第01章 fluent简单算例21
- 格式:doc
- 大小:10.32 MB
- 文档页数:47
一年一度的毕业设计就要到来了,CAE软件依然是流体专业众多学子毕设的拦路虎,为了使各高校流体同学顺利完成毕业设计以及有志于在流体行业有一番作为的青年才俊迅速掌握一门技能,从而更好地适应职场需求,北京经纬云图仿真科技有限公司感谢各位同行的支持和厚爱,特组织各方面CAE软件专家长期进行免费在线网络培训,诚邀您的参与!特此声明:本公司的所有培训将主要以工程实例为基础进行,让您真正的学到知识,懂得原理,而不仅仅是简单的软件操作。
最重要的一点是为了回馈广大同仁们,本公司的培训完全免费,机不可失失不再来啊!主办单位:北京经纬云图仿真科技有限公司培训时间:每周五晚8:00---9:30培训方式:在线免费网络培训培训2000人QQ群:281194860(参与培训请加入,注明:FLUENT培训)培训内容:见附录附录:1,基础流动计算以AICD装置为例,说明利用fluent进行基础的流动模拟的步骤,包括计算设置和简单的后处理2,两相流Mix模型应用以某烟雾报警器为例,利用mix两相流模型,预测烟雾报警器内部的烟雾浓度分布3,空化问题以某拉瓦尔喷管型的空化装置为例,利用mix两相流模型和空化模型,计算装置内的水的空化情况4,水的蒸发和凝结以某水蒸气动力装置为例,利用mix两相流模型和蒸发凝结模型(fluent自带蒸发凝结模型和udf编程),并利用瞬态计算的方法,得到装置的瞬时流场分布和水凝结情况5,湿空气的露点问题以某实验装置为例,说明露点问题与蒸发凝结问题的本质区别,利用mix两相流模型和udf 露点模型,计算过冷空气中的水析出的问题,并与理论结果进行对比6,萃取问题(溶液间传质问题)以某反应塔的一层为例,利用mix两相流模型、组分输运模型和udf传质模型,计算甲苯的萃取过程,以及利用瞬态计算的方法,得到脉动进口条件对于萃取过程的影响7,水中气泡上升以某鱼缸中通过气泡的模型为例,利用vof两相流模型和udf气泡源,利用瞬态计算的方法,得到水中的连续气泡上升的流动动画8,融化、蒸发联合作用问题以低压力环境中的固态铝加热为例,利用vof两相流模型、融化凝固模型、蒸发凝结模型和udf加热源,利用瞬态计算的方法,计算铝融化后的液面形状9,粒子冲蚀问题以某钻井装置为例,利用DPM模型和粒子冲蚀模型,计算在钻井的过程中,钻头以及装置各部分的磨损情况10,高温粒子喷涂问题以某高温粒子喷涂装置为例,利用DPM模型和粒子融化、蒸发模型,计算在高温喷涂的过程中,不同半径粒子的运动轨迹,和粒子的融化、蒸发情况11,二维齿轮动网格以某二维齿轮泵为例,利用动网格模型中的刚体运动模型,模拟齿轮泵的啮合工作过程12,Six dof动网格问题以三维空间中小球斜射入水的问题为例,利用动网格模型和six dof模型,模拟小球从空气中斜射入水过程中的运动和受力情况13,流热耦合问题以某水泵的相关部件为例,利用流热耦合方法和udf热源,模拟水泵工作过程中的摩擦生热问题,以及冷却问题14,电磁搅拌问题以带有电磁搅拌的坩埚为例,利用udf体积力源项和mix两相流模型的方法,模拟电磁搅拌对于坩埚内合金金属的浓度分布的影响15,多孔介质问题以某带有多孔漏斗装置的化学反应塔为例,首先对多孔漏斗进行直接数值模拟得到多孔介质的属性参数,然后利用多孔介质和组分输运模型进行计算,得到反应塔内部各组分的浓度分布。
FLUENT中文手册(简化版)本手册介绍FLUENT的使用方法,并附带了相关的算例。
下面是本教程各部分各章节的简略概括。
第一部分:☐开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中给出了一个简单的算例。
☐使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。
☐读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。
☐单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。
☐使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。
还描述了非一致(nonconformal)网格的使用.☐边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等☐物理特性:描述了如何定义流体的物理特性与方程。
FLUENT采用这些信息来处理你的输入信息。
第二部分:☐基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。
☐湍流模型:描述了FLUENT的湍流模型以及使用条件。
☐辐射模型:描述了FLUENT的热辐射模型以及使用条件。
☐化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。
☐污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。
第三部分:☐相变模拟:描述了FLUENT的相变模型及其使用方法。
☐离散相变模型:描述了FLUENT的离散相变模型及其使用方法。
☐多相流模型:描述了FLUENT的多相流模型及其使用方法。
☐移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。
FLUENT中文手册(简化版)本手册介绍FLUENT的使用方法,并附带了相关的算例。
下面是本教程各部分各章节的简略概括。
第一部分:☐开始使用:描述了FLUENT的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中给出了一个简单的算例。
☐使用界面:描述用户界面、文本界面以及在线帮助的使用方法,还有远程处理与批处理的一些方法。
☐读写文件:描述了FLUENT可以读写的文件以及硬拷贝文件。
☐单位系统:描述了如何使用FLUENT所提供的标准与自定义单位系统。
☐使用网格:描述了各种计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。
还描述了非一致(nonconformal)网格的使用.☐边界条件:描述了FLUENT所提供的各种类型边界条件和源项,如何使用它们,如何定义它们等☐物理特性:描述了如何定义流体的物理特性与方程。
FLUENT采用这些信息来处理你的输入信息。
第二部分:☐基本物理模型:描述了计算流动和传热所用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)及其使用方法,还有自定义标量的信息。
☐湍流模型:描述了FLUENT的湍流模型以及使用条件。
☐辐射模型:描述了FLUENT的热辐射模型以及使用条件。
☐化学组分输运和反应流:描述了化学组分输运和反应流的模型及其使用方法,并详细叙述了prePDF 的使用方法。
☐污染形成模型:描述了NOx和烟尘的形成的模型,以及这些模型的使用方法。
第三部分:☐相变模拟:描述了FLUENT的相变模型及其使用方法。
☐离散相变模型:描述了FLUENT的离散相变模型及其使用方法。
☐多相流模型:描述了FLUENT的多相流模型及其使用方法。
☐移动坐标系下的流动:描述单一旋转坐标系、多重移动坐标系、以及滑动网格的使用方法。
FLUENT全攻略流体中文网倾情奉献 雷锋精神永放光芒!2005年3月5日版权声明本书乃周华站长、孙为民、徐丽、宋剑的个人工作成果,仅供流体中文网网友下载交流之用,请下载后24小时内删除。
本网对书中内容不承担任何法律责任,请谨慎使用!祝大家身体健康,万事如意!2005年3月5日星期六 纪年学习雷锋四十二周年《FLUENT全攻略》目录第一章 FLUENT 软件介绍1.1 FLUENT软件概述 (1)1.2 软件安装与启动 (4)1.3 FLUENT用户手册 (7)1.4 FLUENT 文件读入与输出 (16)1.5 FLUENT 中的单位制 (28)1.6 FLUENT 的计算策略 (31)1.7 FLUENT 的计算方式 (32)1.8 例题:方腔流动计算 (34)1.9 本章小结 (47)第二章 FLUENT 的计算步骤2.1 问题概述 (48)2.2 处理网格 (49)2.3 计算模型 (52)2.4 定义材料性质 (54)2.5 定义边界条件 (55)2.6 求解过程 (58)2.7 显示计算结果 (62)2.8 启用二阶精度离散格式 (67)2.9 调整网格 (70)2.10 总结 (77)第三章 GAMBIT 网格划分基础3.1 对连续场的离散化处理 (78)3.2 网格生成技术 (79)3.3 复杂外形网格生成 (82)3.4 用GAMBIT 生成网格的步骤 (83)3.5 GAMBIT 的图形用户界面 (85)3.6 GAMBIT 菜单命令 (86)3.7 用GAMBIT 创建基本二维几何模型 (88)3.8 二维网格划分 (96)3.9 定义二维网格区域类型 (103)3.10 网格文件保存和输出 (104)3.11 三维建模 (105)3.12 CAD/CAE 接口 (121)第四章 FLUENT对网格文件的操作4.1 网格的拓扑结构 (128)4.2 网格划分的要求 (140)4.3 载入网格 (142)4.4 非正则网格 (150)4.5 检查网格 (155)4.6 报告网格的统计数据 (158)4.7 修改网格 (161)4.8 将网格分区用于并行计算 (179)第五章 适应性网格技术5.1 使用适应性网格 (193)5.2 网格适应过程 (196)5.3 边界适应 (203)5.4 梯度适应 (207)5.5 各向同性适应 (211)5.6 区域适应 (214)5.7 体积适应 (218)5.8 y+和y*适应 (221)5.9 管理适应记录 (224)5.10 适应性控制 (229)5.11 用光滑和交换的方式改善网格 (231)第六章 求解技术6.1 数值格式回顾 (237)6.2 离散化 (240)6.3 多重网格法 (242)6.4 使用求解器的基本步骤 (243)6.5 选择离散格式 (244)6.6 选择压强-速度关联算法 (246)6.7 设置亚松弛因子 (247)6.8 改变库朗数 (247)6.9 引入FAS 多重网格 (248)6.10 设置求解极限 (249)6.11 初始化 (250)6.12 流场求解 (253)6.13 监视计算收敛过程 (258)6.14 用动画显示解 (264)6.15 在计算过程中执行命令 (266)6.16 收敛性和稳定性 (268)第七章 FLUENT的物理模型7.1 基本流动模型 (271)7.2 湍流模型 (274)7.3 活动变形区域中的流动计算 (278)7.4 化学反应模型 (289)7.5 燃烧模型 (298)7.6 PDF 输运模型 (303)7.7 弥散相模型 (306)7.8 多相流模型 (316)7.9 固化与熔化模型 (324)7.10 气动噪声模型 (326)7.11 热交换模型 (331)7.12 本章小结 (342)第八章 边界条件8.1 边界条件问题回顾 (343)8.2 流动的入口和出口 (347)8.3 压强入口边界条件 (352)8.4 速度入口边界条件 (358)8.5 质量流入口边界条件 (362)8.6 通风入口边界条件 (366)8.7 进气风扇边界条件 (368)8.8 压强出口边界条件 (369)8.9 压强远场边界条件 (373)8.10 出流边界条件 (375)8.11 通风出口边界条件 (377)8.12 排气风扇边界条件 (378)8.13 壁面边界条件 (379)8.14 对称边界条件 (394)8.15 周期性边界条件 (395)8.16 轴边界条件 (398)8.17 流体条件 (399)8.18 固体条件 (401)8.19 多孔介质条件 (402)8.20 风扇边界条件 (415)8.21 散热器边界条件 (419)8.22 多孔跃升边界条件 (422)8.23 无反射边界条件 (423)8.24 用户自定义风扇模型 (424)8.25 换热器模型 (430)8.26 边界型函数 (440)8.27 将变量的值设为固定值 (445)8.28 定义质量、动量、能量和其他源项 (446)第九章 材料性质9.1 物性参数设定简介 (448)9.2 密度 (459)9.3 粘度 (463)9.4 导热系数 (470)9.5 比热 (477)9.6 辐射特性 (478)9.7 质量扩散系数 (481)9.8 其他物性参数 (485)9.9 操作压强 (487)9.10 真实气体模型 (489)第十章 移动与变形区域流动计算10.1 移动区域模拟方法概述 (500)10.2 旋转坐标系中的流场计算 (500)10.3 MRF 模型 (506)10.4 混合面模型 (509)10.5 滑动网格模型 (514)10.6 动网格模型 (520)第十一章 为数据显示、报告创建表面11.1 应用表面 (538)11.2 区域表面 (539)11.3 分块表面 (539)11.4 点表面 (541)11.5 线和耙表面 (542)11.6 平面 (544)11.7 二次曲线表面 (547)11.8 等值面 (548)11.9 折叠表面 (548)11.10 改变表面形状 (550)11.11 分组、改名、删除表面 (551)第十二章 图形及可视化技术12.1 生成基本图形 (553)12.2 调整图形显示方式 (572)12.3 控制鼠标功能 (576)12.4 修改观察方式 (577)12.5 构建场景 (579)12.6 动画技术 (581)12.7 柱状图与XY插值曲线 (583)第十三章 计算报告13.1 边界通量的计算 (591)13.2 边界上作用力的计算 (593)13.3 计算投影面积 (595)13.4 表面积分 (596)13.5 体积分 (601)13.6 柱状图报告 (603)13.7 参考值设定 (604)13.8 关于算例设置的摘要报告 (607)第十四章 TECPLOT 简介14.1 TECPLOT 基本功能 (609)14.2 TECPLOT 数据格式 (614)14.3 TECPLOT 读入FLUENT 文件 (624)14.4 TECPLOT 绘图环境设置 (626)第十五章 TECPLOT 实战15.1 绘制XY 曲线 (634)15.2 绘制矢量图 (637)15.3 绘制等值线图 (639)15.4 绘制流线图 (643)15.5 绘制散点图 (646)15.6 绘制三维流场剖面图 (648)第十六章 场函数定义16.1 节点和单元的值 (655)16.2 速度报告选项 (656)16.3 定制场函数 (657)第十七章 并行处理17.1 并行处理简介 (661)17.2 启动求解器的并行版本 (662)17.3 使用并行的工作站网络 (664)17.4 检查并改进并行计算性能 (668)第十八章 用户自定义函数18.1 概论 (671)18.2 写用户定义函数(UDF) (674)18.3 通译和编译及连接用户定义函数(UDF) (733)18.4 用户定义函数(UDF)举例 (786)FLUENT6.1全攻略第一篇FLUENT基础知识第一章 FLUENT软件介绍 FLUENT软件是目前市场上最流行的CFD软件,它在美国的市场占有率达到60%。
FLUEN教程赵玉新I、目录第一章、开始第二章、操作界面第三章、文件的读写第四章、单位系统第五章、读入和操作网格第六章、边界条件第七章、物理特性第八章、基本物理模型第九章、湍流模型第十章、辐射模型第十一章、化学输运与反应流第十二章、污染形成模型第十三章、相变模拟第十四章、多相流模型第十五章、动坐标系下的流动第十六章、解算器的使用第十七章、网格适应第十八章、数据显示与报告界面的产生第十九章、图形与可视化第二十章、Alphanumeric Reporting 第二十一章、流场函数定义第二十二章、并行处理第二十三章、自定义函数第二十四章、参考向导第二十五章、索引( Bibliograp)hy 第二十六章、命令索引II、如何使用该教程概述本教程主要介绍了FLUEN的使用,其中附带了相关的算例,从而能够使每一位使用者在学习的同时积累相关的经验。
本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。
第二和第三部分包含物理模型,解以及网格适应的信息。
第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUEN所使用的流场函数与变量的定义。
下面是各章的简略概括第一部分:z 开始使用:本章描述了FLUEN的计算能力以及它与其它程序的接口。
介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。
在本章中,我们给出了一个可以在你自己计算机上运行的简单的算例。
z 使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。
同时也提供了远程处理与批处理的一些方法。
(请参考关于特定的文本界面命令的在线帮助)z 读写文件:本章描述了FLUENT以读写的文件以及硬拷贝文件。
z单位系统:本章描述了如何使用FLUENTS提供的标准与自定义单位系统。
z 读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale、分区(partition等方法对网格的修改。
第一章Fluent 软件的介绍 fluent 软件的组成:软件功能介绍:GAMBIT专用的CFD 前置处理器(几何/网格生成)Fluent4.5 基于结构化网格的通用CFD 求解器Fluent6.0 基于非结构化网格的通用CFD 求解器Fidap 基于有限元方法的通用CFD 求解器Polyflow 针对粘弹性流动的专用CFD 求解器Mixsim 针对搅拌混合问题的专用CFD 软件Icepak 专用的热控分析CFD 软件软件安装步骤:前处 理 gambit 软件Fluent6.0 Fluent5.5&4.5 Fidap Polyflow Mixsim Icepack 通用软件专用软件step 1: 首先安装exceed软件,推荐是exceed6.2版本,再装exceed3d,按提示步骤完成即可,提问设定密码等,可忽略或随便填写。
step 2: 点击gambit文件夹的setup.exe,按步骤安装;step 3: FLUENT和GAMBIT需要把相应license.dat文件拷贝到FLUENT.INC/license目录下;step 4:安装完之后,把x:\FLUENT.INC\ntbin\ntx86\gambit.exe命令符拖到桌面(x为安装的盘符);step 5: 点击fluent源文件夹的setup.exe,按步骤安装;step 6: 从程序里找到fluent应用程序,发到桌面上。
注:安装可能出现的几个问题:1.出错信息“unable find/open license.dat",第三步没执行;2.gambit在使用过程中出现非正常退出时可能会产生*.lok文件,下次使用不能打开该工作文件时,进入x:\FLUENT.INC\ntbin\ntx86\,把*.lok文件删除即可;3.安装好FLUENT和GAMBIT最好设置一下用户默认路径,推荐设置办法,在非系统分区建一个目录,如d:\usersa)win2k用户在控制面板-用户和密码-高级-高级,在使用fluent用户的配置文件修改本地路径为d:\users,重起到该用户运行命令提示符,检查用户路径是否修改;b)xp用户,把命令提示符发送到桌面快捷方式,右键单击命令提示符快捷方式在快捷方式-起始位置加入D:\users,重起检查。
fluent算例集Fluent算例集是一个强大的工具,可以帮助人们更好地理解和运用流畅的英语。
在这个算例集中,我们将探讨一些常见的英语用法和表达,以及如何在日常交流中更加流利地运用它们。
第一部分:常用口语表达1. 意思是什么?在日常对话中,我们经常会遇到一些不熟悉的词汇或表达。
这时,我们可以用这个句子来询问对方的意思。
比如,如果对方说了一个生词,我们可以问:“这个词的意思是什么?”2. 你是什么意思?有时候,在交流中我们可能会遇到一些误解或不清楚对方的意图。
这个句子可以用来询问对方的具体意思,以便更好地理解对方的观点。
3. 我没听懂。
当我们在听别人说话时,有时候会遇到一些听不懂的地方。
这个句子可以用来表达自己的困惑,并希望对方再解释一遍。
4. 你能再说一遍吗?类似于上一个句子,这个句子也可以用来请求对方再重复一遍刚才的话。
常用在电话或者嘈杂的环境中。
5. 这是什么意思?当我们看到一些不熟悉的符号、图标或者标志时,可以用这个句子来询问它们的具体含义。
比如,在一家陌生的餐厅,我们可以指着菜单上的某个词汇问服务员:“这是什么意思?”第二部分:语法用法示例1. 一般现在时一般现在时是英语中最基础的时态之一。
它用来表达经常性的动作、习惯、真理、现在的状态等。
比如,我们可以说:“我每天早上六点起床。
”或者“太阳从东方升起。
”2. 现在进行时3. 过去时过去时用来表达已经发生的动作或者状态。
比如,我们可以说:“昨天我去了一趟图书馆。
”或者“他在上个月搬家了。
”4. 将来时将来时用来表达将来将要发生的动作或者状态。
比如,我们可以说:“明天我会去参加一个会议。
”或者“他下个月要去巴黎旅行。
”第三部分:写作技巧1. 引入段在写作中,引入段是非常重要的一部分。
它用来引入文章的主题,并吸引读者的注意力。
可以使用一些有趣的事实、引用或者问题来引起读者的兴趣。
2. 主体段落主体段落是文章的核心部分,用来展开和论证文章的主题。
Fluent_操作⼿册第01章fluent简单算例21FLUENT是⽤于模拟具有复杂外形的流体流动以及热传导的计算机程序。
对于⼤梯度区域,如⾃由剪切层和边界层,为了⾮常准确的预测流动,⾃适应⽹格是⾮常有⽤的。
FLUENT解算器有如下模拟能⼒:●⽤⾮结构⾃适应⽹格模拟2D或者3D流场,它所使⽤的⾮结构⽹格主要有三⾓形/五边形、四边形/五边形,或者混合⽹格,其中混合⽹格有棱柱形和⾦字塔形。
(⼀致⽹格和悬挂节点⽹格都可以)●不可压或可压流动●定常状态或者过渡分析●⽆粘,层流和湍流●⽜顿流或者⾮⽜顿流●对流热传导,包括⾃然对流和强迫对流●耦合热传导和对流●辐射热传导模型●惯性(静⽌)坐标系⾮惯性(旋转)坐标系模型●多重运动参考框架,包括滑动⽹格界⾯和rotor/stator interaction modeling的混合界⾯●化学组分混合和反应,包括燃烧⼦模型和表⾯沉积反应模型●热,质量,动量,湍流和化学组分的控制体源●粒⼦,液滴和⽓泡的离散相的拉格朗⽇轨迹的计算,包括了和连续相的耦合●多孔流动●⼀维风扇/热交换模型●两相流,包括⽓⽳现象●复杂外形的⾃由表⾯流动上述各功能使得FLUENT具有⼴泛的应⽤,主要有以下⼏个⽅⾯●Process and process equipment applications●油/⽓能量的产⽣和环境应⽤●航天和涡轮机械的应⽤●汽车⼯业的应⽤●热交换应⽤●电⼦/HV AC/应⽤●材料处理应⽤●建筑设计和⽕灾研究总⽽⾔之,对于模拟复杂流场结构的不可压缩/可压缩流动来说,FLUENT是很理想的软件。
当你决定使FLUENT解决某⼀问题时,⾸先要考虑如下⼏点问题:定义模型⽬标:从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使⽤什么样的边界条件?⼆维问题还是三维问题?什么样的⽹格拓扑结构适合解决问题?物理模型的选取:⽆粘,层流还湍流?定常还是⾮定常?可压流还是不可压流?是否需要应⽤其它的物理模型?确定解的程序:问题可否简化?是否使⽤缺省的解的格式与参数值?采⽤哪种解格式可以加速收敛?使⽤多重⽹格计算机的内存是否够⽤?得到收敛解需要多久的时间?在使⽤CFD分析之前详细考虑这些问题,对你的模拟来说是很有意义的。
Fluent简单分析教程1. 运行Fluent,首先出现如下界面,对于二维模型我们可以选择2d(单精度)或2ddp(双精度)进行模拟,通常选择2d即可。
Mode选择缺省的Full Simulation即可。
点击“Run”。
然后进入如下图示意界面:2. 输入我们应用Gambit建立的msh文件,本例输入car001.msh,如下图点击“Case…”找到car001.msh 所在的目录,打开。
3. 进行网格模型的检查重点看上图红框所显示的值是否为负数,体积或面积非负数为正确,否则说明网格畸形,需要重新修理。
4. 进行网格的缩放,此项主要检查单位和模型尺寸是否正确。
如下图示,首先看单位是否正确,我们的单位选择m,然后看比例,如果比例不正确,可以在Scale Factors 的X和Y中分别输入值10,然后点击“Scale”或“Unscale”,看Xmin和Xmax的值是否正确,如果正确点击“Close”即可。
5. 此项进行网格的平滑与倾斜校正,可以省。
如下图,我们通常直接反复点击“Smooth”和“Swap”几次即可。
点击“Close”。
6. 解算模型的选择如下图,对于我们的分析,一般缺省即可,点击“OK”7. 流体材料的设置缺省流体就是空气“air”,我们不做更改。
点击“Close”。
8. 边界条件的设定这是很重要的一项。
如下图,我们需要仔细检查Gambit中设定的边界类型,看是否正确。
本例中除了air-inlet需要设定空气进入的速度以外,其他的不用更改设置。
如图中示,在Zone中选择air-inlet,在Type中自动显示velocity-inlet,然后点击“Set…”按钮。
在V elocity Magnitude(m/s)中输入空气的流速,我们输入27.78。
表示100km/h速度。
点击“OK”。
点击上图中的“Close”。
9. 下面看Solve选项如下图中的Under-Relaxation Factors表示各类型的松弛因子,通常该大的迭代速度快,但精度较差,小的值,迭代速度慢,但精度较高。
Ansys Fluent基础详细入门教程(附简单算例)当你决定使FLUENT解决某一问题时,首先要考虑如下几点问题:定义模型目标:从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使用什么样的边界条件?二维问题还是三维问题?什么样的网格拓扑结构适合解决问题?物理模型的选取:无粘,层流还湍流?定常还是非定常?可压流还是不可压流?是否需要应用其它的物理模型?确定解的程序:问题可否简化?是否使用缺省的解的格式与参数值?采用哪种解格式可以加速收敛?使用多重网格计算机的内存是否够用?得到收敛解需要多久的时间?在使用CFD分析之前详细考虑这些问题,对你的模拟来说是很有意义的。
第01章fluent介绍及简单算例 (2)第02章fluent用户界面22 (3)第03章fluent文件的读写 (5)第04章fluent单位系统 (8)第05章fluent网格 (10)第06章fluent边界条件 (36)第07章fluent流体物性 (55)第08章fluent基本物理模型 (63)第11章传热模型 (75)第22章fluent 解算器的使用 (82)第01章fluent介绍及简单算例FLUENT是用于模拟具有复杂外形的流体流动以及热传导的计算机程序。
对于大梯度区域,如自由剪切层和边界层,为了非常准确的预测流动,自适应网格是非常有用的。
FLUENT解算器有如下模拟能力:●用非结构自适应网格模拟2D或者3D流场,它所使用的非结构网格主要有三角形/五边形、四边形/五边形,或者混合网格,其中混合网格有棱柱形和金字塔形。
(一致网格和悬挂节点网格都可以)●不可压或可压流动●定常状态或者过渡分析●无粘,层流和湍流●牛顿流或者非牛顿流●对流热传导,包括自然对流和强迫对流●耦合热传导和对流●辐射热传导模型●惯性(静止)坐标系非惯性(旋转)坐标系模型●多重运动参考框架,包括滑动网格界面和rotor/stator interaction modeling的混合界面●化学组分混合和反应,包括燃烧子模型和表面沉积反应模型●热,质量,动量,湍流和化学组分的控制体源●粒子,液滴和气泡的离散相的拉格朗日轨迹的计算,包括了和连续相的耦合●多孔流动●一维风扇/热交换模型●两相流,包括气穴现象●复杂外形的自由表面流动上述各功能使得FLUENT具有广泛的应用,主要有以下几个方面●Process and process equipment applications●油/气能量的产生和环境应用●航天和涡轮机械的应用●汽车工业的应用●热交换应用●电子/HV AC/应用●材料处理应用●建筑设计和火灾研究总而言之,对于模拟复杂流场结构的不可压缩/可压缩流动来说,FLUENT是很理想的软件。
fluent计算步骤哎呀,说到 fluent 计算步骤啊,这可真是个有趣又有点复杂的事儿呢!咱先得有个明确的目标吧,就像咱要去一个地方,得知道自己要干啥呀。
然后呢,建立模型,这就好比搭积木,得把各种形状的积木搭出咱想要的那个样子。
这可不是随便搭搭就行的,得仔细考虑各个部分的关系,就像盖房子得把根基打牢一样。
接下来就是划分网格啦,这就像是给咱的模型穿上一件合适的衣服,不能太大也不能太小,得刚刚好。
网格划分得好,后面的计算才能更顺利呢。
然后就是设置边界条件啦,这可太重要啦!就好像给模型设定一些规则,告诉它这里该怎么表现,那里又该有啥限制。
这可不能马虎,不然整个计算可能就跑偏啦。
再之后就是选择合适的算法和求解器啦,这就像是给模型配上合适的工具,让它能更好地干活儿。
不同的算法和求解器就像不同的工具,得根据咱的需求来选呢。
然后就可以开始计算啦,这就像让模型跑起来一样,看着它一步一步得出结果。
这过程可能有点漫长,就像等一朵花慢慢开放,但咱得有耐心呀。
计算完了可还没完事呢,还得分析结果呀。
看看算出来的东西是不是符合咱的预期,要是不符合,那可得找找原因,是模型有问题呢,还是设置的不对呀。
你说这 fluent 计算步骤像不像一场冒险呀?每一步都得小心翼翼,又充满了期待。
就像走在一条未知的路上,不知道会遇到什么,但只要认真对待,总能找到属于自己的答案。
在这个过程中,可能会遇到各种各样的问题,别着急,别慌张,慢慢解决就是啦。
就像生活中遇到困难一样,办法总比困难多嘛。
而且呀,这fluent 计算步骤可不是死记硬背就能行的,得不断实践,不断摸索,才能真正掌握其中的奥秘。
就像学骑自行车,光知道理论可不行,得上车去骑一骑,摔几跤,才能真正学会呢。
所以呀,大家可别小瞧了这 fluent 计算步骤,它可是个大学问呢!只要咱认真去学,去实践,肯定能在这个领域闯出一片天来。
怎么样,是不是对 fluent 计算步骤有了更深刻的认识啦?加油吧,让我们一起在这个奇妙的计算世界里畅游!。
Fluent高级应用与实例分析—第一章CFD基础第1章 CFD 基础计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等领域。
本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。
1.1 流体力学的基本概念1.1.1 流体的连续介质模型流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。
连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。
1.1.2 流体的性质1. 惯性惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。
惯性与质量有关,质量越大,惯性就越大。
单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。
对于均质流体,设其体积为V ,质量为m ,则其密度为mVρ= (1-1)对于非均质流体,密度随点而异。
若取包含某点在内的体积V ?,其中质量m ?,则该点密度需要用极限方式表示,即0limV mVρ?→?=? (1-2) 2. 压缩性作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。
压缩性(compressibility)可用体积压缩率k 来量度d /d /d d V V k p pρρ=-= (1-3) 式中:p 为外部压强。
FLUENT6.1全攻略第一篇 FLUENT基础知识第一章 FLUENT软件介绍FLUENT软件是目前市场上最流行的CFD软件,它在美国的市场占有率达到60%。
在我们进行的网上调查中发现,FLUENT在中国也是得到最广泛使用的CFD软件。
因此,我们将在这本书中为大家全面介绍FLUENT的相关知识,希望能让您的CFD分析工作变得轻松起来。
用数值方法模拟一个流场包括网格划分、选择计算方法、选择物理模型、设定边界条件、设定材料属性和对计算结果进行后处理几大部分。
本章将概要地介绍FLUENT软件的以下几个方面:(1)FLUENT软件的基本特点。
(2)FLUENT、GAMBIT、TECPLOT和EXCEED的安装和运行。
(3)FLUENT的用户界面。
(4)FLUENT如何读入和输出文件。
(5)FLUENT中使用的单位制。
(6)如何规划计算过程。
(5)FLUENT的基本算法。
1.1FLUENT软件概述1.1.1网格划分技术在使用商用CFD软件的工作中,大约有80%的时间是花费在网格划分上的,可以说网格划分能力的高低是决定工作效率的主要因素之一。
FLUENT软件采用非结构网格与适应性网格相结合的方式进行网格划分。
与结构化网格和分块结构网格相比,非结构网格划分便于处理复杂外形的网格划分,而适应性网格则便于计算流场参数变化剧烈、梯度很大的流动,同时这种划分方式也便于网格的细化或粗化,使得网格划分更加灵活、简便。
FLUENT划分网格的途径有两种:一种是用FLUENT提供的专用网格软件GAMBIT 进行网格划分,另一种则是由其他的CAD软件完成造型工作,再导入GAMBIT中生成网1FLUENT6.1全攻略格。
还可以用其他网格生成软件生成与FLUENT兼容的网格用于FLUENT计算。
可以用于造型工作的CAD软件包括I-DEAS、Pro/E、SolidWorks、Solidedge等。
除了GAMBIT 外,可以生成FLUENT网格的网格软件还有ICEMCFD、GridGen等等。
1.GAMBIT建模(1)操作1;双击桌面“GAMBIT快捷方式”进入操作空间,如下图图1几何模型创建遵循原则:按组成几何模型的几何拓扑结构,由低层向高层创建,即按由点到面,再到体的顺序创建(这样减的好处是便于网格的划分和Fluent求解时边界条件的设定,缺点是步骤繁琐)。
对于较简单的模型,可省略低拓扑结构,直接建立最终模型。
(2)创建节点操作2:鼠标左键依次单击Operation Geometry进入下图图2操作3:左键单击上图Apply,创建第一个点(坐标(0、0、0)),如下图,可以发现坐标原点显示白色图3操作4:在上图2中Global下输入x:200,y:0,z: 0,左键单击Apply, 如下图,操作5:左键单击(作用:窗口显示),如下图重复操作4和操作5,以此建立点(0,-0.0025,0)、(0.05,-0.0025,0)、(0.05、-0.0125)(0.15,0.0025,0),(0.15,0.0125,0),(0.2,0.0025),如下图,(3)节点成线操作1:左键依次单击,然后Shift+鼠标左键依次(为沿围成图形各点顺序)单击所创建的点,如下图,左键单击Apply,如下图,(4)连线成面操作1:左键单击,Shift+左键依次单击图中各线段,如下图,左键单击Apply,如下图,(5)网格划分网格划分遵循原则与模型创建类似操作1:左键依次单击,如下图,操作2:Shift+左键选中模型中一条边操作3:左键单击,弹出菜单中选择interval count,在左侧输入框中输入;200(为该条边上网格节点数),如下图重复操作2和操作3,将沿y方向的短边和长边节点数分别设定为20和80.注意:对于相互平行两边,节点设置可只在一边进行;如果两边均设定,切记两边节点数要一致。
操作4:左键单击,Shift+左键单击图中任一边,所有边显示红色,然后左键单击Apply,如下图,(6)设置边界类型操作1: 左键单击,如下图,操作2:Shift+左键单击模型最左侧沿y方向的短边(显红色),单击,弹出菜单中选择PRESSURE-INLET,左键单击Apply,如下图,操作3:Shift+左键单击模型最右侧沿y方向的短边(显红色),单击,弹出菜单中选择PRESSURE-OUTLET,左键单击Apply,如下图,操作4:其它边不设置,默认为壁面条件。
fluent 简单案例
当然可以,以下是一个简单的 Fluent 案例,用于模拟一个简单的二维管道流。
1. 模型建立:
首先,在 Gambit 中创建一个二维管道模型。
例如,一个长为 1m,直径为的圆管。
2. 网格划分:
使用 Gambit 对模型进行网格划分,选择适当的网格类型和尺寸。
3. 边界条件设置:
入口:速度入口,速度为 m/s。
出口:压力出口,压力为一个大气压。
管壁:无滑移壁面。
4. 求解器设置:
选择压力基求解器,湍流模型选择标准 k-ε 模型。
设置迭代次数为 500,收敛残差为 1e-6。
5. 开始模拟:
完成以上步骤后,可以开始模拟。
Fluent 将计算流场,并显示流速、压力、湍流强度等变量的分布。
6. 后处理:
模拟完成后,可以使用 Fluent 的后处理功能来查看和分析结果。
例如,可
以绘制速度、压力、湍流强度的云图或矢量图。
以上是一个简单的 Fluent 案例,用于模拟二维管道流。
实际应用中,可能
需要根据具体问题调整模型、网格、边界条件和求解器设置。
第01章 fluent简单算例21第01章 fluent简单算例21第一章开始赵玉新(国防科技大学航天学院)注意:此文只用于流体力学的教学和科学研究,如若涉及到版权问题请于本人联系。
本章对FLUENT做了大致的介绍,其中包括:FLUENT的计算能力,解决问题时的指导,选择解的形式。
为了便于理解,我们在本章演示了一个简单的例子,该例子的网格文件在安装光盘中已准备好。
引言FLUENT是用于模拟具有复杂外形的流体流动以及热传导的计算机程序。
它提供了完全的网格灵活性,你可以使用非结构网格,例如二维三角形或四边形网格、三维四面体/六面体/金字塔形网格来解决具有复杂外形的流动。
甚至可以用混合型非结构网格。
它允许你根据解的具体情况对网格进行修改(细化/粗化)。
对于大梯度区域,如自由剪切层和边界层,为了非常准确的预测流动,自适应网格是非常有用的。
与结构网格和块结构网格相比,这一特点很明显地减少了产生“好”网格所需要的时间。
对于给定精度,解适应细化方法使网格细化方法变得很简单,并且减少了计算量。
其原因在于:网格细化仅限于那些需要更多网格的解域。
FLUENT是用C语言写的,因此具有很大的灵活性与能力。
因此,动态内存分配,高效数据结构,灵活的解控制都是可能的。
除此之外,为了高效的执行,交互的控制,以及灵活的适应各种机器与操作系统,FLUENT使用client/server结构,因此它允许同时在用户桌面工作站和强有力的服务器上分离地运行程序。
在FLUENT中,解的计算与显示可以通过交互界面,菜单界面来完成。
用户界面是通过Scheme语言及LISP dialect写就的。
高级用户可以通过写菜单宏及菜单函数自定义及优化界面。
程序结构该FLUENT光盘包括:FLUENT解算器;prePDF,模拟PDF燃烧的程序;GAMBIT, 几何图形模拟以及网格生成的预处理程序;TGrid, 可以从已有边界网格中生成体网格的附加前处理程序;filters (translators)从CAD/CAE软件如:ANSYS,I-DEAS,NASTRAN,PATRAN 等的文件中输入面网格或者体网格。
图一所示为以上各部分的组织结构。
注意:在Fluent使用手册中"grid" 和"mesh"是具有相同所指的两个单词图一:基本程序结构我们可以用GAMBIT产生所需的几何结构以及网格(如想了解得更多可以参考GAMBIT的帮助文件,具体的帮助文件在本光盘中有,也可以在互联网上找到),也可以在已知边界网格(由GAMBIT或者第三方CAD/CAE软件产生的)中用Tgrid产生三角网格,四面体网格或者混合网格,详情请见Tgrid用户手册。
也可能用其他软件产生FLUENT所需要的网格,比如ANSYS(Swanson Analysis Systems, Inc.)、I-DEAS (SDRC);或者MSC/ARIES,MSC/PATRAN以及MSC/NASTRAN (都是MacNeal-Schwendler公司的软件)。
与其他CAD/CAE 软件的界面可能根据用户的需要酌情发展,但是大多数CAD/CAE软件都可以产生上述格式的网格。
一旦网格被读入FLUENT,剩下的任务就是使用解算器进行计算了。
其中包括,边界条件的设定,流体物性的设定,解的执行,网格的优化,结果的查看与后处理。
PreBFC和GeoMesh是FLUENT前处理器的名字,在使用GAMBIT之前将会用到它们。
对于那些还在使用这两个软件的人来说,在本手册中,你可以参考preBFC 和GeoMesh的详细介绍。
本程序的能力FLUENT解算器有如下模拟能力:●用非结构自适应网格模拟2D或者3D流场,它所使用的非结构网格主要有三角形/五边形、四边形/五边形,或者混合网格,其中混合网格有棱柱形和金字塔形。
(一致网格和悬挂节点网格都可以)●不可压或可压流动●定常状态或者过渡分析●无粘,层流和湍流●牛顿流或者非牛顿流●对流热传导,包括自然对流和强迫对流●耦合热传导和对流●辐射热传导模型●惯性(静止)坐标系非惯性(旋转)坐标系模型●多重运动参考框架,包括滑动网格界面和rotor/stator interaction modeling的混合界面●化学组分混合和反应,包括燃烧子模型和表面沉积反应模型●热,质量,动量,湍流和化学组分的控制体源●粒子,液滴和气泡的离散相的拉格朗日轨迹的计算,包括了和连续相的耦合●多孔流动●一维风扇/热交换模型●两相流,包括气穴现象●复杂外形的自由表面流动上述各功能使得FLUENT具有广泛的应用,主要有以下几个方面●Process and process equipment applications ●油/气能量的产生和环境应用●航天和涡轮机械的应用●汽车工业的应用●热交换应用●电子/HV AC/应用●材料处理应用●建筑设计和火灾研究总而言之,对于模拟复杂流场结构的不可压缩/可压缩流动来说,FLUENT是很理想的软件。
对于不同的流动领域和模型,FLUENT公司还提供了其它几种解算器,其中包括NEKTON,FIDAP、POLYFLOW、IcePak以及MixSim。
FLUENT使用概述FLUENT采用非结构网格以缩短产生网格所需要的时间,简化了几何外形的模拟以及网格产生过程。
和传统的多块结构网格相比,它可以模拟具有更为复杂几何结构的流场,并且具有使网格适应流场的特点。
FLUENT也能够使用适体网格,块结构网格(比如:FLUENT 4和许多其它的CFD结算器的网格)。
FLUENT可以在2D 流动中处理三角形网格和四边形网格,在3D流动中可以处理四面体网格,六边形网格,金字塔网格以及楔形网格(或者上述网格的混合)。
这种灵活处理网格的特点使我们在选择网格类型时,可以确定最适合特定应用的网格拓扑结构。
在流场的大梯度区域,我们可以适应各种类型的网格。
但是你必须在解算器之外首先产生初始网格,初始网格可以使用GAMBIT、Tgrid或者某一具有网格读入转换器的CAD系统。
计划你的CFD分析当你决定使FLUENT解决某一问题时,首先要考虑如下几点问题:定义模型目标:从CFD模型中需要得到什么样的结果?从模型中需要得到什么样的精度;选择计算模型:你将如何隔绝所需要模拟的物理系统,计算区域的起点和终点是什么?在模型的边界处使用什么样的边界条件?二维问题还是三维问题?什么样的网格拓扑结构适合解决问题?物理模型的选取:无粘,层流还湍流?定常还是非定常?可压流还是不可压流?是否需要应用其它的物理模型?确定解的程序:问题可否简化?是否使用缺省的解的格式与参数值?采用哪种解格式可以加速收敛?使用多重网格计算机的内存是否够用?得到收敛解需要多久的时间?在使用CFD分析之前详细考虑这些问题,对你的模拟来说是很有意义的。
当你计划一个CFD工程时,请利用提供给FLUENT使用者的技术支持。
.解决问题的步骤确定所解决问题的特征之后,你需要以下几个基本的步骤来解决问题:1.创建网格.2.运行合适的解算器:2D、3D、2DDP、3DDP。
3.输入网格4.检查网格5.选择解的格式6.选择需要解的基本方程:层流还是湍流(无粘)、化学组分还是化学反应、热传导模型等7.确定所需要的附加模型:风扇,热交换,多孔介质等。
8..指定材料物理性质8.指定边界条件9.调节解的控制参数10.初始化流场11.计算解12.检查结果13.保存结果14.必要的话,细化网格,改变数值和物理模型。
第一步需要几何结构的模型以及网格生成。
你可以使用GAMBIT或者一个分离的CAD系统产生几何结构模型及网格。
也可以用Tgrid从已有的面网格中产生体网格。
你也可以从相关的CAD软件包生成体网格,然后读入到Tgrid或者FLUENT (详情参阅网格输入一章)。
至于创建几何图形生成网格的详细信息清查月相关软件使用手册第二步,启动FLUENT解算器后面将会介绍第三到十四步详细操作,下面的表告诉了我们哪一步需要什么软件表一:FLUENT菜单概述启动FLUENTUNIX和Windows NT启动FLUENT的方式是不同的,详细参阅相关介绍。
不同的安装过程也是为了使FLUENT能够正确启动而设定的。
单精度和双精度解算器在所有计算机操作系统上FLUENT都包含这两个解算器。
大多数情况下,单精度解算器高效准确,但是对于某些问题使用双精度解算器更合适。
下面举几个例子:如果几何图形长度尺度相差太多(比如细长管道),描述节点坐标时单精度网格计算就不合适了;如果几何图形是由很多层小直径管道包围而成(比如:汽车的集管)平均压力不大,但是局部区域压力却可能相当大(因为你只能设定一个全局参考压力位置),此时采用双精度解算器来计算压差就很有必要了。
对于包括很大热传导比率和(或)高比率网格的成对问题,如果使用单精度解算器便无法有效实现边界信息的传递,从而导致收敛性和(或)精度下降在UNIX系统启动FLUENT有如下几个启动方法:●在命令行启动适当的版本;●在命令行启动,但是不指定版本,然后在面板上选择适当的版本;在命令行启动,但是不指定版本,然后读入case文件(或者case文件和数据文件)来启动适当的版本。
命令行启动适当版本:可以指定维度和精度:fluent 2d运行二维单精度版本;相应的fluent 3d;fluent 2ddp;fluent 3ddp都分别运行相应的版本。
并行版本的启动请参阅相关的并行版本启动方法在此不予介绍。
在解算器的面板中指定版本Figure 1:启动时的控制台窗口在版本提示中健入2d、3d、2ddp或者3ddp启动相应版本。
如果是在图形用户界面(GUI)中启动适当的版本,请选择File/Run...菜单,然后将会出现如下图所示的菜单,这样你就可以选择合适的版本了(你也可以在这个面板上启动远程机器上的FLUENT或者并行版本,详细的内容请参阅相关主题Figure 2: FLUENT可以在选择结算器的面板上启动适当的版本在面板上启动解算器一般遵循如下方法:1. 开关3D选项指定3D还是2D解算器2. 开关双精度选项启动双精度或者单精度解算器3. 点击Run按钮如果可执行程序不在你的搜索目录下,你可以在点击Run之前指定完全的文件名。
读Case文件指定解算器版本:启动时如果未指定版本(在命令行输入fluent),将会出现前面所看到的控制台窗口,在File/Read/Case.. 或者File/Read/Case & Data..菜单中择适当的case文件或者data文件,我们就可以启动适当的版本了。
(详细内容型参阅“读写case和data文件”部分)。
当然也可以在版本的文本菜单中用read-case或者read-case-data命令。