD2=AB2–AD2=152-122=81.∴BD=在△ACD中,∠ADC=90°,由勾股定理得CD2=AC2–AD2=132-122=25.∴CD=∴BC=BD-CD=9-5=4.∴△ABC的周长=AC+AB+CB=15+13+4=32.∴△ABC的周长是32或42.考点:勾股定理的运用24.小鸟飞行的最短路程为13m.【解析】【详解】试题分析:根据题意画出图形,构造出直角三角形,利用勾股定理求解.试题解析:如图所示,过D点作DE⊥AB,垂足为E∵AB=13,CD=8又∵BE=CD,DE=BC∴AE=AB-BE=AB-CD=13-8=5∴在Rt△ADE中,DE=BC=12∴AD 2=AE 2+DE 2=122+52=144+25=169∴AD =13(负值舍去)答:小鸟飞行的最短路程为13m .25.24.【解析】【分析】连接AC ,利用勾股定理可以得出三角形ACD 和ABC 是直角三角形,△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC ,∵CD ⊥AD∴∠ADC=90°,∵AD=4,CD=3,∴AC2=AD2+CD2=42+32=25,又∵AC >0,∴AC=5,又∵BC=12,AB=13,∴AC2+BC2=52+122=169,又∵AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴S 四边形ABCD=S △ABC-S △ADC=30-6=24.【点睛】本题主要考查勾股定理和勾股定理逆定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.26.(1=(2)(3 1.-【解析】【分析】(1)根据观察,发现规律,由发现的规律可得答案,(2)利用平方差公式把分母化为有理数,即可得到答案,(3)利用(1)中发现的规律依次把每一个二次根式化简,再观察可得答案.【详解】解:(1)根据规律得到第n 个等式:==(21211==-(3+…1=∙∙∙+1.-【点睛】本题考查的是二次根式的除法运算中的规律题,掌握化简的方法,概括出发现的规律是解题的关键.。
人教版八年级数学下册期中试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.64的立方根是()A.4 B.±4 C.8 D.±82.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.03.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0 5.若45+a =5b(b为整数),则a的值可以是()A.15B.27 C.24 D.206.下列长度的三条线段能组成直角三角形的是()A.3, 4,5 B.2,3,4 C.4,6,7 D.5,11,12 7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.使x2-有意义的x的取值范围是________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。
人教版八年级下册数学期中考试试卷一、单选题1.下列式子是最简二次根式的是()A BC D2.以下列长度的线段为边,能构成直角三角形的是()A .1,2B C .5,6,7D .7,8,93)A BC .2D4.3月9日中国政府向世界卫生组织捐款2000万美元,捐款将用于新冠肺炎防控、发展中国家公共卫生体系建设等指定用途.2000万用科学计数法表示为()A .3210⨯B .4200010⨯C .6210⨯D .7210⨯5.如图,在△ABC 中,点D 是BC 的中点,点E 是AC 的中点,若DE =3,则AB 等于()A .4B .5C .5.5D .66.下列运算正确的是()A B .4=C3=D =7.如图,四边形ABCD 是菱形,AC =8,DB =6,DE ⊥AB 于点E ,则DE 的长度为()A .125B .245C .5D .4858.下列说法错误的是()A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直的四边形是菱形C.三角形的中位线平行于三角形的第三边,并且等于第三边的一半D.直角三角形斜边上的中线等于斜边的一半9.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=45°,且AE+AF=3,则▱ABCD的周长是()A.12B.C.D.10.如图,矩形ABCD中,AB=10,AD=4,点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的左上方作正方形AEFG,同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当点F落在直线MN上,设运动的时间为t,则t的值为()A.1B.103C.4D.143二、填空题11=_____.12.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是_______.13.如图,P是正方形ABCD内一点,且PA=PD,PB=PC.若∠PBC=60°,则∠PAD=_____.14.若x 2,y 2﹣1,则x 2y +xy 2=____.15.在平面直角坐标系中,已知点()()()3,0,1,0,0,2A B C -,则以A ,B ,C 为顶点的平行四边形的第四个顶点D 的坐标为______.16.如图,在四边形ABCD 中,AD =CD ,∠D=60°,∠A =105°,∠B =120°,则ADBC的值为__________.17()2255-+=.三、解答题182×823|+(12)﹣3.19.已知x 3,y 3﹣1,求:(1)代数式xy 的值;(2)代数式x 3+x 2y +xy 2+y 3的值.20.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点都在格点上.(1)直接写出边AB 、AC 、BC 的长.(2)判断△ABC 的形状,并说明理由.21.已知:如图,在⊿ABC 中,AB=AC ,D 、E 、F 分别是BC 、AB 、AC 边的中点.求证:四边形AEDF是菱形.22.一架云梯长13m,如图所示斜靠在一面墙上,梯子底端C离墙5m.(1)这个梯子AC的顶端A距地面有多高?(2)如果梯子的顶端下滑了3m,如图到达DE位置,那么梯子的底部在水平方向滑动的距离CE是多少米?23.如图所示,以△ABC的三边AB、BC、CA在BC的同侧作等边△ABD、△BCE、△CAF,请说明:四边形ADEF为平行四边形.24.如图1, ACB和 ECD都是等腰直角三角形,CA=CB,CE=CD,∠ACB=∠ECD =90°, ACB的顶点A在 ECD的斜边DE上.(1)求证:AE2+AD2=2AC2;(2)如图2,若AE=2,AC=F是AD的中点,求CF的长.25.在△ABC 中,AB =AC =5.(1)若BC =6,点M 、N 在BC 、AC 上,将△ABC 沿MN 折叠,使得点C 与点A 重合,求折痕MN 的长;(2)点D 在BC 的延长线上,且BC :CD =2:3,若AD =10,求证:△ABD 是直角三角形.参考答案1.B 【分析】直接利用最简二次根式的定义分析得出答案.【详解】A 2025=,故此选项错误;B 7是最简二次根式,故此选项正确;C 120.522=,故此选项错误;D 3=,故此选项错误;故选:B .【点睛】本题主要考查了最简二次根式,关键是掌握最简二次根式概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2.A 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A 、122=22,故是直角三角形,故此选项正确;B 、)22)2,故不是直角三角形,故此选项错误;C 、52+62≠72,故不是直角三角形,故此选项错误;D 、72+82≠92,故不是直角三角形,故此选项错误.故选:A .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.C 【分析】把被开方数相除,然后化简即可.【详解】原式.故选C .【点睛】本题考查了二次根式的除法,熟练掌握二次根式的除法法则是解答本题的关键.4.D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:2000万=7210⨯,故答案为:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.D 【分析】由两个中点连线得到DE 是中位线,根据DE 的长度即可得到AB 的长度.【详解】∵点D 是BC 的中点,点E 是AC 的中点,∴DE 是△ABC 的中位线,∴AB=2DE=6,故选:D.【点睛】此题考查三角形的中位线定理,三角形两边中点的连线是三角形的中位线,平行于三角形的第三边,且等于第三边的一半.6.C 【分析】根据二次根式加、减、乘、除的运算法则进行计算.【详解】解:A B 、=C 3=,原式运算正确,故本选项符合题意;D =故选C.【点睛】本题考查的是二次根式的加、减、乘、除的运算法则,在解题时不仅要明确同类二次根式的概念,还要懂得二次根式的化简,方能正确计算.7.B【分析】利用已知的对角线求出菱形的面积以及菱形的边长,再根据菱形面积(底×高)求出DE长.【详解】解:∵四边形ABCD是菱形,∴面积是12AC×BD=12×6×8=24,AC⊥BD且互相平分,因为菱形的对角线长为6和8,=5,则5×DE=24,解得DE=24 5,故选:B.【点睛】本题考查菱形的性质,勾股定理,利用等面积法是解答本题的关键.8.B【分析】直接利用平行四边形的判定方法以及菱形的判定方法和三角形中位线的性质、直角三角形的性质分别判断得出答案.【详解】A、一组对边平行且相等的四边形是平行四边形,正确,不合题意;B、两条对角线互相垂直且互相平分的四边形是菱形,故原说法错误,符合题意;C、三角形的中位线平行于三角形的第三边,并且等于第三边的一半,正确,不合题意;D、直角三角形斜边上的中线等于斜边的一半,正确,不合题意;故选:B.【点睛】此题考查平行四边形的判定,菱形的判定,三角形中位线的性质,直角三角形的性质,正确掌握相关判定方法是解题关键.9.D【分析】要求平行四边形的周长就要先求出AB、AD的长,利用平行四边形的性质和勾股定理即可求出.【详解】解:∵∠EAF=45°,∴∠C=360°﹣∠AEC﹣∠AFC﹣∠EAF=135°,∴∠B=∠D=180°﹣∠C=45°,则AE=BE,AF=DF,设AE=x,则AF=3﹣x,在Rt△ABE中,根据勾股定理可得,AB x同理可得AD(3﹣x)则平行四边形ABCD的周长是2(AB+AD)=(3﹣x)]=,故选:D.【点睛】本题主要考查了平行四边形的性质,解题关键是利用平行四边形的性质结合等角对等边、勾股定理来解决有关的计算和证明.10.D【分析】过点F作FH⊥CD,交直线CD于点Q,则∠EHF=90°,易证∠ADE=∠EHF,由正方形的性质得出∠AEF=90°,AE=EF,证得∠AED=∠EFH,由AAS证得△ADE≌△EHF得出AD=EH=4,则t+2t=4+10,即可得出结果.【详解】过点F作FH⊥CD,交直线CD于点Q,则∠EHF=90°,如图所示:∵四边形ABCD为矩形,∴∠ADE=90°,∴∠ADE=∠EHF ,∵在正方形AEFG 中,∠AEF=90°,AE=EF ,∴∠AED+∠HEF=90°,∵∠HEF+∠EFH=90°,∴∠AED=∠EFH ,在△ADE 和△EHF 中,ADE EHF AED EFH AE EF ∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADE ≌△EHF (AAS ),∴AD=EH=4,由题意得:t+2t=4+10,解得:t=143,故选D .【点睛】本题考查了正方形的性质、矩形的性质、全等三角形的判定与性质等知识,熟练掌握正方形与矩形的性质,通过作辅助线证明三角形全等是解题的关键.11【分析】【详解】=2,故答案为:2【点睛】此题主要考查了二次根式的除法运算,熟练掌握运算法则是解答此题的关键.12.17米【分析】在直角三角形ABC 中,已知AB ,BC ,根据勾股定理即可求得AC 的值,根据题意求地毯长度即求得AC+BC即可.【详解】将水平地毯下移,竖直地毯右移即可发现:地毯长度为直角三角形ABC的两直角边之和,即AC+BC,在直角△ABC中,已知AB=13米,BC=5米,且AB为斜边,则根据勾股定理(米),故地毯长度为AC+BC=12+5=17(米).故答案为17米【点睛】本题考查勾股定理的应用,解题的关键是知道求地毯长度即求AC+BC.13.15°【分析】先根据已知求得∠ABP=30°,再证明AB=BC=BP,进而求出∠PAB的度数,然后求得∠PAD的度数即可.【详解】解:∵四边形ABCD是正方形,∴AD=AB=BC=CD,∠DAB=∠CBA=90°,∵PB=PC,∠PBC=60°,∴△PAB是等边三角形,∴∠APB=∠PBA=60°,PA=PB=AB,∴∠DAP=∠CBP=30°,∵PA=PD,∴∠PDA=180302︒︒-=75°.∴∠PAD=15°,故答案为:15°.【点睛】本题是对正方形知识的综合考查,熟练掌握正方形的性质是解决本题的关键. 14..【分析】先求出xy,x+y,再将x2y+xy2变形为xy(x+y).然后代入计算即可.【详解】∵x+1,y﹣1,∴xy+1)﹣1)=2﹣1=1,x+y+1)+﹣1)=,∴x2y+xy2=xy(x+y)==【点睛】本题考查了二次根式的化简求值,因式分解,难度适中.能够根据字母的取值将所求式子进行因式分解是解题的关键.15.(4,2)或(-4,2)或(2,-2)【分析】当平行四边形的一组对边平行于x轴时,可得可能的2个点;当平行于x轴的一边为平行四边形的对角线时,利用平移的性质可得另一点.【详解】解:①如图1,以AB为边时,A(3,0)、B(-1,0)两点之间的距离为:3-(-1)=4,∴第四个顶点的纵坐标为2,横坐标为0+4=4,或0-4=-4,即D(4,2)或D′(-4,2);②如图2,以AB为对角线时,∵从C(0,2)到B(-1,0),是横坐标减1,纵坐标减2,∴第四个顶点D的横坐标为:3-1=2,纵坐标为0-2=-2,即D(2,-2)综上所述,第四个顶点D的坐标为(4,2)或(-4,2)或(2,-2).故答案为:(4,2)或(-4,2)或(2,-2).【点睛】本题考查了平行四边形的判定,坐标与图形性质.平行于x轴的直线上的点的横坐标相等;一条直线上到一个定点为定长的点有2个;平行四边形的对边平行且相等,可利用平移的性质得到平行于x 轴的一边为平行四边形的对角线时第四个点.16.2【分析】沿AB 作垂线与C 的延长线相交于M 点,可得到等边直角三角形和锐角为30°的直角三角形,根据三角函数求解即可.【详解】解:如图连接AC 并过B 点作BM ⊥CM ,设BM=k ,∵AD =CD ,∠D=60°,∴△ACD 是等边三角形,AD=AC ,∵∠A =105°,∠B =120°,∠DAC=60°,∴∠MBC=60°,∠BCM=30°,∠BAC=45°,∵BM=k ,∴BC=2k ,MC=BM tan 30,∵∠BAC=45°,∠MCA=45°,∴AD=AC=MC sin 45=,∴==AD BC .【点睛】本题考查了特殊角的三角函数值和公式的应用,正确应用公式和作出辅助线是解题的关键.tan 30 sin45=2.17.10【分析】根据二次根式的性质计算.【详解】2=5+5=10.故答案为:10.【点睛】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】根据负整数指数幂和二次根式的乘法法则运算.【详解】﹣3+8=﹣3+8=.【点睛】本题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.19.(1)2;(2)【分析】(1)直接代入平方差公式计算即可;(2)先计算出x+y和x2+y2,原式整理成(x2+y2)(x+y)代入计算即可;【详解】(1)xy=))=2-1=2;(2)∵x,y1,xy=2,∴∴x2+y2=(x+y)2-2xy=8,则x3+x2y+xy2+y3=x2(x+y)+y2(x+y)=(x2+y2)(x+y).【点睛】此题考查整式的化简求值,平方差公式,完全平方公式,解题关键在于掌握运算法则.AC BC;(2)△ABC是等腰直角三角形,理由见解析.20.(1)AB【分析】(1)利用勾股定理进行求解即可得到结论;(2)根据勾股定理的逆定理进行判断即可得到结论.【详解】BC=(1)ABAC(2)△ABC是等腰直角三角形,理由如下:∵AB2+AC2=5+5=10=BC2,∴△ABC是直角三角形,又∵AB=AC,∴△ABC是等腰直角三角形.【点睛】本题考查了勾股定理,勾股定理的逆定理,熟练掌握勾股定理是解题的关键.21.证明见解析.【分析】根据三角形的中位线的性质,证明AE=AF=ED=FD,然后根据四条边相等的四边形是菱形证明即可.【详解】证明:⊿ABC中,E、D分别是AB,BC的中点,∴ED=1AC2(三角形的中位线等于第三边的一半).同理FD=1AB 2.∵AE=1AB2,AF=1AC2,∴AE=AF=ED=FD,∴四边形AEDF是菱形(四条边相等的四边形是菱形).22.(1)梯子的高为12m;(2)(【分析】(1)直接根据勾股定理求出AB的长即可;(2)先根据梯子的顶端下滑了3米求出AD的长,再根据勾股定理求出BE的长,进而可得出结论.【详解】解:(1)由题意可知△ABC是直角三角形,∵BC=5m AC=13m.∴由勾股定理得:AB12(m),∴梯子的高为12m;(2)由题意可知DE=AC=13m,∵AD=3m,∴BD=12﹣3=9(m),在Rt△DBE中,由勾股定理得:BE(m),∴CE BE BC=-=﹣5)(m).【点睛】本题考查了勾股定理的应用,勾股定理揭示了直角三角形三边长之间的数量关系:直角三角形两直角边的平方和等于斜边的平方.当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解这在几何的计算问题中是经常用到的,请同学们熟记并且能熟练地运用它.23.证明见解析【详解】分析:由△ABD,△EBC都是等边三角形,易证得△DBE≌△ABC(SAS),则可得DE=AC,又由△ACF是等边三角形,即可得DE=AF,同理可证得AD=EF,即可判定四边形ADEF 是平行四边形.本题解析:证明:∵△ABD,△EBC都是等边三角形,∴AD=BD=AB,BC=BE=EC,∠DBA=∠EBC=60°,∴∠DBE+∠EBA=∠ABC+∠EBA,∴∠DBE=∠ABC,在△DBE和△ABC中,∵BD BADBE ABC BE BC=⎧⎪∠=∠⎨⎪=⎩,∴△DBE≌△ABC(SAS),∴DE=AC,又∵△ACF是等边三角形,∴AC=AF,∴DE=AF,同理可证:AD=EF,∴四边形ADEF是平行四边形.24.(1)见解析;(2【分析】(1)由“SAS”可证△ECA≌△DCB,可得AE=BD,∠CEA=∠CDB=45°,由勾股定理可求解;(2)由勾股定理可求AD的长,由等腰直角三角形的性质可得CH=DH=EH=4,可求HF 的长,由勾股定理可求CF的长.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,∴∠ECA+∠ACD=∠ACD+∠DCB=90°,∠CEA=∠CDE=45°,∠CAB=∠CBA=45°,AB2=2AC2,∴∠ECA=∠DCB,连接BD,如图1所示:在△ECA和△DCB中,CE CDECA DCB AC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ECA≌△DCB(SAS),∴AE=BD,∠CEA=∠CDB=45°,∴∠ADB=∠CDB+∠EDC=90°,∴△ADB是直角三角形,∴AD2+BD2=AB2,∴AD2+AE2=AB2,∴AE2+AD2=2AC2;(2)解:如图2,过点C作CH⊥DE于H,如图2所示:∵AE2+AD2=2AC2,AE=2,AC=5∴AD=6,∴DE=AE+AD=8,∵点F是AD的中点,∴AF=DF=3,∵△ECD都是等腰直角三角形,CH⊥DE,DE=8,∴CH=DH=EH=4,∴HF=DH﹣DF=1,∴CF .【点睛】本题考查了全等三角形的判定与性质,勾股定理,等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解答本题的关键.25.(1)103;(2)见解析【分析】(1)如图1,过A 作AD BC ⊥于D ,根据等腰三角形的性质得到3BD CD ==,求得4=AD ,根据折叠的性质得到AM CM =,1522AN AC ==,设AM CM x ==,根据勾股定理即可得到结论;(2)如图2,过A 作AE BC ⊥于E ,根据等腰三角形的性质得到12BE CE BC ==,设2BC t =,3CD t =,AE h =,得到BE CE t ==,根据勾股定理和勾股定理的逆定理即可得到结论.【详解】解:(1)如图1,过A 作AD BC ⊥于D ,5AB AC == ,6BC =,3BD CD ∴==,4AD ∴=,将ABC ∆沿MN 折叠,使得点C 与点A 重合,AM CM ∴=,1522AN AC ==,设AM CM x ==,3MD x ∴=-,222AD DM AM += ,2224(3)x x ∴+-=,解得:256x =,103MN ∴==;(2)如图2,过A 作AE BC ⊥于E ,AB AC = ,12BE CE BC ∴==,:2:3BC CD = ,∴设2BC t =,3CD t =,AE h =,BE CE t ∴==,5AB = ,10AD =,2225h t ∴+=,222(4)10h t +=,联立方程组解得,t =,BD ∴=222222510125AB AD BD +=+=== ,ABD ∴∆是直角三角形.【点睛】本题考查了翻折变换(折叠问题),等腰三角形的性质,勾股定理的逆定理,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.。
人教版八年级下册数学期中考试试题一、单选题1x 的值可以是()A .0B .1C .2D .52.下列各组数据中,不可以构成直角三角形的是()A .1,2B .23,24,25C .1,2D .1.5,2,2.53.下列计算正确的是()A .1=B C .2=D +=4.如图,在ABCD 中,AE 平分BAD ∠交BC 于点E ,若2cm BE =,1cm EC =,则ABCD 的周长是()A .6cmB .8cmC .10cmD .12cm5)AB CD 6.下列命题的逆命题是假命题的是()A .两直线平行,内错角相等B .等腰三角形的两底角相等C .矩形的对角线相等D .角平分线上的点到角两边的距离相等7.如图,在四边形ABCD 中,对角线AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是()A .90ABC ∠=︒B .AB BD =C .AC BD =D .AC BD⊥8.如图,在四边形ABCD 中,点P 是对角线AC 的中点,点E ,F 分别是AB ,CD 的中点,AD BC =,128FPE ∠=︒,则PFE ∠的度数是()A .15︒B .26︒C .32︒D .44︒9.如图,以Rt ABC 的三边为直角边分别向外作等腰直角三角形.若3AB =影部分的面积为()A .3B .92C .32D .3510.如图,AD 是ABC 的角平分线,DE AB ⊥于点E ,DF AC ⊥于点F ,连接EF 交AD 于点G .有以下四个结论:①GA GD =;②EDB C ∠=∠;③AD EF ⊥;④90BAC ∠=︒时,四边形AEDF 是正方形,其中所有正确的结论有()A .③④B .①②C .③D .②③④二、填空题11.计算(25-的结果是__________.12.如图,在Rt ABC 中,90BAC ∠=︒,D 为BC 的中点,若32C ∠=︒,则BAD ∠的度数为__________.13.实数a ,b ,c ()2a b a c -+=__________.14.如图,在平面直角坐标系中,矩形OABC 的顶点()1,2B -,若锁定OA ,向右推矩形OABC ,使点B 落在y 轴的点B '的位置,则B OC '' 的面积为__________.15.如图,在四边形ABCD 中,AC ,BD 相交于点E ,90ABC DAC ∠=∠=︒,15ABD ∠=︒,3AB BC ==DE 长为__________.16.如图,▱ABCD 的周长是26cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,点E 是BC 的中点,△AOD 的周长比△AOB 的周长多3cm ,则AE 的长度为______cm .三、解答题17.计算:21)+18.如图,在ABCD 中,AE BD ⊥,CF BD ⊥,垂足分别为E ,F ,求证:DAE BCF ∠=∠.19.如图,在矩形ABCD 中无重叠放入面积分别为227cm 和212cm 的两张正方形纸片,求图中空白部分的周长.20.如图,在平行四边形ABCD 中,6AB =,10BC =,AC AB ⊥,点E ,F 分别是BC ,AD 上的点,且BE DF =.(1)求证:四边形AECF 是平行四边形;(2)①连接EF ,当EF =__________时,四边形AECF 是矩形;②当四边形AECF 是菱形时,AE 的长为__________.21.在平面直角坐标系中,已知两点的坐标是()11,P x y ,()22,Q x y ,则P ,Q 两点之间的距离可以用公式d =.计算,阅读以上内容并解答下列问题:(1)已知点()2,4M ,()3,8N --,则M ,N 两点之间的距离为__________;(2)若点()0,4A ,()1,2B -,()4,2C ,判断ABC 的形状,并说明理由.22.有一道题“已知a =2281a a -+的值”,小明在解答时,没有直接带代入,而是这样分析的:因为2a =-,所以2a -=所以()223a -=,2443a a -+=.所以241a a -=-,故()22812111a a -+=⨯-+=-.请你根据小明的分析过程,解决如下问题:若a =,求2367a a +-的值.23.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF AB ⊥,OG EF //.(1)判断四边形OEFG 的形状,并说明理由;(2)若34CD =,15EF =,求BG 的长.24.如图,在正方形ABCD 中,E 是边BC 上的一动点(不与B ,C 重合),连接AE ,点B关于直线AE的对称点为F,连接EF并延长交CD于点G,连接AG,过点E作EH AE⊥交AG的延长线于点H,连接CH.=;(1)求证:GF GD(2)猜想线段CH与BE的数量关系,并证明.25.如图,在菱形ABCD中,对角线AC与BD相交于O点,AB=5,AC=6,过D点作DE//AC 交BC的延长线于E点(1)求△BDE的周长(2)点P为线段BC上的点,连接PO并延长交AD于点Q,求证:BP=DQ参考答案1.D【解析】根据二次根式及分式有意义的条件即可求得.解:根据题意,得20x ->,解得2x >,∴实数x 的值为2x >的数.故选:D .2.B 【解析】根据勾股定理的逆定理,只要判断两个较小的数的平方和是否等于最长边的平方即可.【详解】解:A 、12+22=2,能构成直角三角形,故此选项不符合题意;B 、23=9,24=16,25=25,2229+1625≠,所以222222(3)+(4)(5)≠,不能构成直角三角形,故此选项符合题意;C 、2221=2,能构成直角三角形,故此选项不符合题意;D 、2221.5+2=2.5,能构成直角三角形,故此选项不符合题意.故选:B .3.D 【解析】根据二次根式的运算法则即可求出答案.【详解】解:A 原式==,计算错误,故不符合题意,B+C 原式==,计算错误,故不符合题意,D+=故选:D .4.C 【解析】根据题意,先求出2AB BE ==,再求出3BC =,即可求出周长.解:在ABCD 中,则AD ∥BC ,∴DAE AEB ∠=∠,∵AE 平分BAD ∠,∴DAE BAE ∠=∠,∴AEB BAE ∠=∠,∴2AB BE ==,∵213BC BE CE =+=+=,∴周长为:2(23)10⨯+=cm ;故选:C .【点睛】本题考查了平行四边形的性质,角平分线的定义,以及周长的计算,解题的关键是正确的求出2AB =.5.A 【解析】和各选项中的二次根式化简为最简二次根式,找同类二次根式即可.【详解】A.B.=C.,不符合题意;D.故选A .【点睛】本题考查了最简二次根式,同类二次根式,理解同类二次根式的概念是解题的关键.6.C 【解析】【分析】根据原命题写出逆命题,再进行判断即可【详解】A.两直线平行,内错角相等,逆命题为:(两直线别第三条直线所截)内错角相等,两直线平行;是真命题,不符合题意.B.等腰三角形的两底角相等,逆命题为:有两角相等的三角形是等腰三角形,根据“等角对等边”,可以判断是真命题,不符合题意.C.矩形的对角线相等,逆命题为:对角线相等的四边形是矩形,举个反例,等腰梯形的对角线相等,不是矩形,所以该命题为假命题,符合题意;D.角平分线上的点到角两边的距离相等,逆命题为:在角的内部,到角的两边距离相等的点在角平分线上,是真命题,不符合题意.故选:C .【点睛】本题考查了命题与假命题,平行线的性质与判定,等腰三角形的性质与判定,角平分线的性质与判定,矩形的性质,熟悉以上性质与判定是解题的关键.7.D 【解析】【分析】结合菱形的判定性质,对选项逐一筛选【详解】四边形ABCD 中,对角线AC ,BD 互相平分∴四边形ABCD 是平行四边形A.90ABC ∠=︒,可以判断平行四边形ABCD 是矩形,不符合题意;B.AB BD =,不能判断ABCD 是菱形,不符合题意;C.AC BD =可以判断平行四边形ABCD 是矩形,不符合题意;D.AC BD ⊥可以判定平行四边形ABCD 是菱形;符合题意故选D .【点睛】本题考查了菱形的判定定理,熟悉菱形的判定定理是解题的关键.8.B 【解析】【分析】P 是对角线AC 的中点,E 、F 是AB 、CD 的中点,用三角形中位线定理即可.【详解】∵P 是对角线AC 的中点,E 是AB 的中点,∴12EP AD =,同理,12FP BC =,∵AD =BC ,∴PE=PF ,∵128FPE ∠=︒,°26PFE PEF ==∠∠,故选:B .【点睛】此题考查三角形的基本概念,掌握三角形中位线定理是解题的关键.9.A 【解析】【分析】先根据勾股定理求出AC 2+BC 2=AB 2,然后再运用三角形的面积公式求阴影部分的面积即可.【详解】解:∵Rt ABC ∴AC 2+BC 2=AB 2=3∴S 阴影=12AC 2+12BC 2+12AB 2=12(AC 2+BC 2)+12AB 2=12AB 2+12AB 2=AB 2=3.故选A .【点睛】本题主要考查了勾股定理,熟练掌握勾股定理成为解答本题的关键.10.A 【解析】【分析】先根据角平分性质可得:DE=DF ,再证△AED ≌△AFD ,证得AE=AF ,然后再逐项排查即可.【详解】解:∵AD 是ABC 的角平分线,DE AB ⊥于点E ,DF AC ⊥于点F∴DE=DF ,90AFD AED ︒∠∠==在Rt △AED 和Rt △AFD 中AD=AD ,DE=DF∴△AED ≌△AFD (HL ),∴AE=AF∵AD 平分∠BAC∴AD EF ⊥,即③正确;由于不能说明四边形AEDF 是平行四边形,故①错误;由于不能说明∠EDF=90°,故②错误;∵90BAC ∠=︒,90AFD AED ︒∠∠==∴四边形AEDF 是矩形∵AE=AF∴四边形AEDF 是正方形,故④正确.∴③④正确.故选A .【点睛】本题主要考查了全等三角形的性质和判定、正方形的判定、角平分线性质等知识点,证得Rt △AED ≌Rt △AFD 成为解答本题的关键.11.5【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】解:(2=5.故答案为:5.【点睛】此题主要考查了二次根式的乘法运算,正确掌握相关运算法则是解题关键.12.58︒##58度【解析】【分析】由D 为BC 的中点,得AD DC =,DCA DAC ∠=∠,BAD ∠即为DAC ∠的余角.【详解】90BAC ∠=︒,D 为BC 的中点∴AD DC=∴=32DCA DAC ∠=∠︒∴=903258BAD BAC DAC ∠∠-∠=︒-︒=︒.故答案为:58︒.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,等边对等角,余角的概念,运用“直角三角形斜边上的中线等于斜边的一半”是解题的关键.13.b c--【解析】【分析】结合数轴判断a-b 和a+c 的正负,去根号和绝对值化简即可.【详解】解:由题意可得:0a b ->,0a c +<,a c++=a b a c---=b c --;故答案为:-b-c ;【点睛】此题考查的是算术平方根和绝对值的性质,掌握绝对值的性质和算术平方根的非负性是解题的关键.14.2【解析】【分析】根据AB AB '=,求得OB '的长,从而求得面积.【详解】根据题意,可知AB AB '=,BC B C ''= 四边形OABC 是矩形,()1,2B -,2AB AB '∴==,1AO BC B C ''===,OB ∴=''·111222B OC S B C '''='∴==.【点睛】本题考查了平面直角坐标系的点到坐标轴的距离,矩形的性质,勾股定理,理解题意求得OB '是解题的关键.15.-【解析】【分析】如图:过B 作BF ⊥AC,垂足为F,先根据勾股定理、等腰三角形的性质可得AC 、AF=FC=BF 的长以及∠ABF=∠BAF=45°,进而说明∠EBF=30°,设EF=x ,则BE=2x ,由勾股定理求得;再运用三角形的内角和定理得到∠ADE=30°,最后运用直角三角形的性质解答即可.【详解】解:如图:过B 作BF ⊥AC,垂足为F,∵∠ABC=90°,AB BC ==∴=∴AF=FC=BF=12AC ,∠ABF=∠BAF=45°∵15ABD ∠=︒∴∠EBF=∠ABF-∠ABD=30°设EF=x ,则BE=2x ,由勾股定理可得:BE 2=BF 2+EF 2,即(2x )2=2+x 2解得:∴∵在△ADB 中,∠BAD=∠DAE+∠BAE=90°+45°=135°,15ABD ∠=︒∴∠ADE=180°-∠BAD-∠ABD=180°-135°-15°=30°又∵∠DAE=90°,∴DE=2AE=.故填-.【点睛】本题主要考查了三角形内角和定理、等腰三角形的性质、勾股定理的应用以及直角三角形的性质,正确应用在直角三角形中30°所对的边为斜边的一半成为解答本题的关键.16.4【解析】【详解】分析:由□ABCD 的周长为26cm ,对角线AC 、BD 相交于点O ,若△AOD 的周长比△AOB 的周长多3cm ,可得AB+AD=13cm ,AD-AB=3cm ,求出AB 和AD 的长,得出BC 的长,再由直角三角形斜边上的中线性质即可求得答案.详解:∵□ABCD 的周长为26cm ,∴AB+AD=13cm ,OB=OD ,∵△AOD 的周长比△AOB 的周长多3cm ,∴(OA+OD+AD )-(OA+OB+AB )=AD-AB=3cm ,∴AB=5cm ,AD=8cm .∴BC=AD=8cm .∵AC ⊥AB ,E 是BC 中点,∴AE=12BC=4cm ;故答案为4.点睛:此题考查了平行四边形的性质、直角三角形斜边上的中线性质.熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE 是解决问题的关键.17.13【解析】【分析】运用二次根式的性质,化简二次根式,进行混合运算.【详解】解:原式21=-+21=-+814=-++13=.【点睛】本题考查了二次根式的混合运算,二次根式的化简,熟练掌握二次根式的计算法则是解题的关键.18.见解析【解析】【分析】要证明DAE BCF ∠=∠,只需证明ADE CBF ≅ 即可.【详解】证明:∵四边形ABCD 是平行四边形,∴AD BC =,AD//BC ,∴ADE CBF ∠=∠.∵AE BD ⊥,CF BD ⊥,∴90AED CFB ∠=∠=︒.在ADE 和CBF V 中,AED CFB ADE CBF AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ADE CBF AAS ≅△△,∴DAE BCF ∠=∠.【点睛】本题考查了平行四边形的性质和全等三角形的判定和性质,利用平行四边形的性质,获得全等的条件是解题的关键.19.【解析】【分析】根据正方形的面积求出边长,空白部分的周长为小正方形的边长与大正方形边长减去小正方形边长的和的2倍.【详解】解:∵两张正方形纸片的面积分别为227cm 和212cm ,)cm =)cm =.∴()cm EF =-,∴空白部分的周长()2cm =⨯=.【点睛】本题考查了二次根式的化简,二次根式的加减运算,化简二次根式是解题的关键.20.(1)见解析;(2)①8;②5.【解析】【分析】(1)根据平行四边形的性质得到AD ∥BC ,AD=BC ,等量代换得到AF=EC ,于是得到结论;(2)①连接EF ,由矩形的性质得到EF AC =,然后由勾股定理求出AC 的长度,即可得到答案;②连接EF ,由菱形的性质得到AC EF ⊥,然后求出AG 和EG 的长度,再利用勾股定理求出AE 即可.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴//AD BC ,AD BC =.∵BE DF =,∴AF EC =,∴四边形AECF 是平行四边形.(2)①连接EF ,如图∵四边形AECF 是矩形,∴EF AC =;∵AC AB ⊥,∴90BAC ∠=︒,∵6AB =,10BC =,∴8AC ===,∴8EF =,故答案为:8.②连接EF ,如图∵四边形AECF 是菱形,∴AC EF ⊥,点G 是AC 的中点,∴AB ∥EF ,118422AG AC ==⨯=,∴116322EG AB ==⨯=,∵90AGE ∠=︒,∴AE =;故答案为:5.【点睛】本题考查了特殊四边形的判定和性质,勾股定理,熟练掌握特殊四边形的判定和性质定理是解题的关键.21.(1)13;(2)ABC 为直角三角形,理由见解析.【解析】【分析】(1)用两点之间的距离可以用公式即可;(2)分别算出三点之间的距离即可.【详解】解:(1)∵()2,4M ,()3,8N --∴13MN ==.(2)ABC 为直角三角形.理由:222(01)(42)5AB =++-=;222(04)(42)16420AC =-+-=+=;222(14)(22)25BC =--+-=,∴222BC AB AC =+.∴ABC 为直角三角形.【点睛】此题考查的是两点之间的距离和三角形类型的判断,掌握两点之间的距离公式和勾股定理的逆定理是解题的关键.22.-4【解析】【分析】先把分母有理化,得出a 的表达式,最后代入2367a a +-中即可.【详解】解:∵1a =,∴1a +=,∴()212a +=,即2212a a ++=,∴221a a +=,∴()223673273174a a a a +-=+-=⨯-=-【点睛】此题考查的是求代数式的值,涉及完全平方公式,分母有理化等知识,读懂题意,掌握相关运算法则是解题的关键.23.(1)四边形OEFG 是矩形,理由见解析;(2)9【解析】【分析】(1)根据菱形的性质和矩形的判定定理解决问题;(2)根据(1)的结论和题干条件,用勾股定理求线段AF 的长即可求得BG .【详解】(1)四边形OEFG 是矩形.理由如下:∵四边形ABCD 是菱形,∴OB OD =.∵E 是AD 的中点,∴OE 是ABD △的中位线,∴//OE FG .∵OG EF //,∴四边形OEFG 是平行四边形.∵EF AB ⊥,∴90EFG ∠=︒,∴平行四边形OEFG 是矩形.(2)解:∵四边形ABCD 是菱形,∴BD AC ⊥,34CD AD ==,∴90AOD ∠=︒.∵E 是AD 的中点,∴1172OE AE AD ===.由(1)知,四边形OEFG 是矩形,∴17FG OE ==.∵17AE =,15EF =,∴8AF ===,∴348179BG AB AF FG =--=--=.【点睛】本题考查了平行四边形,菱形、矩形的性质与判定,勾股定理,熟练以上定理与性质是解题的关键.24.(1)见解析;(2)CH =,理由见解析【解析】【分析】(1)如图1,连接AF ,根据对称得△ABE ≌△AFE ,再由HL 证明Rt △AFG ≌Rt △ADG ,可得结论;(2)如图2,作辅助线,构建全等三角形,证明()ABE ENH AAS ≅△△,得BE HN =,再说明△CNH 是等腰直角三角形,可得结论.【详解】证明:(1)如图1,连接AF .∵四边形ABCD 是正方形,∴AB AD =,90B D ∠=∠=︒.∵点B 关于直线AE 的对称点为F ,∴ABE AFE ≅△△,∴AB AF AD ==,90AFE B ∠=∠=︒,∴90AFG ∠=︒,在Rt AFG 和Rt ADG 中,AF ADAG AG =⎧⎨=⎩,∴()Rt AFG Rt ADG HL ≅△△,∴GF GD =.(2)CH =.理由:如图2,过点H 作HN BC ⊥交BC 延长线于点N.易得90ENH ∠=︒,由(1)知:BAE FAE ∠=∠,FAG DAG ∠=∠.∵90BAD ∠=︒,∴45EAG ∠=︒,又∵EH AE ⊥,∴90AEH ∠=︒,AE EH =,∴90BEA CEH BEA BAE ∠+∠=∠+∠=︒,∴BAE NEH ∠=∠.在ABE △和ENH 中,BAE NEHABE ENH AE EH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ABE ENH AAS ≅△△,∴BE HN =,AB EN =.∵AB BC =,∴BC EN BE EC EC CN ==+=+,∴BE CN HN ==,∴CNH △是等腰直角三角形,∴CH ==.【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.25.(1)24;(2)证明见解析.【解析】【分析】(1)因为菱形的对角线互相垂直及互相平分就可以在Rt △AOB 中利用勾股定理求出OB ,然后利用平行四边形的判定及性质就可以求出△BDE 的周长;(2)容易证明△BOP ≌△DOQ ,再利用它们对应边相等就可以了.【详解】(1)解:∵四边形ABCD 是菱形,∴AB=BC=CD=AD=5,AC ⊥BD ,OB=OD ,OA=OC=3,∴=4,BD=2OB=8,∵AD ∥CE ,AC ∥DE ,∴四边形ACED 是平行四边形,∴CE=AD=BC=5,DE=AC=6,∴△BDE 的周长是:BD+BC+CE+DE=8+10+6=24.(2)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠QDO=∠PBO ,∵在△DOQ 和△BOP 中QDO PBO OB OD QOD POB ∠∠⎧⎪⎨⎪∠∠⎩===,∴△DOQ ≌△BOP (ASA ),∴BP=DQ .【点睛】本题考查了菱形的性质,平行四边形的判定与性质,勾股定理,也考查了全等三角形的判定及性质;这是一道综合性的题,熟悉每个知识点是解决问题的关键.。
9 7 20 2335 米八年级下册数学期中考试题一、选择题(每小题 2 分,共 12 分)1、.下列式子中,属于最简二次根式的是( )A.B. C. D.2、以下二次根式:① 12 ;②;③;④ 中,与 是同类二次根式的是( ).A .①和②B .②和③C .①和④D .③和④3、若代数式 xx 1有意义,则实数 x 的取值范围是( )A. x ≠ 1B. x ≥0C. x >0D. x ≥0 且 x ≠1 4、如图字母 B 所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 1945、 如图,把矩形 ABCD 沿 EF 翻折,点 B 恰好落在 AD 边的 B′处,若 AE=2,DE=6,∠EFB=60°,则矩形 ABCD 的面积是 ( )A.12B. 24C. 12D. 166、如图4为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米? A 4B 8C 9D77、三角形的三边长分别为6,8,10,它的最长边上的高为( )3 米 A.6 B.4.8 C.2.4 D.8 8、.在平行四边形 ABCD 中,∠A :∠B :∠C :∠D 的值可以是( ) A.1:2:3:4 B.1:2:2:1 C.1:2:1:2 D.1:1:2:2 9、已知 x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以 x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、15 10、.如图,将矩形纸片 ABCD 折叠,使点 D 与点 B 重合,点 C 落在点 C ′处,折痕为 EF ,若 AB=6,BC=10, 则 DE 的值为( ) 11、8、菱形 ABCD 中,AB=15,∠ADC=120°,则 B 、D 两点之间的距离为( ).15 A .15B .32C.7.5D .15 12、. 如图,在矩形 ABCD 中,AD=2AB ,点 M 、N 分别在边 AD 、BC 上,AM连接 BM 、DN.若四边形 MBND 是菱形,则 等于( )MDA.3B. 2 83C.3D. 4 555 题图1 322 27 3 3325B16948 5B′EFO A M DBNC12 题二、填空题:(每小题 3 分,共 24 分)11.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为 2.5 米的梯子,要想把拉花挂在高 2.4 米的墙上,小虎应把梯子的底端放在距离墙 米处. 13.如图 3,长方体的长 BE=15cm,宽 AB=10cm,高 AD=20cm,点 M 在CH 上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点 A 爬到点 M,需要爬行的最短距离是多少CHDEB16 如图,ABCD 是对角线互相垂直的四边形,且 OB=OD,请你添加一个适当的条件 ,使 ABCD成为菱形.(只需添加一个即可)17 .如图,将菱形纸片 ABCD 折叠,使点 A 恰好落在菱形的对称中心 O 处,折痕为 EF.若菱形 ABCD 的边长为 2cm ,∠A=120°,则 EF= . 18. 如图,矩形 ABCD 中,AB =3,BC =4,点 E 是 BC 边上一点,连接 AE ,把∠B 沿 AE 折叠,使点 B 落在点 B ′处,当△CEB ′为直角三角形时,BE 的长为 .AADB DCBE C三、解答题(每小题 4 分,共 16 分) 19. 计算: 1、3a ( 2b2 1)b2、( +)+( 12 - )3、(2 7+5 2)(5 2-2 7)4、(2)( 2- 12)( 18+ 48);20 ba MCF20. 如图,四边形 ABCD 是菱形,对角线 AC 与 BD 相交于 O,AB =5,AO =4,求 BD 的长和四边形 ABCD 的面积21.先化简,后计算:1 + 1 +b,其中 a =, b = 16 题图. a + b b a (a + b ) 2 222. 如图,小红用一张长方形纸片 ABCD 进行折纸,已知该纸片宽 AB 为 8cm ,长 BC 为 10cm .当小红折叠时,顶点 D 落在 BC 边上的点 F 处(折痕为 AE ).想一想,此时 EC 有多长?•A DEBF C11.如图:已知 D 、E 、F 分别是△ABC 各边的中点, 求证:AE 与 DF 互相平分.26.如图,是一块由边长为 20cm 的正方形地砖铺设的广场,一只鸽子落在点 A 处,•它想先后吃到小朋友撒在 B 、C 处的鸟食,则鸽子至少需要走多远的路程?5 +1 5 -1。
人教版八年级数学下册期中考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( ) A .14 B .7 C .﹣2 D .25.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或34 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC于点D、E,则∠BAE=()A.80°B.60°C.50°D.40°9.如图,两个不同的一次函数y=ax+b与y=bx+a的图象在同一平面直角坐标系的位置可能是()A.B.C.D.10.尺规作图作AOB∠的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SAS B.ASA C.AAS D.SSS二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.3.使x2-有意义的x的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为__________.6.如图,四边形ABCD 中,∠A=90°,AB=33,AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知a 23+,求229443a a a a --+-4.如图,OABC 是一张放在平面直角坐标系中的矩形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA=10,OC=8.在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、B4、D5、D6、A7、B8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、(3,7)或(3,-3)3、x2≥4、﹣2<x<25、36、3三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、11a-,1.3、7.4、E(4,8) D(0,5)5、24°.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
人教版八年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个 2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( ) A . 1683-B. 1283-+C. 843-D. 423- 4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 2B. 2C. 8D. 66. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y (米)与 时间x (秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________. 8. 若二次根式25x +与3能合并,则x 可取的最小正整数是_________.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.11. 如图,在菱形ABCD 中,点E 为AB 上一点,DE =AD ,连接EC .若∠ADE =36°,则∠BCE 的度数为_____.12. 如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标________________.三.解答题(共11小题)13. 计算:(1)1 21231263+-⨯(2)8123|265|2-÷+--14. 已知y﹣3与2x﹣1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式.(2)当x=2时,求y的值.(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.15. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是千米;乙车到达B地所用的时间a的值为;(3)行驶过程中,两车出发多长时间首次后相遇?17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:322)2,善于思考的小明进行了以下探索:设2)2(其中a、b、m、n均为整数),则有2=m2+2n22.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7+43化成一个完全平方式.(3)若a是216的立方根,b是16的平方根,试计算:2.a b20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.23. 在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.答案与解析一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个【答案】B【解析】【分析】根据二次根式的定义形如a (a ≥0)的式子叫做二次根式,对被开方数的符号进行判断即可得.【详解】解:在所列式子中是二次根式的有 3.14π-,22a b +,21m +,||ab 这4个, 故选:B .【点睛】本题主要考查二次根式的定义.准确记忆二次根式的定义是解题的关键2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 【答案】B【解析】【分析】 对于直角三角形的判定我们可以从角的方面去判断,也可以利用勾股定理的逆定理来进行判断.【详解】解: A 、∠A+∠C=∠B ,则∠B=90°,则为直角三角形;B 、当三边比值为1:2:3时,则无法构成三角形;C 、根据题意可知:222+=a b c ,满足勾股定理的逆定理,则这个三角形就是直角三角形;D 、根据题意可知()()()22222222mn m n m n -+=+,满足勾股定理的逆定理,则这个三角形就是直角三角形.3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( )A. 1683-B. 1283-+C. 843-D. 423-【答案】B【解析】【分析】 分别表示出空白矩形的长和宽,列式计算即可.【详解】解:空白矩形的长为12=23,宽为1612423-=-,∴面积=()23423=83-12-故选:B .【点睛】本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b 【答案】C【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 82B. 42C. 8D. 6【答案】C【解析】【分析】首先由正方形ABCD的对角线长为22,即可求得其边长为2,然后由折叠的性质,可得A′M=AM,D′N=DN,A′D′=AD,则可得图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD,继而求得答案.【详解】解:∵正方形ABCD的对角线长为22,即2,∠A=90°,AB=AD,∠ABD=45°,∴AB=BD•cos∠2×22=2,∴AB=BC=CD=AD=2,由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,∴图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8.故选C.【点睛】此题考查了折叠的性质与正方形的性质.此题难度适中,注意数形结合思想与整体思想的应用.6. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y(米)与时间x(秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】 【详解】在100秒时甲,乙的距离是0,则起跑后100秒甲追上乙,故②说法正确;甲每100秒比乙多跑100m ,所以经过50秒时甲乙相距50米,故③说法正确;甲每100秒比乙多跑100m ,则在400秒时,相距300米,④说法正确;甲的速度为2000÷400=5m/s ,故可以得出甲的速度为5m/s ,故①正确. 故选A .【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________.【答案】k>12. 【解析】【分析】根据正比例函数的图像和性质进行解答即可.【详解】解:∵正比例函数(21)y k x =-的图像经过原点和第一、第三象限,∴2k-1>0,∴k>12. 故答案为: k>12. 【点睛】本题考查正比例函数的性质,解题关键是掌握正比例函数的图像经过第一、第三象限时,比例系数k>0的性质.8. 25x +3x 可取的最小正整数是_________.【分析】根据题意,它们化简后的被开方数相同,列出方程求解即可【详解】∵二次根式25x +与3能合并,∴253x +=,解得–1x = (舍去),2512x +=,解得 3.5x = (舍去),2527x +=,解得11x =.即当x 取最小正整数11时,二次根式25x +与3能合并.【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解,【详解】如图所示:AB=22+=.345故答案是:5.【点睛】考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.11. 如图,在菱形ABCD中,点E为AB上一点,DE=AD,连接EC.若∠ADE=36°,则∠BCE的度数为_____.【答案】18°.【解析】【分析】由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形∴AD=CD,∠A=∠BCD,CD∥AB∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°∵CD∥AB∴∠CDE =∠DEA =72°,且DE =DC =DA∴∠DCE =54°∵∠DCB =∠DAE =72°∴∠BCE =∠DCB ﹣∠DCE =18°故答案为:18°【点睛】本题考查了菱形的性质,等腰三角形的性质.熟练掌握菱形边及对角线的性质,等腰三角形的性质是解题的关键.12. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC=6,BD=8,E 为AD 中点,点P 在x 轴上移动.若△POE 为等腰三角形,请写出所有符合要求的点P 的坐标________________.【答案】(2.5,0)或(-2.5,0)或(4,0)或(2516,0). 【解析】【分析】 根据菱形的对角线互相垂直平分求出OA 、OD ,再利用勾股定理列式求出AD ,然后根据直角三角形斜边上的中线等于斜边的一半求出OE ,然后分①OE=OP 时,求出点P 的坐标,②OE=PE 时点P 和点D 重合,③OP=OE 时,点P 在OE 的垂直平分线上,求出OP 的长度,然后写出点P 的坐标即可.【详解】解:∵在菱形ABCD 中对角线AC=6,BD=8,∴OA=3,OD=4,∴22OA OD +22345+=,∵E 为AD 中点,∴OE=12AD=12×5=2.5, ①OE=OP 时,OP=2.5,∴点P的坐标为(2.5,0)或(-2.5,0),②OE=PE时点P和点D重合,P(4,0),③③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,∴EK∥OA,∴EK:OA=ED:AD=1:2,∴EK=12OA=32,∴OK=2,∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK,∴OP:OE=OF:OK,即OP:52=54:2,解得:OP=25 16,∴点P(2516,0),综上所述,点P的坐标为(2.5,0)或(-2.5,0)或(4,0)或(2516,0).故答案为:(2.5,0)或(-2.5,0)或(4,0)或(2516,0).【点睛】本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分的性质,等腰三角形的性质,难点在于要分情况讨论.三.解答题(共11小题)13. 计算:(1)1 21231263(28123|2652-【答案】(1)(22+【解析】【分析】(1)先化简二次根式,进行乘法计算,再进行减法计算;(2)先根据二次根式和绝对值进行化简得到22(2+-,再去括号进行有理数的加减计算即可得到答案.【详解】(1)=3==(2|2-=22(2-=222+-+=2【点睛】本题考查二次根式的化简、有理数的四则运算和绝对值,解题的关键是掌握二次根式的化简、有理数的四则运算和求绝对值.14. 已知y ﹣3与2x ﹣1成正比例,且当x =1时,y =6.(1)求y 与x 之间的函数解析式.(2)当x =2时,求y 的值.(3)若点A (x 1,y 1),B (x 2,y 2)都在该函数的图象上,且y 1>y 2,试判断x 1,x 2的大小关系.【答案】(1)y =6x ;(2)12;(3)12x x >.【解析】【分析】(1)利用正比例函数的定义得到y ﹣3=k (2x ﹣1),然后把已知的对应值代入求出k ,从而得到y 与x 之间的函数解析式;(2)把x =2代入(1)中的解析式中计算出对应的函数值;(3)利用61x >62x ,可得到1x ,2x 的大小关系.【详解】解:(1)设y ﹣3=k (2x ﹣1),把x =1,y =6代入得6﹣3=k (2×1﹣1),解得k =3,则y ﹣3=3(2x ﹣1), 所以y 与x 之间的函数解析式为y =6x ;(2)由(1)知,y =6x∴当x =2x 时,y =62⨯=12;(3)∵11226,6y x y x ==,而12y y >,∴1266x x >∴12x x >【点睛】本题综合考查了一次函数的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征等知识,一次函数图象上的点的坐标都满足该函数的解析式15. 如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.【答案】(1)详见解析;(2)24【解析】【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•A C=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是 千米;乙车到达B 地所用的时间a 的值为 ; (3)行驶过程中,两车出发多长时间首次后相遇?【答案】(1)60y x =;(2)68,5.4;(3)4.5小时【解析】 试题分析:(1)由题意设函数关系式为,根据待定系数法即可求得结果;(2)把x=2.8代入(1)中的函数关系式即可得到甲车的路程,从而得到甲、乙两车之间的距离;先求出乙车开始的行驶速度,即可得到修好后乙车的行驶速度,从而得到a 的值;(3)设修好后乙车距离A 地的路程(千米)与行驶时间(时)的函数关系式为,根据待定系数法求得函数关系式后,再与(1)中的函数关系式组成方程组求解即可.(1)设函数关系式为 ∵图象过点(6,360) ∴,∴甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式为60y x =;(2)在60y x =中,当x=2.8时,千米;则甲、乙两车之间的距离由图可得乙车开始的行驶速度为千米/时则修好后乙车的行驶速度为千米/时所以;(3)设修好后乙车距离A地的路程(千米)与行驶时间(时)的函数关系式为∵图象过点(2.8,100),(5.4,360)∴,解得∴函数关系式为由题意得,解得答:行驶过程中,两车出发4.5小时时间首次后相遇.考点:一次函数的应用点评:一次函数是常用的解答实际问题的数学模型,本题即是利用一次函数的有关知识解答实际应用题,是中考的常见题型.17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连接AC,BD交于点O,连接EO并延长交CD于点F,则点F即为所求;(2)连接AC,交BD于点O,延长AE交CD于点G,连接GO并延长交AB于点H,连接HC交BD于点F,则四边形AFCE即为所画的菱形.【详解】解:(1)如图,点F即为所求;(2)如图,四边形AFCE即为所画的菱形.【点睛】本题主要考查无刻度直尺作图,掌握正方形的性质和菱形的判定方法是解题的关键.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由平行四边形的性质易得AC=BM=BD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性质得出结论;(2)连接EH,HF,FG,GE,E,F,G,H分别是AB,CD,AC,BD的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得▱HFGE 为菱形,易得EF 与GH 互相垂直平分.【详解】证明:(1)过点B 作BM ∥AC 交DC 的延长线于点M ,如图1,∵AB ∥CD∴四边形ABMC 为平行四边形.∴AC =BM =BD ,∠BDC =∠M =∠ACD .在△ACD 和△BDC 中,===AC BD ACD BDC CD DC ⎧⎪∠∠⎨⎪⎩,∴△ACD ≌△BDC (SAS ),∴AD =BC ;(2)连接EH ,HF ,FG ,GE ,如图2,∵E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,∴HE ∥AD ,且HE =12AD ,FG ∥AD ,且FG =12, ∴四边形HFGE 为平行四边形,由(1)知,AD =BC ,∴HE =EG ,∴▱HFGE 为菱形,∴EF 与GH 互相垂直平分.【点睛】此题考查中点四边形和三角形中位线定理,平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解题的关键.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3)2,善于思考的小明进行了以下探索:设)2(其中a、b、m、n均为整数),则有=m2+2n2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7(3)若a是216的立方根,b是16【答案】(1)m2+3n2;2mn;(2)7+)2;(3)2.【解析】【分析】(1)根据完全平方公式展开,根据题意寻找恒等对应关系;(2)根据完全平方公式,从积的2倍入手,将看成2⨯,从而确定“首平方”底数和“尾平方”底数;(3)先求出a、b的值,再代入求值.【详解】解:(1)2am+=+(,22332a b m n+=++2232.a m nb mn∴=+=,(2)22272222+=++⨯=+(;(3)21616a b是的立方根,是的平方根,64a b∴==±,,2===±【点睛】本题考查了平方根、立方根、完全平方公式、算术平方根等知识点,能灵活运用完全平方公式进行变形是解此题的关键.20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.【答案】(1)证明见解析;(2)2【解析】试题分析:(1)由△BEC≌△DFA得到BE=DF,则结合已知条件证得结论;(2)根据矩形的性质计算即可.试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BE C与△DFA中,∵∠BEC=∠DFA,∠BCE=∠DAF,BC=AD,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图,∵AB⊥AC,AB=4,BC=213,∴AC=6,∴AO=3,∴Rt△BAO 中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.考点:1.平行四边形的判定与性质;2.全等三角形的判定与性质;3.矩形的性质.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?【答案】(1)4cm;(2)6cm2;(3)15cm2;(4)17秒【解析】【分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=3cm,可以计算出△ABP的面积,即可得到a的值;(3)分析图形可得,甲中的图形面积等于AB×AF﹣CD×DE,根据图象求出CD,DE,AF的长,代入数据计算可得答案;(4)计算BC+CD+DE+EF+F A的长度,又由P的速度,计算可得b的值.【详解】解:(1)动点P在BC上运动时,对应的时间为0到4秒,易得:BC=1cm/秒×4秒=4cm;故图甲中的BC长是4cm.(2)由(1)可得,BC=4cm,则:a=12×BC×AB=6cm2;图乙中的a是6cm2.(3)由图可得:CD=2×1=2cm,DE=1×3=3cm,则AF=BC+DE=7cm,又由AB=3cm,则甲图的面积为AB×AF﹣CD×DE=3×7﹣2×3=15cm2,图甲中的图形面积为15cm2.(4)根据题意,动点P共运动了BC+CD+DE+EF+F A=4+2+3+1+7=17cm,其速度是1cm/秒,则b=171=17秒,图乙中的b是17秒.【点睛】本题主要考查动点问题的函数图象,能够从图象中获取信息是解题的关键.22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【答案】(1)32)菱形,理由见解析(3)t=5.2或t=7时,△BEM为等腰三角形【解析】【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【详解】(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC223AD CD又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×33(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.∵∠EMC=∠ACD=90°,∴DC∥EF.∵BC∥AD,∴四边形DCEF是平行四边形,∠BCA=∠DAC.由(1)可知:CD=4,AC=43.∵点M为AC的中点,∴CM=23.在Rt△EMC中,∠CME=90°,∠BCA=30°.∴CE=2ME,可得ME2+(23)2=(2ME)2,解得:ME=2.∴CE=2ME=4.∴CE=DC.又∵四边形DCEF是平行四边形,∴四边形DCEF是菱形.(3)点E在运动过程中能使△BEM为等腰三角形.理由:如图2,过点B作BG⊥AD与点G,过点E作EH⊥AD于点H,连接DM.∵DC∥AB,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°−30°−90°=60°.∴∠ABG =30°.∴AG =12AB =2,BG. ∵点E 的运动速度为每秒1个单位,运动时间为t 秒,∴CE =t ,BE =8−t .在△CEM 和△AFM 中BCM MAF MC AMCME AMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CEM ≌△AFM .∴ME =MF ,CE =AF =t .∴HF =HG−AF−AG =BE−AF−AG =8−t−2−t =6−2t .∵EH =BG =∴在Rt △EHF 中,ME =12EF =1212∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM =BM .∵在Rt △DBG 中,DG =AD +AG =10,BG =∴=故BM =12×= 要使△BEM 为等腰三角形,应分以下三种情况:当EB =EM 时,有(8−t)2=14[12+(6−2t)2], 解得:t =5.2.当EB =BM 时,有8−t=,解得:t =.当EM =BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t =5.2或t =时,△BEM 为等腰三角形.【点睛】本题主要考查的是平行四边形的性质、菱形的性质和判定、全等三角形的性质和判定、含30度直角三角形的性质、等腰三角形的性质、勾股定理的应用,分三种情况EB =EM ,EB =BM ,EM =BM 讨论是解题的关键.23. 在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°. (1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF 2=2BE 2+2DF 2.【解析】试题分析:(1)根据旋转的性质可知AF=AG ,∠EAF=∠GAE=45°,故可证△AEG≌△AEF ;(2)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,连结GM .由(1)知△AEG≌△AEF ,则EG=EF .再由△BME 、△DNF 、△CEF 均为等腰直角三角形,得出CE=CF ,BE=BM ,2DF ,然后证明∠GME=90°,MG=NF ,利用勾股定理得出EG 2=ME 2+MG 2,等量代换即可证明EF 2=ME 2+NF 2;(3)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,根据旋转的性质可以得到△ADF≌△ABG ,则DF=BG ,再证明△AEG≌△AEF ,得出EG=EF ,由EG=BG+BE ,等量代换得到EF=BE+DF .试题解析:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG ,∴AF=AG ,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE 与△AFE 中,{45AG AFGAE FAE AE AE=∠===,∴△AGE≌△AFE (SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,2,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,22,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题。
最新人教版八年级数学下册期中考试试题及答案一、选择题(本大题共12小题,共36.0分)1.下列说法正确的是()A. 任何数都有两个平方根B. 若,则C. D. 的立方根是2.下列二次根式中,能与合并的是()A. B. C. D.3.数轴上点A表示的数为-,点B表示的数为,则A、B之间表示之间表示整数的点有()A. 21个B. 20个C. 19个D. 18个4.不等式9-3x<x-3的解集在数轴上表示正确的是()A.B.C.D.5.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A. 48B. 60C. 76D. 806.等式•=成立的条件是()A. B. C. D.7.下列各式计算正确的是()A.B.C.D.8.在如图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数分别是和-1,则点C所对应的实数是()A. B. C. D.9.在△ABC中,BC=8cm,AC=5cm,若△ABC的周长为xcm,则x应满足()A. B. C. D.10.如图,每个小正方形的边长都为1,A、B、C是小正方形各顶点,则∠ABC的度数为()A. B. C. D.11.已知关于x的不等式组的解集为3≤x<5,则的值为()A. B. C. D.12.如图,ABCD是一张矩形纸片,AB=3cm,BC=4cm,将纸片沿EF折叠,点B恰与点D重合,则折痕EF的长等于()A.B.C.D.二、填空题(本大题共6小题,共18.0分)13.已知533=148877,那么5.33等于______.14.已知x-2=,则代数式(x+2)2-8(x+2)+16的值等于______.15.设的整数部分为a,小数部分为b,则b(+a)的值为______.16.已知关于x的不等式组只有四个整数解,则实数a的取值范围是______.17.已知实数a、b、c在数轴上的位置如图所示,化简代数式|a|-+-的结果等于______.18.观察下列式子:当n=2时,a=2×2=4,b=22-1=3,c=22+1=5n=3时,a=2×3=6,b=32-1=8,c=32+1=10n=4时,a=2×4=8,b=42-1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=______,b=______,c=______.三、计算题(本大题共1小题,共12.0分)19.实验中学计划从人民商场购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元?(2)根据实验中学实际情况,需从人民商场购买A、B两种型号的小黑板共60块,要求购买A、B两种型号的小黑板总费用不超过5240元,并且购买A型小黑板的数量至少占总数量的,请你通过计算,求出购买A、B两种型号的小黑板有哪几种方案?四、解答题(本大题共5小题,共54.0分)20.(1)已知a、b为实数,且+(1-b)=0,求a2017-b2018的值;(2)若x满足2(x2-2)3-16=0,求x的值.21.计算下列各题(1)++-(2)(+)(3)(2+-6)÷22.(1)解不等式组:并把解集在数轴上表示出来.(2)解不等式组:23.如图,四边形ABCD中,AD=4,AB=2,BC=8,CD=10,∠BAD=90°.(1)求证:BD⊥BC;(2)计算四边形ABCD的面积.24.如图,在⊙O中,DE是⊙O的直径,AB是⊙O的弦,AB的中点C在直径DE上.已知AB=8cm,CD=2cm(1)求⊙O的面积;(2)连接AE,过圆心O向AE作垂线,垂足为F,求OF的长.答案和解析1.【答案】D【解析】解:A、负数没有平方根,0的平方根是0,只有正数有两个平方根,故本选项错误;B、当a=2,b=-2时,a2=b2,但a和b不相等,故本选项错误;C、=2,故本选项错误;D、-8的立方根是-2,故本选项正确;故选:D.根据负数没有平方根,0的平方根是0,正数有两个平方根即可判断A,举出反例即可判断B,根据算术平方根求出=2,即可判断C,求出-8的立方根即可判断D.本题考查了平方根,立方根,算术平方根的应用,能理解平方根,立方根,算术平方根的定义是解此题的关键,题目比较好,难度不大.2.【答案】B【解析】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选:B.同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.把每个根式化简即可确定.本题考查同类二次根式的概念,正确对根式进行化简是关键.3.【答案】C【解析】解:设A、B之间的整数是x,那么-<x<,而-11<-<-10,8<<9,∴-11<x<9,AB之间的整数有19个.故选:C.先设AB之间的整数是x,于是-<x<,而-11<-<-10,8<<9,从而可求-11<x<9,进而可求A、B之间整数的个数.本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.4.【答案】B【解析】解:移项,得:-3x-x<-3-9,合并同类项,得:-4x<-12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.直接解不等式,进而在数轴上表示出解集.此题主要考查了在数轴上表示不等式的解集以及解不等式,正确解不等式是解题关键.5.【答案】C【解析】解:∵∠AEB=90°,AE=6,BE=8,∴在Rt△ABE中,AB2=AE2+BE2=100,∴S阴影部分=S正方形ABCD-S△ABE,=AB2-×AE×BE=100-×6×8 =76.故选:C.由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD-S△ABE求面积.本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.6.【答案】C【解析】解:∵、有意义,∴,∴x≥1.故选:C.根据二次根式有意义的条件,即可得出x的取值范围.本题考查了二次根式有意义的条件,解答本题的关键是掌握二次根式有意义:被开方数为非负数.7.【答案】D【解析】解:A、原式==6,所以A选项错误;B、原式==×=2×3=6,所以B选项错误;C、原式==,所以C选项错误;D、原式=-=-,所以D选项正确.故选:D.根据二次根式的性质对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.8.【答案】D【解析】解:设点C所对应的实数是x.则有x-=-(-1),解得x=2+1.故选:D.设点C所对应的实数是x.根据中心对称的性质,即对称点到对称中心的距离相等,即可列方程求解即可.本题考查的是数轴上两点间距离的定义,根据题意列出关于x的方程是解答此题的关键.9.【答案】D【解析】解:设AB长度为acm,∵根据三角形的三边关系定理得:8-5<a<8+5,∴3<a<13,∴8+5+3<a+8+5<13+8+5,即16<a+8+5<26,∵△ABC的周长为xcm,∴16<x<26,故选:D.根据三角形的三边关系定理求出边AB的范围,再根据不等式的性质进行变形,即可得出选项.本题考查了三角形的三边关系定理,能求出边AB的范围是解此题的关键.10.【答案】C【解析】解:由勾股定理得:AC=BC=,AB=,∵AC2+BC2=AB2=10,∴△ABC为等腰直角三角形,∴∠ABC=45°,故选:C.利用勾股定理的逆定理证明△ACB为直角三角形即可得到∠ABC的度数.本题考查了勾股定理的逆定理,解答本题的关键是根据正方形的性质求出边长,由勾股定理的逆定理判断出等腰直角三角形.11.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=-2.故选:A.先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.12.【答案】D【解析】解:连接DF、BD、EB,由折叠的性质可知,FD=FB,在Rt△DCF中,DF2=(4-DF)2+32,解得,DF=cm,由折叠的性质可得,∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴平行四边形BFDE是菱形,在Rt△BCD中,BD═=5,∵S=EF×BD=BF×CD,菱形BFDE∴×EF×5=×3,解得EF=3.75,故选:D.根据折叠的性质得到FD=FB,根据勾股定理求出BF,证明平行四边形BFDE是菱形,根据菱形的面积公式计算即可.本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.13.【答案】148.877【解析】解:∵533=148877,∴5.33=148.877,故答案为:148.877.直接利用有理数的乘方运算性质得出答案.此题主要考查了有理数的乘方运算,正确得出小数点移动位数是解题关键.14.【答案】5【解析】解:当x-2=时,原式=[(x+2)-4]2=(x-2)2=5故答案为:5根据二次根式的运算法则以及完全平方公式即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用完全平方公式,本题属于基础题型.15.【答案】1【解析】解:∵3<<4,∴a=3,b=-3,∴b(+a)=(-3)(+3)=10-9=1,故答案为:1.先求出的范围,求出a、b的值,代入根据平方差公式求出即可.本题考查了估算无理数的大小,平方差公式的应用,解此题的关键是求出a、b的值.16.【答案】-3<a≤-2【解析】解:,解①得:x≥a,解②得:x<2.∵不等式组有四个整数解,∴不等式组的整数解是:-2,-1,0,1.则实数a的取值范围是:-3<a≤-2.故答案是:-3<a≤-2.首先解不等式组,即可确定不等式组的整数解,即可确定a的范围.本题考查了不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.【答案】a+b-2c【解析】解:原式=|a|-|a+c|+|c-a|+b,=a-(a+c)+(a-c)+b,=a-a-c+a-c+b,=a+b-2c.故答案为:a+b-2c.根据=|a|进行化简,然后再利用绝对值的性质化简,再合并同类项即可.此题主要考查了实数运算,关键是掌握二次根式的性质和绝对值的性质.18.【答案】2n n2-1 n2+1【解析】解:∵当n=2时,a=2×2=4,b=22-1=3,c=22+1=5n=3时,a=2×3=6,b=32-1=8,c=32+1=10n=4时,a=2×4=8,b=42-1=15,c=42+1=17…∴勾股数a=2n,b=n2-1,c=n2+1.故答案为:2n,n2-1,n2+1.由n=2时,a=2×2=4,b=22-1=3,c=22+1=5;n=3时,a=2×3=6,b=32-1=8,c=32+1=10;n=4时,a=2×4=8,b=42-1=15,c=42+1=17…得出a=2n,b=n2-1,c=n2+1,满足勾股数.此题主要考查了数据变化规律,得出a与b以及a与c的关系是解题关键.19.【答案】解:(1)设一块A型小黑板x元,一块B型小黑板y元.则,解得.答:一块A型小黑板100元,一块B型小黑板80元.(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块则,解得20≤m≤22,又∵m为正整数∴m=20,21,22则相应的60-m=40,39,38∴共有三种购买方案,分别是方案一:购买A型小黑板20块,购买B型小黑板40块;方案二:购买A型小黑板21块,购买B型小黑板39块;方案三:购买A型小黑板22块,购买B型小黑板38块.方案一费用为100×20+80×40=5200元;方案二费用为100×21+80×39=5220元;方案三费用为100×22+80×38=5240元.∴方案一的总费用最低,即购买A型小黑板20块,购买B型小黑板40块总费用最低,为5200元【解析】(1)设购买一块A型小黑板需要x元,一块B型为y元,根据等量关系:购买一块A型小黑板比买一块B型小黑板多用20元;购买5块A型小黑板和4块B型小黑板共需820元;可列方程组求解.(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,根据需从公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量至少占总数量的,可列不等式组求解.本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量至少占总数量的,列出不等式组求解.20.【答案】解:(1)∵a,b为实数,且+(1-b)=0,∴1+a=0,1-b=0,解得a=-1,b=1,∴a2017-b2018=(-1)2017-12018=(-1)-1=-2;(2)2(x2-2)3-16=0,2(x2-2)3=16,(x2-2)3=8,x2-2=2,x2=4,x=±2.【解析】(1)根据+(1-b)=0和二次根式有意义的条件,可以求得a、b的值,从而可以求得所求式子的值;(2)根据立方根的定义求出x2-2=2,再根据平方根的定义即可解答本题.本题考查非负数的性质:算术平方根,整式的混合运算-化简求值,解答本题的关键是明确它们各自的计算方法.21.【答案】解:(1)++-=-0.5+--=-;(2)(+)=(+)×(-)×(-)=4-4;(3)(2+-6)÷=(6+-2)÷2=.【解析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用平方差公式计算得出答案;(3)首先化简二次根式,进而计算得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:(1),解不等式①得x≥-1,解不等式②得x<9,故不等式的解集为-1≤x<9,把解集在数轴上表示出来为:(2),解不等式①得x≤5,解不等式②得x>-4,故不等式的解集为-4<x≤5.【解析】(1)求出两个不等式的解集的公共部分,并把解集在数轴上表示出来即可;(2)求出两个不等式的解集的公共部分即可.考查了在数轴上表示不等式的解集,用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.23.【答案】解:(1)∵AD=4,AB=2,∠BAD=90°,∴BD==6.又BC=8,CD=10,∴BD2+BC2=CD2,∴BD⊥BC;(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=×4×2+×6×8=4+24.【解析】(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据图形得到四边形ABCD的面积=2个直角三角形的面积和即可求解.此题主要考查了勾股定理和勾股定理的逆定理,把四边形的面积分解成两个直角三角形的面积来求是解本题的关键所在.24.【答案】解:(1)连接OA,如图1所示∵C为AB的中点,AB=8cm,∴AC=4cm又∵CD=2cm设⊙O的半径为r,则(r-2)2+42=r2解得:r=5∴S=πr2=π×25=25π(2)OC=OD-CD=5-2=3EC=EO+OC=5+3=8∴EA===4∴EF===2∴OF===【解析】(1)连接OA,根据AB=8cm,CD=2cm,C为AB的中点,设半径为r,由勾股定理列式即可求出r,进而求出面积.(2)在Rt△ACE中,已知AC、EC的长度,可求得AE的长,根据垂径定理可知:OF⊥AE,FE=FA,利用勾股定理求出OF的长.本题主要考查了垂径定理和勾股定理,作出辅助线是解题的关键.人教版数学八年级下册期中考试试题【含答案】一、选择題:本题共10小題,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求1.(4分)下列各组数中不能作为直角三角形的三边长的是()A.,,B.6,8,10C.7,24,25D.,3,5 2.(4分)下列各曲线中不能表示y是x函数的是()A.B.C.D.3.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=16,则正方形ADEC和正方形BCFG 的面积和为()A.16B.32C.160D.2564.(4分)下列条件中,能判断四边形是菱形的是()A.对角线相等的平行四边形B.对角线互相垂直且相等的四边形C.对角线互相平分且垂直的四边形D.对角线互相垂直的四边形5.(4分)一次函数y=kx+b中,y随x的增大而增大,b<0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(4分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,CE是AB边上的中线,AD=3,CE=5,则CD等于()A.3B.4C.D.7.(4分)如图,矩形纸片ABCD中,AD=4,AB=8,把纸片沿直线AC折叠,点B落在E处,AE交DC于点F,若DF=3,则EF的长为()A.3B.2C.4D.58.(4分)如图,在平行四边形ABCD中,∠BAD的平分线交CD于点G,AD=AE.若AD=5,DE=6,则AG的长是()A.6B.8C.10D.129.(4分)已知菱形ABCD,对角线交点为O,延长CD至E且CD=DE.下列判断正确个数是()(1)∠AOB=90°;(2)AE=2OD;(3)∠OAE=90°;(4)∠AEO=∠CEO.A.1个B.2个C.3个D.4个10.(4分)甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s 关于t的函数图象的一部分如图所示.下列结论正确的个数是()(1)t=5时,s=150;(2)t=35时,s=450;(3)甲的速度是30米/分;(4)t=12.5时,s=0.A.1个B.2个C.3个D.4个二、填空题;本题共6小题,每小题4分,共24分11.(4分)已知点P(a,3)在一次函数y=x+1的图象上,则a=.12.(4分)命题“矩形的对角线相等”的逆命题是.13.(4分)在矩形ABCD中,两条对角线AC、BD相交于点O,∠AOB=60°,若AB=4,则AC=.14.(4分)勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,显然这个方程有无数解,满足该方程的正整数(a,b,c)通常叫做勾股数.如果三角形最长边c=2n2+2n+1,其中一短边a=2n+1,另一短边为b,如果a,b,c是勾股数,则b=(用含n 的代数式表示,其中n为正整数)15.(4分)若直线y=kx+k+1经过点(m,n+2)和(m+1,2n﹣1),且0<k<2,n是整数,则n=.16.(4分)如图,O为矩形ABCD对角线AC,BD的交点,AB=9,AD=18,M,N是直线BC上的动点,且MN=3,则OM+ON最小值=.三、解答题:本題共9小題,共86分.解答应写出文字说明、证明过程或演算步骤17.(8分)已知Rt△ABC,∠B=90°,∠A=30°,BC=3,求AC,AB的长.18.(8分)如图,在数轴上作出表示的点(不写作法,要求保留作图痕迹).19.(8分)如图,在平行四边形ABCD中,点E,F分别为边BC,AD的中点.求证:四边形AECF是平行四边形.20.(8分)证明:斜边和一条直角边对应相等的两个直角三角形全等.21.(8分)如图,已知菱形ABCD,四个顶点坐标分别为A(m,n),B(1,2),C(m+﹣1,2),D(m+,n).求m,n的值.22.(10分)如图,矩形纸片ABCD,AB=8,AE=EG=GD=4,AB∥EF∥GH.将矩形纸片沿BE折叠,得到△BA′E(点A折叠到A′处),展开纸片;再沿BA′折叠,折痕与GH,AD分别交于点M,N,然后将纸片展开.(1)连接EM,证明A′M=MG;(2)设A′M=MG=x,求x值.23.(10分)旺财水果店每天都会进一些草莓销售,在一周销售过程中他发现每天的销售量y(单位:千克)会随售价x(单位:元/千克)而变化,部分数据记录如表如果已知草莓每天销量y与售价x(30.5>x>14)满足一次函数关系.(1)请根据表格中数据求出这个一次函数关系式;(2)如果进价为14元/千克,请判断售价分别定为20元/千克和25元/千克,哪天的销售利润更高?24.(13分)如图,已知点A(﹣3,0),点B(0,m),直线l:x=1.直线AB与直线l交于点C,连结OC.(1)△OBC的面积与△OAC的面积比是否是定值?如果是,请求出面积比;如果不是,请说明理由.(2)若m=2,点T在直线l上且TA=TB,求点T的坐标.25.(13分)(1)正方形ABCD,E、F分别在边BC、CD上(不与端点重合),∠EAF =45°,EF与AC交于点G①如图(i),若AC平分∠EAF,直接写出线段EF,BE,DF之间等量关系;②如图(ⅱ),若AC不平分∠EAF,①中线段EF,BE,DF之间等量关系还成立吗?若成立请证明;若不成立请说明理由(2)如图(ⅲ),矩形ABCD,AB=4,AD=8.点M、N分别在边CD、BC上,AN=2,∠MAN=45°,求AM的长度.2018-2019学年福建省福州市闽侯县八年级(下)期中数学试卷参考答案与试题解析一、选择題:本题共10小題,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求1.(4分)下列各组数中不能作为直角三角形的三边长的是()A.,,B.6,8,10C.7,24,25D.,3,5【分析】由两条短边长的平方和不等于长边的平方,可得出这三个数不能作为直角三角形的三边长,此题得解.【解答】解:∵()2+()2=7≠()2,∴,,不能作为直角三角形的三边长.故选:A.【点评】本题考查了勾股定理的逆定理,牢记“如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形”是解题的关键.2.(4分)下列各曲线中不能表示y是x函数的是()A.B.C.D.【分析】在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.【解答】解:显然A、B、C选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;D选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选:D.【点评】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.3.(4分)如图,在Rt△ABC中,∠ACB=90°,AB=16,则正方形ADEC和正方形BCFG 的面积和为()A.16B.32C.160D.256【分析】根据勾股定理求出AC2+BC2,根据正方形的面积公式计算.【解答】解:在Rt△ACB中,AC2+BC2=AB2=256,则正方形ADEC和正方形BCFG的面积和=AC2+BC2=256,故选:D.【点评】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.4.(4分)下列条件中,能判断四边形是菱形的是()A.对角线相等的平行四边形B.对角线互相垂直且相等的四边形C.对角线互相平分且垂直的四边形D.对角线互相垂直的四边形【分析】利用菱形的判定进行判断即可.【解答】解:A、对角线相等的平行四边形是矩形,故选项A错误;B、对角线互相垂直且相等的四边形不一定是菱形,故选项B错误;C、对角线互相平分且垂直的四边形是菱形,故选项C正确;D、对角线互相垂直的四边形不一定是菱形,故选项D错误;故选:C.【点评】本题考查了菱形的判定,平行四边形的性质,熟练运用这些性质是本题的关键.5.(4分)一次函数y=kx+b中,y随x的增大而增大,b<0,则这个函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题意,易得k>0,且kb异号,即k>0,而b<0,结合一次函数的性质,可得答案.【解答】解:根据题意,一次函数y=kx+b的值随x的增大而增大,即k>0,又∵b<0,∴这个函数的图象经过第一三四象限,∴不经过第二象限,故选:B.【点评】本题考查一次函数的性质,注意一次项系数与函数的增减性之间的关系.6.(4分)如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,CE是AB边上的中线,AD=3,CE=5,则CD等于()A.3B.4C.D.【分析】根据直角三角形的性质得出AE=CE=5,进而得出DE=2,利用勾股定理解答即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=3,∴DE=2,∵CD为AB边上的高,∴在Rt△CDE中,CD==,故选:C.【点评】此题考查直角三角形的性质,关键是根据直角三角形的性质得出AE=CE=5.7.(4分)如图,矩形纸片ABCD中,AD=4,AB=8,把纸片沿直线AC折叠,点B落在E处,AE交DC于点F,若DF=3,则EF的长为()A.3B.2C.4D.5【分析】先利用进行的性质得到∠D=90°,则可根据勾股定理计算出AF=5,再根据折叠的性质得到AE=AB=8,锐角计算AE﹣AF即可.【解答】解:∵四边形ABCD为矩形,∴∠D=90°,在Rt△ADF中,AF==5,∵把矩形ABCD沿直线AC折叠,点B落在E处,∴AE=AB=8,∴EF=8﹣5=3.故选:A.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质.8.(4分)如图,在平行四边形ABCD中,∠BAD的平分线交CD于点G,AD=AE.若AD=5,DE=6,则AG的长是()A.6B.8C.10D.12【分析】首先证明线段AG与线段DE互相垂直平分,利用勾股定理求出AH即可解决问题;【解答】解:如图,设AG交BD于H.∵AD=AE,AG平分∠BAD,∴AG垂直平分DE,∴DH=EH=3,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠AGD=∠GAB,∵∠DAG=∠GAB,∴∠DAG=∠DGA,∴DA=DG,∵DE⊥AG,∴AH=GH,在Rt△ADH中,AH===4,∴AG=2AH=8.故选:B.【点评】本题考查了平行四边形的性质、等腰三角形的判定和性质、勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题;9.(4分)已知菱形ABCD,对角线交点为O,延长CD至E且CD=DE.下列判断正确个数是()(1)∠AOB=90°;(2)AE=2OD;(3)∠OAE=90°;(4)∠AEO=∠CEO.A.1个B.2个C.3个D.4个【分析】由菱形的性质得出AC⊥BD,AB=CD,OB=OD,AB∥CD,得出∠AOB=90°,(1)正确;求出四边形ABDE是平行四边形,得出AE∥BD,AE=BD=2OD,(2)正确;证出AC⊥AE,得出∠OAE=90°,(3)正确;由三角形的边角关系得出(4)错误;即可得出结论.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AB=CD,OB=OD,AB∥CD,∴∠AOB=90°,(1)正确;∵DE=CD,∴AB=DE.∴四边形ABDE是平行四边形,∴AE∥BD,AE=BD=2OD,(2)正确;∵AC⊥BD,∴AC⊥AE,∴∠OAE=90°,(3)正确;∵AE∥BD,∴∠AEO=∠DOE,∵DE=CD>OD,∴∠DOE>∠CEO,∴∠AEO>∠CEO,(4)错误;正确的个数有3个,故选:C.【点评】本题考查了菱形的性质、平行四边形的判定与性质、三角形的边角关系;熟练掌握平行四边形的判定与性质是解题的关键.10.(4分)甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s 关于t的函数图象的一部分如图所示.下列结论正确的个数是()(1)t=5时,s=150;(2)t=35时,s=450;(3)甲的速度是30米/分;(4)t=12.5时,s=0.A.1个B.2个C.3个D.4个【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【解答】解:由图象可知,当t=5时,s=150,故(1)正确;当t=35时,s=450,故(2)正确;甲的速度是150÷5=30米/分,故(3)正确;令30t=50(t﹣5),解得,t=12.5,即当t=12.5时,s=0,故(4)正确;故选:D.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题;本题共6小题,每小题4分,共24分11.(4分)已知点P(a,3)在一次函数y=x+1的图象上,则a=2.【分析】把点P的坐标代入一次函数解析式,列出关于a的方程,通过解方程来求a的值.【解答】解:∵点P(a,3)在一次函数y=x+1的图象上,∴3=a+1,解得,a=2.故答案是:2.【点评】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx+b(k≠0).12.(4分)命题“矩形的对角线相等”的逆命题是如果一个四边形的对角线相等,则这个四边形是矩形.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:命题“矩形的对角线相等”的条件为“如果一个四边形是矩形”,结论为“那么这个四边形的对角线相等”.则原命题的逆命题是“如果一个四边形的对角线相等,则这个四边形是矩形”.故答案为:如果一个四边形的对角线相等,则这个四边形是矩形.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.(4分)在矩形ABCD中,两条对角线AC、BD相交于点O,∠AOB=60°,若AB=4,则AC=8.【分析】根据矩形的性质,可以得到△AOB是等边三角形,则可以求得OA的长,进而求得AC的长.【解答】解:∵矩形ABCD,OA=OB又∵∠AOB=60°∴△AOB是等边三角形.∴OA=AB=4,∴AC=2OA=8.故答案是:8.【点评】本题考查了矩形的性质,正确理解△AOB是等边三角形是关键.14.(4分)勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,显然这个方程有无数解,满足该方程的正整数(a,b,c)通常叫做勾股数.如果三角形最长边c=2n2+2n+1,其中一短边a=2n+1,另一短边为b,如果a,b,c是勾股数,则b=2n2+2n(用含n的代数式表示,其中n为正整数)【分析】根据勾股定理解答即可.【解答】解:c=2n2+2n+1,a=2n+1∴b=2n2+2n,故答案为:2n2+2n【点评】本题考查了勾股数,根据勾股定理解答是解题的关键.15.(4分)若直线y=kx+k+1经过点(m,n+2)和(m+1,2n﹣1),且0<k<2,n是整数,则n=4.【分析】根据题意列方程组得到k=n﹣4,由于0<k<2,于是得到0<n﹣3<2,即可得到结论.【解答】解:依题意得:,∴k=n﹣3,∵0<k<2,∴0<n﹣3<2,∴3<n<5,∵n是整数,则n=4故答案为4.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是:牢记“直线上任意一点的坐标都满足函数关系式y=kx+b,根据一次函数k的几何意义找出关于n的一元一次不等式.16.(4分)如图,O为矩形ABCD对角线AC,BD的交点,AB=9,AD=18,M,N是直线BC上的动点,且MN=3,则OM+ON最小值=3.【分析】利用轴对称变换以及平移变换,作辅助线构造平行四边形,依据平行四边形的性质以及轴对称的性质,可得当O,N,Q在同一直线上时,OM+ON的最小值等于OQ 长,利用勾股定理进行计算,即可得到OQ的长,进而得出OM+ON的最小值.【解答】解:如图所示,作点O关于BC的对称点P,连接PM,将MP沿着MN的方向平移MN长的距离,得到NQ,连接PQ,则四边形MNQP是平行四边形,∴MN=PQ=3,PM=NQ=MO,∴OM+ON=QN+ON,当O,N,Q在同一直线上时,OM+ON的最小值等于OQ长,连接PO,交BC于E,。