高中数学人教A版第二章2.2-2.2.1椭圆及其标准方程
- 格式:doc
- 大小:265.00 KB
- 文档页数:6
2.2.1椭圆及其标准方程一、选择题1.【题文】已知椭圆221102x y m m +=--,焦点在y 轴上,若焦距为4,则m 等于( ) A .4 B .5 C .7 D .82.【题文】已知椭圆221416x y +=上的一点P 到椭圆一个焦点的距离为5,则P 到另一个焦点的距离为 ( )A .2B .3C .5D .73.【题文】设()14,0F -,()24,0F 为定点,动点M 满足128MF MF +=,则动点M 的轨迹是 ( )A .椭圆B .直线C .圆D .线段4.【题文】已知△ABC 的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长l 是 ( )A ..6 C ..125.【题文】如果椭圆2218125x y +=上一点M 到此椭圆一个焦点1F 的距离为2,N 是1MF 的中点,O 是坐标原点,则ON 的长为 ( )A .2B .4C .8D .326.【题文】已知椭圆()22:1,2,04x C y A +=,点P 在椭圆C 上,且OP PA ⊥,其中O 为坐标原点,则点P 的坐标为( )A .2,33⎛⎫±⎪ ⎪⎝⎭ B .2,33⎛⎫± ⎪ ⎪⎝⎭C .2,33⎛-± ⎝⎭D .233⎛⎫-± ⎪ ⎪⎝⎭7.【题文】若△ABC 顶点B ,C 的坐标分别为()4,0-,()4,0,AC ,AB 边上的中线长之和为30,则△ABC 的重心G 的轨迹方程为 ( )A.()221010036x y y +=≠ B.()221010084x y y +=≠ C.()221010036x y x +=≠ D.()221010084x y x +=≠8.【题文】已知12,F F 为椭圆22:14x C y +=的左,右焦点,点P 在C 上,123PF PF =,则12cos F PF ∠等于 ( ) A .34 B .13- C .35- D .45二、填空题9.【题文】椭圆221167x y +=上横坐标为2的点到右焦点的距离为 .10.【题文】已知方程2213+2x y k k+=-表示椭圆,则k 的取值范围为 .11.【题文】椭圆221259x y +=的左焦点为1F ,P 为椭圆上的动点,M 是圆 (221x y +-=上的动点,则1PM PF +的最大值是 .三、解答题12.【题文】已知椭圆的中心在原点,两焦点1F ,2F 在x 轴上,且过点()4,3A -.若12F A F A ⊥,求椭圆的标准方程.13.【题文】求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点()2,0和点()0,1;(2)焦点在y 轴上,与y 轴的一个交点为()0,10P -,P 到距它较近的一个焦点的距 离等于2.14.【题文】已知定点1,02A ⎛⎫- ⎪⎝⎭,B 是圆C :22142x y ⎛⎫-+= ⎪⎝⎭上的一个动点,线段AB 的垂直平分线交BC 于M 点,求动点M 的轨迹方程.2.2.1椭圆及其标准方程 参考答案及解析1. 【答案】D【解析】因为焦点在y 轴上,所以2100m m ->->,即610m <<,又 ()()22102m m ---=,所以8m =,故选D. 考点:椭圆的标准方程. 【题型】选择题 【难度】一般 2. 【答案】B【解析】设所求距离为d ,由题意得4a =.根据椭圆的定义得25253a d d a =+⇒=-=,故选B .考点:椭圆的定义. 【题型】选择题 【难度】较易 3. 【答案】D【解析】动点M 满足128MF MF +=,128F F =,故动点M 的轨迹是线段12F F .考点:椭圆的定义. 【题型】选择题 【难度】一般 4. 【答案】C【解析】如图,设椭圆的另外一个焦点为F ,由椭圆的方程知a =ABC 的周长()()4l AB AC BC AB BF AC CF a =++=+++==.考点:椭圆的定义及其应用. 【题型】选择题 【难度】一般 5. 【答案】C【解析】∵椭圆方程为2218125x y +=,∴9a =,根据椭圆的定义得2=18216MF -=, 而ON 是△12MF F 的中位线,∴216822MF ON ===,故选C . 考点:椭圆的定义. 【题型】选择题 【难度】一般 6. 【答案】A【解析】设(),P x y ,由OP PA ⊥,得OP PA ⊥,所以()()()2,2,20OP PA x y x y x x y ⋅=⋅--=--=,与椭圆方程2214x y +=联立,解得23x =(2x =舍去),此时3y =±,即点P 的坐标为2,33⎛± ⎝⎭,故选A.考点:椭圆上点的坐标. 【题型】选择题 【难度】一般 7. 【答案】B【解析】设AC 、AB 边上的中线分别为BD 、CE ,∵23BG BD =,23CG CE =, ∴()22302033BG CG BD CE +=+=⨯=(定值). 因此,重心G 的轨迹为以B 、C 为焦点的椭圆,220a =,4c =,∴10a =,b =,可得椭圆的方程为22110084x y +=.∵当G 点在x 轴上时,A 、B 、C 三点共线,不能构成△ABC ,∴G 的纵坐标不能是0,可得△ABC 的重心G 的轨迹方程为()221010084x y y +=≠,故选B. 考点:椭圆的定义及标准方程. 【题型】选择题 【难度】较难 8. 【答案】B【解析】由题意可知,12F F ==12222344PF PF PF PF PF +=+==,211,3PF PF ∴==,(22222212121212311cos 22313PF PF F F F PF PF PF +-+-∴∠===-⋅⨯⨯,故选B .考点:椭圆的定义,余弦定理. 【题型】选择题 【难度】较难 9. 【答案】2.5【解析】由椭圆方程可知22216,7,9,3a b c c ==∴=∴=,右焦点为()3,0,将2x =代入椭圆方程得2214y =,所以两点间距离为2.5d ==. 考点:椭圆的定义.【题型】填空题 【难度】一般10. 【答案】132,2k k k ⎧⎫-<<≠-⎨⎬⎩⎭且【解析】由椭圆的定义知30,20,32,k k k k +>⎧⎪->⎨⎪+≠-⎩解得132,2k k k ⎧⎫-<<≠-⎨⎬⎩⎭且. 考点:椭圆的定义. 【题型】填空题 【难度】一般 11. 【答案】17【解析】圆(221x y +-=的圆心为(0,C ,半径为1.由椭圆方程221259x y +=可知2225,9a b ==,所以5a =,左焦点为()14,0F -,右焦点为()24,0F .122221010PC PF PC a PF PC PF CF +=+-=+-≤+=,()()11maxmax 117PM PF PC PF +=++=.考点:椭圆的定义. 【题型】填空题 【难度】较难12. 【答案】2214015x y += 【解析】设椭圆的标准方程为()222210x y a b a b+=>>,焦点()1,0F c -,()2,0F c .∵12F A F A ⊥,∴120F A F A ⋅=,而()14,3FA c =-+, ()24,3F A c =--, ∴()()24430c c -+--+=,∴225c =,即5c =.∴()15,0F -,()25,0F .∵122a AF AF =+==∴a=,∴(22222515b a c =-=-=.∴所求椭圆的标准方程为2214015x y +=.考点:椭圆的标准方程. 【题型】解答题 【难度】一般13. 【答案】(1)2214x y +=(2)22110036y x += 【解析】(1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为()222210x y a b a b+=>>. ∵椭圆经过点()2,0和()0,1,∴224,1a b ==,故所求椭圆的标准方程为2214x y +=. (2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为()222210y x a b a b+=>>,∵()0,10P -在椭圆上,∴10a =.又∵P 到距它较近的一个焦点的距离等于2, ∴()102c ---=,故8c =,∴22236b a c =-=.∴所求椭圆的标准方程是22110036y x +=. 考点:椭圆的定义,椭圆的标准方程. 【题型】解答题 【难度】一般14. 【答案】22413y x += 【解析】∵线段AB 的垂直平分线交BC 于M 点,∴MB MA =,又∵2MB MC +=, ∴2MA MC AC +=>,点M 的轨迹是以A 、C 为焦点的椭圆, 此时122,2a c ==,∴1,a =234b =, ∴所求的点M 的轨迹方程是22413y x +=. 考点:椭圆的定义及动点的轨迹方程. 【题型】解答题 【难度】一般。
P F 2F 1课题:2.2.1椭圆及其标准方程(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;已知几何图形建立直角坐标系的两个原则,及引入参量22b a c =-的意义,培养学生用对称的美学思维来体现数学的和谐美。
◆ 情感、态度与价值观目标会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.批 注教学重点:理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题。
教学难点:理解椭圆标准方程的推导过程及化简无理方程的常用的方法。
教学用具: 多媒体,三角板 教学方法: 推导,分析教学过程: 一、课前准备(预习教材P 38~ P 40)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学 ※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b ac =- 若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==.变式:方程214x ym+=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).彗星太阳A .23B .6C .43D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升 ※ 学习小结 1. 椭圆的定义: 2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4B .14C .12D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)M x y 在运动过程中,总满足关系式2222(3)(3)10x y x y ++++-=,点M 的轨迹是 ,它的方程是 .课后作业1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.教学后记:。
1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。
教学设计数学选修2-1《椭圆及其标准方程(第一课时)》巨野县第一中学谷建荣《2.2.1椭圆及其标准方程》教学设计巨野县第一中学谷建荣一、教材及学情分析本节课时《普通高中课程标准试验教科书数学》(人民教育出版社课程教材研究所,中学数学课程教材研究室开发中心编著)选修2---1第二章第二节《椭圆及其标准方程》第一课时,本节继续采用坐标法来探究椭圆的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与椭圆有关的简单几何问题和实际问题,进一步感受数形结合思想的魅力。
本节是直线,圆的进一步加深,也是为学习后面双曲线,抛物线知识而奠基,椭圆是圆在某一方向上的拉伸或压缩,故在学习椭圆时学生并非感到很突然,而是一种似曾相识的感觉,让学生在相似中找到不同,在不同中发现问题探索新知。
根据学习的最近发展区理论,在熟悉中发现问题并解决问题是数学学习动力的主要来源。
高二的学生探究问题的意识加强、好胜,抓住这个心理、生理特点,在教学中注意探究的应用,授人以鱼,不如授人以渔,让学生去发现问题并解决问题。
二、教学目标1、知识与技能目标(1)、理解椭圆的定义(2)、掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力2、过程与方法目标(1)、通过探究点的运动情况经历椭圆概念的形成过程,学习在问题中发现数量关系,提炼数学概念的能力,由具体到抽象,从个别到一般的数学归纳的方法,逐步掌握数学概念形成的本质,提高学生的抽象概括能力。
(2)、学会动点轨迹问题的求解思路--------转移关系法(3)、对学生进行发现问题,解决问题的方法指导,培养学生的数学素养3、情感态度价值观目标(1)、发挥学生的主体地位,让学生在试验中通过观察,思考,尝试,归纳,反思,改进最终形成概念增强学生的问题意识,(2)、重视学生的知识获得过程,知其然更知其所以然,让他们在经历知识产生过程中找到学习数学的乐趣,激发学习数学的热情。
三、教学重点难点(1)、教学重点:椭圆的定义及其标准方程,标准方程的推导(2)、教学难点:椭圆定义核心的发现,标准方程的化简及建系不同的速写方程(3)、难点的突破方法:通过试验演示,突破定义理解难题。
2.2.1椭圆及其标准方程-教案授课教师:严统平一、教材内容分析椭圆是圆锥曲线中重要的一种,本节内容的学习是后继学习其它圆锥曲线的基础,坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例.本节课内容的学习能很好地在课堂教学中展现新课程的理念,主要采用学生自主探究学习的方式,使培养学生的探究精神和创新能力的教学思想贯穿于本节课教学设计的始终.椭圆是生活中常见的图形,通过实验演示,创设生动而直观的情境,使学生亲身体会椭圆与生活联系,有助于激发学生对椭圆知识的学习兴趣;在椭圆概念引入的过程中,改变了直接给出椭圆概念和动画画出椭圆的方式,而采用学生动手画椭圆并合作探究的学习方式,让学生亲身经历椭圆概念形成的数学化过程,有利于培养学生观察分析、抽象概括的能力.椭圆方程的化简是学生从未经历的问题,方程的推导过程采用学生对方程进行化简.可以让学生主体参与椭圆方程建立的具体过程,使学生真正了解椭圆标准方程的来源,使学生体会成功的快乐,提高学生的数学探究能力,培养学生独立主动获取知识的能力.二、教学目标分析1、知识目标:理解椭圆的定义及相关概念,明确椭圆的标准方程的形式,理解椭圆方程的推导.2、能力目标:通过让学生积极参与,亲身经历椭圆定义和标准方程的获得过程,体验坐标法在处理几何问题中的优越性,从而进一步掌握求曲线方程的方法和数形结合的思想,提高运用坐标法解决几何问题的能力,培养了学生的运算能力.3、情感目标:通过主动探究,合作交流,使学生感受探索的乐趣与成功的喜悦,以神舟飞船运动轨迹的演示,激发学生学习数学的兴趣,增强学生的数学应用意识,创新意识和爱国主义思想.三、教学重点、难点分析1、教学难点:椭圆的定义及其标准方程.2、教学难点:椭圆标准方程的推导3、教学手段:计算机、实物投影仪4、教学方法:启发式、探究式四、教学过程:(一)创设情境,导入新课前面,大家学习了曲线的方程等概念,哪一位同学回答:问题1:什么叫做曲线的方程?求曲线方程的一般步骤是什么?其中哪几个步骤必不可少?对上述问题学生的回答基本正确,否则,教师给予纠正.这样便于学生温故而知新,在已有知识基础上去探求新知识.求曲线方程的一般步骤:(1)建系设点;(2)写出点集;(3)列出方程;(4)化简证明.提出这一问题以便说明标准方程推导中一个同解变形.问题2:圆的几何特征是什么?圆是如何定义的?圆的标准方程是什么?一般学生能回答:“平面内到一定点的距离为常数的点的轨迹是圆”.(x-a)2+(y-b)2=r2(r>0)教师进一步追问:“椭圆,在哪些地方见过?”有的同学说:“立体几何中圆的直观图.”有的同学说:“人造卫星运行轨道”等……又用神舟飞船绕地球旋转的模型,它运行的轨迹又是什么图形呢?这就是我们这节课要学习的椭圆及其标准方程.(板书课题)二、探究问题提问:我们从直观上认识了椭圆,那么椭圆它是如何形成的呢?椭圆上的点又是满足什么条件的点的轨迹呢?2、折纸游戏拿出圆形纸片,将圆纸片翻折,使翻折上去的圆弧通过F 点,将折痕用笔画上颜色,继续上述过程,绕圆心一周,观察所得到的图形。
2.2椭圆2.2.1椭圆及其标准方程1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.思考:(1)椭圆定义中将“大于|F1F2|”改为“等于|F1F2|”的常数,其他条件不变,点的轨迹是什么?(2)椭圆定义中将“大于|F1F2|”改为“小于|F1F2|”的常数,其他条件不变,动点的轨迹是什么?[提示](1)点的轨迹是线段F1F2.(2)当距离之和小于|F1F2|时,动点的轨迹不存在.2.椭圆的标准方程1.设P是椭圆x225+y216=1上的点,若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于()A.4B.5C.8 D.10D[由椭圆方程知a2=25,则a=5,|PF1|+|PF2|=2a=10.]2.椭圆的两个焦点坐标分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为()A.x2100+y236=1 B.y2400+x2336=1C.y2100+x236=1 D.y220+x212=1C[由题意知c=8,2a=20,∴a=10,∴b2=a2-c2=36,故椭圆的方程为y2100+x236=1.]3.已知椭圆的焦点为(-1,0)和(1,0),点P(2,0)在椭圆上,则椭圆的方程为()A.x24+y23=1 B.x24+y2=1C.y24+x23=1 D.y24+x2=1A[由题意知c=1,椭圆的焦点在x轴上,设椭圆方程为x2a2+y2b2=1,又点P(2,0)在椭圆上,∴4a2+b2=1,∴a2=4,b2=a2-c2=3,故椭圆方程为x24+y23=1.]4.椭圆8k2x2-ky2=8的一个焦点坐标为(0,7),则k的值为________.-1或-17[原方程可化为x21k2+y2-8k=1.依题意,得⎩⎪⎨⎪⎧-8k >0,-8k >1k 2,-8k -1k 2=7,即⎩⎪⎨⎪⎧k <0,k <-18,k =-1或k =-17.所以k 的值为-1或-17.](1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0); (2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点A (3,-2)和点B (-23,1). [解] (1)由于椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0). ∴a =5,c =4,∴b 2=a 2-c 2=25-16=9. 故所求椭圆的标准方程为x 225+y 29=1. (2)由于椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b 2=1(a >b >0). ∴a =2,b =1.故所求椭圆的标准方程为y 24+x 2=1. (3)法一:①当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(3)2a 2+(-2)2b 2=1,(-23)2a 2+1b 2=1,解得⎩⎨⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1. ②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b 2=1(a >b >0).依题意有⎩⎪⎨⎪⎧(-2)2a 2+(3)2b 2=1,1a 2+(-23)2b 2=1,解得⎩⎨⎧a 2=5,b 2=15,因为a >b >0,所以无解.所以所求椭圆的标准方程为x 215+y 25=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎨⎧3m +4n =1,12m +n =1,解得⎩⎪⎨⎪⎧m =115,n =15.所以所求椭圆的标准方程为x 215+y 25=1.1.利用待定系数法求椭圆的标准方程(1)先确定焦点位置;(2)设出方程;(3)寻求a ,b ,c 的等量关系;(4)求a ,b 的值,代入所设方程.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )或焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而简化了运算.1.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点,若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1D.x 25+y 24=1[答案] B【例2】 (1)椭圆x 9+y 2=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为________.(2)已知椭圆x 24+y 23=1中,点P 是椭圆上一点,F 1,F 2是椭圆的焦点,且∠PF 1F 2=120°,则△PF 1F 2的面积为________.思路探究:(1)求|PF 2|→求cos ∠F 1PF 2→求∠F 1PF 2的大小 (2)椭圆定义和余弦定理→建立关于|PF 1|,|PF 2|的方程→联立求解|PF 1|→求三角形的面积(1)120° (2)335 [(1)由x 29+y 22=1,知a =3,b =2, ∴c =7.∴|PF 2|=2a -|PF 1|=2,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=-12,∴∠F 1PF 2=120°.(2)由x 24+y 23=1,可知a =2,b =3,所以c =a 2-b 2=1,从而|F 1F 2|=2c =2.在△PF 1F 2中,由余弦定理得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos ∠PF 1F 2,即|PF 2|2=|PF 1|2+4+2|PF 1|. ①由椭圆定义得|PF 1|+|PF 2|=2a =4. ② 由①②联立可得|PF 1|=65.所以S △PF 1F 2=12|PF 1||F 1F 2|sin ∠PF 1F 2=12×65×2×32=335.]1.椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .2.椭圆中的焦点三角形椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.在处理椭圆中的焦点三角形问题时,可结合椭圆的定义|MF 1|+|MF 2|=2a 及三角形中的有关定理和公式(如正弦定理、余弦定理、三角形面积公式等)来求解.2.(1)已知P 是椭圆y 25+x 24=1上的一点,F 1,F 2是椭圆的两个焦点,且∠F 1PF 2=30°,则△F 1PF 2的面积是__________________.8-43 [由椭圆的标准方程,知a =5,b =2, ∴c =a 2-b 2=1,∴|F 1F 2|=2. 又由椭圆的定义,知 |PF 1|+|PF 2|=2a =2 5.在△F 1PF 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即4=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-2|PF 1|·|PF 2|cos 30°, 即4=20-(2+3)|PF 1|·|PF 2|, ∴|PF 1|·|PF 2|=16(2-3).∴S △F 1PF 2=12|PF 1|·|PF 2|sin ∠F 1PF 2=12×16(2-3)×12=8-4 3.] (2)设P 是椭圆x 24+y 23=1上一点,F 1,F 2是椭圆的焦点,若∠PF 1F 2=90°,则△F 1PF 2的面积是________.32 [由椭圆方程x 24+y 23=1,知a =2,c =1,由椭圆定义,得|PF 1|+|PF 2|=2a =4,且|F 1F 2|=2,在△PF 1F 2中,∠PF 1F 2=90°.∴|PF 2|2=|PF 1|2+|F 1F 2|2.从而(4-|PF 1|)2=|PF 1|2+4,则|PF 1|=32,因此S △PF 1F 2=12·|F 1F 2|·|PF 1|=32.故所求△PF 1F 2的面积为32.]1.如图所示,P 为圆B :(x +2)2+y 2=36上一动点,点A 的坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.[提示] 用定义法求椭圆的方程,首先要利用平面几何知识将题目条件转化为到两定点的距离之和为定值,然后判断椭圆的中心是否在原点、对称轴是否为坐标轴,最后由定义确定椭圆的基本量a ,b ,c .所求点Q 的轨迹方程为x 29+y 25=1.2.如图所示,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹方程是什么?为什么?[提示] 当题目中所求动点和已知动点存在明显关系时,一般利用代入法(相关点法)求解.用代入法(相关点法)求轨迹方程的基本步骤为:(1)设点:设所求轨迹上动点坐标为M (x ,y ),已知曲线上动点坐标为P (x 1,y 1).(2)求关系式:用点M 的坐标表示出点P 的坐标,即得关系式⎩⎨⎧x 1=g (x ,y ),y 1=h (x ,y ). (3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可.所求点M 的轨迹方程为x 24+y 2=1.【例3】 (1)已知P 是椭圆x 24+y 28=1上一动点;O 为坐标原点,则线段OP 中点Q 的轨迹方程为______________.(2)一个动圆与圆Q 1:(x +3)2+y 2=1外切,与圆Q 2:(x -3)2+y 2=81内切,试求这个动圆圆心的轨迹方程.思路探究:(1)点Q为OP的中点⇒点Q与点P的坐标关系⇒代入法求解.(2)由圆的相切,及动圆圆心与两个定圆圆心、半径的关系得轨迹.(1)x2+y22=1[设Q(x,y),P(x0,y0),由点Q是线段OP的中点知x0=2x,y0=2y,又x204+y208=1.所以(2x)24+(2y)28=1,即x2+y22=1.](2)解:由已知,得两定圆的圆心和半径分别为Q1(-3,0),R1=1;Q2(3,0),R2=9.设动圆圆心为M(x,y),半径为R,如图.由题设有|MQ1|=1+R,|MQ2|=9-R,所以|MQ1|+|MQ2|=10>|Q1Q2|=6.由椭圆的定义,知点M在以Q1,Q2为焦点的椭圆上,且a=5,c=3.所以b2=a2-c2=25-9=16,故动圆圆心的轨迹方程为x225+y216=1.1.与椭圆有关的轨迹方程的求法常用方法有:直接法、定义法和代入法,本例(1)所用方法为代入法.例(2)所用方法为定义法.2.对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.3.代入法(相关点法)若所求轨迹上的动点P(x,y)与另一个已知曲线C:F(x,y)=0上的动点Q(x1,y1)存在着某种联系,可以把点Q的坐标用点P的坐标表示出来,然后代入已知曲线C的方程F(x,y)=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).3.(1)已知x 轴上一定点A (1,0),Q 为椭圆x 24+y 2=1上任一点,求线段AQ 中点M 的轨迹方程.[解] 设中点M 的坐标为(x ,y ),点Q 的坐标为(x 0,y 0). 利用中点坐标公式,得⎩⎪⎨⎪⎧x =x 0+12,y =y 02,∴⎩⎨⎧x 0=2x -1,y 0=2y .∵Q (x 0,y 0)在椭圆x 24+y 2=1上, ∴x 204+y 20=1.将x 0=2x -1,y 0=2y 代入上式, 得(2x -1)24+(2y )2=1.故所求AQ 的中点M 的轨迹方程是 ⎝ ⎛⎭⎪⎫x -122+4y 2=1. (2)在Rt △ABC 中,∠CAB =90°,|AB |=2,|AC |=32,曲线E 过C 点,动点P 在曲线E 上运动,且|P A |+|PB |是定值.建立适当的平面直角坐标系,求曲线E 的方程.[解] 以AB 的中点O 为原点,建立如图所示的平面直角坐标系.由题意可知,曲线E 是以A ,B 为焦点,且过点C 的椭圆,设其方程为x 2a 2+y 2b 2=1(a >b >0).则2a =|AC |+|BC |=32+52=4,2c =|AB |=2,所以a =2,c =1,所以b 2=a 2-c 2=3.所以曲线E 的方程为x 24+y 23=1.1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a ,当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2;当2a <|F 1F 2|时,轨迹不存在.2.所谓椭圆的标准方程,指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在x 2a 2+y 2b 2=1与y 2a 2+x 2b 2=1这两个标准方程中,都有a >b >0的要求,如方程x 2m +y 2n =1(m >0,n >0,m ≠n )就不能确定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式x a +y b =1类比,如x 2a 2+y 2b 2=1中,由于a >b ,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看x 2,y 2分母的大小).3.对于求解椭圆的标准方程一般有两种方法:一是通过待定系数法求解,二是通过椭圆的定义进行求解.1.已知A (-5,0),B (5,0).动点C 满足|AC |+|BC |=10,则点C 的轨迹是( )A .椭圆B .直线C .线段D .点 C [由|AC |+|BC |=10=|AB |知点C 的轨迹是线段AB .]2.已知椭圆4x 2+ky 2=4的一个焦点坐标是(0,1),则实数k 的值是( ) A .1 B .2 C .3 D .4B[椭圆方程可化为x 2+y24k =1,由题意知⎩⎪⎨⎪⎧4k >1,4k -1=1,解得k =2.]3.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1,F 2的连线夹角为直角,则|PF 1|·|PF 2|=________.48 [由题意知⎩⎨⎧|PF 1|+|PF 2|=14, ①|PF 1|2+|PF 2|2=100, ② ①2-②得2|PF 1||PF 2|=96.所以|PF 1||PF 2|=48.]4.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.[解] 设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).设焦点F 1(-c ,0),F 2(c ,0)(c >0).∵F 1A ⊥F 2A ,∴F 1A →·F 2A →=0,而F 1A →=(-4+c ,3),F 2A →=(-4-c ,3),∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5.∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2| =(-4+5)2+32+(-4-5)2+32=10+90=410. ∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1.。
第二章 圆锥曲线与方程
2.2 椭圆
2.2.1 椭圆及其标准方程
A 级 基础巩固
一、选择题
1.若F 1,F 2是两个定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则点M 的轨迹是( )
A .椭圆
B .直线
C .圆
D .线段 解析:因为|MF 1|+|MF 2|=6=|F 1F 2|,所以点M 的轨迹是线段F 1F 2.
答案:D
2.已知椭圆x 210-m +y 2
m -2=1的长轴在y 轴上,若焦距为4,则
m 等于( )
A .4
B .5
C .7
D .8
解析:焦距为4,则m -2-(10-m )=⎝ ⎛⎭
⎪⎫
422,所以m =8.
答案:D
3.在△ABC 中,若B ,C 的坐标分别是(-2,0)、(2,0),中线AD 的长度是3,则A 点的轨迹方程是( )
A .x 2+y 2=3
B .x 2+y 2=4
C .x 2+y 2=9(y ≠0)
D .x 2+y 2=9(x ≠0)
解析:易知BC 中点D 即为原点O ,所以|OA |=3,所以点A 的轨迹是以原点为圆心,以3为半径的圆,又因为在△ABC 中,A ,B ,C 三点不共线,所以y ≠0.
答案:C
4.在△ABC 中,A (-4,0),B (4,0),△ABC 的周长是18,则顶点C 的轨迹方程是( )
A.x 225+y 2
9
=1 B.y 225+x 2
9
=1(y ≠0) C.x 216+y 2
9=1(y ≠0) D.x 225+y 2
9
=1(y ≠0) 答案:D
5.如果方程x 2a 2+y 2
a +6=1表示焦点在x 轴上的椭圆,则实数a
的取值范围是( )
A .a >3
B .a >3或a <-2
C .a <-2
D .a >3或-6<a <-2 解析:由于椭圆焦点在x 轴上,
所以⎩⎪⎨⎪⎧a 2>a +6,a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0,a >-6.
⇔a >3或-6<a <
-2.
答案:D 二、填空题
6.已知椭圆x 249+y 2
24=1上一点P 与椭圆的两焦点F 1,F 2连线的
夹角为直角,则|PF 1|·|PF 2|=________.
解析:由椭圆定义及标准方程知|PF 1|+|PF 2|=14.
且|PF1|2+|PF2|2=100,
联立可得|PF1|·|PF2|=48. 答案:48
7.已知椭圆x2
49+
y2
24=1上一点P与椭圆的两焦点F1,F2连线
的夹角为直角,则|PF1|·|PF2|=________.
解析:由椭圆定义及标准方程知|PF1|+|PF2|=14.
且|PF1|2+|PF2|2=100,
联立可得|PF1|·|PF2|=48.
答案:48
8.在平面直角坐标系xOy中,已知△ABC顶点A(-4,0)和C(4,
0),顶点B在椭圆x2
25+
y2
9=1上,则
sin A+sin C
sin B=________.
解析:由题意知,|AC|=8,|AB|+|BC|=10.
所以sin A+sin C
sin B=
|BC|+|AB|
|AC|=
10
8=
5
4.
答案:5 4
三、解答题
9.求适合下列条件的椭圆的标准方程:
(1)焦点在y轴上,焦距是4,且经过点M(3,2);
(2)焦距是10,且椭圆上一点到两焦点的距离的和为26.
解:(1)由焦距是4可得c=2且焦点坐标为(0,-2),(0,2).由椭圆的定义知2a=32+(2+2)2+32+(2-2)2=8,所以a=4,所以b2=a2-c2=16-4=12.
又焦点在y轴上,所以椭圆的标准方程为y2
16+
x2
12=1.
(2)由题意知2c =10,2a =26,所以c =5,a =13, 所以b 2=a 2-c 2=132-52=144, 因为焦点所在的坐标轴不确定,
所以椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2
144
=1.
10.一个动圆与已知圆Q 1:(x +3)2+y 2=1外切,与圆Q 2:(x -3)2+y 2=81内切,试求这个动圆圆心的轨迹方程.
解:两定圆的圆心和半径分别为Q 1(-3,0),r 1=1;Q 2(3,0),r 2=9.
设动圆圆心为M (x ,y ),半径为R ,如图所示,
由题意有|MQ 1|=1+R ,|MQ 2|=9-R , 所以|MQ 1|+|MQ 2|=10>|Q 1Q 2|=6.
由椭圆的定义可知点M 在以Q 1,Q 2为焦点的椭圆上,且a =5,c =3,所以b 2=a 2-c 2=25-9=16.
故动圆圆心的轨迹方程为x 225+y 2
16
=1.
B 级 能力提升
1.设F 1,F 2是椭圆x 29+y 2
4=1的两个焦点,P 是椭圆上的点,
且|PF 1|∶|PF 2=2∶1,则△F 1PF 2的面积等于( )
A .5
B .4
C .3
D .1 答案:B
2.a ∈⎝
⎛⎭
⎪⎫
0,π2,若方程x 2sin α+y 2cos α=1表示焦点在y 轴上的
椭圆,则α的取值范围是________.
解析:方程x 2sin α+y 2cos α=1可化为 x 21sin α+y 2
1cos α
=1. 因为椭圆的焦点在y 轴上,所以1cos α>1
sin α
>0.
又因为α∈⎝ ⎛⎭⎪⎫0,π2,所以sin α>cos α>0,所以π4<α<π2. 答案:⎝ ⎛⎭
⎪⎫
π4,π2
3.已知F 1,F 2是椭圆x 2100+y 2
64=1的两个焦点,P 是椭圆上任意
一点.
(1)若∠F 1PF 2=π
3,求△PF 1F 2的面积;
(2)求|PF 1|·|PF 2|的最大值.
解:(1)由椭圆的定义可知,|PF 1|+|PF 2|=20,①
在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即122=|PF 1|2+|PF 2|2-|PF 1||PF 2|.②
①2-②,并整理,得|PF 1|·|PF 2|=256
3.
所以S △PF 1F 2=1
2|PF 1|·|PF 2|·sin π3=643 3.
(2)由x 2100+y 2
64=1可知,a =10,c =6.
所以|PF 1|+|PF 2|=20,
所以|PF 1|·|PF 2|≤⎝
⎛⎭
⎪⎫|PF 1|+|PF 2|22
=100.当且仅当|PF 1|=|PF 2|=10时,等号成立.
所以|PF1|·|PF2|的最大值是100.。